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Abstract The numerical error associated with finite-
difference simulation of wave propagation in discontinuous
media consists of two components. The first component
is a higher-order error that leads to grid dispersion; it can
be controlled by higher-order methods. The second com-
ponent results from misalignment between numerical grids
and material interfaces. We provide an explicit estimate of
the interface misalignment error for the second order in
time and space staggered finite-difference scheme applied
to the acoustic wave equation. Our analysis, confirmed by
numerical experiments, demonstrates that the interface error
results in a first-order time shift proportional to the distance
between the interface and computational grids. A 2D exper-
iment shows that the interface error cannot be suppressed
by higher-order methods and indicates that our 1D analysis
gives a good prediction about the behavior of the numerical
solution in higher dimensions.
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1 Introduction

Finite-difference modeling of wave propagation has long
been used to enhance the understanding and interpretation
of wave phenomena observed in seismology, acoustics, and
electrodynamics. The properties of explicit finite-difference
schemes on regular uniform meshes have been studied from
various perspectives and the behavior of finite-difference
solutions in homogeneous media is now well understood [3].
Theoretical analysis shows that as time and space steps go to
zero, finite-difference solutions converge at definite rate to
the exact solutions, provided that the finite-difference scheme
is stable and material parameters are smooth. For applications
to seismology, however, this understanding does not suffice.
The mechanical characteristics of actual rocks generally vary
significantly on all spatial scales (see, for example, [1, 5, 11]),
that is, are essentially discontinuous as functions of spatial
location. Thus, the theory just described does not apply to
faithful models of wave propagation in the Earth. Discon-
tinuous models also appear in acoustic and electromagnetic
simulation applications.

In this paper, we study a simple special case of discon-
tinuously heterogeneous material models, in which homo-
geneous or smoothly heterogeneous material regions are
separated by smooth or piecewise smooth interfaces across
which the coefficients in the wave equation may be discontin-
uous. Even in this simpler setting, it is known that a difference
scheme of formal p-th order accuracy typically exhibits only
first-order convergence. Brown shows that the computational
error associated with an interface problems consists of two
components [2]. In addition to the higher-order component
that corresponds to the truncation error of the homogeneous
problem, there is a first-order error that is due to the material
interface.
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Gustafsson and Wahlund study the interaction between
the material discontinuity error and higher-order error for
the time compact staggered finite-difference schemes of the
second and fourth order in time and space [7]. They show
that as in the homogeneous case, grid dispersion is due to a
higher-order component of the error which grows with time
and/or frequency for any fixed number of grid points per
wavelength. The first-order interface error, on the other hand,
is independent of time and/or frequency. This means that if
the simulation is run for long time periods, the grid disper-
sion error becomes dominant. Gustafsson and Wahlund focus
on demonstrating that the grid dispersion error can be con-
trolled by the use of higher-order operators [7]. However,
the application of higher-order operators does not elimi-
nate the interface error which becomes dominant once the
higher-order error is controlled.

The goal of this work is to measure the interface error in
typical conditions of exploration seismic modeling. We show
that if an input model is described only as a grid of values (i.e.,
the locations of the interfaces are specified only up to grid
cell resolution), accurate interaction of the numerical wave
with an interface cannot be guaranteed. The exact location of
the interface determines the arrival time of the wave. Since
the interface can lie anywhere in a grid cell and the coeffi-
cients of a finite-difference scheme are insensitive to its exact
position, the numerical wave can be shifted from the actual
wave by as much as the travel time through a cell. When
several interfaces are present, the error can be cumulative.

We quantitatively evaluate the first-order interface mis-
alignment error for the second order in time and space
staggered finite-difference scheme applied to the pressure–
velocity formulation of the acoustic wave equation (see
[9, 10]). In our analysis, we follow the pattern of Gustafsson
and Wahlund and break the error into first-order and higher-
order components [7]. However, while in [7] Gustafsson
and Wahlund focus on supressing the higher-order error,
we provide an explicit estimate for the first-order inter-
face misalignment error and show that it may be large
enough to dominate other errors. Staggered finite-difference
methods are characterized by the presence of two computa-
tional grids (in the 1D case). Assuming that the interface
is located between pressure and velocity grid nodes, we
show that, for any fixed frequency, the pressure and velocity
errors are proportional to the distance between the interface
and the nearest pressure and velocity grid points, respec-
tively. It follows, that even if the interface is aligned with
one of the computational grids, the misalignment with
the second grid results in a non-zero error proportional
to the time step. To first order, this error manifests itself
as a non-zero time shift, for which we give an explicit
expression.

In the following section, we introduce the model prob-
lem, describe the second order in time and space staggered

finite-difference scheme, and perform the analysis of the
interface error. Then we present two numerical examples
followed by a discussion that illustrate our results in typical
conditions of exploration seismic modeling. The numerical
examples are consistent with formal mathematical analysis
and demonstrate that the interface error amounts to a time
shift in traces.

2 Interface error analysis

We consider the following formulation of the acoustic wave
equation in terms of pressure and velocity:

1

κ(x)

∂ p(x, t)

∂t
= −∂v(x, t)

∂x
, (1)

ρ(x)
∂v(x, t)

∂t
= −∂ p(x, t)

∂x
(2)

in a two-layer medium

(κ(x), ρ(x)) =
{

(κL, ρL) for x ≤ 0,

(κR, ρR) for x > 0,
(3)

where κ and ρ denote the bulk modulus and density, respec-
tively. Speed of the wave is cL = √

κL/ρL to the left from the
interface and cR = √

κR/ρR to the right from the interface.
We assume that an incident wave with a unit amplitude prop-
agates in the medium to the left from the interface. After an
interaction with the interface, the wave will be decomposed
into a transmitted and reflected waves with amplitudes T
and R. The solution of Eqs. 1 and 2 is a linear combination
of the incident, transmitted, and reflected waves:

p(x, t)

=
{

cLρLeiω(t−x/cL) − cLρL Reiω(t+x/cL) for x ≤ 0,

cRρRT eiω(t−x/cR) for x > 0,

(4)

v(x, t) =
{

eiω(t−x/cL) + Reiω(t+x/cL) for x ≤ 0,

T eiω(t−x/cR) for x > 0.
(5)

Continuity of the pressure and velocity solutions at the inter-
face yields the following system of equations for reflection
and transmission coefficients R and T :

[
cLρL cRρR

−1 1

] [
R
T

]
=

[
cLρL

1

]
. (6)

Denoting the coefficient matrix by A, the vector of unknowns
by σ , and the right-hand side vector by g, we rewrite system 6
as follows:

Aσ = g. (7)
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Fig. 1 Location of the interface. Circles represent pressure (main) grid
nodes. Crosses represent velocity (staggered) grid nodes

Next, we describe the continuous in time second order in
space finite-difference approximation of Eqs. 1 and 2 and
construct the numerical solution. The setup yields a staggered
grid (decimated leapfrog) method when the continuous time
evolution is replaced by a centered difference method ([10]).
Our analysis neglects time discretization error. Following
Gustafsson and Wahlund [7], we introduce parameter δ, 0 ≤
δ ≤ 1/2 that measures the shift of the grid relative to the
interface (see Fig. 1).

The grid nodes and values are then defined as follows:

x j = ( j − δ)h for j = 0, ±1/2, ±1, . . . , (8)

p j = p(x j , t), (9)

v j+1/2 = v(x j+1/2, t). (10)

The second-order semi-discrete scheme is

∂ p j

∂t
= −κ j

h

(
v j+1/2 − v j−1/2

)
, (11)

∂v j+1/2

∂t
= − 1

ρ j+1/2h

(
p j+1 − p j

)
(12)

and the corresponding solutions are

for x ≤ 0 :
p j = cLρLei(ωt−( j−δ)hkL) (13)

− cLρL Rhei(ωt+( j−δ)hkL),

v j+1/2 = ei(ωt−( j+1/2−δ)hkL) (14)

+ Rhei(ωt+( j+1/2−δ)hkL),

for x < 0 :
p j = cRρRThei(ωt−( j−δ)hkR), (15)

v j+1/2 = Thei(ωt−( j+1/2−δ)hkR). (16)

where kL and kR are the wave numbers for the medium to the
left and to the right of the interface. As before, we use the

continuity condition to determine the system for numerical
reflection and transmission coefficients:

cLρL Rhe−iδhkL + cRρRTheiδhkR = cLρLeiδhkL , (17)

−Rhei(1/2−δ)hkL + The−i(1/2−δ)hkR = e−i(1/2−δ)hkL . (18)

Expanding exponential functions to the first order, we rewrite
Eqs. 17 and 18 in the matrix form:

[
cLρL(1 − iδhkL) cRρR(1 + iδhkR)

−1 − i(1/2 − δ)hkL 1 − i(1/2 − δ)hkR

] [
Rh

Th

]

=
[

cLρL(1 + iδhkL)

1 − i(1/2 − δ)hkL

]
+ O(h2). (19)

Wave numbers kL and kR can be obtained from a standard
plane wave analysis (see, for example, [3]):

kL = 2

h
arcsin

ωh

2cL
= ω

cL
+ O(h2), (20)

kR = 2

h
arcsin

ωh

2cR
= ω

cR
+ O(h2). (21)

Using the last equations in Eq. 19 and introducing vectors

σh =
[

Rh

Th

]
, gh = ihω

[
ρLδ

(δ − 1/2)/cL

]
(22)

and matrix

Ah = ihω

[ −ρLδ ρRδ

(δ − 1/2)/cL (δ − 1/2)/cR

]
, (23)

we write Eq. 19 in the following form:

(A + Ah)σh = g + gh + O(h2). (24)

Numerical solution σh is a sum of the exact solution σ and
truncation error τ. Therefore, Eq. 24 becomes:

Aσ + (A + Ah)τ = g − Ahσ + gh + O(h2). (25)

Since σ satisfies Aσ = g, truncation error τ satisfies the
remaining equation:

(A + Ah)τ = gh − Ahσ + O(h2). (26)

The determinant of A + Ah is:

D = cLρL + cRρR + O(hωδ). (27)

Therefore, there is a solution of Eq. 26:

τ = (A + Ah)−1(gh − Ahσ) + O(h2), (28)
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where

gh − Ahσ = ihω

⎡
⎣ δρL(1 + R) − δρRT

δ − 1/2

cL
(1 − R) − δ − 1/2

cR
T

⎤
⎦ .

(29)

Using the fact that 1− R = 2cRρR

cLρL + cRρR
and T = 1+ R =

2cLρL

cLρL + cRρR
, we rewrite vector (29) as follows:

gh − Ahσ

= 2ihω

cLρL + cRρR

⎡
⎣ δcLρL(ρL − ρR)

(δ − 1/2)
c2

RρR − c2
LρL

cLcR

⎤
⎦ . (30)

Then, Eq. 28 becomes:

τ = 2ihω

(cLρL + cRρR)2

×

⎡
⎢⎢⎢⎣

1 + i(δ − 1/2)
hω

cR
−cRρR

(
1 + iδhω

cR

)

1 − i(δ − 1/2)
hω

cL
cLρL

(
1 − iδhω

cL

)
⎤
⎥⎥⎥⎦ (31)

×
⎡
⎣ δcLρL(ρL − ρR)

(δ − 1/2)
c2

RρR − c2
LρL

cLcR

⎤
⎦ + O(h2)

= 2ihω

(cLρL + cRρR)2

[
1 −cRρR

1 cLρL

]

×
⎡
⎢⎣

δcLρL(ρL − ρR)

(δ − 1/2)
c2

RρR − c2
LρL

cLcR

⎤
⎥⎦ + O(h2ω2δ2), (32)

where we have dropped the higher-order terms. Multiplying,
we obtain:

τ = 2ihω

(cLρL + cRρR)2

×
⎡
⎢⎣

δcLρL(ρL − ρR) − (δ − 1/2)
ρR

cL
(c2

RρR − c2
LρL)

δcLρL(ρL − ρR) + (δ − 1/2)
ρL

cR
(c2

RρR − c2
LρL)

⎤
⎥⎦

+ O(h2ω2δ2). (33)

Using the fact that ea = 1 + a + O(a2), we obtain for the
numerical reflection coefficient:

Rh = R

(
1 + 2ihω

R(cLρL + cRρR)2

(
δcLρL(ρL − ρR)

− (δ − 1/2)
ρR

cL
(c2

RρR − c2
LρL)

))
+ O(h2ω2δ2)

(34)

= R exp

{
2ihω

c2
Lρ2

L − c2
Rρ2

R

(
δcLρL(ρL − ρR)

− (δ − 1/2)
ρR

cL

(
c2

RρR − c2
LρL

))}
+ O(h2ω2δ2).

(35)

Similarly, for the numerical transmission coefficient we
have:

Th = T exp

{
2ihω

2cLρL(cLρL + cRρR)

(
δcLρL(ρL − ρR)

− (δ − 1/2)
ρR

cL

(
c2

RρR − c2
LρL

))}
+ O(h2ω2δ2).

(36)

Eqs. 34 and 36 imply that the numerical reflection and trans-
mission coefficients have the same amplitude as the exact
coefficients and differ from R and T by a phase shift up to a
second-order error. After centered difference time discretiza-
tion, the space step h is related to the time step by λh = 
t ,
which is the standard stability condition with λ confined to
the interval 0 < λ < 1/c. Therefore, the phase shift is pro-
portional to the time step and is non-zero and of the first
order in hω even if the interface is aligned with one of the
computational grids.

3 Numerical experiments

In this section, we present two numerical experiments which
support our contention that the first-order error is endemic
to staggered grid finite-difference simulation with discon-
tinuous coefficients and may easily dominate other error
components. The first experiment illustrates the error anal-
ysis performed in the previous section. Using a 1D model
with a single interface, we compare the second order in
time and space staggered finite-difference solution to the
analytical solution. We change the position of the inter-
face relative to both main and staggered grids and show
that while the analytical solution captures the interface loca-
tion exactly, the first-order error in the numerical solution
results in a time shift even when the interface is aligned
with a computational grid. The second experiment suggests
that this phenomenon is not confined to 1D even though our
analysis is. Further, we use this example to show that higher-
order methods do not reduce the first-order error caused by
coefficient discontinuity.

In the first experiment, we solve Eqs. 1 and 2 in the domain
0 ≤ t ≤ 600 ms, 0 ≤ x ≤ 1,800 m with zero boundary con-
ditions. We choose the other inputs to the simulation to ensure
that propagation in a homogeneous medium over the space–
time region would be quite accurate. Thus the simulation
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Fig. 2 Locations of the interfaces. Circles represent pressure (main)
grid nodes. Crosses represent velocity (staggered) grid nodes

error should consist mostly of the interface error analyzed in
the last section.

We assume that the interface is located at x = xb and set
ρL = 2, 100 kg/m3, cL = 2.3 m/ms and ρR = 2, 300 kg/m3,
cL = 3.0 m/ms. The analytical solution is

for x ≤ xb :
p(t, x) = f

(
t − x

cL

)
− cLρL − cRρR

cLρL + cRρR
f

(
t + x

cL

)
, (37)

v(t, x) = 1

cLρL

(
f

(
t − x

cL

)
(38)

+ cLρL − cRρR

cLρLcRρR
f

(
t + x

cL

))
,
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Fig. 3 Traces of the analytical and numerical pressure solutions at
500 m. Analytical solutions: blue for xb = 900.0 m, cyan for xb =
901.25 m, green for xb = 902.5 m, brown for xb = 903.75 m, magenta
for xb = 905.0 m. Numerical solutions: black for xb = 900.0 m and
xb = 901.25 m, red for xb = 902.5 m and xb = 903.75 m, orange for
xb = 905.0 m
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Fig. 4 Traces of the analytical and numerical velocity solutions at
500 m. Analytical solutions: blue for xb = 900.0 m, cyan for xb =
901.25 m, green for xb = 902.5 m, brown for xb = 903.75 m, magenta
for xb = 905.0 m. Numerical solutions: black for xb = 900.0 m and
xb = 901.25 m, red for xb = 902.5 m and xb = 903.75 m, orange for
xb = 905.0 m

for x > xb :
p(t, x) = 2cRρR

cLρL + cRρR
f

(
t − x

cR

)
, (39)

v(t, x) = 2

cLρL + cRρR
f

(
t − x

cR

)
(40)

where f is a Ricker’s wavelet with central frequency f0 =
10 Hz:

f (t) = (1 − 2(π f0(t − t0))
2)e−(π f0(t−t0))2

. (41)

We discretize the domain into 360 grid points and set inter-
face equal to xb = 900.0, 901.25, 902.5, 903.75, and 905.0 m.
Interfaces xb = 900.0 m and xb = 905.0 m coincide
with pressure (main) grid nodes, interface xb = 902.5 goes
through the velocity (staggered) grid node, and interfaces
xb = 901.25 m and xb = 903.75 m are located at 1.25 m
from both the pressure and velocity grid nodes (see Fig. 2 for
details).

Figures 3 and 4 show traces of the analytical and numeri-
cal pressure and velocity solutions at 500 m. Figures 5 and 6
show the same traces between 405 and 440 ms. Blue, cyan,
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Fig. 5 Traces of the analytical and numerical solutions at 500 m. Ana-
lytical solutions: blue for xb = 900.0 m, cyan for xb = 901.25 m,
green for xb = 902.5 m, brown for xb = 903.75 m, magenta
for xb = 905.0 m. Numerical solutions: black for xb = 900.0 m and
xb = 901.25 m, red for xb = 902.5 m and xb = 903.75 m, orange for
xb = 905.0 m

green, brown, and magenta curves describe the analytical
solutions that correspond to each of the five interface loca-
tions described above. As expected, the analytical solutions
are at the same distance from each other and capture the loca-
tions of the interfaces exactly. The black curve represents
numerical solutions that correspond to interface locations
xb = 900.0 and 901.25 m. Similarly, the red curve describes
coinciding numerical solutions that correspond to interface
locations 902.5 and 903.75 m. Finally, orange curve cor-
responds to the numerical solution with interface located
at xb = 905.0 m. It is clear from Figs. 5 and 6 that all
numerical solutions are shifted from the respective analyt-
ical solutions. The biggest time shift of about 1 ms occurs
between solutions that correspond to interfaces located at
xb = 900.0 m and xb = 905.0 m (compare black and
blue curves or orange and magenta curves). Figure 7 shows
plots of the analytic and numerical solutions and difference
between them for the interface location xb = 900.0 m and
time interval 300 ms ≤ t ≤ 600 ms (i.e., the reflected wave
only). Root mean square (RMS) error for the reflected wave
is 16%. The time shift is much smaller for the interface loca-
tions xb = 902.5 and xb = 903.75 m (compare red and green

curves or red and brown curves). RMS error in this case is
approximately 4%.

In the second experiment, we present results derived from
a simple model of a dome structure in 2D. Figure 8 displays
the velocity (top) and density (bottom) fields for this model.
The wave propagation is forced by a point dilatational source
located at point xs. The force is described by a right-hand side
in the Newton’s law (Eq. 2):

f (t, x) = g(t)∇δ(x − xs). (42)

An alternative representation of the energy source as a right-
hand side in the constitutive law (Eq. 1) is also possible and
produces the same field away from the source point. We
choose g(t) to be the Gaussian wavelet scaled as follows:

g(t) = 2c2r0

π f 2
0

e−π f0t . (43)

The Gaussian pulse (Eq. 43) produces a propagating Ricker
wavelet (second derivative of Gaussian) with peak frequency
f0 and a unit amplitude at distance r0 from the source, if the
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Fig. 6 Traces of the analytical and numerical velocity solutions at
500 m. Analytical solutions: blue for xb = 900.0 m, cyan for xb =
901.25 m, green for xb = 902.5 m, brown for xb = 903.75 m, magenta
for xb = 905.0 m. Numerical solutions: black for xb = 900.0 m and
xb = 901.25 m, red for xb = 902.5 m and xb = 903.75 m, orange for
xb = 905.0 m
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Fig. 7 Comparison of traces for the interface located at xb = 900 m.
Red: analytical solution. Green: numerical solution. Blue: difference
between the analytical and numerical solutions

simulations were conducted in 3D. In 2D, the pulse produced
by Eq. 43 is more complex (a fractional derivative of the
Gaussian).

We choose f0 = 15 Hz, so that the wavelet has significant
energy at 30 Hz or a wavelength of 50 m in the “water” layer
at the top of the model. Source depth is 40 m, receiver depth is
20 m. The source position for this experiment is in the center,
and the receiver configuration is symmetric split-spread, i.e.
receivers are arranged symmetrically on a horizontal segment
centered at the source.

Figures 9 and 10 show the results of a fourth and tenth
(spatial) order simulations on a 10-m grid. Some grid dis-
persion is evident in Fig. 9, notably in the direct wave in the
water, which is unsurprising as 5 grid points per wavelength
is marginal for the fourth order scheme. As expected, a tenth
order simulation shows little evidence of dispersion, which
suggests that 5 grid points per wavelength is an adequate
sample rate for this scheme. However, Fig. 11 demonstrates
that although the application of the tenth order scheme results
in a dispersion-free solution, the interface error is still clearly
present and manifests itself as a time shift.

Figure 11 shows trace 100, at roughly 1 km offset, between
1,100 and 1,400 ms. This event is the reflection from the
dome, the nominal reflection point being near the top of the
dome, in a gentle slope. The green curve is the 10-m grid

fourth order result, the blue curve is the 10-m grid tenth
order result. Even for this short travel time, the suppression
of dispersive error from the former to the latter is evident.
However, the black curve is the result of a 2.5-m grid fourth
order simulation, which is presumable closer to the truth.
The difference between the 2.5-m result and either of the
10-m results is much greater than the difference between the
fourth and tenth order at 10 m. Further, the error consists of
a time shift of approximately 10 ms, which is roughly 15%
of a wavelength at peak frequency.

The time shift is evidence of the interface error. The cell
width of 10 m corresponds to 5 ms travel time at the
median velocity of 2 km/s near the reflecting point. Since the
reflection transits some part of the cell twice, up to 10 ms
of two-way travel time error may result from this single
interface interaction. While the full 10 ms is not likely to
be the result of this one interaction, the wave must also pass
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Fig. 8 Velocity (top) and density (bottom) fields for the Dome model
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Fig. 9 Simulated shot gather, square 10 m spatial grid, second order in
time fourth order in space-staggered finite-difference scheme

through the sea floor twice adding another similar time-shift
error.

The observed time shift may result in large relative RMS
errors. Red and blue curves shown in Fig. 12 represent the
difference between 5 and 2.5 m solutions and 10 and 2.5 m
solutions. Based on Richardson extrapolation ([8]) we esti-
mate the relative RMS error to be about 7.5%. However,
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Fig. 10 Simulated shot gather, square 10 m spatial grid, second order
in time tenth order in space-staggered finite-difference scheme
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Fig. 11 Trace detail at offset 1 km. Green: 10 m grid, fourth order
scheme. Blue: 10 m grid, tenth order scheme. Black: 2.5 m grid, fourth
order scheme

comparing the red and blue curves to the 2.5 m solution, we
see that the relative error at later times is much larger.

4 Discussion

Existing works on simulation of wave propagation in
discontinuous media show that the computational error
associated with finite-difference methods consists of two
components. One component grows with time and results
in frequency-dependent grid dispersion. Application of
higher-order methods suppresses the grid dispersion error.
The second component is due to misalignment between
material interfaces and numerical grids. Theoretical analysis
and numerical experiments presented in previous sections
demonstrate that this first-order error manifests itself as a
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Fig. 12 Comparison of traces for the fourth order scheme in two dimen-
sions. Black: 2.5 m grid. Blue: difference between 5 and 2.5 m solutions.
Red: difference between 10 and 2.5 m solutions
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time shift, results in large relative RMS error, and is insensi-
tive to the order of the method. In the 2D example, reduction
in the overall error to 5% RMS appears to require 50 grid
points per wavelength regardless of the order of the method.

Techniques that attempt to reduce the interface error
require some kind of additional subgrid information about
the coefficients or interface locations. Brown uses inte-
gral harmonic averaging to smooth the coefficients near the
interfaces [2]. Although this approach makes the interface
error second order, its generalization to higher dimensions
appears to be difficult. A multidimensional fourth-order
scheme based on smoothed coefficients has been con-
structed and analyzed by Cohen and Joly in [4]. They
average coefficients using a smoothing parameter derived
from energy estimates, and show that the approximation
of reflection-transmission phenomena is an optimal, pro-
vided one chooses optimal smoothing parameter. In practice,
a strategy for choice of the smoothing parameter relies
on the information about points of discontinuity of the
coefficients. Zhang et al. apply the immersed interface
approach to modify the difference scheme at grid points
near the interfaces to achieve second order accuracy [12].
In addition to the information about the interface loca-
tions, the immersed interface method requires knowledge
about the jumps in the coefficients and their one-sided
derivatives.

All the error-reducing methods mentioned above were
developed in the context of regular-grid finite-difference
schemes and cannot be applied directly to staggered schemes.
Staggered grid, among other advantages, gives a com-
pact difference scheme. Gustafsson and Mossberg proposed
a fourth-order in time and space time-compact difference
scheme based on Lax and Wendroff idea of using the differen-
tial equation to replace time derivatives by space derivatives
[6]. Analysis of this approach in the context of discontinuous
media shows that it successfully controls grid dispersion, but
does not eliminate the interface error (see [7]).

5 Conclusion

In addition to a higher-order grid dispersion error, finite-
difference simulation of wave propagation in discontinuous
media is subject to the first-order error which is due to
inaccurate interaction of the numerical wave with material
interfaces. The grid dispersion error is well-understood and
can be controlled by higher-order methods. In this paper, we
concentrate on the quantitative evaluation of the interface

misalignment error for a second order in space and time
staggered finite-difference scheme. Following [7], we use
plane wave analysis to study the numerical reflection and
transmission coefficients. We show that the error is purely
imaginary, which implies that the numerical and exact reflec-
tion and transmission coefficients have the same amplitude
and differ only by a phase shift up to a second order in
hω. The phase shift is proportional to the time step and the
distance between the interface and the main and staggered
computational grids. Even if the interface is aligned with one
of the grids, the misalignment with the second grid results
in a non-zero error. Numerical examples support our theo-
retical analysis. In particular, the 2D numerical experiment
indicates that our 1D analysis gives a good picture of what
to expect in multidimensional computations and shows that
the interfaces misalignment error cannot be controlled by
higher-order methods alone.

References

1. Bourbie, T., Coussy, O., Zinszner, B.: Acoustics of porous media.
Institut francais du petrole publications, Gulf Publishing Company,
Houston (1987). Translated from the French by Nissim Marshall

2. Brown, D.: A note on the numerical solution of the wave equation
with piecewise smooth coefficients. Math. Comput. 42, 369–391
(1984)

3. Cohen, G.: Higher-Order Numerical Methods for Transient Wave
Equations. Springer, New York (2002)

4. Cohen, G., Joly, P.: Construction and analysis of fourth-order
finite difference schemes for the acoustic wave equation in non-
homogeneous media. SIAM J. Numer. Anal. 33, 1266–1302
(1996)

5. Dobrin, M., Savit, C.: Introduction to Geophysical Prospecting,
4th ed. McGraw-Hill, New York (1988)

6. Gustafsson, B., Mossberg, E.: Time compact high order difference
methods for wave propagation. SIAM J. Sci. Comput. 26, 259–271
(2004)

7. Gustafsson, B., Wahlund, P.: Time compact difference methods for
wave propagation in discontinuous media. SIAM J. Sci. Comput.
26, 272–293 (2004)

8. Kinkaid, D., Cheney, W.: Numerical Analysis, 2nd ed.
Brooks/Cole, California (1996)

9. Virieux, J.: SH-wave propagation in heterogeneous media: velocity
stress finite-difference method. Geophysics 49, 1933–1957 (1984)

10. Virieux, J.: P-SV wave propagation in heterogeneous media:
velocity stress finite-difference method. Geophysics 51, 889–901
(1986)

11. Walden, A., Hosken, J.: The nature of the non-Gaussianity of pri-
mary reflection coefficients and its significance for deconvolution.
Geophys. Prospect. 34, 1038–1066 (1986)

12. Zhang, C., LeVeque, R.J.: The immersed interface method for
acoustic wave equations with discontinuous coefficients. Wave
Motion 25, 237–263 (1997)


	Interface error analysis for numerical wave propagation
	Introduction
	Interface error analysis
	Numerical experiments
	Discussion
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


