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Abstract In this paper, a stochastic collocation-based
Kalman filter (SCKF) is developed to estimate the
hydraulic conductivity from direct and indirect mea-
surements. It combines the advantages of the ensemble
Kalman filter (EnKF) for dynamic data assimilation
and the polynomial chaos expansion (PCE) for efficient
uncertainty quantification. In this approach, the ran-
dom log hydraulic conductivity field is first parame-
terized by the Karhunen–Loeve (KL) expansion and
the hydraulic pressure is expressed by the PCE. The
coefficients of PCE are solved with a collocation tech-
nique. Realizations are constructed by choosing collo-
cation point sets in the random space. The stochastic
collocation method is non-intrusive in that such real-
izations are solved forward in time via an existing de-
terministic solver independently as in the Monte Carlo
method. The needed entries of the state covariance
matrix are approximated with the coefficients of PCE,
which can be recovered from the collocation results.
The system states are updated by updating the PCE
coefficients. A 2D heterogeneous flow example is used
to demonstrate the applicability of the SCKF with re-
spect to different factors, such as initial guess, variance,
correlation length, and the number of observations.
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The results are compared with those from the EnKF
method. It is shown that the SCKF is computationally
more efficient than the EnKF under certain conditions.
Each approach has its own advantages and limitations.
The performance of the SCKF decreases with larger
variance, smaller correlation ratio, and fewer obser-
vations. Hence, the choice between the two methods
is problem dependent. As a non-intrusive method,
the SCKF can be easily extended to multiphase flow
problems.
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1 Introduction

Geologic formations are intrinsically deterministic.
However, owing to the incomplete knowledge of the
medium properties, such as the hydraulic conductivity
and porosity, these parameters are usually treated as
random space functions, and the equations describing
flow and transport in the media become stochastic
[1–3]. Large efforts have been made to estimate the
parameters of the formations from all available obser-
vations. Owing to the high cost associated with direct
measurements of formation parameters, the observa-
tions often include a limited number of direct measure-
ments and a certain amount of indirect measurements.
Estimating the parameters from the indirect measure-
ments is a challenging inverse problem.

The Kalman filter is widely used as a sequential data
assimilation method [4]. It is optimal if all the probabil-
ity distributions involved are Gaussian, i.e., the system
is linear, and all the random variables are normally



722 Comput Geosci (2010) 14:721–744

distributed. Different methods have been proposed to
apply Kalman filter to nonlinear problems. These ap-
proaches include extended Kalman filter (EKF) [5],
ensemble Kalman filter (EnKF) [6], and their variants.
EKF is based on the first-order linearization of the
system. It becomes rather time consuming when dealing
with large-scale problems. The EnKF is essentially a
Monte Carlo method. The information of the state co-
variance is represented by an ensemble of realizations.
Owing to its conceptual simplicity, ease in implementa-
tion, and relatively lower computational cost compared
to other approaches, the EnKF has been widely used
in different fields such as meteorology, oceanography,
hydrology, and reservoir engineering [6–13]. However,
the size of the ensemble is crucial for the performance
of the EnKF. Owing to the slow convergence with the
ensemble size Ne, a large ensemble size is required
to get accurate estimations of the system and an even
larger size for the estimation of the associated uncer-
tainty. On the other hand, since it is time consuming to
run each simulation for large-scale problems, one can
only afford a small ensemble size. Some methods have
been proposed to reduce the sampling errors in the
EnKF with small-sized ensembles. Ensemble square
root filter [14] uses different Kalman gains to update
the ensemble mean and the perturbations separately.
Double ensemble Kalman filter [15] divides the en-
semble into two parts, each of which is updated using
the Kalman gain calculated from the other. Further-
more, some ad hoc techniques, such as localizations and
inflations, have been proposed to handle the spurious
correlations approximated by the small sized ensemble
[16]. These approaches are found to give improved
results with relatively small ensemble sizes. However,
extra efforts are needed.

Recently, there are increasing interests in solving
inverse problems via the stochastic spectral method. As
one of the most popular stochastic spectral methods,
the polynomial chaos expansion (PCE) method, pio-
neered by Ghanem and Spanos in the field of stochastic
mechanics [17], provides a powerful tool in uncertainty
quantification. In this method, the random process of
interest is represented by the polynomial chaos basis.
The expansion coefficients are solved via the Galerkin
technique. This PCE method allows high-order approx-
imations of random input variables. Optimal conver-
gence can be achieved by choosing the proper basis,
known as the generalized polynomial chaos (gPC) [18].
A Bayesian approach to a transient diffusion problem
based on PCE was proposed in [19]. The PCE was used
to accelerate the Bayesian inference without solving the
stochastic differential equation. A PCE-based EnKF
was developed in data assimilation for multiphase flow

problem [20], where the inputs were random variables
and the statistics of the states were represented by
PCE terms. In the above two approaches, the Galerkin
technique was employed; hence, one has to solve cou-
pled equations for the PCE coefficients. It becomes
difficult when the governing equations take compli-
cated nonlinear forms. A dimension-reduced Kalman
filter based on the Karhunen–Loeve-based moment
equation (KLME) method for reservoir data assimila-
tion was developed in [21]. The forward problem was
solved by the KLME method. The estimations of the
hydraulic conductivity field were sequentially updated
using updated KL expansion coefficients. In this ap-
proach, the equations are not coupled but recursive
since the high-order equations depend on the lower-
order ones. This method cannot be easily extended
to multiphase (nonlinear) problems, since the KLME
results in new types of equations at high order. In all
the spectral approaches listed above, new codes need
to be developed to deal with the corresponding new
equations.

To alleviate this difficulty, collocation methods such
as the probabilistic collocation method (PCM) [22–24]
and the stochastic collocation method [25, 26] have
been developed for uncertainty quantification. A com-
parative study of different collocation methods for flow
in porous media can be found in [27]. In these methods,
after choosing collocation point sets in the random
space, one only needs to solve the corresponding deter-
ministic governing equation repeatedly. In this sense,
the stochastic collocation methods are non-intrusive as
in the traditional Monte Carlo method. It is, however,
found that the former are more efficient than the latter
under certain conditions. The research in inverse prob-
lems via collocation methods just started very recently.
A method for the stochastic inverse heat conduction
was proposed in [28], where the stochastic inverse prob-
lem was transformed to a deterministic optimization
problem via a sparse grid collocation method. How-
ever, it still requires developing new codes to solve the
resulting sensitivity equations, what may be difficult for
complex systems. Furthermore, it uses the observations
in the entire history (not real time) and is thus very de-
manding for data storage in geological problems. These
are typical disadvantages of gradient-based methods in
the inverse problem.

In this study, a stochastic collocation-based Kalman
filter (SCKF) is developed to sequentially update the
formation conductivity field from all available obser-
vations. The covariance matrix is approximated by the
coefficients of PCE, which are obtained from the sto-
chastic collocation results. This paper is organized as
follows. In Section 2, the mathematical formulations
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are presented briefly. The implementation of the SCKF
is discussed in Section 3. Then, illustrative examples
are given in Section 4 to show the applicability of the
SCKF. Some discussion is given in Section 5 before the
paper in concluded.

2 Mathematical formulations

2.1 Governing equation

We consider transient water flow in saturated geologic
formations satisfying the following governing equation:

∇ [Ks(x)∇h(x, t)
]+ g(x, t) = Ss

∂h(x, t)
∂t

, (1)

subject to the initial and boundary conditions:

h (x, 0) = H0 (x) , x ∈ D, (2)

h (x, t) = H (x, t) , x ∈ �D, (3)

Ks (x)∇h (x, t) · n (x) = −Q (x, t) , x ∈ �N, (4)

where g(x, t) is the source/sink term, h(x, t) is the pres-
sure head, H0(x) is the initial head in the domain
D, H(x, t) is the prescribed head on Dirichlet bound-
ary segments �D, Ks(x) is the hydraulic conductivity,
Q(x, t) is the prescribed flux across Neumann boundary
segments �N , n(x) = (n1, n2, . . .nd)

T is an outward vec-
tor normal to the boundary �N , and Ss is the specific
storage. In this study, the conductivity Ks(x) is con-
sidered as a random space function with lognormal
distribution. We usually work with the log transformed
hydraulic conductivity Y = ln Ks. We treat the specific
storage Ss as a deterministic constant.

Since Ks(x) is a random function, the above flow
equations become stochastic partial differential equa-
tions, which can be solved by different methods. In
this study, a stochastic collocation method is used. This
method is based on the stochastic spectral expansions
of random processes, which are formulated in the fol-
lowing sections.

2.2 Karhunen–Loeve expansion

Let Y (x, ω) = ln [Ks (x, ω)] be a Gaussian stochas-
tic process, where x ∈ D and ω ∈ � (a probabil-

ity space). Since the covariance function CY
(
x, y

) =〈
Y ′ (x, ω) Y ′ (y, ω

)〉
is bounded, symmetric, and positive

definite, it can be decomposed into

CY
(
x, y

) =
∞∑

i=1

λi fi (x) fi
(
y
)
, (5)

where λi and fi(x) are eigenvalues and eigenfunctions,
respectively. The stochastic process Y(x, ω) can be ex-
panded with Karhunen–Loeve (KL) expansion as:

Y (x, ω) = Ȳ (x) +
∞∑

i=1

εi (ω)
√

λi fi (x), (6)

where Ȳ(x) is the mean component and εi are indepen-
dent Gaussian random variables with unit variance and
zero mean. It has been shown that the KL expansion
is of mean square convergence when the underlying
process is Gaussian. In practice, the expansion is usually
truncated up to the first M terms. Increased number
of terms is needed to sufficiently approximate the ran-
dom field with the decrease of the correlation scale
relative to the domain size (correlation ratio). For the
correlation function with some special forms such as
the separable exponential form used in this paper, the
KL expansion can be obtained analytically. Usually,
one has to solve the Fredholm equation to get the
eigenvalues and eigenfunctions numerically [17]. This
problem can be transformed to eigen-decomposition
of the covariance matrix. It is very time consuming
when the models are large. Two methods can be used
to reduce the computational burden. One is to use
interpolation based on coarse nodes to approximate
the covariance and the corresponding eigenfunctions.
If the covariance is smooth enough, this method can
effectively approximate the first few KL expansion
terms. Another new approach is kernel method, which
is to use Monte Carlo realizations to approximate the
eigenfunctions and eigenvalues [29]. In this method,
one has to check the convergence of the covariance
represented by a limited number of realizations.

2.3 Polynomial chaos expansion

The polynomial chaos expansion is more general than
the KL expansion. It can be used to represent ran-
dom processes without the prior knowledge of the
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covariance function. With this expansion, the random
process of interest can be expressed as

y (x, ω) = a0 (x) +
∞∑

i1=1

ai1 (x) �1
(
ξi1 (ω)

)

+
∞∑

i1=1

i1∑

i2=1

ai1i2 (x) �2
(
ξi1 (ω) , ξi2 (ω)

)

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

ai1i2i3 (x) �3
(
ξi1 (ω) , ξi2 (ω) , ξi3 (ω)

)+ . . . ,

(7)

where the coefficient functions a0(x) and ai1i2,...,id (x)

are deterministic and unknown. �d
(
ξi1 , ξi2 , . . . , ξid

)
are

multi-dimensional Hermite polynomials of order d

�d
(
ξi1 , . . . , ξid

) = (−1)d e
1
2 ξTξ ∂d

∂ξi1 . . . ∂ξid

[
e− 1

2 ξTξ
]
, (8)

where ξ is a vector denoting
(
ξi1 , . . . , ξid

)T . Hermite
polynomials are optimal basis for Gaussian processes
with exponential convergence rate. A more general
discussion about random variables with different distri-
butions can be found in [18].

In practice, Eq. 7 is usually truncated by a finite
number of terms and can be rewritten as follows

y (x, t, ω) =
Q∑

j=0

c j (x, t)
 j (ξ). (9)

There is a one-to-one correspondence between the
terms in Eqs. 7 and 9. The total number of terms
(Q + 1) can be determined by the random dimensional-
ity M and the order of the polynomial chaos expansion
d,

Q + 1 = (M + d)!
M!d! . (10)

2.4 Stroud-2-based stochastic collocation method

The stochastic collocation methods are based on the
theory of multidimensional integration. In these meth-
ods, after parameterizing the random inputs with ran-
dom variables, the governing equations are solved at
the given point sets in the random space. Among
different collocation methods, the cubature rule of
degree 2, also called Stroud-2, requires the minimal
collocation sets. Since the random dimensionality in
our problem is large (M ≥ 100), the Stroud-2 points
are employed. For M random dimensional problems,
M + 1 collocation point sets are needed. For mul-
tidimensional integration with Gaussian weights, the

collocation point sets ξk = [
ξk,1, ξk,2, . . . , ξk,M

]
, k =

0, 1, . . ., M, are defined as [30]

ξk,2r−1 =
√

2 cos
2rkπ

M + 1
, ξk,2r

=
√

2 sin
2rkπ

M + 1
, r = 1, 2, . . . ,

[
M/2

]
, (11)

where [M/2] is the greatest integer not exceeding M/2,
if M is odd, ξk,M = (−1)k. Collocation points for ran-
dom inputs with other distributions can also be found
in [30]. Each collocation set is of equal weight. The
collocation points given in Eq. 11 form an integration
formula of degree 2, i.e.

∫

�G (ξ) ρ (ξ)dξ ≈ 1
M + 1

M∑

i=0

G (ξi), (12)

where � is M dimensional space and ρ is multivariable
Gaussian probability density function. If we represent
a random process in PCE form as shown in Eq. 9, the
coefficient c j(x, t) can be obtained by making projec-
tions onto each basis as follows

c j (x, t)=
〈
y (x, t, ω)
 j (ξ)

〉

〈

2

j

〉 =
∫

�y (x, t, ω)
 j (ξ)ρ (ξ)dξ
〈

2

j

〉 .

(13)

According to the Stroud-2 cubature rule, Eq. 13 can be
approximated by the following expression

c j (x, t) ≈ 1

(M + 1)
〈

2

j

〉
M∑

i=0

y (x, t, ξi)
 j (ξi), (14)

where y(x, t, ξi) is the collocation result given the ith
collocation set, and 
 j(ξi) is the jth PCE basis given the
ith collocation set. Equation 14 can be seen as the post-
processing step of the stochastic collocation method.
Note that the Stroud-2 rule is exact for integrations of
polynomials of degree at most two. Hence, Eq. 14 is
accurate as long as 
 j(ξ) is up to the first order. There-
fore, if we recover PCE terms from the results of the
Stroud-2-based collocation method, the approximation
is only up to the first order and Q equals M. Although
this accuracy is relatively low, this collocation-based
method is still effective in some problems where the
random dimensionality is large.

It should be noted that the SCKF is not limited
to Stroud-2 collocation rule. It can be employed with
PCE up to any order, if the computational effort is
affordable. In the implementation of the stochastic col-
location method, at the first step, one has to decide
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the order of PCE according to the nonlinearity of the
problem. Since for random variables with certain dis-
tributions, the orthogonal polynomial basis 
 j is fixed.
With the chosen order and corresponding collocation
points ξi, 
 j(ξi) is thus fixed during the entire proce-
dure. Therefore, it can be calculated once and saved for
later use.

2.5 Ensemble Kalman filter

The ensemble Kalman filter (EnKF) is a Monte Carlo
method. It is easy to implement and similar to the
Kalman filter. In the Kalman filter, the covariance is ex-
plicitly computed and propagated in time, while in the
EnKF, the covariance is calculated from the ensemble.
The basic formulas are listed below.

In this single phase flow problem, a joint vector is
defined as

s = [
YT hT

]T
, (15)

where the state vector YT is for the log conductivity,
and hT is for the pressure head. In the implementation
of the EnKF, realizations of state vector are collected
in a matrix to form an ensemble

S = [
s1 s2 . . . sNe

]
, (16)

where Ne is the ensemble size. The forecast state s f (i)
can be obtained by running each ensemble member
with any existing simulator. In the analysis step with
time index i, each ensemble member is updated via

sa
j (i) = s f

j (i) + P (i) HT [HP (i) H + R (i)]−1

(
dobs, j (i) − Hs f

j (i)
)

, j = 1, 2, . . . , Ne, (17)

where j is the member index, dobs, j(i) is the perturbed
observation, and H is the observation operator. R(i) is
the covariance matrix of the observation errors, and
P(i) is the covariance matrix of the forecasted states,
which can be calculated from the ensemble.

3 Kalman filter in PCE basis space

In this section, we discuss the combination of the
Kalman filter and the PCE. Since the state s is a random
process, it can be expanded using PCE as

s =
Q∑

j=0

c j
 j (ξ). (18)

c j is defined as

c j =
[

cT
Y, j cT

h, j

]T
, j = 0, 1, . . . Q, (19)

where cT
Y, j and cT

h, j are the PCE coefficient vectors of
the log conductivity and pressure head, respectively.
Because the Stroud-2 collocation method is used in
this paper, both the log conductivity and the pressure
head are approximated to first order. Since Q equals
M, only M is used in all the following formulas. The
covariance can be expressed with non-zeroth order
PCE coefficients as

P =
〈(

M∑

j=1
c j
 j

)(
M∑

j=1
c j
 j

)T〉

=
M∑

j=1
c j
(
c j
)T
〈

2

j

〉
.

(20)

The analysis step at the time indexed by i can be written
in the PCE form as

M∑

j=0

ca
j(i)
 j =

M∑

j=0

c f
j (i)
 j+P (i) HT[HP (i) HT+R (i)

]−1

×
M∑

j=0

[
dobs (i) δ0 j − Hc f

j (i)
]

 j, (21)

where dobs(i) is the observation. Since the measurement
errors are independent of the system state, the PCE
terms of observations are expressed with the Kronecker
delta. Multiplying by 
 j and taking expectation, Eq. 21
yields

ca
j (i)=c f

j (i)+K (i)
[
dobs (i) δ0 j−Hc f

j (i)
]
, j=0, 1, · · · ,M,

(22)

where K(i) is the Kalman gain. Therefore, each PCE
coefficient of the log conductivity and the pressure head
is updated separately. Here, the log conductivity field Y
is initially parameterized by the KL expansion, which
is expressed by the first-order of Gaussian random
variables. It is interesting to note that, if PCE with
higher order is used in the problem, higher-order PCE
coefficients of the log conductivity Y will be produced
after the analysis, and the conditional field will become
non-Gaussian. Once the PCE coefficients are updated,
corresponding collocation realizations can be obtained
via

sa (ξi) =
M∑

j=0

ca
j

 j (ξi), i = 0, 1, . . . , M, (23)

where 
 j (ξi) is the jth PCE term at the ith collocation
set. Once the updating step is finished, with the new
conductivity realizations, the forecast step moves to the
next time when the observations become available. The
algorithm of stochastic collocation-based Kalman filter
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can be summarized in Fig. 1. It is of interest to note
that besides the statistical moments obtained directly
with Eq. 23, more (conditional) realizations can be
generated with new random vectors ξ , on the basis of
which probability density functions of the state vector
may be obtained.

In the standard EnKF, the initial realizations are
usually generated based on the random sampling. Some
strategies in the initial sampling were discussed in [31].
It is interesting to note that, since the SCKF is im-
plemented at the designed collocation point sets, it is
very similar to the EnKF with deterministic sampling
methods. In fact, it can be shown that, with the Stroud-2
sampling method, the EnKF with non-perturbed obser-
vations is equivalent to the SCKF with the first-order
PCE. The proof is given in Appendix.

When the PCE order is higher than one, we can
solve the problem with the PCM [23, 32, 33]. For each
uncertain parameter, the collocation points are selected

Fig. 1 Flow chart of stochastic collocation based Kalman filter

from the roots of the next higher-order orthogonal
polynomial. After solving the forecasting problem via
PCM, we can update the PCE coefficients via Eq. 22.
It should be noted that, in the analysis step, since each
PCM realization is no longer equally weighted, we can-
not update each realization directly. In this paper, the
nonlinearity of the single phase problem is not strong,
the Gaussian assumption is not strongly violated, and
collocation method based on Stroud-2 rule is able to
capture the dynamics of the system. Although updat-
ing the PCE coefficients is equivalent to updating the
Stroud-2 realizations, implementing the analysis step in
the PCE framework shows the order of accuracy more
clearly.

In the SCKF, the first step is to parameterize the
uncertain inputs with a set of independent random
variables. For the Gaussian random fields, which can be
completely characterized by the first two moments, the
KL expansion is a convenient tool for parameterization.
Parameterization of non-Gaussian random fields is still
an active research area. Some approaches have been
proposed based on different assumptions. It is common
that the prior statistics are only the correlation and
the marginal distributions, which cannot sufficiently
characterize a non-Gaussian field. In that case, one
possible approach is to use polynomial transformations
of the Gaussian process (PCE) to match the one-point

Fig. 2 The flow domain and the observation locations for log
hydraulic conductivity (nine f illed squares) and pressure head
(all the 25 squares). The f illed triangle and empty triangle are the
pumping and injection well, respectively
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Fig. 3 The ratio of energy captured

marginal probability density functions, and use the KL
expansion of the underlying Gaussian process to match
the target correlation function [34]. With the PCE-
based parameterization of the non-Gaussian random
fields, we can implement the SCKF as described in
this paper. If samples of the non-Gaussian field are
assumed to be available, another approach is to employ
the KL expansion as a dimension reduction tool to pa-
rameterize the field with a set of uncorrelated random
variables [35]. The distributions of random variables
in the KL expansion are no longer Gaussian and can
be estimated from the samples. Based on the specific
marginal distribution of each random variable, the or-
thogonal generalized polynomial chaos basis can be
constructed. In this approach, the random variables in
the KL expansion are assumed to be independent. This

approximation can simplify the problem. On the other
hand, model errors will be introduced since the ran-
dom variables are essentially uncorrelated (statistically
dependent). Hence, the information of joint statistics
among these variables will be lost. In [35], the authors
discussed some correcting methods to alleviate this
problem. Our ongoing investigations show that, com-
bined with independent component analysis, the KL
expansion can parameterize the non-Gaussian fields
with a set of independent random variables. Then, the
forward problem can be solved by collocation methods,
and the coefficients of gPC can be updated similarly.

We should also keep in mind that both the SCKF
and EnKF are variants of the Kalman filter, in which
only the first two moments are used. They are both
suboptimal for nonlinear problems. If the nonlinearity
is strong, more sophisticated methods should be em-
ployed, however, with the cost of larger computational
efforts. A generalization of the ensemble Kalman filter
for the non-Gaussian channelized field has been pro-
posed in [36] recently, where the higher-order statistics
were used to update the states.

4 Illustrative examples

In this section, in order to demonstrate the applicability
of the SCKF to estimate the hydraulic conductivity by
assimilating the measurements of the pressure head
and the hydraulic conductivity, a 2D model of transient
saturated flow is used. The results are compared with
those of the EnKF method.

In the implementations of both the SCKF and the
EnKF, since the same model (MODFLOW) is used for
solving both the forecast model and the reference, we
assume that the system is free of model errors. The

Fig. 4 The RMSE and
SPREAD for the SCKF with
different number of modes
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Fig. 5 RMSE and SPREAD
for ten groups of EnKF with
100 realizations

domain is a square of size Lx = Ly = 800m, which is
uniformly discretized into 40 × 40 elements, as shown
in Fig. 2. A pumping well and an injection well are
placed at (240m and 260m) and (540m and 560m),
respectively, with a constant volumetric flow rate of
150 m3/day during the entire assimilation time. The
two lateral sides are no-flow boundaries, while the left
and the right are Dirichlet boundaries with prescribed
pressure heads of 202m and 198m, respectively. The
constant storage coefficient is assumed to be 0.0001.
The log hydraulic conductivity field is treated as spa-
tially correlated Gaussian random field with zero mean
and unit variance. The correlation of the unconditional
hydraulic conductivity field is assumed to be in a sepa-
rable exponential form,

CY (x1, x2) = CY (x1, y1; x2, y2)

= σ 2 exp
[
−|x1 − x2|

λx
− |y1 − y2|

λy

]
, (24)

where σ 2 is the variance and λx and λy are the correla-
tion length in the x and y directions, respectively.

In this example, an unconditional realization of the
log hydraulic conductivity field with given statistics
(σ 2 = 1.0, λx = 200m and λy = 100m) is generated by
the KL decomposition. This field is then considered
as the true field, called the reference field. A forward
transient simulation is conducted using the reference
hydraulic conductivity field. Ten days is chosen as the
duration of the total assimilation time, which is equally
subdivided into 50 time intervals with a size of 0.2 day.
As shown in Fig. 2, observations are obtained at 25
locations. Nine measurements of the log hydraulic con-
ductivity field are taken at the filled squares, and 25
measurements of the pressure head are obtained at all
the squares. At t = 0.2 day, both the pressure head and
conductivity are measured. After that, only pressure
heads are measured at every 0.6 day up to day 10.
The measurements of the hydraulic conductivity are
assumed to be perfect, and the measurement errors
of pressure head are assumed to follow a Gaussian

Fig. 6 RMSE and SPREAD
for five groups of EnKF with
200 realizations
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Fig. 7 RMSE and SPREAD for the EnKF with 1,000 realizations

distribution with zeros mean and standard deviation
σ = 0.05m. For both the EnKF and SCKF, the initial
pressure head is assumed to be known without uncer-
tainty. To reduce the condition number of the matrix
[HP f (i)HT + R(i)] in Eq. 21, a relaxation term is added
to the diagonal terms, as in the KLME-based Kalman

filter [21]. This relaxation term improves the stability
of the SCKF. There is no standard method to decide
the relaxation value. Our numerical experiments show
that the performance of the SCKF is sensitive to the
choice of relaxation term when the number of modes
is small, for example, being 50. With larger number of
modes, the SCKF performs well as long as the relax-
ation term remains within a reasonable range. For the
sake of comparison, in the following discussions, the
same relaxation term 0.3 is used in both the SCKF and
the EnKF.

5 Results and discussions

Using the KL expansion, we parameterize the log con-
ductivity field with a set of finite number (modes) of
independent standard Gaussian variables. Therefore,
it is important to know how much energy is kept by
the random modes. For the statistics with correlation
length λx = 200m and λy = 100m, the fraction of en-
ergy captured by the eigenvalues versus the number
of KL modes used is shown in Fig. 3. It is shown that
about 85% energy of the field is captured using the first

Fig. 8 Comparison between
the estimated ln Ks from the
SCKF with 100 modes and
the reference field at
different times: a 0.2, b 2.0,
c 5.0, and d 10.0 day
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100 modes, while 90% of energy is kept using the first
200 modes. After that, the fraction increases very slowly
with the increase in the mode index.

To measure the performance of the Kalman filter,
two quantities are commonly used. The root mean
square error (RMSE) stands for the mean deviation of
the estimated mean field from the reference field,

RMSE =
√√
√√ 1

N

N∑

i=1

[E (Y (xi)) − Yt (xi)]2, (25)

where operator E is the expectation on the ensem-
ble and E(Y(xi)) is the estimated mean, Yt(xi) is the

reference values, and N is the number of grid nodes.
Another measure of the performance is the ensemble
spread, which is the square root of the averaged vari-
ance of the ensemble, defined as

SPREAD =
√√
√
√ 1

N

N∑

i=1

VAR (xi). (26)

In this study, we compare the performance of the SCKF
and EnKF by contrasting their respective RMSE and
SPREAD. The RMSE is used to measure the mean
estimation, while the SPREAD is used to measure
the uncertainty in the estimation. Here, we show that

Fig. 9 The contours of ln Ks: a reference field, the estimated mean from b SCKF with 100 modes, c SCKF with 200 modes, and d EnKF
with 1,000 realizations
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the match between the RMSE and SPREAD provides
another measure of performance. Equation 26 can be
also written as

SPREAD =
√√√
√ 1

N

N∑

i=1

{
E
[
Y (xi)

2]− E [Y (xi)]2}. (27)

Hence, the difference between the squares is

RMSE2 − SPREAD2

= 1
N

N∑

i=1

{
E [Y (xi)]2 − 2E [Y (xi)] Yt (xi) + Yt (xi)

2

− E
[
Y (xi)

2]+ E [Y (xi)]2 }

= 2
N

N∑

i=1

E [Y (xi)]
{

E [Y (xi)] − Yt (xi)
}

+ 1
N

N∑

i=1

{
Yt (xi)

2 − E
[
Y (xi)

2]} . (28)

It is shown from Eq. 28 that if

(a) E[Y(x)2] → Yt(x)2, in an grid-average form, and
(b) E[Y(x)] → Yt (x) in a weighted grid-average

form,

the difference will tend to be zero. Therefore, the match
between RMSE and SPREAD is a measure involved
with the both mean and uncertainty estimations.

In real-world applications, since the reference field
(the true field) is not available, the RMSE cannot
be calculated. Furthermore, the RMSE and SPREAD
may not be proper for non-Gaussian field. A more
straightforward way is to see the match between the
estimated pressure and the reference. The estimations
are given by rerunning the simulations from the initial
time with updated ensemble members (in the EnKF) or
collocation realizations (in the SCKF). In order to show

Fig. 10 The estimated ln Ks variance from a SCKF with 100 modes, b SCKF with 200 modes, and c EnKF with 1,000 realizations
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Fig. 11 Mean and confidence interval estimations of pressure
calculated from the SCKF with 100 modes and different runs of
the EnKF with 100 realizations, for the reference (red lines), for
the estimations (blue dashed lines). From left to right, figures in

column a, b, and c are for the location (80m and 720m), (320m
and 120m), and (720m and 80m), respectively. In each column,
the top f igure is for the SCKF, the remaining three figures are for
different groups of the EnKF
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the predictions under different well-operating scenario,
from day 10, the rates of the two wells are changed
from 150 to 100. Accordingly, the flow behaviors will be
significantly changed from days 10 to 20. It should also
be noted that, since the inverse problems are usually ill-
posed, the solutions with accuracy to a certain degree
may not be unique. Similar pressure head behaviors can
be produced by different conductivity fields. Even the
match between the estimations and observations is not
an adequate measure either.

In the SCKF, the forecast and analysis are imple-
mented in the PCE basis space. Each state is decom-
posed into (Q + 1) PCE components; hence, (Q + 1)
collocation realizations are required. In the EnKF, the
forecast and analysis are implemented in the ensemble
space. Each state has Ne Monte Carlo realizations. In
both of the SCKF and the EnKF, the main computa-
tional efforts are used to solve the flow equation. The
SCKF with random dimensionality M and PCE order
d requires solving the flow equation (M + d)!/(M !d!)
times. The EnKF with ensemble size Ne requires solv-
ing the flow equation Ne times. The challenge exists for
both the SCKF and the EnKF in large-scale problems.
Due to the computational burden, the ensemble size

or the number of collocation realizations is usually
several orders of magnitude smaller than the problem
dimension, i.e., the grid number in this study. Both the
EnKF and the SCKF use reduced rank approximation
of the system covariance matrix. The updates are also
restricted to the subspace spanned by the forecast en-
semble members or PCE coefficients. Furthermore, the
sampling errors in the EnKF with limited ensemble
size may be dominant. As introduced in Section 1,
in the EnKF, many methods have been proposed to
reduce the necessary ensemble size requirement. In the
SCKF, the computational efforts are determined by the
random dimensionality and the PCE order. The KL
expansion is used as a dimension reduction tool to para-
meterize the random field. The random dimensionality
is then reduced from the number of grids to the number
of random variables in the KL expansion, i.e., M. For
large-scale problems where the total number of grids
may be of order 105, an M of the order 102−3 is usually
sufficient for parameterization. For strongly nonlinear
problems, higher PCE order is necessary. It seems that
in a strongly nonlinear problem with a large random
dimensionality, the number of required collocation
realizations is so huge that the SCKF may become

Fig. 12 With the reference
variance σ 2 = 2: a RMSE for
EnKF with 200 realizations,
b SPREAD for EnKF with
200 realizations, and c RMSE
and SPREAD for SCKF with
200 modes
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Fig. 13 With the reference
variance σ 2 = 4: a RMSE for
EnKF with 200 realizations,
b SPREAD for EnKF with
200 realizations, and c RMSE
and SPREAD for SCKF with
200 modes

impractical. This is the so-called curse of dimension-
ality. However, since not all the PCE terms make
significant contributions in the system response, one
possible way to reduce the computational burden in
PCE-based methods is to use the leading PCE terms.
For example, in the recent work on stochastic analy-
sis of unsaturated flow with probabilistic collocation
method [37], a case with the random dimensional-
ity M = 150 and PCE order d = 2 was studied. The
number of full PCE terms was (150 + 2)!/(150!2!) =
11,476, which makes the PCM computationally expen-
sive. However, it has been shown that the cross PCE
terms can be neglected, and the number of the re-
mained PCE terms is reduced to (1 + 2 M), i.e., only
301. This leading term approximation makes the sec-

ond order PCM still more efficient than Monte Carlo
simulation in that nonlinear problem.

In this study, the stochastic collocation method based
on the Stroud-2 rule is employed. M modes requires
solving the corresponding deterministic equations for
M + 1 time. Therefore, the computational efficiency of
the two approaches can be compared by just looking at
the number of modes in the SCKF and the number of
realizations in the EnKF.

5.1 Initial statistics

Owing to the fact that the statistics of the conductivity
field are commonly known with an incomplete knowl-
edge, the SCKF is initialized with slightly different

Table 1 With the reference variance σ 2 = 2, the final RMSE, SPREAD, and the difference of squares for EnKF with 200 realizations
and SCKF with 200 modes

EnKF SCKF

RMSE 1.037 0.995 0.933 0.907 0.954 0.861
SPREAD 0.654 0.648 0.655 0.644 0.644 0.670
R2 – S2 0.647 0.570 0.441 0.408 0.495 0.292
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statistics. The mean of the log hydraulic conductivity
is still zeros, while the variance is set as σ 2 = 1.4.
The correlation lengths are specified as λx = 220m and
λy = 120m. The RMSE and SPREAD of SCKF with
different number of modes are shown in Fig. 4. It
is shown that the RMSE decreases with time, which
means that the estimated mean tends to the reference
value when more observations are incorporated. The
SCKF with 200 modes gives the lowest RMSE. The
SCKF with 100 modes gives a similar RMSE compared
to SCKF with 200 modes, which means that the per-
formance of the SCKF is not improved much beyond
100 modes in terms of RMSE. However, the SPREAD
of the SCKF with 200 modes matches with the RMSE
much better than with 100 modes, indicating that the
ability to estimate the uncertainty still improves beyond
100 modes.

For comparison, 1,000 unconditional realizations of
the log hydraulic conductivity field are generated by
the KL expansion by keeping a larger number (400) of
modes. The initial ensemble is divided into one, five,
and ten groups to perform the EnKF simulations. The
RMSE and SPREAD of EnKF with different number
of realizations are shown in Figs. 5, 6, and 7.

If the ensemble size is small, the EnKF is far from
convergence and is therefore realization dependent.
The RMSE shows a large variation among different
groups for the EnKF with 100 realizations (Fig. 5).
The variation can be reduced using more realizations,
which indicates a better convergence, as shown in Fig. 6
for the EnKF with 200 realizations. The EnKF with
1,000 realizations gives the lowest RMSE, while the
similar value can be obtained by the SCKF with 200
modes. It is seen from Figs. 5 and 6 that with the
same number of realizations, the SPREAD declines
similarly for different EnKF groups but systematically
underestimates the RMSE. Using more realizations,
the SPREAD shows a better match with the RMSE.
In Fig. 7, the EnKF with 1,000 realizations shows a very
good match between the RMSE and the SPREAD. It
is worthwhile noting that a similar match is given by
the SCKF with 200 modes, as shown in Fig. 4. Since
the SCKF with 200 modes requires 201 solutions of the
flow equation while the EnKF with 1,000 realizations

requires 1,000 solutions, the computational burden is
greatly reduced in the SCKF.

To give a dynamic illustration of the data assimila-
tion process, the reference field and the mean estimated
log hydraulic conductivity field from the SCKF with
100 modes at different times are compared in Fig. 8.
For a good estimate, all points should locate near the
diagonal line. It is shown that, with the sequentially
incorporated observations, the estimated field tends
closer to the reference field.

The contours of the reference field and the mean
of log hydraulic conductivity field estimated from the
SCKF with 100 and 200 modes and from the EnKF with
1,000 realizations are plotted in Fig. 9. It is shown that
all these three filters can identify the main patterns of
the reference field. We also notice that the patterns
along the main flow direction between the two wells
(two triangles) are estimated better. The estimated
variances are plotted in Fig. 10. The variances are
the lowest at the conductivity measurement location.
We can regard the EnKF with 1,000 realizations as a
reference. It is shown that, although the SCKF with
100 modes provides a good mean estimation (Fig. 9),
it underestimates the uncertainty (Fig. 10a). The SCKF
with 200 modes gives a similar estimation of the vari-
ance field compared to that estimated by the EnKF
with 1,000 realizations. Therefore, 200 modes should be
used if the purpose is to estimate the uncertainty.

By rerunning the simulations with updated ensem-
ble members or collocation realizations from the ini-
tial time, we can obtain the statistic moments (e.g.,
mean and variance) of the pressure, based on which
the confidence intervals can then be constructed. In
the EnKF, the mean and standard deviation can be
calculated directly from the ensemble. In the SCKF,
the mean estimations and the standard deviations are
given by the zeroth and higher-order PCE coefficients,
respectively. The confidence intervals of the pressure
are shown in Fig. 11. From left to right, each column is
for the pressure at the measurement location (80m and
720m), (320m and 120m), and (720m and 80m), respec-
tively. The top row is for the SCKF with 100 modes. The
remaining three rows are for different groups of EnKF
with 100 realizations. The central dashed blues lines are

Table 2 With the reference variance σ 2 = 4, the final RMSE, SPREAD, and the difference of squares for EnKF with 200 realizations
and SCKF with 200 modes

EnKF SCKF

RMSE 1.561 1.668 1.445 1.449 1.461 1.287
SPREAD 0.842 0.860 0.870 0.853 0.841 0.875
R2 – S2 1.728 2.043 1.331 1.372 1.427 0.891
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Fig. 14 With the reference variance σ 2 = 2, mean and confidence
interval estimations of pressure calculated from the SCKF with
200 modes and different runs of the EnKF with 200 realizations,
for the reference (red lines), for the estimations (blue dashed

lines). From left to right, figures in column a, b, and c are for the
location (80m and 720m), (320m and 120m) and (720m and 80m),
respectively. In each column, the top f igure is for the SCKF, the
remaining three figures are for different groups of the EnKF
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Fig. 15 With the reference variance σ 2 = 4, mean and confidence
interval estimations of pressure calculated from the SCKF with
200 modes and different runs of the EnKF with 200 realizations,
for the reference (red lines), for the estimations (blue dashed

lines). From left to right, figures in column a, b, and c are for the
location (80m and 720m), (320m and 120m), and (720m and 80m),
respectively. In each column, the top f igure is for the SCKF, the
remaining three figures are for different groups of the EnKF
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Fig. 16 With the reference
correlation lengths λx = 80m
and λy = 80m: a RMSE for
EnKF with 200 realizations,
b SPREAD for EnKF with
200 realizations, and c RMSE
and SPREAD for SCKF with
200 modes

for mean estimations. For good mean estimations, the
central blue lines should be close to red lines (refer-
ence). The top and bottom dashed blue lines are mean
plus and minus one standard deviation, respectively.
The interval between the two lines represents the un-
certainty to some degree of accuracy. For the Gaussian
distribution, the interval is of 68.3% confidence. Al-
though, in general, it is known that the assimilation is
needed whenever significant flow behavior changes oc-
cur, such as adding new wells in the reservoir, well-rate
changing, and other operations, in this specific case, it
is shown that both the SCKF and the EnKF are able to
predict the trends of pressure heads from days 10 to 20.
It is also shown that, compared to the EnKF, the SCKF
generally gives estimations with better matches to the
reference. Many of the estimations from the EnKFs
still show relatively large deviations from the reference.

Therefore, in terms of pressure estimation, the SCKF
performs better than the EnKF.

5.2 Large variance

In order to test the performance of the SCKF in
the presence of large log conductivity variances, two
cases are studied in this subsection. The references are
with variance σ 2 = 2 and σ 2 = 4, corresponding to the
coefficient of variation of 253% and 732% for the hy-
draulic conductivity, respectively. The initial variance
are set as σ 2 = 2.5 and σ 2 = 4.8, respectively. All the
other parameters are the same as those in the previous
case. For the two cases, the RMSE and SPREAD of
the EnKF with 200 realizations and the SCKF with
200 modes are shown in Figs. 12 and 13, respectively.
The final RMSE, SPREAD, and the difference of the

Table 3 With the reference correlation lengths λx = 80m, λy = 80m, the final RMSE, SPREAD, and the difference of squares for
EnKF with 200 realizations and SCKF with 200 modes

EnKF SCKF

RMSE 0.719 0.701 0.717 0.750 0.721 0.660
SPREAD 0.596 0.590 0.594 0.591 0.597 0.596
R2 - S2 0.162 0.143 0.161 0.213 0.163 0.080
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Fig. 17 With the reference correlation lengths λx = 80m and
λy = 80m, mean and confidence interval estimations of pressure
calculated from the SCKF with 200 modes and different runs of
the EnKF with 200 realizations, for the reference (red lines), for
the estimations (blue dashed lines). From left to right, figures in

column a, b, and c are for the location (80m and 720m), (320m
and 120m), and (720m and 80m), respectively. In each column,
the top f igure is for the SCKF, the remaining three figures are for
different groups of the EnKF
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Fig. 18 With observations at
nine f illed squares: a RMSE
for EnKF with 200
realizations, b SPREAD for
EnKF with 200 realizations,
and c RMSE and SPREAD
for SCKF with 200 modes

squares are shown in Tables 1 and 2. It is shown that
the RMSE of SCKF is lower than those given by the
EnKF. It is seen that, in both methods, the SPREAD
underestimates the RMSE. However, compared to the
EnKF, the SCKF still provides a better match between
the RMSE and the SPREAD.

The estimated pressure heads from day 0 to 20
with σ 2 = 2 and σ 2 = 4 are plotted in Figs. 14 and 15,
respectively. It is shown that, for σ 2 = 2, compared
to the EnKF, the SCKF estimates the pressure with
comparable or even better accuracy. For σ 2 = 4, all
the estimations of pressure heads given by the EnKF
and SCKF show larger deviations from the reference
due to the larger prior uncertainty. At location (a),
the SCKF estimates the pressure better than do the

EnKFs. While at the other two locations, the SCKF
performs similarly to the EnKF. Therefore, in terms of
pressure estimation, the superiority of the SCKF over
the EnKF decreases with the increase of variance. It is
noted that in Fig. 15c, the mean estimation given by the
second EnKF match with the observations well during
the assimilation period (from day 0 to 10). However,
it starts to deviate from the reference in the prediction
period (from day 10 to 20). It is a demonstration of non-
uniqueness of solutions in the inverse problems.

5.3 Correlation length

In the implementation of SCKF, the random log hy-
draulic conductivity field is parameterized by the KL

Table 4 With observations at nine filled squares, the final RMSE, SPREAD, and the difference of squares for EnKF with 200
realizations and SCKF with 200 modes

EnKF SCKF

RMSE 0.943 0.885 0.888 0.848 0.845 0.843
SPREAD 0.779 0.771 0.770 0.776 0.777 0.758
R2 – S2 0.282 0.189 0.196 0.117 0.110 0.136
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Fig. 19 With observations at nine f illed squares, mean and
confidence interval estimations of pressure calculated from the
SCKF with 200 modes and different runs of the EnKF with 200
realizations, for the reference (red lines), for the estimations (blue
dashed lines). From left to right, figures in column a, b, and c are

for the location (80m and 720m), (320m and 120m), and (720m
and 80m), respectively. In each column, the top f igure is for the
SCKF, the remaining three figures are for different group of the
EnKF
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expansion with independent standard Gaussian ran-
dom variables. Larger number of expansion terms is re-
quired to describe the random field with the decrease of
the correlation ratio (correlation length to the domain
size). In this subsection, the correlation lengths of the
reference field are set as λx = 80m and λy = 80m. The
initial setup for both the SCKF and the EnKF is λx =
100m and λy = 100m. All the other parameters are
chosen as the same as those in Section 5.1. The RMSE
and SPREAD for the EnKF with 200 realizations and
the SCKF with 200 modes are shown in Fig. 16.

In this case, by retaining 200 modes, only 81% of
energy is kept in the KL expansion. Because of this,
the RMSE performance of the SCKF with 200 modes
is not so good as that in Section 5.1. The final RMSE,
SPREAD, and the difference of the squares are shown
in Table 3. It is shown that the SCKF gives a lower
RMSE than do most of the EnKF. The pressures es-
timated by the two methods are plotted in Fig. 17. It is
noted that, although the random field is less sufficiently
parameterized, the pressure heads estimated by the
SCKF are as good as or slightly better than the EnKFs.

In the single-phase flow problem studied in this
paper, for the case with correlation ratio 1:4 and 1:8
in two directions, 200 modes in KL expansion seem
to be enough to parameterize the random field. The
SCKF performs better than the EnKF with the similar
computational efforts. With the decrease in correlation
ratio, the performance of SCKF with the fixed number
of KL modes will decrease. As shown in this case
with ratio 1:10 in both directions, although the SCKF
still performances slightly better than do most of the
EnKFs, the superiority decreases.

5.4 Number of observations

In order to test the performance of the SCKF with
fewer observations, we assume that at t = 0.2 day, all
the observations of the hydraulic conductivity and the
hydraulic pressure head are only measured at the nine
filled squares. After that, the hydraulic pressure heads
are measured at the nine filled squares at every 0.6 day
up to day 10. All the other parameters are the same
as those in Section 5.1. The RMSE and SPREAD for
the EnKF with 200 realizations and the SCKF with
200 modes are plotted in Fig. 18. In this case, owing
to the fact that less information is provided in the
observations, most RMSEs of the EnKF and the SCKF
exhibit oscillations. The final RMSE, SPREAD, and
the difference of the squares are shown in Table 4.
It can be shown that, although the SCKF still gives a
slightly lower RMSE value than do most of the EnKF,
this superiority is not obvious. In terms of the match be-

tween the RMSE and the SPREAD, the EnKF and the
SCKF also perform similarly. The estimated pressures
given by the SCKF and EnKF are plotted in Fig. 19. It is
also shown that, although the SCKF still estimates the
pressure with comparable or slightly better accuracy
compared to the EnKF, the superiority decreases.

6 Conclusions

In this study, a stochastic collocation-based Kalman
filter is developed to estimate the hydraulic conductiv-
ity field from hydrologic observations. The conductivity
field is treated as a random field and parameterized
by the Karhunen–Loeve expansion. The pressure head
field is approximated by the polynomial chaos ex-
pansion. With given collocation point sets, each real-
ization is forwarded in time via deterministic solver
independently, similar to the implementation of the
EnKF. The coefficients of the polynomial chaos ex-
pansion are obtained in the post-processing step of
the stochastic collocation method. Once the observa-
tions are available, both the conductivity field and the
pressure head field are updated through updating the
PCE coefficients. Compared to other stochastic meth-
ods such as Karhunen–Loeve-based moment equation
method and stochastic Galerkin PCE methods, the
stochastic collocation method is non-intrusive in that
it results in the same governing equations and only
requires repetitive runs of existing deterministic solver.

A 2D single-phase flow example is used to demon-
strate the applicability of the SCKF. The results are
compared with those of the EnKF. With respect to
the performance, different factors, including the initial
guess, the variance, the correlation length, and the
number of observations, are discussed. It is shown that
the SCKF is more efficient than the EnKF under cer-
tain conditions. For the correlation ratio 1:4 and 1:8 in
two directions, the SCKF gives satisfactory estimations
of the hydraulic conductivity field even when the spatial
variance of log conductivity is as large as 4.0 (i.e., the
coefficient of variation of hydraulic conductivity being
732%). It is also shown that the superiority of the SCKF
over the EnKF decreases with the larger variance, the
shorter correlation ratio, and the fewer number of ob-
servations. Therefore, there should be a critical point
on which the choice between the two methods can be
decided. This critical point is, however, problem depen-
dent. To improve the ability of the SCKF in strongly
nonlinear problems with high random dimensionality,
studies about using the leading PCE approximation,
localizations, and inflation need to be investigated in
future work.
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Since the SCKF is a non-intrusive method, it can
be directly utilized in complex or nonlinear problems
such as multiphase flow problems. The forward mod-
eling of multiphase flow with a stochastic collocation
method has been reported by our group recently [32].
It should be noted that, although the Kalman filter can
only be utilized in nonlinear problems where the basic
Gaussian assumption is not strongly violated, the sto-
chastic collocation method itself is able to describe the
uncertainties with arbitrary distributions, as long as the
approximation order is high enough. Although the sto-
chastic collocation method in this study is based on the
Stroud-2 rule, which is up to the first order of PCE, it
can be extended to the higher order in a similar manner.
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ural Science Foundation of China through grant 50688901, and
the Chinese National Basic Research Program through grant
2006CB705800.

Appendix

In this appendix, we try to demonstrate the equivalence
between the SCKF with accuracy up to first order PCE
and the EnKF with non-perturbed observations using
the sampling method based on Stroud-2 rule.

Let s(ξi), i = 0, 1, . . .M be the realizations corre-
sponding to the Stoud-2 point set ξi, i.e.,

s (ξi) =
M∑

j=0

c j
 j (ξi), i = 0, 1, . . . M. (29)

Since every realization is with equal weight, we can
update each realization directly,

sa (ξi) = s f (ξi) + K
[
dobs − Hs f (ξi)

]
, i = 0, 1, . . . , M.

(30)

In SCKF, let c j and j = 0, 1, . . ., M be the PCE terms
up to first order, the updating step is

ca
j = c f

j + K
[
dobsδ0 j − Hca

j

]
, j = 0, 1, . . . , M, (31)

where δ0 j is Kronecker delta. We have to prove that
Eq. 30 is equivalent to Eq. 31.

(a) Multiplying 
 j (ξi) to the both sides of Eq. 31 and
taking summation with respect to j, we have

M∑

j=0

ca
j
 j (ξi) =

M∑

j=0

c f
j 
 j (ξi)

+K

⎡

⎣dobs − H
M∑

j=0

c f
j 
 j (ξi)

⎤

⎦ ,

i = 0, 1, , M. (32)

According to Eqs. 29 and 32 yields Eq. 30.
(b) Multiplying to the both sides of Eq. 30 and taking

summation with respect to i, we have

1
(M+1)

M∑

j=0

sa(ξi)
 j(ξi)= 1
(M+1)

M∑

j=0

s f (ξi)
 j(ξi)

+. . .
1

(M+1)

⎡

⎣
M∑

j=0

dobs
 j(ξi)−H
M∑

j=0

s f (ξi)
 j(ξi)

⎤

⎦ ,

j=0, 1, . . . , M. (33)

Since ξi is Stoud-2 point set and 
 j is up to the first
order, we have

1
(M + 1)

M∑

j=0

s(ξi)
 j(ξi) = 〈s
 j〉 = ci, (34)

where 〈〉 is the expectation operator. Since dobs are
independent to the deviations of system states, we
have

1
(M + 1)

M∑

j=0

dobs
 j(ξi) = 〈dobs
 j〉 = dobs〈
 j〉

= dobsδ0, j (35)

According to Eqs. 34 and 35, Eq. 33 yields Eq. 31.
This completes the proof.
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