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Abstract Numerical identification of diffusion parame-
ters in a nonlinear convection–diffusion equation is
studied. This partial differential equation arises as the
saturation equation in the fractional flow formulation
of the two-phase porous media flow equations. The
forward problem is discretized with the finite difference
method, and the identification problem is formulated
as a constrained minimization problem. We utilize the
augmented Lagrangian method and transform the min-
imization problem into a coupled system of nonlinear
algebraic equations, which is solved efficiently with
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the nonlinear conjugate gradient method. Numerical
experiments are presented and discussed.
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1 Introduction

In this paper, we investigate the estimation of diffu-
sion coefficient q(x) in the following two-dimensional
equation

ut + ∂

∂x
f (u) + ∂

∂y
g(u) − ∇ · (q(x)N(u)∇u) = s(x, t)

in � × (0, T), (1.1)

with the initial-boundary conditions

u(x, 0) = u0(x) in �, and u(x, t) = 0 on ∂� × (0, T).

The nonlinear functions f and g are S-shaped flux
functions of Buckley–Leverett type, in the x and y
directions respectively. The nonlinearity in the diffu-
sion term, N(u), is a positive function. For simplicity,
we assume that � is the unit square. s(x, t) is a given
source term, which is piecewise smooth. We will use the
following notation for the flux term

∇ · ( f, g) = ∂

∂x
f (u) + ∂

∂y
g(u).

Equation 1.1 is related to two-phase porous media
flow. The immiscible displacement of oil by water in a
porous medium without gravity effects can be described
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by the following set of partial differential equations
(see, e.g., [7]):

∇ · V = f1(x, t) (1.2)

V = −q(x)λ(x, u)(∇ p − ρ(u)∇h) (1.3)

φ(x)ut + ∇ · ( f (u)V + fg(u)q(x)∇h)

−∇ · (q(x)N(u)∇u) = f2(x, t), (1.4)

where f1 and f2 denote injection/production wells, q(x)

is the permeability, φ(x) is the porosity, V is the total
Darcy velocity, u is the saturation of the wetting phase,
λ(x, u) denotes the total mobility of the phases, p is the
global pressure, h is the height, ρ(u) is the density of the
wetting phase, and N(u) is a given nonlinear diffusion
function. Equation 1.4 is the fractional flow formulation
of the mass balance equation for water, and f (u) is a
nonlinear fractional flow function, which is typically S-
shaped. Further, we have

fg(u) = (ρw − ρo) f (u)λo,

where ρw and ρo are the densities of the wetting and
nonwetting phases, respectively, and λo is the phase
mobility of the nonwetting phase.

Equation 1.1 is similar to Eq. 1.4 except for the
convection term and the time derivative term. The time
derivative terms are equal if we assume that φ(x) = 1.
The difference in the convection terms is that Eq. 1.1
does has no permeability dependence and no varying
coefficient.

For realistic simulations of two-phase porous media
flow, the values of N(u) may attain values close to
zero, making Eq. 1.4 a degenerate parabolic equation.
However, in a parameter estimation setting, this is very
difficult. The problem is that there is no information
about q(x) available when q(x)N(u) attains small val-
ues. This problem is avoided herein by simply assuming
that N(u) is bounded away from zero.

A large amount of literature (e.g., [2, 3, 10, 11, 14])
is devoted to the augmented Lagrangian method for
identification of q(x) within the linear elliptic equation

−∇ · (q(x)∇u) = f (x). (1.5)

Less work has been done on parameter estimation in
the linear parabolic equation

ut − ∇ · (q(x)∇u) = f (x, t). (1.6)

Recovery of q(x) in Eq. 1.6 using the augmented
Lagrangian method is investigated in [9, 13, 17], and
other methods are studied in [5, 12, 15].

In [16], the augmented Lagrangian method for re-
covery of q(x) within the nonlinear parabolic equation,

ut − ∇ · (q(x)N(∇u, u)∇u) = f (x, t), (1.7)

is studied.
Equations 1.5–1.6 can be used to described one-

phase flow processes in porous media where q(x) is the
permeability. Equation 1.7 is not used in two-phase flow
simulations, but it has interesting mathematical prop-
erties. The aim of this paper is to take the augmented
Lagrangian methodology one step further towards the
problem of estimating permeability in real porous me-
dia simulations. This is done by studying parameter
estimation in Eq. 1.1, which contains interesting fea-
tures of the model Eqs. 1.2–1.4. For practical problems
related to the recovery of permeability in such models,
we refer the interested reader to, e.g., [4, 8, 18, 19].

Our approach for estimating q(x) in Eq. 1.1 is based
on observations ud(xi, t), i = 1, . . . , np; t ∈ (0, T) of
u(x, t). These observations may contain noise. The in-
verse problem is formulated in a similar manner to
[16, 17].

min
r(q,u)=0

∫ T

0

np∑
i=1

1

2
(u(xi, t) − ud(xi, t))2dt + β R(q), (1.8)

with r(q, u) = 0 as the equation constraint (i.e., Eq. 1.1
fulfilled) and q ∈ W, where

W = {q ∈ L1(�)| 0 < qmin ≤ q ≤ qmax < ∞}.
r(q, u) is defined as the left-hand side minus the right-
hand side of the equation, i.e.,

r(q, u) = ut + ∇ · ( f, g) − ∇ · (qN(u)∇u) − s.

r(q, u) is referred to as the residual. The second term
of the objective function consists of R(q), which is a
regularization functional, and β, which is a regulariza-
tion parameter. These will be specified in the numerical
examples. In the rest of this paper, we assume that R(q)

is quadratic in q.
The minimizer for Eq. 1.8 can be found by

the augmented Lagrangian method. The augmented
Lagrangian functional is defined by

Lc(q, u, λ) =
∫ T

0

np∑
i=1

1

2
(u(xi, t) − ud(xi, t))2dt + β R(q)

+
∫ T

0
(r, λ)dt + c

2

∫ T

0
‖r‖2dt,

where (·, ·) and ‖ · ‖ denote the L2 inner product and
norm, respectively. A saddle point for Lc together with
the equation constraint fulfilled is a local minima for
Eq. 1.8.
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In [17] and [16], the models (Eq. 1.6 and Eq. 1.7,
respectively) are discretized with the finite element
method. For equations like Eq. 1.1, where there is a
convection term included, the finite difference method
is a highly suitable discretization technique, which we
will use in this paper. The convection term could
be discretized with central difference approximation,
which is second-order accurate. However, a drawback
of the central difference approach is that the numerical
scheme needs very small time steps when the problem
is convection-dominated. A remedy out of this is to use
an upwind scheme for the convection term. Herein, we
use a difference scheme based on the Engquist–Osher
numerical flux [6] for the convection part and centered
differencing for the diffusion part. This means that
the differencing of the convective flux is biased in the
direction of “incoming waves,” which makes it possible
to resolve solutions with steep gradients without too
small time steps.

Another aspect is that, when solving Eq. 1.8 with
an optimization technique, we need the derivative of
the objective function with respect to the discretized
solution. Consequently, it is important that we use a
difference scheme whose numerical flux function is
a differentiable function of the discretized solution,
which is the case with the schemes used in this paper.

Traditionally, parameter estimation problems in
complicated models, like the equations for multiphase
flow, are formulated as output least squares problems,
which are solved with methods like quasi-Newton or
Gauss–Newton. With such an approach, the objective
functional is nonquadratic in q. Here, Lc is quadratic
in q for fixed u. In [17], Lc is also quadratic in u for
fixed q, but that is not true in this paper because of the
nonlinearities in the functions f (u), g(u), and N(u).

Note that, in our minimization formulation, we do
not use the interpolated version of ud. In the formula-
tion, we only calculate the distance between u and ud

at the observation points. Note also that we minimize
over both q and u. These things make the augmented
Lagrangian methodology a flexible formulation of the
inverse problem, which has proven to give good results
for finding global minima.

The remaining part of this paper is organized as
follows: First, we present the numerical scheme that is
used to discretize the forward problem Eq. 1.1. Then,
we formulate the inverse problem in a discrete setting
and explain how this can be solved with the augmented
Lagrangian method. Next, we show how the nonlinear
conjugate gradient method can be used to solve the sub-
minimization problems of the augmented Lagrangian
formulation. Finally, we present some numerical results
with the proposed method.

2 Discretization and the inverse problem

In [17] and [16], Eqs. 1.6 and 1.7 are discretized with
a finite element method. In this work, we use a finite
difference method to discretize Eq. 1.1. This is a more
suitable discretization method for equations including
convection terms. The numerical schemes we present
are implicit in the diffusion term and explicit in the
convection term. We will, in the numerical experiments,
use uniform grid in both space and time.

2.1 Finite difference discretization

Equation 1.1 is discretized with finite difference meth-
ods and we write the discretized equation as

uth + ∇h · ( f, g) − ∇h · (q(x)N(u)∇hu) = sh, (2.1)

where the subscript h denotes the discretization
parameter.

We assume that the discrete functions are defined on
an n1 × n2−grid in space, i.e., in � = (0, 1) × (0, 1). The
following notation will be used: xi = i�x, y j = j�y,
tn = n�t, un

i, j = u(xi, y j, tn), and sn
i, j = s(xi, y j, tn). Here,

�x = 1
n1

, �y = 1
n2

, �t = T
M , i = 1, . . . n1, j = 1, . . . n2,

and n = 1, . . . M. The full vector of the n-th time level
of a variable, for example, u, will be denoted by un ∈
Rn1×n2 . The discrete derivatives in the x direction are
denoted

Dx
−un

i, j = un
i, j − un

i−1, j

�x
and Dx

+un
i, j = un

i+1, j − un
i, j

�x

for the backward and forward difference approxima-
tions, respectively. We use a corresponding notation for
the discrete derivatives in the y and t directions.

In the following, we give a specific description of how
the terms in Eq. 2.1 are discretized. The discretization
of the time derivative term is

uth = Dt
−un

i, j.

The discretized permeability, q, is defined by
qi+ 1

2 , j+ 1
2

= q(xi+ 1
2
, y j+ 1

2
). The mean values are defined

as

qx
i, j+ 1

2
= 1

2

(
qi+ 1

2 , j+ 1
2
+ qi− 1

2 , j+ 1
2

)
and

qy
i+ 1

2 , j
= 1

2

(
qi+ 1

2 , j+ 1
2
+ qi+ 1

2 , j− 1
2

)
.

For the nonlinear function N(u), we denote Nn
i, j =

N
(
un

i, j

)
, and the mean values as defined as

(
N

x)n
i+ 1

2 , j = 1

2

(
Nn

i+1, j + Nn
i, j

)
and

(
N

y)n
i, j+ 1

2
= 1

2

(
Nn

i, j+1 + Nn
i, j

)
.
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The nonlinear diffusion term is discretized by

∇h · (qi, jNn
i, j∇hun

i, j) = Dx
−
(
qy

i+ 1
2 , j

(
N

x)n
i+ 1

2 , jD
x
+un

i, j

)

+ Dy
−
(
qx

i, j+ 1
2

(
N

y)n
i, j+ 1

2
Dy

+un
i, j

)
.

For the convection term, we use the Engquist–Osher
upwind scheme (see [6])

∇u
h · (

f
(
un−1

i, j

)
, g

(
un−1

i, j

)) = Dx
− f EO(

un−1
i, j , un−1

i+1, j

)

+ Dy
−gEO(

un−1
i, j , un−1

i, j+1

)
, (2.2)

where the Engquist–Osher numerical flux functions
f EO(ui, j, ui+1, j) and gEO

(
ui, j, ui, j+1

)
are defined by

f EO(ui, j, ui+1, j) = 1

2

(
f (ui, j) + f

(
ui+1, j

))

− 1

2

∫ ui+1, j

ui, j
| f ′(ξ)|dξ,

gEO(
ui, j, ui, j+1

) = 1

2

(
g
(
ui, j

) + g
(
ui, j+1

))

− 1

2

∫ ui, j+1

ui, j

|g′(ξ)|dξ.

In Appendix A, we calculate explicit formulas for f EO

and gEO, for examples of f and g.
The upwind scheme Eq. 2.2 is a first-order scheme,

and it can solve problems that are convection-
dominated. In the next subsection, we comment on the
regularity with respect to the numerical solution u of
the numerical flux functions.

We can now write Eq. 2.1 as

Dt
−un

i, j + ∇u
h · (

f
(
un−1

i, j

)
, g

(
un−1

i, j

))

− ∇h · (
qi, jNn

i, j∇hun
i, j

) = sn
i, j,

n = 1, . . . , M, (2.3)

where u0
i, j = u0(xi, y j) and un

i, j = 0 for (xi, y j) ∈ ∂�. No-
tice that, in Eq. 2.3, the convection term is defined
explicitly in time, but the diffusion term is discretized
implicitly.

2.2 Regularity of the numerical flux function

In this subsection, we discuss the regularity of numer-
ical flux function. In particular, we wish to explicitly
point out that ∇u

h · (
f (un−1

i, j ), g(un−1
i, j )

)
is a differentiable

function of un−1.
For simplicity of notation, we consider only the one-

dimensional case, i.e., we study the regularity of ∇u
h ·

f (ui) with respect to u. The analysis of ∇u
h · g(ui) is

identical.

We have

∇u
h · f (ui) = Dx

− f EO(ui, ui+1)

= 1

�x

[
f EO(ui, ui+1) − f EO(ui−1, ui)

]
,

and we see that the regularity of ∇u
h · f (ui) with respect

to u depends on the regularity of f EO. We further
calculate the first- and second-order derivatives of f EO

with respect to ui and ui+1

f EO(ui, ui+1) = 1

2
( f (ui) + f (ui+1))

− 1

2

∫ ui+1

ui

| f ′(ξ)|dξ,

∂

∂ui
f EO(ui, ui+1) = 1

2
f ′(ui) + 1

2
| f ′(ui)|,

∂2

∂u2
i

f EO(ui, ui+1) = 1

2
f ′′(ui) + 1

2
sgn(| f ′(ui)|) f ′(ui),

∂

∂ui+1
f EO(ui, ui+1) = 1

2
f ′(ui+1) − 1

2
| f ′(ui+1)|,

∂2

∂u2
i+1

f EO(ui, ui+1) = 1

2
f ′′(ui+1)

−1

2
sgn(| f ′(ui+1)|) f ′′(ui),

where sgn(·) denotes the sign function. By these cal-
culations, we can then conclude that ∇u

h · f (ui) and its
first-order derivatives with respect to ui and ui+1 are
continuous, but the second-order derivatives of ∇u

h ·
f (ui) with respect to ui and ui+1 are discontinuous.

For the nonlinear conjugate gradient method (see
Section 3.1) to be convergent, it is crucial that the
gradient of the objective function is continuous (cf.
[1]). In our setting, with the augmented Lagrangian
method to do parameter estimation in convection–
diffusion equations, the numerical flux function needs
to be continuously differentiable with respect to the
numerical solution. In Section 3.2 and Appendix B,
we give explicit descriptions of the gradients of the
objective functions for our minimization problems.

2.3 Fix point iteration

To integrate the forward problem Eq. 2.3 in time, we
have to solve a nonlinear system for each time level.
The systems are nonlinear because of the implicit treat-
ment of the nonlinear diffusion term. We use a fix-point
iteration to solve these nonlinear systems.
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If we write the nonlinear system on the form
A(z)z = b , where A(z) is a nonsingular matrix depend-
ing nonlinearly on the vector z, then we iterate

A
(
zk−1

)
zk = b ,

until convergence, with z0 given. Here, z0 is typically
the solution from the previous time level. If this method
converges, it is often an efficient way to solve a non-
linear problem. This method is only used to solve the
forward problem Eq. 2.3.

2.4 Coarse grid for q

In earlier works (cf. [17] and [16]), the diffusion co-
efficient, q, has been defined in a coarse grid. This
is straightforward when working with finite element
functions. In this work, we will also describe the para-
meter, q, with a possible reduced number of degrees of
freedom compared to the finest mesh. We define

q ∈ Rm1×m2,

and we use a constant prolongation when we need
q ∈ Rn1×n2 . In the numerical experiments, we assume
that the fine mesh is a refinement of the coarse mesh.
Constant prolongation means that an entry of q on
the fine mesh is obtained by taking the value from the
closest point of the coarse mesh. In practice, the dimen-
sion of this space typically depends on the information
available from the measurements.

2.5 The residual

We define the residual as the left-hand side minus the
right-hand side of the discretized equation

rn
i, j = Dt

−un
i, j + ∇u

h · (
f
(
un−1

i, j

)
, g

(
un−1

i, j

))

−∇h · (
qi, jNn

i, j∇hun
i, j

) − sn
i, j,

where the prolongated q ∈ Rn1×n2 is used.
For the minimization algorithms presented in next

section, we need the derivatives of the residual with
respect to u and q. Those calculations are presented in
Appendix B.

2.6 Discretized minimization

We formulate a finite dimensional problem corre-
sponding to Eq. 1.8 as follows:

min
r(q,u)=0

∑
n

�tE(un) + β R(q), (2.4)

subject to q ∈ Rm1×m2 satisfying qmin ≤ q ≤ qmax and
u ∈ Rn1×n2×M+1 satisfying u0

i, j = u0(xi, y j) and un
i, j = 0

for (xi, y j) ∈ ∂�. Here,

E(un) =
∑

(i, j)∈Iobs

1

2

(
un

i, j − (ud)
n
i, j

)2
, (2.5)

and the regularization term, β R(q), will be defined in
the numerical experiments. Even though u is defined
over M + 1 time levels, the following minimization al-
gorithm will only vary u in M time levels because the
initial time level is fixed.

Above, Iobs denotes the set of all indices where the
observation points are located (cf. xi, i = 1, . . . , np in
Eq. 1.8). In our numerical experiments, we have that
the observation points are on the grid points. However,
if we have observation points that are not located at
grid points, we should do a spatial linear interpolation
of un to execute E(un). In this way, it will be similar to
the finite element formulation of [16] and [17], where
the discretized functions are continuously defined.

2.7 Minimization algorithm

We solve the discretized minimization problem Eq. 2.4
by the augmented Lagrangian method. The discretized
augmented Lagrangian functional Lc : Rm1×m2×
Rn1×n2×M+1Rn1×n2×M → R is defined

Lc(q, u, λ) =
M∑

n=1

�tE(un) + β R(q)

+
M∑

n=1

n1∑
i=1

n2∑
j=1

�xyt

(
λn

i, jr
n
i, j +

c
2

(
rn

i, j

)2
)

,

(2.6)

where �xyt = �x�y�t. Here, λ is a Lagrange multi-
plier. Notice that λ ∈ Rn1×n2×M, while u ∈ Rn1×n2×M+1.
The reason for this is, as pointed out above, that the
initial level of u is fixed, and therefore, λ is not defined
for time level zero. c > 0 is a penalization constant,
which is determined experimentally. In the discrete
setting, it is known that Lc has a saddle point and that
this point is a minimizer for Eq. 2.4, see [3, 11, 14].

We will use the following augmented Lagrangian
method to find saddle points for this functional.

Here, un
k ∈ Rn1×n2 denotes u at time level n and

iteration k, and uk ∈ Rn1×n2×M+1 denotes the full vec-
tor for iteration k of Algorithm 2.1. The initial guess
in the augmented Lagrangian method u0 ∈ Rn1×n2×M+1

should not be confused with the continuous function
u0(x) describing the initial condition of Eq. 1.1.
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Algorithm 2.1 (The augmented Lagrangian method)

Step 1 Choose initial values for λ0 ∈ Rn1×n2×M,
u0 ∈ Rn1×n2×M+1 and set k = 1.

Step 2 Find qk ∈ Rm1×m2 , qmin ≤ qk ≤ qmax satisfying

Lc(qk, uk−1, λk−1) = min
q ∈ Rm1×m2,

qmin ≤ qk ≤ qmax

Lc(q, uk−1, λk−1).

(2.7)

Step 3 Set u0
k = u0 and find {un

k}M
n=1 satisfying

Lc(qk, uk, λk−1) = min
u∈Rn1×n2×M+1

Lc(qk, u, λk−1).

(2.8)

Step 4 Update the Lagrange multiplier by

λk = λk−1 + cr(qk, uk).

If not converged: Set k = k + 1 and go to
step 2.

3 Implementation with the conjugate
gradient method

In this section, we consider the problem of how to
efficiently solve the two subminimization problems
Eqs. 2.7 and 2.8 defined in Algorithm 2.1.

3.1 The nonlinear conjugate gradient method

In this subsection, we review the nonlinear conjugate
gradient method to solve

min
z∈Rd

F(z), (3.1)

where F is a smooth function, and we have its gradients
available. Nonlinear conjugate gradient methods are
known to be good at solving large-scale problems and
take the following form:

k = 1, z0 given, g1 = −∇F(z0),

while ‖∇F(zk)‖ > ε,

zk = zk−1 + αkgk,

gk+1 = −∇F(zk) + βkgk,

k = k + 1.

end

Here, αk is a step size, which is determined by a one-
dimensional line search

αk = arg min
α

F(zk + αgk). (3.2)

The scalar βk can be chosen as either (see [1])

β1
k = ‖∇F(zk)‖2

‖∇F(zk−1)‖2
or

β2
k = (∇F(zk), ∇F(zk) − ∇F(zk−1))

‖∇F(zk−1)‖2
.

Here, ‖ · ‖ and (·, ·) denotes the norm and inner product
of l2. The latter choice, β2

k , is most stable with respect
to nonoptimal line search. If F is a quadratic func-
tion, ∇F(zk) and ∇F(zk−1) are orthogonal, and thus,
β1

k = β2
k .

For quadratic functions F, the exact solution of the
line search is

αk = ‖∇F(zk−1)‖2

gT
k Hkgk

, (3.3)

where Hk is the Hessian of F in the point zk, Hk =
∇2 F(zk). In this paper, we approximate the line search
by Eq. 3.3 in the nonquadratic cases.

When using the nonlinear conjugate gradient
method, we need to calculate ∇F(zk) and gT

k ∇2 F(zk)gk

for given zk and gk. We do not need to form the
Hessian. In the next subsection, we study how the
nonlinear conjugate gradient method can be efficiently
used to minimize the augmented Lagrangian func-
tional. For fixed (u, λ), the functional Lc(q, u, λ) is
quadratic with respect to q, but for fixed (q, λ), the
functional Lc(q, u, λ) is nonquadratic with respect to
u. In order to use the conjugate gradient method, we
need to calculate the Gateaux derivatives of Lc. The
next subsection contains these calculations.

3.2 Gateaux derivatives of the augmented
Lagrangian functional

In order to use the conjugate gradient method to solve
Algorithm 2.1, we calculate the derivatives of the aug-
mented Lagrangian functional. The Gateaux deriva-
tives of the augmented Lagrangian functional in a given
direction will be denoted L′

c · p = ∂Lc
∂q · p and L′

c · v =
∂Lc
∂u · v. Here, the direction p will be a vector of the

same dimension as q, and correspondingly, v has the
same dimension as u. Note that, when writing L′

c · p,
the p indicates that we take the derivative with respect
to q in the direction p. Similarly, the v in L′

c · v indi-
cates the derivative with respect to u in the direction
v. For second-order derivatives, we use the notation
L′′

c · (p, p) = ∂2 Lc
∂q2 · (p, p) and L′′

c · (v, v) = ∂2 Lc
∂u2 · (v, v).
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First, we calculate the derivative of Lc with respect
to q in the direction p ∈ Rm1×m2

L′
c · p = β R′(q) · p +

∑
n,i, j

�xyt((rn
i, j)

′ · p)(λn
i, j + crn

i, j).

(3.4)

In the implementations, the full vector ∂Lc
∂q is needed.

Let {e1
a,b } be the unit basis vectors of Rm1×m2 . We can

calculate ∂Lc
∂q by letting the direction p in Eq. 3.4 run

through all basis functions e1
a,b , i.e., ( ∂Lc

∂q )a,b = L′
c · e1

a,b ,
for a = 1, . . . , m1, b = 1, . . . , m2.

The Gateaux derivative of Lc with respect to u in the
direction v ∈ Rn1×n2×M (v is not defined for time level
zero) is

L′
c · v =

∑
n

�tE′(un) · vn

+
∑
n,i, j

�xyt
((

rn
i, j

)′ · v
)(

λn
i, j + crn

i, j

)

=
∑

(i, j)∈Iobs,n

�t
(
un

i, j − (ud)
n
i, j

)
vn

i, j

+
∑
n,i, j

�xyt
((

rn
i, j

)′ · v
)(

λn
i, j + crn

i, j

)
.

Let {e2
a,b } be the unit basis vectors of Rn1×n2 . We can

calculate entry a, b at time level n by
(

∂Lc

∂u

)n

a,b
=

∑
(i, j)∈Iobs

�t
(
un

i, j − (ud)
n
i, j

)
e2

a,b

+
∑

i, j

�xyt
((

rn
i, j

)′ · e2
a,b

)(
λn

i, j + crn
i, j

)
.

The second-order derivatives are

L′′
c · (p, p) = β R′′(q) · (p, p) + c

∑
n,i, j

�xyt
((

rn
i, j

)′ · p
)2

,

because r is linear in q, and

L′′
c · (v, v) =

∑
n;(i, j)∈Iobs

�t
(
vn

i, j

)2 + c
∑
n,i, j

�xyt
((

rn
i, j

)′ · v
)2

+
∑
n,i, j

�xyt
((

rn
i, j

)′′ · (v, v)
)(

λn
i, j + crn

i, j

)
.

See Appendix B for calculations of the derivatives of r.

4 Numerical experiments

We present numerical experiments for the proposed
method. The test problem is Eq. 1.1 with � = (0, 1) ×
(0, 1), T = 0.05, u0(x) = sin(πx) sin(πy), s(x, t) = 0 and

the true parameter to be estimated, q(x), is piecewise
constant

q(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qc
1, x ∈ [0, 0.5] × [0, 0.5]

qc
2, x ∈ [0.5, 1] × [0, 0.5]

qc
3, x ∈ [0, 0.5] × [0.5, 1]

qc
4, x ∈ [0.5, 1] × [0.5, 1].

(4.1)

where qc
i = i, i = 1, . . . 4, in the first two examples.

The flux function in the x direction is an S-shaped
Buckley–Leverett flux with gravitational effects

f (u) = u2(1 − 5(1 − u2))

u2 + (1 − u)2
, (4.2)

and the flux function in the y direction is an S-shaped
Buckley–Leverett flux

g(u) = u2

u2 + (1 − u)2
. (4.3)

For the nonlinear diffusion function, we use

N(u) = 1 + u(u − 1).

In all the numerical examples, the problem is dis-
cretized with a uniform grid with h = 1

n1−1 = 1
n2−1 as

grid cell size for u and H = 1
m1−1 = 1

m2−1 as the grid cell
size for q. The grid for u is a refinement of the grid for
q. The number of time steps is M = T

�t .
In Example 4.2, we test the parameter estimation

algorithm with noise in the observations. It is added
multiplicatively, i.e.,

(ud)
n
i, j = (1 + σ · rand(i, j, n))un

i, j,

(i, j) ∈ Iobs, n = 1, . . . , M. (4.4)

Here, rand(i, j, n) is a vector of normally distributed
numbers with zero mean and standard deviation 1. We
refer to σ ∈ R as the noise level.

The stopping criteria for the nonlinear conjugate
gradient method from Section 3.1 is

‖∇F(zk)‖
‖∇F(z0)‖ ≤ ε,

where F is the augmented Lagrangian functional, ∇
denotes the derivative in either the u− or q−direction,
and ‖ · ‖ is the l2−norm defined by

‖v‖ =
√√√√

∑
i, j v

2
i, j∑

i, j 1
.

In the examples, we use ε = 10−6.
The regularization functional is R(q) = ‖∇q‖2. The

regularization parameter, β, and the augmented
Lagrangian parameter, c, are determined by trial and
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error, i.e., we test several β and c values and check
which performs best. Advanced methods for determin-
ing β and c values is not discussed in this paper. When
there is no noise in the observations, the regularization
parameter, β, can be set to zero.

In the examples, we illustrate the convergence of qk,
uk, and rk = r(qk, uk) for the augmented Lagrangian
method. In all examples, we plot the l2−norm of the
error. More specifically, for increasing k value, we plot

‖qk − q‖,
to illustrate the convergence of qk, where q is the true
diffusion parameter,

‖uk − ud‖ = �t
M∑

n=1

E(un
k),

to illustrate the convergence of uk, where ud is the
observations and E(un

k) is defined in Eq. 2.5, and

‖rk‖ = �t
M∑

n=1

‖rn
k‖,

to illustrate the convergence of rk. The augmented
Lagrangian algorithm is stopped by inspection of these
plots.

The initial values for q and u in the conjugate
gradient method are the solutions from the previous
iteration of Algorithm 2.1. In the first iteration of
Algorithm 2.1, we use the spatial linear interpolant of
un

d(xi) for u0, and q0 equal to a constant. The constant

is chosen as the average of the true permeability, i.e.,
q0 = 1

|�|
∫
�

q dx. The Lagrange multiplier is initially

λ0 = 0. In the experiments, the constraints on W, qmin ≤
q ≤ qmax, were never active.

Example 4.1 This example is specified by h = 1
8 , H =

1
4 , and M = T

�t = 20. The observations are placed in
every other grid point of Vh in the x and y directions.
Since H = 2h, this means that we have one observation
point for each grid point in VH , i.e., np = 16. The c
value was set to 7 · 10−5. Algorithm 2.1 is tested, and in
Fig. 1, we show the convergence of ‖qk − q‖, ‖uk − ud‖,
and ‖rk‖.

Example 4.2 In this example, we test our algorithm
when there is multiplicative noise added to the obser-
vations (cf. Eq. 4.4). The example is specified by h = 1

24 ,
H = 1

12 (i.e., np = 144), M = 10, and c = 3 · 10−5. As
above, we have observation points in every other grid
point of Vh in the x and y directions, and since H = 2h,
we have one observation point in each of the 144 grid
points of VH .

For noise level σ = 10−3, Fig. 2 show the conver-
gence of q, u, and r. We have tested both L2-norm and
H1-seminorm regularizations, i.e., R(q) = ∫

�
q2dx and

R(q) = ∫
�

∇q · ∇q dx, respectively. The H1-seminorm
regularization performs better, and the optimal choice
of the regularization parameter is β = 6 · 10−11.

In Fig. 3, we show the result after 12 iterations of
Algorithm 2.1. The estimated parameter q15 is shown

Fig. 1 ‖qk − q‖, ‖uk − ud‖,
and ‖rk‖ vs k. Logarithmic
scale on the vertical axis
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Fig. 2 ‖qk − q‖, ‖uk − ud‖,
and ‖rk‖ vs k with noise level
σ = 10−3. Logarithmic scale
on the vertical axis
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together with the true parameter q and the error
q15 − q. The relative l2 error after the last iteration is
‖q−q15‖

‖q‖ ≈ 0.014.

Example 4.3 Here, we test a more convection-
dominated example. This example is described as

Example 4.1, but we use qc
i = i · 10−1. The convergence

of qk to q is shown in Fig. 4. The final time is chosen
shorter, T = 0.02. This is to make sure that we do not
get transport of information across the boundaries due
to the convection term. In this example, the c value was
set to 1.6 · 10−3.

Fig. 3 The exact, the
estimated and the error in
permeability q(x) with noise
level σ = 10−3
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Fig. 4 ‖qk − q‖, ‖uk − ud‖,
and ‖rk‖ vs k. Logarithmic
scale on the vertical axis
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5 Concluding remarks

We have studied the augmented Lagrangian method
for recovering a diffusion parameter in a convection–
diffusion equation. The forward problem Eq. 1.1
contains some of the mathematical and numerical chal-
lenges that are present in models for multiphase porous
media flow. By this work, we have taken a step further
towards developing the augmented Lagrangian method
to solve permeability estimation problems within such
models.

We have observed good performance for the aug-
mented Lagrangian method in our examples. The con-
vergence plots of qk to q are approximately the same
as with the corresponding algorithms in [16]. The
difference is less than 10%. However, the presented
algorithm performs worse in examples where the con-
vection term dominates the diffusion term. This is a
field for further research.

The numerical experiments would have been even
more physically relevant if the nonlinear diffusion func-
tion were N(u) = u(u − 1) + ε for a small ε. As pointed
out in Section 1, this is difficult in a parameter estima-
tion setting. From numerical experiments, it seems that
parameter estimation is hard when ε ≤ 0.3.

Appendix A: The numerical flux function

In this appendix, we give an explicit formula for the
numerical flux function f EO and gEO and their discrete
derivatives, used in the upwind scheme for the convec-

tion term. For notational simplicity we only use one
subscript index in the following calculation.

A.1 Buckley–Leverett flux function

The flux function in the y direction is an S-shaped
Buckley–Leverett flux function, cf. Eq. 4.3. Noticing
that g′(u) ≥ 0, for u ∈ (0, 1), we see that

gEO(ui, ui+1) = g(ui),

which gives

Dx
−(gEO(ui, ui+1)) = 1

�x
[g(ui) − g(ui−1)].

A.2 Buckley–Leverett flux function
with gravitational effects

The flux function in the x direction is an S-shaped
Buckley–Leverett flux function with gravitational ef-
fects, cf. Eq. 4.2. In order to calculate

∫ ui+1

ui
| f ′(ξ)|dξ ,

we study the sign of f ′ in (0,1). f ′ has only one zero
in (0, 1), and this is given by

xzero ≈ 0.37.

Thus, we see that

f ′(ξ)

⎧⎨
⎩

< 0, ξ ∈ (0, xzero)

= 0, ξ = xzero

> 0, ξ ∈ (xzero, 1).
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Additionally, we can calculate the integral

∫ ui+1

ui

| f ′(ξ)|dξ =

⎧⎪⎪⎨
⎪⎪⎩

f (ui+1) − f (ui), ui, ui+1 ≥ xzero

f (ui) − f (ui+1), ui, ui+1 < xzero

f (ui) + f (ui+1) − 2 f (xzero), ui < xzero, ui+1 ≥ xzero

2 f (xzero) − f (ui) − f (ui+1), ui ≥ xzero, ui+1 < xzero,

and by the definition of f EO, we then have

f EO(ui, ui+1) =

⎧⎪⎪⎨
⎪⎪⎩

f (ui), ui, ui+1 ≥ xzero

f (ui+1), ui, ui+1 < xzero

f (xzero), ui < xzero, ui+1 ≥ xzero

f (ui) + f (ui+1) − f (xzero), ui ≥ xzero, ui+1 < xzero.

By this, we have an explicit formula for the numerical
flux function in the x direction.

Appendix B: The derivatives of the residual

In the implementation of the nonlinear conjugate gra-
dient method, we need the derivatives of the residual.
In this section, we calculate the first- and second-order
derivatives with respect to u and q. By this, we complete
the calculations of Section 3.2.

B.1 Derivatives with respect to q

We first calculate the derivative with respect to q. The
residual is linear in q, and thus, the derivative of the
residual with respect to q in the direction p is

∂rn
i, j

∂q
· p = −∇h · (

pi, jNn
i, j∇hun

i, j

)
.

The second-order derivative is zero.

B.2 Derivatives with respect to u

Then, we calculate
∂rn

i, j

∂u · v. For the discrete time deriva-
tive term, we have that the derivative with respect to u
in the direction v is

∂ Dt−un
i, j

∂u
· v = Dt

−vn
i, j.

For the convection term, the derivative can be similarly
calculated. First, we calculate in 1D

∂ f EO(ui, ui+1)

∂ui
= 1

2
f ′
c(ui) + 1

2
| f ′

c(ui)|

= f ′
c(ui)H( f ′

c(ui)) and

∂ f EO(ui, ui+1)

∂ui+1
= 1

2
f ′
c(ui+1) − 1

2
| f ′

c(ui+1)|

= − f ′
c(ui+1)H(− f ′

c(ui+1)),

where H(·) is the Heaviside function. This gives

∂ f EO(ui, ui+1)

∂u
· v = f ′

c(ui)H( f ′
c(ui)) · vi

− f ′
c(ui+1)H(− f ′

c(ui+1) · vi+1),

and then in 2D,

∂
[
∇u

h ·
(

f
(
un−1

i, j

)
, g

(
un−1

i, j

))]

∂u
· v

= 1

�x

(
| f ′(un−1

i, j

)| · vn−1
i, j − f ′(un−1

i+1, j

)
H

[
− f ′(un−1

i+1, j

)]

· vn−1
i+1, j + f ′(un−1

i−1, j)H
[

f ′(un−1
i−1, j)

]
· vn−1

i−1, j

)

+ 1

�y

(
|g′(un−1

i, j

)| · vn−1
i, j − g′(un−1

i, j+1)H
[
−g′(un−1

i, j+1

)]

· vn−1
i, j+1 + g′(un−1

i, j−1

)
H

[
g′(un−1

i, j−1

)] · vn−1
i, j−1

)
.
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For the diffusion term, we have

∂
[
∇h ·

(
qi, jNn

i, j∇hun
i, j

)]

∂u
· v

= Dx
−

(
qy

i+ 1
2 , j

(
N

x)n
i+ 1

2 , jD
x
+vn

i, j

)

+ Dx
−

(
qy

i+ 1
2 , j

(
N′ · v

x)n
i+ 1

2 , jD
x
+un

i, j

)

+ Dy
−

(
qx

i, j+ 1
2 ,

(
N

y)n
i, j+ 1

2
Dy

+vn
i, j

)

+ Dy
−

(
qx

i, j+ 1
2

(
N · v

y)n
i, j+ 1

2
Dy

+un
i, j

)

= Dx
−

(
qy

i+ 1
2 , j

[(
N

x)n
i+ 1

2 , jD
x
+vn

i, j

+(
N′ · v

x)n
i+ 1

2 , jD
x
+un

i, j

])

+ Dy
−

(
qx

i, j+ 1
2

[(
N

y)n
i, j+ 1

2
Dy

+vn
i, j

+(
N · v

y)n
i, j+ 1

2
Dy

+un
i, j

])
.

From these calculations, we have an explicit formula for
(rn

i, j)
′ · v,

∂rn
i, j

∂u
· v = ∂ Dt−un

i, j

∂u
· v +

∂
[
∇h ·

(
f
(
un−1

i, j

)
, g

(
un−1

i, j

))]

∂u
· v

−
∂

[
∇h · (qi, jNn

i, j∇hun
i, j)

]

∂u
· v.

We also need the double derivative of the residual

(
rn

i, j

)′′ · (v, v) =
[
∇h ·

(
f
(
un−1

i, j

)
, g

(
un−1

i, j

))]′′ · (v, v)

+
[
∇h ·

(
qi, jNn

i, j∇hun
i, j

)]′′ · (v, v).

For the convection term, we have

[
∇u

h ·
(

f
(
un−1

i, j

)
, g

(
un−1

i, j

))]′′ · (v, v)

= 1

�x

[
f ′′(un−1

i, j

)
sgn

(
f ′(un−1

i, j

)) (
vn−1

i, j

)2

− f ′′(un−1
i+1, j

)
H

(
− f ′(un−1

i+1, j

)) (
vn−1

i+1, j

)2

+ f ′′(un−1
i−1, j

)
H

(
f ′(un−1

i−1, j

)) (
vn−1

i−1, j

)2
]

+ 1

�y

[
g′′(un−1

i, j

)
sgn

(
g′(un−1

i, j

)) (
vn−1

i, j

)2

−g′′(un−1
i, j+1

)
H

(
−g′(un−1

i, j+1

)) (
vn−1

i, j+1

)2

+g′′(un−1
i, j−1

)
H

(
g′(un−1

i, j−1

)) (
vn−1

i, j−1

)2
]
.

For the diffusion term, we have

[
∇h · (

qi, jNn
i, j∇hun

i, j

)]′′ · (v, v)

= Dx
−

(
qy

i+ 1
2 , j

(
N′ · v

x)n
i+ 1

2 , jD
x
+vn

i, j

)

+ Dx
−

(
qy

i+ 1
2 , j

(
N′ · vx)n

i+ 1
2 , jD

x
+vn

i, j

)

+ Dx
−

(
qy

i+ 1
2 , j

(
N′′ · (v, v)

x)n
i+ 1

2 , jD
x
+un

i, j

)

+ Dy
−

(
qx

i, j+ 1
2 ,

(
N′ · v

y)n
i, j+ 1

2
Dy

+vn
i, j

)

+ Dy
−

(
qx

i, j+ 1
2 ,

(
N′ · v

y)n
i, j+ 1

2
Dy

+vn
i, j

)

+ Dy
−

(
qx

i, j+ 1
2

(
N′′ · (v, v)

y)n
i, j+ 1

2
Dy

+un
i, j

)

= Dx
−

(
qy

i+ 1
2 , j

[
2
(
N′ · v

x)n
i+ 1

2 , jD
x
+vn

i, j

+ (
N′′ · (v, v)

x)n
i+ 1

2 , jD
x
+un

i, j

])

+ Dy
−

(
qx

i, j+ 1
2 ,

[
2
(
N′ · v

y)n
i, j+ 1

2
Dy

+vn
i, j

+(
N′′ · (v, v)

y)n
i, j+ 1

2
Dy

+un
i, j

])
,

where the mean value notation from Section 2 is used.
In the examples, we use N(u) = 1 + u(u − 1), which
gives N′ · v=(2u − 1)v and N′′ · (v, v)=2v2. This gives

(
N′ · v

x)n
i+ 1

2 , j = 1

2

((
2un

i+1, j − 1
)
vn

i+1, j

+(
2un

i, j − 1
)
vn

i, j

)
,

(
N′′ · (v, v)

x)n
i+ 1

2 , j = (
vn

i+1, j

)2 + (
vn

i, j

)2
,

and corresponding for the y direction.
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