
Comput Geosci (2009) 13:235–244
DOI 10.1007/s10596-008-9087-9

ORIGINAL PAPER

An iterative ensemble Kalman filter for reservoir
engineering applications

M. V. Krymskaya · R. G. Hanea · M. Verlaan

Received: 29 November 2007 / Accepted: 14 April 2008 / Published online: 14 June 2008
© The Author(s) 2008

Abstract The study has been focused on examining
the usage and the applicability of ensemble Kalman
filtering techniques to the history matching procedures.
The ensemble Kalman filter (EnKF) is often applied
nowadays to solving such a problem. Meanwhile, tradi-
tional EnKF requires assumption of the distribution’s
normality. Besides, it is based on the linear update of
the analysis equations. These facts may cause prob-
lems when filter is used in reservoir applications and
result in sampling error. The situation becomes more
problematic if the a priori information on the reservoir
structure is poor and initial guess about the, e.g., per-
meability field is far from the actual one. The above
circumstance explains a reason to perform some further
research concerned with analyzing specific modification
of the EnKF-based approach, namely, the iterative
EnKF (IEnKF) scheme, which allows restarting the
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procedure with a new initial guess that is closer to the
actual solution and, hence, requires less improvement
by the algorithm while providing better estimation of
the parameters. The paper presents some examples
for which the IEnKF algorithm works better than tra-
ditional EnKF. The algorithms are compared while
estimating the permeability field in relation to the two-
phase, two-dimensional fluid flow model.
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1 Introduction

The mathematical modeling approach to the analysis of
reservoir performance has gained popularity through-
out the years. However, the model can be used to
forecast reservoir behavior only if it has been cali-
brated beforehand. The calibration stage, called “his-
tory matching” in the reservoir engineering context,
aims at adjusting the parameters of the reservoir simu-
lation model in such a way that the computed values of
observable variables at individual wells are consistent
with available measurements of those quantities. As the
models become more complicated and larger scaled,
there increases a need of automatic history matching
techniques.

The main problem that has to be solved via auto-
matic history matching is searching for the combina-
tion of reservoir parameters for which an error function
(objective function) attains its minimum. This func-
tion represents a sum of squared differences between
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the observed reservoir performance and the results of
simulation during the historical period [2]:

fE =
npar∑

i=1

[
wi (xio − xis)

2
]
, (1)

where fE denotes error function, npar is the number
of reservoir parameters, wi is the weighting coefficient,
and xio and xis correspondingly refer to observed and
simulated data that have to be matched. History match-
ing is usually an ill-posed problem since there are more
unknowns than constraints to resolve all the unde-
termined quantities. Then, the Gauss–Newton method
applied to minimize cost function fails because the
Hessian is ill-conditioned. Such a problem can be over-
come by applying some regularization strategy (e.g., by
use of the prior geostatistical model [8]).

There are several approaches to automatic history
matching, which differ in the way they obtain the set
of parameter values minimizing an objective function.
The choice of minimization technique is mainly based
on whether the error function has linear or nonlinear
form.

However, most of these traditional history matching
approaches are either limited to the small-scaled and
simple reservoir models or inefficient in terms of com-
putational costs. In general, these methods also per-
form the treatment of uncertainty via repeated history
matching processes for various initial models, which re-
sults in even greater computational efforts. Moreover,
traditional history matching does not allow continu-
ous model updating. Namely, as the new data become
available for being included into the match, the whole
history matching process has to be repeated using all
observed data. At the same time, the amount of de-
ployed sensors for permanent monitoring of pressure,
temperature or flow rates increases. This fact yields the
increase of data output frequency and lightens up a
problem of incorporating obtained data in the model as
soon as it become available so that the model is always
up-to-date.

The Kalman filtering techniques are known as the
most popular methodology for assimilating the new
measurements to continuously update the state of the
system. Originally, the Kalman filter was developed
for operating on the linear models, while nonlinearity
requires using some further modifications, e.g., the
extended Kalman filter. However, when the model is
highly nonlinear or the scale of the space vector is too
large, application of the extended Kalman filter also
meets difficulties. These difficulties are overcome by
applying the ensemble Kalman filtering (EnKF) algo-
rithm based on the Monte-Carlo approach.

The great majority of the problems in reservoir en-
gineering are highly nonlinear and characterized by a
large number of variables; thus, the idea to use EnKF in
reservoir simulation seems to be natural. In particular,
it is presented in the publications [5, 10]. Other papers
[4, 7] report the results of using the EnKF approach in
history matching processes. They consider the applica-
tion of EnKF to a PUNQ-S3 model. Although these
studies clearly show that EnKF is successful in assim-
ilating production data to update the initial reservoir
model and its application allows reducing computa-
tional costs for history matching, there is still enough
space for further investigation and improvement.

Specifically, the research described in [11] has shown
that, for some nonlinear models, the EnKF does not
provide completely acceptable characterizations of the
uncertainties. The situation becomes more problematic
if the a priori information on the reservoir structure
is poor and the initial guess about the system state is
far from the actual one. This leads to the idea of using
improved EnKF modifications, namely, iterative EnKF
(IEnKF) schemes, which allow improving the initial
ensemble used for simulation and, hence, the resulting
estimated state vector.

In this paper, we apply an iterative algorithm based
on a sequential data assimilation scheme to estimating
the permeability field in reservoir models. This algo-
rithm is inspired by investigations of A.H. Jazwinski
on an iterative extended Kalman filtering approach
[6]. The implementation and the improvement of this
method against the classical EnKF are presented with
a 2D reservoir simulation oriented towards estimating
the permeability field.

2 The ensemble Kalman filter

Kalman filtering is a powerful technique designed
for solving data assimilation problems. This section
presents the general idea of Kalman filtering in a man-
ner similar to [9] and of ensemble Kalman filtering as
given in [3]. Let us restrict ourselves to the case of the
following linear system:

xk+1 = Fkxk + Bkuk + Gkwk, (2)

zk = Mkxk + vk, (3)

where Fk, Bk, Gk, Mk are matrices, k is the time index,
xk denotes the state of the system, uk is the system
input, zk is the vector of measurements, wk is Gaussian
white system noise process with zero mean and covari-
ance matrix Qk, and vk is Gaussian white measurement
noise process with zero mean and covariance matrix
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Rk. The initial state x0 is assumed to be Gaussian with
mean x0 and covariance matrix P0. Moreover, processes
x0, wk, and vk are assumed to be independent from
each other.

Vector xk, which contains information on the current
system state, cannot be directly observed. However, it
is possible to measure zk, which is some function of
xk affected by noise process vk. The idea is to use the
available measurements zk for estimating the state of
the system xk.

To solve the filtering problem, Eqs. 2 and 3, we have
to determine the probability density of the state xk

conditioned on the history of available measurements
z1, . . . , zl. It turns out that this conditional density
function is Gaussian; hence, it can be characterized by
means of a covariance matrix. However, for nonlinear
model operator Fk (which is precisely the case of reser-
voir engineering applications), such conditional density
function can be represented by the first two moments
only approximately.

The EnKF has been examined and applied in a
number of studies since it was first introduced by Geir
Evensen in 1994. This filtering approach is relatively
easy to implement and has affordable computational
costs. The EnKF is based on a representation of the
probability density of the state estimate at time k by
a finite number N of randomly generated system states
xk,i, i = 1, . . . , N. Equations to obtain the mean xk and
covariance matrix Pk of probability density of state xk

at time k conditioned on the history of the measure-
ments z1, . . . , zl via EnKF algorithm can be formulated
as follows [3] (where superscripts p and u stand for
predicted and updated system states):

• Initialization step:

xu
0,i ∼ N (x0, P0), i = 1, . . . , N. (4)

• Forward step:

xp
k,i = Fkxu

k−1,i + Bkuk + Gkwk,i,

i = 1, . . . , N, (5)

xp
k = 1

N

N∑

i=1

xp
k,i, (6)

Lp
k = [

xp
k,1 − xp

k , . . . , xp
k,N − xp

k

]T
, (7)

where Lp
k defines an approximation of the covari-

ance matrix Pp
k with rank N:

Pp
k = 1

N − 1
Lp

k LpT
k . (8)

• Assimilation step:

Kk = Lp
k LpT

k MT
k x ∗ (

MkLp
k LpT

k MT
k + (N−1)Rk

)−1
,

(9)

where Kk is the so-called “Kalman gain” matrix
determining the weights with which the measure-
ments have to be incorporated into the model
update outcome,

xu
k,i = xp

k,i + Kk
(
zk − Mkxp

k,i + vk,i
)
,

i = 1, . . . , N, (10)

xk = 1

N

N∑

i=1

xu
k,i. (11)

Note that Eq. 10 involves generating additional noise
vk,i while constructing the measurement set corre-
sponding to the ensemble. This noise vk,i has the same
statistics as assumed for the observation errors. The
perturbed measurements are necessary due to the fact
that the absence of perturbation leads to the updated
ensemble, which has too low variance and causes the
divergence of the algorithm [1].

Actually, the forward model integration step within
reservoir engineering framework can be performed by
making a forward run of the reservoir simulator

xp
k,i = F

(
xu

k−1,i

)
, (12)

which can be developed separately and used as a black
box in EnKF analysis.

It turns out that parameter estimation via EnKF is
also possible. This can be done by constructing the
following state vector:

x =
[

m
y

]
,

where y consists of dynamic variables changing with
time and m is a vector of static model parameters, which
are constant in time and have to be estimated.

Now, the Kalman filter analysis is performed on the
augmented state vector. The forward step of the algo-
rithm results in updating only the dynamic variables
with time and conserving the values of static parame-
ters. However, at the assimilation step, the variables
of both types are simultaneously updated, providing
corrected estimations of the state vector and, hence,
model parameters.

The model describing multiphase fluid flow in reser-
voir is highly nonlinear and the number of variables
included into state space vector is very large, normally
at least two per grid block. Although EnKF performs
fairly good for this kind of problem, it sometimes fails
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to provide appropriate characterization of uncertainty.
An example is given in [11] in relation to the case when
the conditional pdf for the reservoir model is multi-
modal. Such a phenomenon results from the fact that
model nonlinearity destroys the normality of a prior
and a posterior distributions within Kalman filtering
analysis.

Moreover, the task of obtaining accurate estimation
of the state vector becomes harder if the a priori in-
formation about the reservoir structure is poor and the
initial guess about, e.g., permeability field is far from
actual one. The Kalman filter techniques are designed
in such a way that initial conditions tend to be forgotten
by the filter algorithm as more data are assimilated [9].
However, it is important for reservoir engineering cases
that reasonable estimations of the model parameters
are obtained based on the data collected before the wa-
ter breakthrough events. In turn, these data may not be
enough to improve a poor initial guess about the field
structure. In such a situation, for some applications, the
idea of iterating filter globally can be of help since it
allows restarting the procedure with a new initial guess
that is closer to the actual solution and, hence, requires
less improvement by the algorithm.

We are going to consider the history matching via
EnKF algorithm as the starting point for further in-
vestigations. We continue with some introduction into
alternative EnKF techniques.

3 Iterative Kalman filtering

The current section presents the ideas of Kalman fil-
tering algorithms that, in our opinion, can be alterna-
tively applied to solving the history matching problem.
Iterative forms of the Kalman filter are not completely
new within the scope of reservoir engineering applica-
tions. These methods aim at obtaining any ensemble
that provides improving the representation of the state
distribution. There exist several approaches in petro-
leum engineering literature, e.g., the ad-hoc confirming
EnKF method proposed by [10].

We would like to exploit the idea of Jazwinski to
iterate the filter globally [6]. Although it was originally
suggested to iterate the extended Kalman filter, we
modify the approach for the case of parameter estima-
tion via EnKF technique.

The algorithm looks as follows. Incorporating all
available data via EnKF starting with x0 and P0, we
obtain the estimated values of xtend and Ptend , where
tend denotes the end time point of data assimilation
period. If the number of available measurements is suf-
ficiently large, we can expect that the estimated model

parameter value mtend is closer to the “true” one than
initial m0. The estimated model parameter mtend now
replaces m0 and becomes a new initial guess for the
next global iteration, which is done by rerunning the
EnKF based on the same bunch of observations. Af-
terwards, this procedure can be repeated until no suffi-
cient change in estimated model parameter is obtained.
Note that, when rerunning the filter, we change only
the mean estimator of initial guess about the model
parameter and not the statistics y0 and P0. This yields
that, in the case of Gaussian initial ensemble, the new
initial distribution can be generated by resampling with
updated mean

[
mtend, y0

]T and the same initial covari-
ance P0. The flowchart of such an IEnKF is presented
in Fig. 1, where the dashed blocks correspond to the
steps that actually are the parts of the EnKF algorithm.

Although the more educated choice of initial guess
naturally should result in better estimation, there is no
guarantee that iteration will converge. Thus, the plan
is to investigate the features of the above IEnKF tech-
nique and to check whether it indeed allows improving
the state vector estimations. The next section outlines
the settings of the experiment used to test EnKF and
IEnKF performances.

Fig. 1 IEnKF algorithm
flowchart

0 0

0

0 0
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4 Experimental environment

The study is accomplished on the basis of a two-
dimensional, two-phase fluid flow model. The model
implementation is provided by the forward reservoir
simulator used as a black box to perform the time
update in filtering algorithm.

The model is applied to a two-dimensional squared
petroleum reservoir with a size of 700 × 700 m
equipped with uniform cartesian grid consisting of 21
grid cells in each direction. The reservoir is taken to be
2 m in height; however, we assume that all quantities
are vertically homogeneous, which allows considering
fluid flow processes only in two dimensions.

We consider the water flooding stage of the recovery
process, which is performed through the exploitation of
the injection well located at the center of the reservoir
and four production wells established at the corners
of the field. The injection well is constrained by a
prescribed injection rate of 0.002 m3/s and production
wells—by bottom hole pressure of 2.5 × 107 Pa.

4.1 State space representation

In the case of reservoir engineering applications, the
state vector normally consists of vectors of pressures (p)
and saturations (s) corresponding to each grid block.
To perform parameter estimation, we have to include
the parameter of interest into the space vector. The
study is focused on estimating the permeability field.
It turns out that the natural logarithm of permeability
is normally distributed, hence, we would like to aug-
ment the state vector by the vector of log-permeability
(log k) corresponding to each grid cell. Moreover, while
operating on a field, one can measure the following
parameters at the wells: bottom hole pressures (pwell),
oil (qwell,o), and water (qwell,w) flow rates. We can also
include into available measurements the pressure and
saturation quantities at the wells. Finally, the mega
state space vector takes the following form:

x =

⎡

⎢⎢⎢⎢⎢⎢⎣

log k
p
s

pwell

qwell,o

qwell,w

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The model parameter is considered as static, i.e., time-
invariant. Meanwhile, the value of the static parameter
is corrected within the data assimilation step.

Note that the state vector consists of 441 permeabil-
ity values, 441 pressure values, 441 water saturation

values, 1 observed bottom hole pressure at the injection
well, 4 observed oil flow rates, and 4 observed water
flow rates at the production wells, or simply, x ∈ R1332.

The relation Eq. 3 between the model variables and
the measurements for our example is assumed to be
given through trivial measurement matrix M ∈ R19×1332

with only zeros and ones as its elements, arranged in the
block form:

M =
⎡

⎣
0 M1 0 0
0 0 M1 0
0 0 0 M2

⎤

⎦

with blocks M1 ∈ R5×441 and M2 ∈ R9×9 of the follow-
ing form:

• Elements of matrix M1 corresponding to the ob-
servations at the well grid blocks [i.e., elements
indexed as (1, 1), (2, 21), (3, 221), (4, 421), and
(5, 421) are set to one, the rest of the matrix if filled
in with zeros].

• M2 is, in fact, an identity matrix.

Let us note that, although the measurement operator
has a linear form, the actual relation between the model
state vector and observable variables is nonlinear. The
derived notation only shifts the source of nonlinearity
and does not vanish its effects.

We consider the model Eq. 12 as being perfect,
which might seem to be not very realistic. However,
such an assumption specifies better environment for
investigating a particular IEnKF method. We expect
that, in the case when the ensemble spread is not in-
fluenced by model noise, the iterative techniques have
to demonstrate their specific features. On the contrary,
the values of observable variables are assumed to be
imprecise. To initialize the filter, one needs generating
initial ensembles of only static and dynamic variables
because there is no production data available at the
starting time.

Since the reservoir is typically in a state of equi-
librium at the time when production starts, the initial
dynamic variables (i.e., initial pressures and water satu-
rations corresponding to each grid block) are assumed
to be perfectly known (without uncertainty). Therefore,
they are the same for each ensemble member and equal
to the initial condition of the “true” model (i.e., p =
3 ∗ 107 Pa and Sw = 0.2).

Thus, at the initial moment, the only permutations
contained in the initial ensemble are caused by initial
ensemble of permeability models. Within the study,
we are going to use the initial permeability ensemble
consisting of 999 members. The ensemble mean and
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Mean of permeability fields ensemble (log(m2))
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Fig. 2 Mean (a) and variance (b) of permeability fields ensemble

variance are visualized in Fig. 2, where the top picture
corresponds to the ensemble mean and the bottom
image to the variance, respectively.

4.2 Synthetic measurements generation

To test the performance of EnKF algorithms, we are
going to do a so-called twin experiment. It requires
that the “true” values of observable variables are gen-
erated synthetically by a preliminary run of the model
itself and the noisy observations are then created by
permutating the true values with the measurement er-
ror noise. This procedure ensures that the model is
indeed able to match the data. Thereafter, the synthetic
data are used in the assimilation experiments. The

implementation of our in-house simulator provides the
“true” permeability field (see Fig. 3), which originates
from the training image of meandering channels.

Now it is possible to generate synthetic data initial-
izing the simulator with true permeability field, grid
block pressures p = 3 ∗ 107 Pa, and water saturations
Sw = 0.2. The error in each observable variable is taken
to be 5% of its actual scale. The same covariance matrix
is then used to represent the measurements noise within
data assimilation analysis.

4.3 Measures of filter performance

We quantify the quality of estimating a true permeabil-
ity field in terms of the following space averaged root
mean square (RMS) errors at time k:

RMS
(
(log k)k

) =
√

‖(log k)k − (log k)true‖2
2

dim(log k)
, (13)

or

RMS
(
(log k)k,i

) =
√

‖(log k)k,i − (log k)true‖2
2

dim(log k)
, (14)

where dim(log k) states for the size of vector of esti-
mated parameters (i.e., dim(log k) = 441 in our study),
(log k)k is the estimated vector of log-permeability af-
ter the kth assimilation step, vector (log k)k,i denotes
the ith updated ensemble member after the kth assim-
ilation step, and vector (log k)true represents the true
permeability field.

True permeability field (log(m2))
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5 Results and discussion

A sequence of simulations has been accomplished to
test the performance of EnKF and IEnKF assimilation
algorithms in the framework of estimating the model
parameters for a two-phase two-dimensional fluid flow
model. We proceed by describing particular instances
and discussing the obtained results.

The study of each particular algorithm includes solv-
ing the history matching problem and obtaining the
estimate of model static parameter (i.e., permeability).
The filter analysis is done from time t0 = 0 days till
tend = 510 days, which ensures that the water break-
through event occurs in none of the production wells.

The use of classical EnKF in reservoir engineering
framework meets an important obstacle concerned with
obtaining physically unreasonable values of the state
variables. It originates from performing data assimila-
tion on the state vector without any constraint coming
from the physical nature of the parameters. Hence,
the updated dynamic variables may become unfeasible
and inconsistent with estimated static variables. The
authors of [10] proposed to include one additional so-
called “confirming” step into the EnKF algorithm in
order to ensure that the updated state is physically plau-
sible. The idea of the confirmation step is the following:
Starting at time moment k − 1, we, at first, perform a
forward simulator run up to time k and then a data
assimilation step. Then, we take only recently updated
static model parameters and run again the flow simu-
lator from current time k to the next time moment k.
The dynamic variables obtained replace those got after
the measurement update stage of EnKF and become
an initial guess for the next time update step. This
procedure avoids nonphysical results of the modeling.

The inclusion of the confirmation step into the al-
gorithm results in almost doubling the computational
time due to additional forward model run per ensemble
member at each time step. In fact, we use the con-
firming EnKF technique instead of classical ensemble
Kalman filtering for our investigations. So, from now
on, we mean confirming EnKF technique under the
abbreviation of EnKF.

5.1 History matching via EnKF

It turns out that EnKF faces an important practical
problem, namely, standard deviation of the errors in the
state estimate converges very slowly with the number
of ensembles. This makes the EnKF quite sensitive to
the number of ensemble members used for simulation.
Thus, it seems reasonable to start by investigating how
filter performance depends on a number of ensemble
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Fig. 4 EnKF: RMS error in estimated permeability vs time

members and find some optimum ensemble size. Pre-
liminary analysis shows that, in our case, perform-
ing further EnKF runs on N = 60 ensemble members
seems to be optimal. Since iterative modification of
EnKF actually has the same origin, we find it appro-
priate to use the same ensemble size as being optimal
also for IEnKF runs.

Let us now present the outcome of the data assimi-
lation procedure accomplished via the EnKF algorithm
with respect to the optimal number of ensemble mem-
bers. We consider the quality of estimating the model
parameter. For that purpose, space-averaged RMS er-
rors Eqs. 13 and 14 are plotted in time (see Fig. 4).
These quantities are related to the part of ensemble
mean and ensemble members’ values corresponding to
evaluated permeability. The graph demonstrates im-
provement of the parameter estimation in the first few
data assimilation steps followed by stabilization of the
error, and reduction of the uncertainty for estimated
value (since the ensemble spread becomes narrower).
This means that, at the later times, assimilated data
carry less useful information on reservoir structure than
at the early times. Indeed, we obtain a permeability
field resembling the true one, although some underes-
timation of the values in the upper right and overesti-
mation of the values in the bottom left corner area of
the field occur (compare Fig. 3 and left bottom chart
on Fig. 5). The variance field is actually obtained as
the diagonal terms of covariance matrix computed from
the statistical properties of the ensemble. The differ-
ence between the top right and the bottom right sub-
plots in Fig. 5 indicates reduction of the variance and,
therefore, uncertainty in the estimation.
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Mean of initial ensemble (log(m2))

 

 

5 10 15 20

5

10

15

20
−32

−31

−30

−29

−28
Variance of initial ensemble ((log(m2))2)

 

 

5 10 15 20

5

10

15

20
0

0.2

0.4

0.6

0.8

1

Variance of estimated ensemble ((log(m2))2)

 

 

5 10 15 20

5

10

15

20
0

0.2

0.4

0.6

0.8

1

Estimated permeability field (log(m2))

 

 

5 10 15 20

5

10

15

20
−32

−31

−30

−29

−28

Fig. 5 EnKF: Initial and estimated permeability fields and corre-
sponding variances

Although history matching on the basis of EnKF
technique has demonstrated its efficiency for proper
estimating model parameters, there is still space for
improvement. We may aim at obtaining better repre-
sentation of reservoir heterogeneous structures, which
in turn will result in increasing the quality of forecasts.

5.2 History matching via IEnKF

We proceed by running the IEnKF algorithm for the
trial example. In fact, we accomplish the second global
iteration of the EnKF method. Space averaged RMS
errors Eqs. 13 and 14 are plotted in time (see Fig. 6) to
evaluate the quality of estimating the model parame-
ter. The graph demonstrates improvement for neither
parameter estimation nor uncertainty characterization,
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Fig. 6 IEnKF: RMS error in estimated permeability vs time

which can be expected since the first EnKF iteration
does not provide reducing the parameter estimation
error in later times and actually gives us a relatively
accurate estimate. Indeed, there is almost no visual
difference between permeability fields obtained with
EnKF and IEnKF algorithms (compare Figs. 5 and 7).

Consider now a situation when a priori informa-
tion on the values of model parameters is far from
real. For that purpose, we take the initial ensem-
ble of log-permeability fields and shift each member
of it by adding the vector 0.5 ∗ Ishift, where shifting
vector Ishift consists of ones and Ishift ∈ R1×441. Note
that such a shift does not affect the variance statis-
tics, hence, the structure of the initial ensemble is
kept. The data assimilation is performed from time
t0 = 0 days up to time moment tend = 510 days, and
the covariance of measurement error is scaled by the
factor of 102 to prevent filter divergence. Such para-
meters for data assimilation allow some reducing the
error in estimation of permeability values performed
via IEnKF (see RMS errors Eqs. 13 and 14 plotted
in time on Fig. 8). Indeed, we obtain a permeability
field with a structure resembling the true one, al-
though some overestimation of the values correspond-
ing to low-permeability areas of the field occurs (see
Fig. 9). The parameter values corresponding to these
areas are, in particular, improved after global iteration
(compare Fig. 9a and b). The difference between the
bottom right charts in Fig. 9a and b indicates reduc-
tion of the variance and, therefore, uncertainty in the
estimation.

Note that, although regularly providing overesti-
mated values, the filter tends to capture the structure
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Fig. 7 IEnKF: Initial and estimated permeability fields and cor-
responding variances
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Fig. 8 IEnKF: RMS error for estimated permeability vs time
(shifted initial ensemble with 0.5 ∗ Ishift and measurement error
covariance matrix 102 ∗ R are used in experiment). (a) First
iteration. (b) Second iteration

of true permeability field. This happens because the
ensemble of permeability fields, used for the current
test, is only the shifted version of analogous ensemble
previously used for investigations. Such an ensem-
ble contains some information on the field structure,
which is not influenced by simple shifting since a shift
changes the ensemble mean and not the covariance.
The given initial statistics cannot be changed because it
comes from the statistics of ensemble population. Thus,
the possibilities of improving parameter estimation by
varying statistics of initially guessed values of model
parameter are, in a certain sense, restricted.

Although demonstrating a usage of IEnKF approach
for estimating permeability values, the performed tests
raise additional problems to be solved. The list of such
problems includes finding criteria to evaluate whether
global filter iteration is needed in the real case when
no true permeability values are available. We suppose
that one may consider the RMS differences between
the parameter values obtained at two sequential data
assimilation steps. Another issue is concerned with de-
termining appropriate error statistics that can have a
great impact on improvement of the estimations and
the number of global EnKF iterations required for
that purpose. Summarizing, we may assert that history
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Fig. 9 IEnKF: Initial and estimated permeability fields and
corresponding variances (shifted initial ensemble with 5 ∗ Ishift
and measurement error covariance matrix 102 ∗ R are used in
experiment). (a) First iteration. (b) Second iteration
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matching on the basis of the IEnKF technique has
demonstrated its efficiency for improving model para-
meter estimation.

6 Conclusion

The study has been focused on the analysis of the
usage and the applicability of ensemble Kalman filter-
ing techniques with respect to history matching prob-
lems. Following the idea presented in [6], an iterative
modification of EnKF is proposed. The accomplished
case study has confirmed the usefulness of the EnKF
technique for solving the history matching problem
and estimating reservoir model parameter. There might
occur problems at which the EnKF algorithm does not
provide results of sufficient accuracy. An appropriate
use of the IEnKF method in such a case can improve
the estimations.
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