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Abstract A space-time discontinuous Galerkin finite
element method is proposed and applied to a
convection-dominant single-phase flow problem in
porous media. The numerical scheme is based on a cou-
pled space-time finite element discretization allowing
for discontinuous approximations in space and in time.
The continuities on the element interfaces are weakly
enforced by the flux treatments, so that no extra penalty
factor has to be determined. The resulting space-time
formulation possesses the advantage of capturing the
steep concentration front with sharp gradients effi-
ciently. The stability and reliability of the proposed
approach is demonstrated by numerical experiments.

Keywords Discontinuous Galerkin methods ·
Convection-dominant flow · Porous media

1 Introduction

The objective of this paper is to study an efficient
numerical method for the simulation of miscible flow
in porous media. The numerical investigation of such
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problems can be dated back to [1–3]. However, the
traditional approaches, such as finite difference, finite
volume, and continuous finite element methods, usu-
ally fail to capture the steep concentration fronts in
heterogeneous porous materials. Since the last decade,
more and more attention has been focused on the use
of the discontinuous Galerkin (DG) methods in space
to model convection-dominant flows in porous media
[4–7]. The advantage of using such spatial DG ap-
proaches lies in the fact that these methods are
locally mass-conservative and that they are able to
capture the steep concentration front without extreme
refinement in the discretization. Among the variety of
different spatial DG formulations, there are some
popular ones, such as the Oden–Baumann–Babuska
(OBB) scheme [8], the nonsymmetric interior penalty
Galerkin method (NIPG) [9], the symmetric interior
penalty Galerkin method (SIPG) [10, 11], and the in-
complete interior penalty Galerkin method (IIPG) [12,
13]. We mention that, except for the OBB formulation,
the other three can be classified to the penalty method
with a penalty factor σ . With a proper choice of this
penalty factor, all four formulations lead to very similar
numerical results [4, 14].

With respect to the dynamic modeling, it is common
to solve the time-dependent problem, e.g., transport
phenomena, in a semidiscrete manner, i.e., by means
of the method of lines (MOL), such that the governing
set of partial differential equations is first evaluated
in space according to a finite element discretization
to produce an ordinary differential equation system
(ODE) in time, which can be, in turn, solved by a
time difference approach, e.g., the Euler method, the
Newmark method, etc. However, these time-stepping
schemes are often known as having low efficiency, as
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they usually suffer from strong numerical dissipation
and dispersion [15, 16]. Besides the time difference
approaches, studies of using finite element method in
time can be dated back to 1960s [17–19]. Using finite
element discontinuous approximation in time was first
proposed by Hughes and Hulbert [20]. Therein, they
proposed a decoupled space-time Galerkin method, in
which a continuous Galerkin approximation is applied
in space to produce an ODE system, which is then
evaluated by a DG approach in time, cf. [21–23]. This
method is also known as a semidiscrete approach in
that the spatial and temporal integrations are evaluated
subsequently. In the previous work of the authors,
we investigated a space-time coupled DG formulation.
By use of finite element shape function consisting of
tensor products of polynomials in space and in time, we
are able to evaluate the spatial and temporal integra-
tion simultaneously. As the finite element approxima-
tion is continuous in space but discontinuous in time,
the method is called the time-discontinuous Galerkin
method (DGT) [24]. In contrast to decoupled methods,
i.e., semidiscrete methods, a coupled formulation has
an advantage in less numerical dispersion and dissipa-
tion. Moreover, it is easy to develop a simple efficient
space-time discretization scheme based on the coupled
formulation. Higher-order methods can be achieved
straightforwardly by employing higher-order polyno-
mials in space and in time.

In the current work, we combined the DG approach
in time with the OBB formulation [25] in space to
construct a coupled numerical formulation that is con-
tinuous in neither space nor time. We remark that,
as the treatments of enforcing the continuity in time
and in space are decoupled, such a combination of the
DG approaches in space and in time generally allowed.
In addition, other popular spatial DG formulations,
i.e., NIPG, SIPG, and IIPG, combined with the DG
approach in time have also been tested. It has to be
mentioned that, with a proper choice of the penalty
factor, no significant difference has been observed in
the numerical solutions.

The structure of the current work is as follows: in the
next section, we discuss briefly about the modeling as-
pect of the miscible flow through porous materials. Af-
ter that, a coupled space-time discontinuous Galerkin
(DGST) formulation for the solution of model equa-
tions is proposed. In the next section, some numerical
experiments are performed in order to demonstrate the
behavior of the new space-time coupled scheme. We
close our discussion with a short conclusion.

2 Physical modeling

The physical model describes the procedure of a liquid
mixture through a rigid porous skeleton with a constant
porosity φ(x, t). The liquid mixture ϕl consists of a
resident fluid ϕf and a solvent fluid ϕa, i.e., ϕl = ϕf ∪ ϕa.
The partial density of the liquid mixture ρ is given by
ρ = ρa + ρf, in which ρa and ρf represent the partial
density of the solvent and the resident fluid, respec-
tively. The mass-specific concentration c of the solvent
fluid is defined as c := ρa/ρ. For the sake of simplicity,
we assume that the density ρ of the liquid mixture is
a constant. Next, we introduce the barotropic velocity
of the liquid mixture as v = (ρfvf + ρava)/ρ, in which
vf and va represent the velocity of the resident and
the solvent fluid, respectively. Note that this barotropic
velocity can be further related to the filter velocity
or Darcy’s velocity q through q := φ v. The diffusion
velocity da is introduced as da = va − v.

Taking into consideration that the porous skeleton is
rigid, the field equations of the system can be obtained
by evaluating the continuity equation, the momentum
balance of the liquid mixture ϕl, and the mass balance
of the solvent fluid ϕa as

div v = 0, (1)

ρ al − div Tl = p̂l + ρ b, (2)

φ ρ ∂t(c) + div(ja + φ c ρ v) = 0. (3)

In Eq. 2, Tl denotes the Cauchy stress tensor, ρb is the
volume force, and al stands for the acceleration of the
liquid mixture. p̂l represents the momentum exchange
between the liquid mixture ϕl and solid phase ϕs. The
stress tensor of the liquid mixture can be further written
as Tl = −φ p I + Tl

E, with p denoting the fluid pressure
and Tl

E denoting the so-called extra stress of the liquid
mixture. An order-of-magnitude analysis [26, 27] shows
that, for standard conditions of liquid flow in porous
media, the extra stress Tl

E of the liquid mixture is of
higher order, which is not counted here. The momen-
tum exchange p̂l can be expressed as the sum of an
equilibrium part p̂l

eq and a nonequilibrium part p̂l
neq,

i.e., p̂l = p̂l
eq + p̂l

neq, cf. [28]. Usually, the equilibrium
part p̂eq is proportional to the gradient of the porosity φ

and the pore pressure p, i.e., p̂l
eq = p grad φ, while the

nonequilibrium part p̂neq is an isotropic vector-valued
function of the nonequilibrium process variable v. In
the simplest case, it is a linear function of v, i.e., p̂l

neq =
−[(φ2 μl)/ks] v, in which μl and ks are the dynamic
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viscosity of the liquid mixture and the so-called in-
trinsic permeability of the solid skeleton, respectively.
Generally, the dynamic viscosity of the liquid mixture
μl is a function of the concentration c, i.e., μ = μl(c).
Moreover, since the liquid acceleration al is mostly very
small, it is common to neglect this term, i.e., al = 0 in
Eq. 2. Thus, Eq. 2 boils down to Darcy’s equation

q = ks

μl
grad p. (4)

In Eq. 3, the diffusion flux ja can be modeled by Fick’s
law given by ja = −D · grad ρa, in which D denotes
the second-order diffusion tensor. Note that, in the
current work, we do not consider mass exchanges, e.g.,
chemical reactions between the solvent and the resident
fluid. Inserting Fick’s law Eq. 3, and Eq. 4 into the
continuity equation Eq. 1, we obtain the set of field
equations on the spatial domain � ∈ R

2 over the time
I = [t0, T] as

φ ∂t(c) + div(c q − D grad c) = 0, in � × I, (5)

div
[

ks

μl
grad p

]
= 0 ≡ div q, in � × I. (6)

The boundary ∂� consists of nonoverlapping Dirichlet
part �

a/l

D and the Neumann part �
a/l

N of the liquid
mixture ϕl and the solvent fluid ϕa, respectively, i.e.,
∂� = �

l/a

D ∪ �
l/a

N and �
l/a

D ∩ �
l/a

N = ∅. The boundary
conditions are given for the pressure p and for the
concentration c as

p = p̄ on �l
D × I,

c = c̄ on �a
D × I,

q · n = q̄ on �l
N × I,

(c q − D · grad c) · n = cin on �a
N × I, (7)

in which p̄ and c̄ are the pressure and concentration
prescribed on the Dirichlet boundaries. The inflow flux
of the liquid mixture is denoted by q̄ and the concen-
tration of the inflow fluid is cin. n stands for the unit
outward normal vector on the boundary.

The associated initial conditions at t = t0 are given
for the fluid pressure p and the concentration c as

p = p0 at � × t0, and c = c0 at � × t0.

(8)

3 Finite element weak form

In the current work, we investigate a coupled DGST
method for the solution strategy of single-phase flow
problems. The space-time domain Q is constructed by
adding the time axis orthogonal to the spatial domain
�, i.e., Q = � × I. The temporal domain I is dis-
cretized into a sequence of time intervals In = [tn, tn+1),
with tn < tn+1. As a consequence, we introduce the
discrete space-time slab as Qn = � × In, rf. [24]. Let
Eh = {E1, E2, . . . , ENE} be subdivisions of the discrete
spatial domain �h ∈ � consisting of triangles or quadri-
laterals. The edges of each subdivision Ei are denoted
by ∂ Ei (i < NE). The union of all edges in Eh is denoted
by Kh = {e1, e2, . . . , eNK }. The interior edges shared by
two adjacent subdivisions are denoted as �int = {∂ Ei ∩
∂ E j, i �= j}. Furthermore, we denote the unit outward
normal vector on ∂ Ei that coincides with the edge ek

by nk
i and ni stands for the union of all outward normal

vectors on ∂ Ei. Figure 1 shows examplarily one of such
a finite element patches with four quadrilaterals.

Moreover, according to the direction of the flows
over the edges, we can divide the edge Kh into an inflow
part K−

h and an outflow part K+
h ,

K−
h = {x ∈ (ek ∩ ∂ Ei) : (

q̃h(x) · nk
i (x)

)
> 0},

K+
h = Kh \ K−

h . (9)

Analogically, each interior edge ek ∈ �int can be further
divided into an inflow and an outflow part, i.e., ek =
e−

k ∪ e+
k with e−

k ∈ K−
h and e+

k ∈ K+
h .

Note that, due to a discontinuous approximation of
the pressure ph, different values of the filter velocities
qDG

h = (ks/μl) grad ph are evaluated from both sides
of the interior edge. In Eq. 9, q̃h stands for the con-
tinuous projection of the filter velocity qDG

h on edges.
More details concerning the projection approach will
be mentioned later.

Next, we denote the normal vector as nk
j =

∑
d

(nd ed),

(d = 1, 2), in which ed are the basis vectors. The oper-
ator {nk

j } is defined as {nk
j } =

∑
d

(nd ed · ed), (d = 1, 2).

The vector nk
i is considered as positive if {nk

i } > 0. Ac-
cording to the direction of the positive normal vector,
we can uniquely define the jump on this edge. Assume
that ek is the interior edge shared by the two finite
elements Ei and E j, i.e., ek = ∂ Ei ∩ ∂ E j. For {nk

i } > 0,
we define the jump of a function ψ as

[[ψ(x, t) ]]ek = ψ j(x, t) − ψi(x, t), x ∈ ek, {nk
i } > 0,

(10)
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Fig. 1 A finite element patch
of four quadrilaterals
Eh = {E1 ∼ E4} with the
boundaries Kh = {e1 ∼ e12},
among which {e9 ∼ e12} are
interior edges
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where ψl ={ψ(x, t) : x∈(ek∩∂ El)}, (l= i, j). The jumps
may be defined for the concentration and the pressure,
i.e., ψ ∈ {c, p}. Furthermore, the average of a vector 


on the edge ek is defined as

〈
(x, t) · n〉|ek = 1

2

(

i(x, t) · nk

i +
 j(x, t) · nk
i

)
, {nk

i }>0,

(11)

with 
l(x, t) = {
(x, t) : x ∈ (ek ∩ ∂ El)}, (l = i, j). This
operation is required for the flux terms, i.e., 
 = {(D ·
grad c), (ks/μl) grad p}. In addition, according to the
direction of the flow, we define the spatial upwind flux
ψ in on the edge ek as

ψ in(x, t)|ek =
{

ψi(x, t), if (q̃ · nk
i ) > 0,

ψ j(x, t), otherwise.
(12)

According to the above definition, the flux ψ in on the
interior edge ek equals the value on its inflow part e−

k .
In Fig. 2a, we depict examplarily the spatial upwind
flux ψ in on a finite element patch of four quadrilaterals.
We remark that, due to the introduction of the flux
treatment on the boundaries, the Dirichlet boundary
conditions are assigned as inflow flux rather than strict
assignments, i.e., �

l/a

D ∈ K−
h , cf. [29].

Analog to the spatial upwind flux definition, we de-
fine the temporal upwind flux ψ̆n at time tn as, cf. [24, 30]

ψ̆n(x) =
{

ψ0(x), if n = 0
ψ−(x, tn), otherwise,

(13)

with

ψ−(x, tn) = lim
ε→0+

ψ(x, tn − ε), (14)

where ε is an infinitely small positive number. The tem-
poral upwind definition ψ̆n implies that the value of ψ at
the discrete time level tn equals its immediate previous
value ψ−(tn). For n > 0, the immediate previous value
ψ−(tn) results from the previous computation on the
time-slab Qn−1 at time tn, while for the initial step n = 0,
ψ̆0 stands for the initial condition, see Fig. 2b. Obvi-
ously, such a definition fulfills the causality condition
that the information travels “from the past to the fu-
ture”. Moreover, we denote that the algebraic solution
schemes on each time-slab are decoupled, so that ψ̆n

serves as the initial condition for the current time-slab
Qn. Such a sequential solution scheme is favorable as
it avoids a huge algebraic system consisting of the total
number of degrees of freedom (DOFs) on the space-
time domain Q. Nevertheless, adopting larger time step
sizes without degenerating numerical accuracy can be
easily achieved by employing higher-order polynomials
in time. A further discussion of the temporal upwind
flux technique can be found in [24, 30].

Let W be the finite dimensional functional space
consisting of tensor products in space and in time. W
consists of discontinuous piecewise polynomials over
the subdomains E j and the time intervals In. Figure 3
examplarily shows a one-dimensional spatial problem
with four finite elements in space and three time-slabs
in the temporal domain. Herein, linear polynomials in
space and in time are employed. Noting that, since the
flux treatments in space and in time are decoupled, we
construct the finite element weak form by combining
the spatial DG scheme with the DG scheme in time
[24] directly. In the current work, we construct the
spatial discretization of Eq. 6 with the OBB scheme
[31], while Eq. 5 is formulated by the OBB scheme,
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Fig. 2 Upwind fluxes in space and in time. (a) Upwind flux ψ in|ei

in space. (b) Upwind flux ψ̆(tn) in time

the NIPG scheme [9], the SIPG scheme [10, 11], or the
IIPG scheme [12, 13]. We note that these four spatial
formulations are very similar, which can be identified
by a pair of parameters ε and σ (cf. [4]). The resulting

space-time finite element problem can be formulated as
follows:

Find uh =[ch, ph]T ∈W , such that ∀δ uh =[δch, δph]T ∈
W there exists

B(uuh, δuuh) = L(δuuh). (15)

The discrete bilinear form B(uh, δ uh) and the linear
form L(δuuh) are

B(uuh, δuuh)

=
NE∑
j=1

{ ∫
E j×In

{
− φ ch ∂t(δch) + ks

μl
grad ph · grad δph

+ (D grad ch) · grad δch

− ch(qh · grad δch)

}
dv dt

+
∫

(∂ E j\�a
D)×In

(q̃h · n j) cin
h δch da dt

+
∫
E j

φ c−
h,n+1 δch dv

}

+
Pe∑

k=1

⎧⎨
⎩

∫
ek×In

{ 〈
ks

μl
grad δph · n

〉
[[ ph ]]

−
〈

ks

μl
grad ph · n

〉
[[ δph ]]

Fig. 3 Finite element
approximation of a 1-dim
spatial problem with both
linear polynomials in space
and in time of the DGST
formulation
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+ ε 〈(D grad δch) · n〉[[ ch ]]
− 〈(D grad ch) · n〉[[ δch ]]

+σ [[ ch]] [[δch]]
}

da dt

⎫⎬
⎭

+
∑

ek∈�l
D

⎧⎨
⎩

∫
ek×In

{(
ks

μl
grad δph · n

)
ph

−
(

ks

μl
grad ph · n

)
δph

}
da dt

⎫⎬
⎭

+
∑

ek∈�a
D

⎧⎨
⎩

∫
ek×In

{
ε

(
(D grad δch) · n

)
ch

− (
(D grad ch) · n

)
δch+σ ch δch

}
da dt

⎫⎬
⎭ ,

(16)

L(δuh) =
∑

ek∈�l
D

⎧⎨
⎩

∫
ek×In

{(
ks

μl
grad δph · n

)
p̄
}

da dt

⎫⎬
⎭

+
∑

ek∈�l
N

⎧⎨
⎩

∫
ek×In

q̄ δp da dt

⎫⎬
⎭

+
∑

ek∈�a
D

⎧⎨
⎩

∫
ek×In

{
ε

(
(D grad δch) · n

)
c̄

−(q̃h · n) c̄ δch+σ c̄ δch
}
da dt

⎫⎬
⎭

+
∑

ek∈�a
N

⎧⎨
⎩

∫
ek×In

cin δch da dt

⎫⎬
⎭

+
NE∑
j=1

⎧⎪⎨
⎪⎩

∫
E j

φ c̆h,n δch dv

⎫⎪⎬
⎪⎭ . (17)

Herein, Pe denotes the total number of interior edges.
In Eq. 16, the filter velocity qh equals (ks/μl) grad ph,
which introduce the nonlinear coupling into the gov-
erning set of equations. In the current work, the non-
linear set of equations is linearized and solved by a
global Newton–Raphson scheme [32, 33]. The integral∫

E j
(·) dv has to be evaluated at the borders of the time-

slab tn and tn+1. Since the quantity of the upwind flux
c̆h,n is always known on the current time-slab Qn, the
integral

{ ∫
E j

φ c̆h,n δch dv
}

can be evaluated explicitly

in the linear form L(δuh). The parameters ε and σ

designate the various spatial schemes for Eq. 5, in
particular, OBB, ε = 1 and σ = 0; SIPG, ε = −1 and
σ > 0; NIPG, ε = 1 and σ > 0; and IIPG, ε = 0 and
σ > 0. It can be observed that, in the above expressions,
the parameter σ is a purely penalty factor that controls
the quantities of jumps, i.e., [[ch]], on edges. It has also
to be mentioned, according to a proper choice of the
penalty factor σ , that these four approaches lead to
very similar numerical solutions. In the latter context,
without special notification, the system of Eqs. 5 and
6) is solved by the OBB–OBB formulation, i.e. ε = 1,

σ = 0.
Recall that q̃h represents the continuous projection

of the discontinuous filter velocity qDG
h on the edges.

As we now apply discontinuous approximations in
space, different quantities of the filter velocity qDG

h =
(ks/μl) grad ph are evaluated from the adjacent ele-
ments on both sides of the interior edge. Such an in-
consistency raises spurious oscillations that may further
spoil the overall solution [14, 34]. Thus, a conservative
projection resulting in continuous normal components
of the filter velocities q̃h over the element boundaries
is necessary. In the present work, for the sake of sim-
plicity, we apply the H(div) projection [34] for the
computation of q̃h in a postprocessing step. Therefore,
for the computation of the current time-slab Qn (n >

0), q̃ is a result of the projected velocity at t−n . As for the
initial step, i.e., Q0, as there is no previous computation
available, we assume that q̃h = qh and solve the non-
linear set of equations by a global Newton–Raphson
scheme [32, 33].

It is well known that, in the DG formulation for
linear or higher-order polynomials in space, it is usu-
ally necessary to apply a slope-limiting procedure to
avoid over- and undershoot in the neighborhood of
concentration fronts, cf. [4, 35]. In the present work,
by using the DGT formulation in time, c̆h,n serves as
the only input information for the computation of the
current time-slab Qn. Note that this is either a result
c−

h,n obtained from the previous time-slab Qn−1 (n >

1) or the initial condition c0 given at t = t0. Here, we
apply the slope-limiting procedure to c−

h,n (n > 0) in a
postprocessing step. Therefore, only regular quantities
of c̆h,n occur in the input data for the computation on

the current time-slab Qn. We note that, with respect to
the numerical experiments performed in our work, it is
sufficient to apply the slope-limiting procedure to the
concentration ch to ensure the stability of the solution.
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Fig. 4 Boundary conditions
and permeability
distributions (a–c)
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A stabilization procedure to the pressure ph is not
involved. Note that this is different from the most semi-
discrete approaches employing time difference schemes
for simulating dynamic phenomena, which depends on
the chosen finite difference procedure in time, a consis-
tent slope limiting procedure for the primary unknown
and its rate term must be developed, see, e.g., [35]. In
the current work, we apply the quadratic slope limiter
[36] for the limiting procedure of the concentration c−

h,n.

4 Numerical experiments

In the following numerical experiments, we consider a
square domain of the geophysical size 1,600 × 1,600 m2,
which is subjected to a pressure difference on the left
side of pl = 0.1 GPa and on the right side of pr = 0. A
solvent fluid with the concentration cin = 1 is injected
from the left side into the domain, see Fig. 4a. Here, we
apply quadratic spatial polynomials and linear tempo-
ral ones for the approximations of the pressure ph and
the concentration ch.

According to [37], for the two-dimensional case, the
diffusion tensor D(q) depending on the filter velocities
q = [q1, q2]T is given by

D(q) = φ dm I + αl

|q|
(

q2
1 q1 q2

q1 q2 q2
2

)
e1 ⊗ e2

+ αt

|q|
(

q2
1 −q1 q2

−q1 q2 q2
2

)
e1 ⊗ e2 (18)

Table 1 Material parameters

Parameter name Variable Value Unit

Porosity φ 0.1 [ – ]
Molecular diffusion dm 1.16e-9 [ m2/s ]

coefficient
Longitudinal dispersion αl 0.1 [ m ]

coefficient
Transversal dispersion αt 0.01 [ m ]

coefficient
Concentration of injected flow cin 1 [–]

in which dm is the molecular diffusion coefficient. αl

and αt are the longitudinal and transversal dispersion
coefficients, respectively. e1 and e2 are the basis vectors.
The quantities of these parameters are given in Table 1.
The concentration-dependent viscosity μl(c) of the liq-
uid mixture is given by, cf. [3, 5],

μl(c) = μaR

(
c + (1 − c)

[
μfR

μaR

]−0.25
)−4

, (19)

in which μaR and μfR are the viscosities of the solvent
fluid and the resident fluid, respectively. Moreover, the
stability of the flow is characterized by the mobility
factor M, which describes the ratio of the viscosity of
the resident fluid to that of the solvent one, i.e., M =
μfR/μaR. The flow tends to be instable if the mobility
factor is greater than unity, when viscous fingering
effects may occur. For more details concerning the
evolution of viscous fingering effects, we refer to the
review work [38].

4.1 Homogeneous domain

In the first example, we consider a homogeneous do-
main, see Fig. 4a. The intrinsic permeability of the
porous matrix is ks = 10−11 m−2. We first compute
the stable case with the mobility factor M = 1, which
results in a constant viscosity distribution, i.e., μl ≡
10−3 Pa·s. Since the computational domain is homoge-
neous, the pressure distribution is linear and remains
constant throughout the whole process. Thus, the quan-
tity of the filter velocity q can be computed analytically,
i.e., q = 6.25 × 10−4 m/s. Note that the seepage velocity
v equals v = q/φ = 6.25 × 10−3 m/s, which is the true
propagation velocity of the solvent fluid.

As is well known, the sufficient but not necessary
condition for the stability of the numerical scheme is
the Courant–Friedrich–Levy condition. Given the rep-
resentative element size h in space and the time step
size �t, the Courant number Cr can be calculated by

Cr = |v| �t
h

, (20)
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Fig. 5 Concentration profiles
at t = 1.4 × 105 s obtained by
the DGST, DGS, and EUL
approaches with different
spatial and temporal
discretizations.
(a) h0, �t = 12,800 s,
(b) h1, �t = 6,400 s,
(c) h2, �t = 3,200 s,
(d) h3, �t = 1,600 s
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where |v| is the maximum wave speed within an ele-
ment. Generally speaking, the Courant number has to
be smaller than one, i.e., Cr ≤ 1, to ensure numerical
stability. Besides the stability criterion, the choice of
an optimal time step size �t for a given finite element
discretization is an important aspect in a coupled space-
time finite element analysis. It is well known that the
quality of the numerical solution cannot be improved
extensively by simply reducing the size of time steps
while holding the spatial discretization fixed [39]. In the
1-dim case, for a three-node (quadratic) element with
a first-order time-stepping algorithm, the critical time
step is [39]

�t = h√
6 |v| . (21)

According to the problem at hand, quadratic polynomi-
als in space and linear ones in time are chosen for the
concentration ch and the pressure ph. It is easy to derive
that the critical time step corresponds to the Courant
number Cr ≈ 0.4.

Figure 5 shows the concentration front at t = 1.4 ×
105 s obtained by the DGST method, the spatial con-

forming finite element method combined with a back-
ward Euler scheme in time (EUL), and the spatial
discontinuous Galerkin method with the backward
Euler scheme in time (DGS) [5]. The choice of spatial
grids and the corresponding time step sizes are listed in
Table 2. The sizes of the time steps are chosen accord-
ing to Cr = 0.4.

For a qualitative comparison, a reference solution is
generated by the EUL with an overkill discretization.
In Fig. 5, we observe that, with respect to all four grids
h0, . . . , h3, under the same spatial and temporal dis-
cretization, the DGST method leads to the best solution
in that the steep concentration front is much better re-
solved than the other approaches, i.e., the EUL and the
DGS approaches. Moreover, inconsistent quantities,
i.e., jumps, are observed in the solutions of the DGST
approach obtained on relative coarse discretizations h0

and h1. However, it has to be mentioned, herein these
jumps do not spoil the numerical results but contribute
to the accuracy of the overall solutions. The quantity
of the jump ([[ ch ]]) decreases in the numerical solutions
of the finer discretizations h2 and h3. Note in passing
that the jumps that occur in the solution of DG ap-
proaches reflect the quality of the discretizations, which

Table 2 Choice of time step
sizes �t of various grids
h0, . . . , h3 on homoge-
neous/inhomogeneous
domains

�t [ s ] h0 h1 h2 h3

Homogeneous domain M = 1 12,800 6,400 3,200 1,600
Inhomogeneous domain M = 1 – 3,200 1,600 800
Inhomogeneous domain M = 5 – 1,600 800 400
Number of elements 8 × 8 16 × 16 32 × 32 64 × 64
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can be used as a simple but reliable error indicator for
adaptive strategies, cf. [30].

In Fig. 5, we also observe that there is no signifi-
cant difference between the quantity of the numerical
results obtained by the EUL and the DGS method.
However, the spatial DG method is well known for cap-
turing sharp gradients that contribute to the accuracy
of the overall numerical solution scheme, cf. [5, 6, 25].
According to the knowledge of the authors, so far,
the spatial DG formulation is always implemented by
means of semidiscrete numerical techniques, such that
discontinuous approximations in space is applied to
produce an ODE system, which is in turn solved by the
backward Euler scheme, i.e., DGS scheme, cf. [5, 40].
However, according to our numerical experiments, we
conclude that a DG approximation in space alone does
not always ensure more accurate solutions, see Fig. 5. In
these cases, the error introduced by the time-stepping
approach, i.e., the backward Euler scheme, is dominant.
Thus, an advanced spatial DG formulation cannot ben-
efit the overall accuracy of the numerical solution. Nev-
ertheless, we remark that, due to the employment of
the discontinuous approximations in space, the number
of DOFs for the solution scheme of the DGS scheme
is almost four times larger than that of the spatially
conforming FE method (EUL).

Next, we compute the same problem on the coarse
discretization h0 with the EUL and the DGS method
with a much smaller time step, i.e., �t = 320 s. For
comparison, the numerical solution obtained by the
DGST scheme on the same spatial mesh h0 with the
time step �t = 12,800 s is depicted in the same figure,
see Fig. 6. Herein, due to the much refined temporal
discretization, slight differences in the solutions of the
EUL and the DGS are observed. The concentration ch

obtained by the EUL is continuous, while jumps are
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Fig. 6 Concentration profiles at t = 1.4 × 105 s obtained by
DGST, DGS and EUL approaches with the same spatial dis-
cretization but different �t

observed in the solution of the DGS method near the
concentration front. In spite of this slight difference, no
significant improvement other than that of the DGST
method with a much larger time step is obtained. Fur-
ther refinements in the time step size have also been
tested, but they produce no significant improvements.
We conclude that, in this case, the error introduced
by the spatial discretization is dominant, such that a
further decrease of the time step does not contribute to
the quality of the solution. We denote that, in achieving
those comparable solutions, the size of the time step of
the DGST method is 40 times larger than those used in
the DGS and the EUL approaches.

4.2 Inhomogeneous domain

Next, we consider the flow propagation in an inhomo-
geneous domain as depicted in Fig. 4b. The patches
with dark gray color represent the less permeable ma-
terial with the intrinsic permeability ks = 10−14 m−2,
which is 1,000 times smaller than those in the rest of the
domain (ks = 10−11 m−2). Since it is natural to choose
a mesh whose grids are smaller than the obstacles, we
perform the computations on the meshes h1, . . . , h3.

We first consider the stable case (M = 1) with a
constant viscosity μl = 10−3 Pa·s. Due to the inho-
mogeneity within the computational domain, the filter
velocity qh cannot be determined directly. However,
the distribution of the fluid pressure ph(x, t) is constant
over time. It is easy to observe that the highest pressure

Fig. 7 Filter velocity distribution q̃h of the inhomogeneous do-
main with the mobility ratio M = 1
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gradient occurs between the two parallel patches with
the distance only half of the length of the complete
computational domain. Hence, we can derive that the
highest filter velocity qh in this case is approximately
twice as large as in the previous example. To ensure the
stability condition, the time steps are chosen as one half
of those used in the previous example, see Table 2.

Figure 7 shows the H(div) projection of the filter
velocity q̃h obtained on the mesh h1. We observe that
there are no spurious sinks or source terms occurring
in the computational domain. The necessity and quality
of this H(div) projection were discussed extensively in
[34]. Moreover, as the distribution of the pressure field
ph(x, t) is relatively smooth, no significant improve-

Fig. 8 Concentration ch at
various time levels
t = 1.5, 3.0, 4.5, 6.0 × 105 s
in the inhomogeneous
domain with the mobility
factor M = 1
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ments in the distribution of the filter velocities q̃h are
observed in the solutions of finer grids, i.e., h2 and h3.

Figure 8 shows the concentration profiles at different
time levels, i.e., t = 1.5, 3.0, 4.5, 6.0 × 105 s. Herein,
we observe that the injected fluid circumvents the less
permeable patches. Steep concentration fronts around
these patches are well resolved, even on the coarse dis-
cretization h1. The slope limiting procedure is applied
to the concentration field c−

h,n (n > 0) in a postprocess-
ing step on each time-slab Qn, i.e., c̆h,n = S(c−

h,n), where
S denotes the function of the slope-limiting procedure.
Despite slight over- and undershoots around the less
permeable patches, the numerical solutions are stable
and reflect the propagation phenomena of the flow. It
is necessary to mention that all three meshes, i.e., h1,
h2, and h3, produce qualitatively similar solutions. Of
course, more accurate numerical solutions are obtained
by a finer discretization. Moreover, as the mobility

factor equals one, no fingering effects occur in the
computational domain.

Next, we consider a physically more sophisticated
case with a small mobility factor M = 5, i.e., μfR =
10−3 Pa·s and μaR = 2 × 10−4 Pa·s. Thus, the viscos-
ity μl is no longer a constant but decreases with the
increase of the concentration level, cf. Eq. 19. The
viscosity μl is computed by

μl(x) =
{

μl(c0(x)) if n = 0,

μl(S(c−
h,n(x))), otherwise.

x ∈ � (22)

Since the viscosity μl varies with the concentration
field, the pressure distribution evolves over time. How-
ever, we denote that, due to the small mobility factor
M = 5, the filter velocity qh(x, t) grows slowly as the
concentration level increases. In order to account for
the increase of the filter velocity, even smaller time
steps are employed, see Table 2.

Fig. 9 Concentration ch at
various time levels
t = 1.0, 2.0, 3.0 × 105 s in the
inhomogeneous domain with
the mobility factor M = 5

t
=

1.
0

×
10

5
[s

]
t

=
2.

0
×

10
5

[s
]

t
=

3.
0

×
10

5
[s

]

h1: Δ t = 1600 [s] h2: Δ t = 800 [s] h3: Δ t = 400 [s]

1.2– 0.1



536 Comput Geosci (2008) 12:525–539

Fig. 10 Nonconforming
meshes with different mesh
densities

g0 g1 g2

Figure 9 shows the simulation results obtained at
different time levels. Since the liquid viscosity μl de-
creases as the concentration level increases, the propa-
gation of the solvent is much faster than in the previous
tests, such that the solvent fluid takes almost one half
of the time as in the stable case to reach the right
side of the computational domain, cf. Fig. 8 and Fig. 9.
Since, in the current experiment, the mobility factor is
larger than one, the propagation of the flow tends to
be instable. However, in the results obtained by the
coarse discretizations of h1 and h2, such effects are not
significant. In the solution of the finest discretization
h3, we observe that the solvent fluid tends to penetrate
through the more viscous resident fluid, leaving out
vacancy around the less permeable patches with very
low concentration.

5 Heterogeneous domain

In the last example, we consider a heterogeneous do-
main with randomly distributed permeabilities ks in
the range of [10−11–10−14] m2, see Fig. 4c. The bound-
ary and initial conditions are the same as before. We
compute the problem on three nonconforming grids
g0, . . . , g2 with different mesh densities, see Fig. 10.
Since a direct determinant of the filter velocity is not
possible, the time step sizes are chosen empirically, such
that the stability of the overall solution is ensured. More

Table 3 Computational effort of nonconforming meshes

Mesh
g0 g1 g2

Number of elements 332 1,260 7,704
Number of DOFs/step 10,624 40,320 246,528
�t [s] 200 100 50

details with respect to the qualities and the computa-
tional efforts of the different grids (g0, . . . , g2) are given
in Table 3.

We start with the computation of the stable case
with the mobility factor M = 1, i.e., the liquid viscosity
equals μl = 10−3 Pa·s. Here, by choosing different pairs
of parameters σ and ε, we perform the computation
with different spatial DG formulations, i.e., NIPG,
SIPG, and IIPG, rf. Eqs. 16 and 17. It is well known
that the choice of the penalty parameter σ is essential
for the accuracy of the solution. For the problem at
hand, it is known that the penalty factor must not be
“sufficiently large”, rf. [14], so that we set σ = 1/h,
whereas h is the representative element size in space.
In Fig. 11, we depicted the concentration state at t =
1.8 × 105 s obtained by the four different spatial DG
formulations. We observed, with this proper choice of
the σ factor, the penalty methods, i.e., SIPG, NIPG,
and IIPG, produce very similar solutions to those of
the OBB methods. In this sense, we conclude that these
penalty methods are as good as the OBB formulations
in modeling the propagation flow through the porous
materials.

Next, we compute the same problem with a mo-
bility factor M = 10, i.e., μfR = 10−3 Pa·s and μaR =
10−4 Pa·s. Figure 12 shows the concentration states
obtained on meshes g2 by OBB–OBB formulation at
different time levels t = 0.6, 1.2, 1.8 × 105 s. It is obvi-
ous to observe that fingers grow in the computational
domain. Moreover, due to the occurrence of fingers,
within the same period of time (t = 1.8 × 105 s), the
solvent fluid almost has a finger through the whole com-
putational domain when, in the stable case, the solvent
fluid has penetrated only one third of the domain, cf.
Figs. 12 and 11. Moreover, there are local over- and un-
dershoots near the steep concentration fronts. However
the overall solution is stable and no degeneration of the
numerical solution through local oscillations, i.e., over-
and undershoots, is observed.
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Fig. 11 Concentration ch at
t = 1.8 × 105 s in the
heterogeneous domain
computed by various
formulations with the
mobility factor M = 1
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6 Conclusions

We present an efficient coupled DGST method to
model transport phenomena in porous media. Dis-
continuous approximations in space and in time are
applied. Due to the employment of discontinuous ap-

proximations in the spatial and the temporal domains,
with the same spatial and temporal discretization, the
total number of DOFs of the DGST method is much
larger than that of the conventional approaches. How-
ever, the extra costs of the computational effort can be
well compensated by using larger discretization both
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Fig. 12 Concentration ch at various time levels t = 0.6, 1.2, 1.8 ×
105 s in the heterogeneous domain computed by OBB formula-
tion with the mobility factor M = 10 on g2 mesh

in space and in time. The proposed new space-time
coupled formulation is able to capture steep gradients
in the solution very well and is suitable for model-
ing more complex phenomena, i.e., viscous fingering
effects. Moreover, various formulations of spatial DG
methods have been tested. According to a proper
choice of the penalty factor, all these approaches pro-
duce very similar solutions.
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