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Abstract A microstructure model of dual-porosity type
is proposed to describe contaminant transport in fully-
saturated swelling clays. The swelling medium is char-
acterized by three separate-length scales (nano, micro,
and macro) and two levels of porosity (nano- and
micropores). At the nanoscale, the medium is com-
posed of charged clay particles saturated by a binary
monovalent aqueous electrolyte solution. At the in-
termediate (micro) scale, the two-phase homogenized
system is represented by swollen clay clusters (or ag-
gregates) with the nanoscale electrohydrodynamics, lo-
cal charge distribution, and disjoining pressure effects
incorporated in the averaged constitutive laws of the
electro-chemo-mechanical coefficients and the swelling
pressure, which appear in Onsager’s reciprocity re-
lations and in a modified form of Terzaghi’s effec-
tive principle, respectively. The microscopic coupling
between aggregates and a bulk solution lying in the
micropores is ruled by a slip boundary condition on
the tangential velocity of the fluid, which captures the
effects of the thin electrical double layers surrounding
each clay cluster. At the macroscale, the system of clay
clusters is homogenized with the bulk fluid. The resul-
tant macroscopic picture is governed by a dual-porosity
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model wherein macroscopic flow and ion transport take
place in the bulk solution and the clay clusters act as
sources/sinks of mass of water and solutes to the bulk
fluid. The homogenization procedure yields a three-
scale model of the swelling medium by providing new
nano and micro closure problems, which are solved nu-
merically to construct constitutive laws for the effective
electro-chemo-hydro-mechanical coefficients. Consid-
ering local instantaneous equilibrium between the clay
aggregates and micropores, a quasisteady version of
the dual-porosity model is proposed. When combined
with the three-scale portrait of the swelling medium,
the quasisteady model allows us to build-up numeri-
cally the constitutive law of the equilibrium adsorption
isotherm, which governs the instantaneous immobi-
lization of the solutes in the clay clusters. Moreover,
the constitutive behavior of the retardation coefficient
is also constructed by exploring its representation in
terms of the local profile of the electrical double layer
potential of the electrolyte solution, which satisfies the
Poisson–Boltzmann problem at the nanoscale.
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1 Introduction

Swelling porous media such as 2–1 lattice clays, hy-
drophilic polymers, shales, corneal endothelium, and
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connective biological tissues exhibit a wide range of
applications in almost all aspects of life. For example,
smectite 2:1 clay particles saturated by saline solutions
have been studied for decades and consist of one of
the most traditional materials whose applications have
played important roles throughout human history. Phe-
nomena such as dehydration and rehydration of smec-
tites, which are tied up directly to the electrochemical
properties of the clay/water interface, have a profound
impact on a wide variety of geotechnical and geoenvi-
ronmental problems. In agriculture, water adsorption
by the clay determines the ability of soils to transport
and supply water, nutrients, and pesticides. Owing to
its low hydraulic conductivity, plasticity, and swelling
properties along with the adsorptive capacity for conta-
minants, compacted clays (bentonites) have been sug-
gested as appropriate buffer materials in geological
disposal facilities against chemical or nuclear contami-
nation including exposure to nuclear waste heat. In this
particular application, swelling is a desirable property,
as the swollen macromolecules are expected to fill-up
the voids between the canisters containing the waste
and the surrounding ground. Likewise, compacted soil
liners have been used as earthen barriers to minimize
the leakage from landfills to the subsurface environ-
ment. On the other hand, swelling and shrinkage are
serious challenges the foundation engineer faces be-
cause of the potential danger of unpredictable upward
movements of structures founded on expansive soils.
Damage induced by swelling also occurs during well
drilling operations where borehole stability in clay-rich
shales is profoundly affected by the complex physico-
chemical interactions between the shaly formation and
the aqueous drilling fluid.

The interplay between hydraulic-driven flow and
charge transport, commonly referred to as electroki-
netic coupling, has widespread applications in en-
vironmental science and geophysics, particularly in
electrokinetic remediation of metal-contaminated soils
and in measurements of electrokinetic signals to map
groundwater flow in clay-rich formations. Beyond
applications in natural geomaterials, electro-chemo-
mechanical interactions between fluids and swelling
polymers/biopolymers exhibit numerous technological
applications such as in controlled drug release, in the
design of contact lenses, in semiconductor manufactur-
ing, and in food stuffs. In biomedical technology, elec-
trical interactions between ions and negatively charged
proteoglycans rule the deformation of cartilaginous
soft hydrated tissues as load-bearing structures. The
swelling property of the tissue plays an important role

in articulating joint lubrication and damping of dy-
namic forces in the human body. Other applications
of electro-chemo-mechanical couplings near charged
surfaces involve the design of artificial membranes with
high ion-exchange capacity, filtration processes, drying,
ceramic science, and stress-crack prediction. As such,
it is imperative that any macroscopic model describing
the complex electro-chemo-mechanical interactions in-
herent to this type of system contains accurate constitu-
tive relations.

Expansive materials have in common a structure that
can be loosely identified as a mixture of macromole-
cules or colloidal particles (polymers, clay particles,
proteoglycans) and solvent (water, hydrocarbons). The
solvent is either adsorbed to the macromolecules form-
ing an electrolyte solution with dissociated ionic species
or in a bulk state, wherein cation and anion concentra-
tions are locally equal. For simplicity we henceforth re-
strict our discussion to clay–water–electrolyte mixtures.
The reader must be aware that the approach developed
herein can also be applied to most colloidal systems.

Clay particles are mostly colloidal aluminosilicates
lamellae. A typical 2:1 smectite such as montmorillonite
is composed of two structural units: a sheet of aluminia
octahedra sandwiched between two sheets of silica
tetrahedra that stack by sharing exchangeable cations
between their faces. The result of this arrangement is a
flat composite layer exhibiting tremendous surface area
with the flakes separated by aqueous layers forming sta-
ble aggregates. Crystal imperfections and isomorphous
substitutions of some aluminum or silicon atoms by
lower valence cations in the octahedral and tetrahedral
sites of the clay sheets produce a negative surface
charge. When exposed to polar liquids this charge is
compensated by counter-ions in the electrolyte solu-
tion forming the classical Gouy–Chapman–Stern model
commonly referred to as electrical double layer (EDL)
theory (Van Olphen [56], Hunter [34], Mitchell [46]).
The layers of fluid adjacent to the solid are denoted as
the Stern or compact layer, whereas the more distant
mobile part is the Gouy or diffuse layer. Macroscopic
evidences of the clay/water electro-chemo-mechanical
interactions are manifested in many observed phenom-
ena such as electro-osmosis, chemico-osmosis, stream-
ing potentials, conduction Ohmic current, streaming
current, and electrophoresis (Lyklema [45]).

Montmorillonite clays often shrink/swell in response
to changes in fluid content or chemical composition
of the pore fluid. When water comes in contact with
a mass of clay crystals, it solvates the counter-ions
and penetrates between the layers, forcing them apart.
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When hydration progresses, the crystals expand to sev-
eral times their original thickness. In the character-
ization of swelling, a distinction is commonly made
between short-range crystalline swelling, typically asso-
ciated with adsorption of the first two to three molec-
ular layers of water, and long-range osmotic swelling,
which arises from the overlapping between adjacent
diffuse double layers. Stable arrangement of clay par-
ticles and the spacing between individual lamellae are
dictated by the disjoining pressure, which is defined
by the excess in the normal fluid stress relative to the
bulk phase pressure of the outer solution (Derjaguin
et al. [18]).

Like most natural porous media, smectitic clays ex-
hibit a hierarchy of scales and often there is a distinct
scale separation. The finest scale of this hierarchy is the
nanoscale, wherein the portrait of the soil fabric is an
assembly of colloidal-size particles with lamellar struc-
ture. A typical characteristic length associated with this
scale, where multiscale continuum descriptions can still
be adopted, is the Debye’s screening length O(10−9m),
which measures the effective thickness of the EDL
(Hunter [34]). At this scale, the electrolyte solution
can still be regarded as a continuum fluid with flow
governed by the electrohydrodynamics coupled with
Nernst–Planck and Poisson–Boltzmann equations gov-
erning flow, transport of mobile charges, and electric
potential distribution (see Moyne and Murad [47, 49,
50], Gross and Osterlé [29], Fair and Osterlé [28],
Sasidhar and Ruckenstein [60, 61], Yang and Li [68]).

At the microscale (the homogenized nanoscale), the
typical length of which is of O(10−6m), the highly het-
erogeneous solid–fluid interactions are represented in
an averaged fashion, with electrolyte solution and par-
ticles viewed as overlaying continua forming swollen
clay clusters (or aggregates) with averaged properties
established at every point of the mixture (Bennethum
and Cushman [9]). Under near-equilibrium isothermal
conditions, the simultaneous movements of fluid, ions,
and electric current are linearly coupled with the con-
jugated gradients of hydraulic head, concentration, and
electric potentials through Onsager’s reciprocity rela-
tions (see, e.g., Lai et al. [39], Huyghe and Janssen
[36], Gu et al. [30, 31], Heidug and Wong [32], Moyne
and Murad [49], Rosanne et al. [57]). The thermody-
namics of irreversible processes underlying Onsager’s
reciprocity relations provides a comprehensive frame-
work for describing the coupling between fluxes and
driving forces (Yeung and Mitchell [69]). The coeffi-
cients appearing in the Onsager’s matrix reflect (in the
averaged sense) the nanoscopic electro-hydro-chemical

interactions that take place in the electrolyte solution
(see Fair and Osterlé [28], Moyne and Murad [49, 50],
Looker and Carnie [42]).

The mechanisms governing the deformation of the
solid matrix are ruled by the averaged stress parti-
tioning rules, which are dictated by the modified form
of Terzaghi’s effective stress principle (Hueckel [33],
Achari and Joshi [1]). In addition to the well-known
stresses of direct contact (Terzaghi’s effective stresses
and pore pressure), an additional electrochemical com-
ponent incorporating the net repulsive (R) and attrac-
tive (A) forces, commonly denoted by (R − A) (see
Sridharan and Rao [66], Lambe [38], Hueckel [33]),
plays an important role in the expansion/shrinking of
the aggregates. This stress has been identified with the
swelling pressure (the averaged Derjaguin’s disjoining
pressure), which can be measured through the over-
burden pressure excess that must be applied to a well-
ordered clay–water mixture separated from bulk water
by a semipermeable membrane to prevent further up-
take of water (Low [44]).

The microscopic two-scale electro-chemo-mechan-
ical model for the clay clusters is coupled with the
equations governing flow and solute transport in the
bulk solution lying in the micropore system. Owing to
the coarser structure of the micropores with larger size
void spaces and characteristic length much greater than
the Debyes length, the equations governing the bulk
fluid are free of EDL effects. This particular feature dis-
tinguishes properties of a bulk fluid from an electrolyte
solution and further implies in a pointwise form of the
electroneutrality condition with local equality between
co- and counterion concentrations (Newman [54]).

Application of the second level of up-scaling to the
cluster/microvoid coupled microscopic model leads to
the macroscopic description of the swelling medium
wherein the two systems are represented in a homoge-
nized fashion. The resultant effective model resembles
in form the well-established dual-porosity models for
fissured media (Barenblatt et al. [8], Warren and Root
[70], Wilson and Aifantis [72]). In the macroscopic
picture of a dual-porosity model, an interconnected
network of micropores (or fissures) provides most of
the global conductivity for flow and transport, whereas
most of the storage takes place in the relatively low
permeability matrix blocks. Here, we identify matrix
block and fissure systems with the clay clusters and
micropores, respectively. An essential feature underly-
ing the accuracy of dual-porosity models is the correct
description of the constitutive response of the cou-
pling between the two media. Classically, this coupling
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is incorporated pointwisely via transfer functions that
quantify mass, momentum, and energy interchange be-
tween them. In the so-called lumped-parameter for-
mulations, the transfer functions are represented by
classical exchange terms, assumed proportional to the
difference between the potentials in the two systems
[8, 70, 72]. More recently, more realistic descriptions
of such coupling have been proposed based on two-
scale formulations that aim at capturing the influence
of the microstructure upon the constitutive response of
the transfer function. Notably, the so-called microstruc-
tural dual-porosity approaches proposed by Arbogast
and coworkers [2, 3, 24] for rigid fractured media
(see also Bourgeat et al. [13]) have established a di-
rect correlation between the mass transfer term and
the microstructural behavior of the fractured media.
The two-scale portrait underlying this approach is a
continuous family of microscopic matrix blocks with
prescribed geometry distributed over the macroscopic
domain occupied by the fractures, with each block iden-
tified to a macroscopic location. In contrast to lumped-
parameter models, the transfer functions are explicitly
calculated by solving and averaging the microscale clo-
sure problems in the matrix blocks. The down-scaling
procedure inherent to this approach represents a way to
capture the influence of the geometry of the microstruc-
ture and the multiple space and time scales involved
in the problem upon the effective medium behavior
(Showalter [63]).

The framework of microstructural dual-porosity
models for rigid media has been extended to de-
formable poroelastic media by Murad and Cushman
[51] and Murad et al. [52]. The novelty in this ap-
proach is that, in addition to the mass transfer function,
a distributed momentum interchange term between
global and local systems also appears in the homoge-
nized model. Furthermore, application of the modified
Green’s function technique shows direct correlation
between the transient poroelastic closure in the matrix
blocks and a single effective viscoelastic constitutive
law for the macroscopic effective stress tensor exhibit-
ing fading memory effects (Murad et al. [52]). The
history dependency in the effective stress/strain con-
stitutive law aims at capturing secondary consolidation
and hereditary creep phenomena, which arise from the
delayed drainage of the fluid in the secondary level of
pores after the fluid pressure in the coarser voids of the
primary structure has been somewhat dissipated (see
Murad et al. [52] for details).

The generalization of the three-scale dual-porosity
approach developed by Murad and Cushman [51] and
Murad et al. [52] to incorporate electro-chemo-hydro-
mechanical couplings in swelling porous media still

Macroscale

Microscale

clay particle
electrolyte solution

water
clay cluster

clay particle

electrolyte solutionbulk pore

bulk water
clay cluster

Nanoscale

Fig. 1 Three-scale model for clay

remains an open issue. The goal of this contribution is
to fill this gap. We develop herein a three-scale dual-
porosity model for expansive clays based on a rigor-
ous up-scaling of the nanoscale description (Fig. 1).
To accomplish this task we begin by presenting the
microscale electro-chemo-mechanical model for the
clay clusters based on a modified form of Terzaghi’s
decomposition coupled with the Onsager’s reciprocity
relations. To evaluate the magnitude of the Onsager’s
coefficients, we consider a particular form of nanostruc-
ture wherein each clay cluster is composed of parallel
particles of close face-to-face contact. In this simpli-
fied arrangement, we establish precise correlations be-
tween the averaged electrochemical coefficients and the
nanoscopic electrokinetics of the electrolyte solution
lying in the nanopores. We also formulate the micro-
scopic equations governing flow and transport in the
micropore domain occupied by the bulk solution. As
mentioned before, owing to the coarser structure of
the micropores, the equations governing the bulk fluid
do not incorporate EDL effects. Nevertheless, the mi-
croscopic hydrodynamic coupling between clusters and
micropores is dictated by a slip boundary condition in
the fluid tangential velocity owing to the presence of the
thin EDLs surrounding each clay cluster. This suggests
that, unlike what happens in the nanopores, the effect
of the EDL upon the bulk fluid acts in a short range
fashion remaining restricted to the cluster/micropore
interface, giving rise to a discontinuity in the tangential
velocity of the fluid.

Assuming local periodicity of the aggregates, we
apply the homogenization procedure to up-scale the
coupled cluster/micropore model to the macroscale.
This yields a microstructure model of dual-porosity
type with macroscopic bulk fluid flow and trans-
port equations coupled with generalized mass transfer
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functions to local microscale problems posed in each
clay cluster domain. By exploring the closure prob-
lems arising from the homogenization procedure, we
provide microscopic representations for the effective
coefficients, such as swelling pressure and chemico- and
electro-osmotic conductivities in Darcy’s law. In par-
ticular, the three-scale representation of the swelling
pressure obtained herein furnishes more refined in-
formation compared to its well-known two-scale for-
mula seated on the EDL theory for parallel particles
(Derjaguin and Churaev [18], Israelachvili [37], Van
Olphen [56]). The novelty is the appearance of an
additional component in the constitutive law, which
captures the transmissibility of the electro-chemo-
mechanical stresses between adjacent clusters.

A simplified version of the dual-porosity model is
derived by postulating local thermodynamic equilib-
rium between clusters and micropores. This leads to
the appearance of a quasisteady approach characterized
by a time-scale assumption wherein the macroscopic
medium follows a regular evolution process with its
thermodynamic states at local equilibrium with the
clay clusters. Under this assumption, the microscopic
transient closure problems become stationary and, con-
sequently, the constitutive law of the distributed mass
transfer function gives rise to a retardation coefficient,
which governs the instantaneous electrochemical im-
mobilization of the species in the aggregates. In this
scenario we exploit the notable feature of the three-
scale approach in providing a double nano/micro rep-
resentation for the retardation coefficient, yielding an
accurate constitutive law for this parameter built-up
from the electrochemistry of the electrolyte solution
in the nanopores, whose electric potential and charge
distribution satisfy the Poisson–Boltzmann problem.
This framework is further explored to reconstruct
the adsorption isotherm, whose form resembles that
of a generalized nonlinear power-law curve of Fre-
undlich type with the exponent depending on bulk
concentration.

In the stratified nanostructure of clay clusters com-
posed of parallel particles of face-to-face contact,
the Poisson–Boltzmann equation reduces to a one-
dimensional nonlinear problem in the direction nor-
mal to the clay surface. Using a well-known change
of variables the problem is reduced to a formulation
based on the computation of elliptic integrals, whose
numerical solution can easily be obtained [18, 50]. Mak-
ing use of this discretization technique, we compute
the nanoscopic profile of the electric potential and
further use it as input data in the numerical solution of
the closure problems for the effective electrochemical
coefficients to build-up their constitutive laws. Finally,

our simulations illustrate the potential of the three-
scale approach in providing a first step towards the
derivation of reliable effective constitutive laws arising
from bridging nano, micro, and macro electro-chemo-
mechanical phenomena in swelling systems.

2 Microscopic electro-chemo-hydro-mechanical model

We begin by presenting the microscale electro-chemo-
hydro-mechanical model governing averaged fluid flow,
ion transport, electric current, and particle deformation
in the clay clusters. The aggregates are treated as a
water-saturated charged porous deformable continuum
composed of two overlapping phases: the clay particles
(solid phase) and the aqueous electrolyte solution con-
sisting of water solvent and a single binary monovalent
salt with fully dissociated 1:1 electrolytes (Na+/Cl− or
K+/Cl−). The microscopic governing equations can be
derived within the framework of the mixture theory in
conjunction with the linearized thermodynamics of irre-
versible processes (see, e.g., Lai et al. [39], Huyghe and
Janssen [36], Gu et al. [30, 31] Heidug and Wong [32]),
or alternatively by averaging the nanoscopic model in
the nanopores (Moyne and Murad [49, 50]). In the
former procedure, one makes use of Onsager’s reci-
procity relations to obtain near equilibrium couplings
between driving forces and conjugated fluxes, whereas
in the latter approach, the up-scaled model is derived by
homogenizing the continuum nanoscopic description
of the electrolyte solution in the nanopores given by
the electrohydrodynamics coupled with Nernst–Planck
and Poisson–Boltzmann equations governing flow, ion
movement, and local electric potential distribution (see
[49, 50] for details).

For the sake of simplicity, we consider fluid and
nanoscale particles incompressible and gravity/inertial
effects negligible. Particles are assumed elastic under-
going quasistatic small deformations from an arbitrary
reference configuration and contain a uniformly distrib-
uted surface charge density, which is neutralized by the
excess of positively charged dissociated ions to fulfill
the electroneutrality condition. Steric and hydration
effects are neglected and, consequently, throughout
the paper, the liquid phase is treated a structureless
Newtonian electrolyte solution with ions treated as
point charges.

2.1 Microscopic formulation in primitive variables

We begin by presenting some of the microscopic
averaged governing equations for the clay clusters
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formulated in primitive unknowns (e.g., ion concen-
trations, thermodynamic pressure). Furthermore, we
illustrate that this formulation is not natural for enforc-
ing boundary conditions with the outer bulk fluid in
the micropores. By invoking the well known continuity
of the electrochemical potentials at the interface, we
rephrase the model in terms of alternative “hidden”
bulk variables defined in the sense of Moyne and
Murad [47, 49], which are more appropriate for impos-
ing boundary conditions.

Let �s ⊂ Rn (1 ≤ n ≤ 3) be the microscale region
occupied by the clay aggregates. For each time t ∈
(0, ∞), the subset of governing equations formulated in
primitive unknowns read as follows [49].

Total momentum

∇ · σ t = 0 (2.1)

where σ t is the overall averaged stress tensor of the
aggregates.

Modified Terzaghi’s decomposition

σ t = −Pl I + σ e + EM (2.2)

where I is the identity tensor, Pl and σ e the averaged
thermodynamic pressure of the electrolyte solution and
Terzaghi’s contact stress tensor between particles, and
EM a coupling electromechanical tensor that represents
the averaged counterpart of the nanoscopic Maxwell
stress tensor of the electrolyte solution (see [47, 49]
and, further, Section 2.2.5). In the above decomposi-
tion, chemical effects are lumped in the thermodynamic
pressure Pl, whose magnitude incorporates the sum of
the bulk phase pressure of the outer solution and Don-
nan osmotic pressure (see [49]). For dilute solutions,
the osmotic pressure is given by the well known Van’t
Hoff relation (see, e.g., [20, 36]).

Linear elastic constitutive law for the contact stresses

σ e = CE(u) (2.3)

where u is the averaged displacement of the solid phase,
E(u) = 1/2(∇u + ∇uT) the linearized strain tensor,
and C the elastic modulus (fourth-rank tensor) of the
aggregates.

Overall mass balance for locally incompressible phases

∇ · vD + ∇ · ∂u
∂t

= 0 (2.4)

where vD is the Darcy velocity of the electrolyte solu-
tion relative to the movement of the solid phase.

Mass balance of the solid phase

∂

∂t
(1 − φ) + ∇ ·

(
(1 − φ)

∂u
∂t

)
= 0 (2.5)

where φ is the intracluster porosity.

Mass balances of the ions

∂

∂t

(
φ C±

)+ ∇ · J± = 0 (2.6)

where C+ and C− are the averaged concentration of
cations (Na+) and anions (Cl−) and {J+, J−} the cor-
responding fluxes. The notation ± aims at representing
the two mass balances in a single set.

Constitutive law for the ion fluxes

To present the constitutive laws for J±, denote F and R
as the Faraday and ideal gas constants, T the absolute
temperature (assumed constant), and μ± the averaged
molar electrochemical potentials of cations and anions.
Under the dilute solution approximation, for monova-
lent ions of unitary valence, μ± are defined as (see e.g.
Callen [14], Lyklema [45])

μ± := μ± ± F�∗ + RT ln C∗
± (2.7)

where �∗ is the microscale electric potential, μ± the
reference values of the chemical potential (depending
on pressure and temperature), and C∗± an apparent ion
concentration, which, as we shall further illustrate in
Section 2.2.3, is directly related to C±. The difference
between C± and C∗± stems from the averaging of the
nonlinearity in the constitutive law of the nanoscale
electrochemical potential, which, due to the noncom-
muting property, differs from the logarithm of the av-
eraged concentration.

Denoting D�
± and V± the averaged apparent dif-

fusion coefficients and advection velocities, the ionic
fluxes are given by [49]

J± = C±V± − D�
±C∗±
RT

∇μ± . (2.8)

The reader may verify that, unlike the advection of
nonionic species, which is solely driven by the Darcy’s
seepage flux vD, the convective velocities for cation
and anion transport are not equal. The difference
stems from the electrochemical interactions between
the movement of the fluid and the EDLs, which have
different influence upon cations and anions. In addi-
tion, the tensors D�

± do not play the role of real diffu-
sivities, as they appear multiplied by the gradient of the
apparent ion concentrations ∇μ±(C∗±). Subsequently,
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by exploring the correlations with the nanoscale behav-
ior of the electrolyte solution, direct relations between
C�± and C± along with D�

± and the ionic diffusivities D±
for ∇C± will be derived.

Neglecting the pressure–diffusion effect associated
with the variability of the reference electrochemical po-
tentials induced by pressure gradient, under isothermal
conditions, μ± are constants. Denoting �∗ = F�∗/RT,
the dimensionless electric potential, using Eqs. 2.7 and
2.8 in Eq. 2.6, we obtain

∂

∂t

(
φC±

)+ ∇ · (C±V±) = ∇ · [D�
±
(∇C∗

± ± C∗
±∇�∗

)]
.

(2.9)

The right-hand side (RHS) of Eq. 2.9 shows ion dif-
fusion governed by the sum of a Fickian term and
an electromigration component, which governs the
movement of the ions under the electric potential gra-
dient. Together with the relation between {C∗±, D�

±}
and {C±, D±}, the above result represents the up-
scaled form of the Nernst–Planck equations (Samson
et al. [58]).

2.2 Boltzmann transformations and bulk properties

By invoking the classical Donnan equilibrium between
the electrolyte solution in the nanopores and the outer
bulk fluid in the micropores, it is well known that
the electrochemical potentials are continuum across
the interface (Callen [14]). According to the classical
EDL theory at the nanoscale, for a given concentra-
tion of species in the bulk solution, ion concentrations
vary strongly in the nanopores according to Boltzmann
distributions resulting from the equality between the
electrochemical potentials [21]. Therefore, to fulfill the
electroneutrality condition with the surface charge den-
sity, the averaged ion concentration C± is discontinuous
across the interface with the outer saline bath, and
consequently, boundary conditions are not naturally
enforced in terms of these unknowns (see [47, 49]).

2.2.1 Equilibrium bulk concentrations

To recast the microscopic problem in a more appro-
priate manner for enforcing boundary conditions with
the outer bulk fluid, we adopt a change of variables by
replacing C± and C�± by an auxiliary bulk concentration
to be further defined pointwisely in �s. To this end, we
begin by invoking the classical nanoscopic EDL theory
describing the thermodynamic equilibrium between an
electrolyte solution delimited by two parallel charged
particles and an outer bulk fluid. Denoting {c±, μ±, �∗}

as the nanoscopic counterpart of {C±, μ±, �∗}, the
thermodynamic equilibrium between the electrolytes
and the species in the bulk fluid is dictated by the
equality of the electrochemical potentials (Dormieux
et al. [21]). Denoting μf =μ+

f =μ−
f and C f =C+

f =C−
f

as the chemical potential and bulk concentration of
the species in the bulk fluid, at equilibrium, these are
homogeneous quantities. We then have

μ± = μ± ± F�∗ + RT ln c± = μf := μ± + RT ln Cf

(2.10)

which yields the classical Boltzmann distributions of the
EDL theory (see [35, 46, 56])

c± = Cf exp
(
∓�

∗)
(2.11)

with �
∗ := F�∗/RT denoting the dimensionless nano-

scopic EDL potential. To up-scale this result to the
microscale, denote 〈·〉z := |Z |−1| ∫Zα

·dZα and 〈·〉αz :=
|Z −1

α | ∫Zα
·dZα (α = l, s) as the volume average and

intrinsic volume average operators (〈·〉l
z = φ〈·〉l

z) over
a nanoscopic cell Z composed of subdomains Zs and
Zl occupied by the parallel particles and nanopores,
respectively (see Fig. 2). By averaging Eq. 2.11 over
Zl and noting that, by definition, C± := 〈c±〉l

z, be-
cause Cf is a homogeneous quantity, the discontinuity
in the averaged concentrations across the interface is
given by

C± − Cf = Cf

[〈
exp
(
∓�

∗)〉l
z
− 1

]
. (2.12)

The above result motivates the necessity of rephras-
ing the model in terms of alternative concentrations
to whom Dirichlet boundary conditions representing
continuity with the bulk fluid in the micropores can
naturally be enforced.

2.2.2 Streaming potential

To define bulk concentration in �s, we begin by extend-
ing the above Boltzmann distributions to nonequilib-
rium conditions induced by flow and charge transport.
To this end, consider a simple nanoscopic picture of
one-dimensional flow of an electrolyte solution in an
idealized array of nanopores with geometry composed
of long channels delimited by parallel particles or
capillary tubes (Fig. 3). The movement of the elec-
trolyte solution induced by a pressure gradient car-
ries the counter-ions in the diffuse layer towards the
downstream end. This leads to the appearance of the
so-called streaming current, which gives rise to an elec-
trokinetic potential, commonly referred to as streaming
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Fig. 2 Microscopic portrait
of the clay fabric

potential [10, 60, 61, 68]. The gradient of this latter
quantity acts to drive the counterions of the diffuse
layer in the opposite direction to the pressure driven
flow generating a conduction current and a counter
electro-osmotic flow acting to slow down the movement
of the liquid (see, e.g., Li [41] and references therein).
Under the open-circuit condition, which is character-
ized by the absence of an external electric field when
the outer solutions are isolated from each other, the
balance between pressure-driven and counter electro-
osmotic flow stabilizes when the net electric current
vanishes (see [10, 60, 61, 68] for details).

By invoking the aforementioned discussion, we pos-
tulate that, under nonequilibrium conditions, the total
electric potential �� incorporates the EDL compo-
nent ϕ associated with local charge distribution in the
nanopores and the streaming potential 	b , herein de-

noted with the subscript “b” to designate its “bulk na-
ture”, i.e., not associated with EDL effects. By making
use of this decomposition, we then split the nanoscopic
overall potential in the form (see also [10, 60, 61, 67])

�∗ = ϕ + 	b . (2.13)

As mentioned before, to characterize ϕ and 	b , the for-
mer potential aims at representing a fluctuating EDL
component varying strongly in the nanopore domain,
whereas the latter plays the role of the streaming po-
tential under the open-circuit assumption. In the one-
dimensional setting, 	b varies axially with flow and
transport, whereas ϕ fluctuates transversally according
to the Boltzmann distribution of the EDL theory (see
Fig. 3 and [28, 60, 61, 68]). Because 	b does not vary
in the transversal direction, it is treated as a pure mi-
croscopic quantity [50]. Whence, by averaging Eq. 2.13

Fig. 3 Nanoscopic portrait of
the dependence of the EDL
and streaming potentials
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across the nanopore domain, the microscopic decom-
position reads

�∗ := 〈�∗〉l
z = 〈ϕ〉l

z + 	b . (2.14)

2.2.3 Nonequilibrium bulk concentrations

To extend the Boltzmann distributions (Eq. 2.12) to
nonequilibrium conditions towards the characteriza-
tion of local bulk concentrations C±

b , one needs to
incorporate the effects of the streaming potential. For
thin double layers, bulk properties are nothing but
those measured away from the particle surface. Con-
versely, when the EDLs span the entire nanopores,
bulk properties become “hidden” and their pointwise
characterization requires the more elaborated analysis
presented next (see also [49]).

Following Newman [54], the characterization of a
bulk medium is seated on the absence of EDL effects
and net charge density

(
qb := F

(
C+

b − C−
b

) = 0
)
, which

implies in local equality between co- and coun-
terion concentrations

(
C+

b = C−
b = Cb

)
. We then adapt

Newman’s conjecture to our picture by defining a
hidden bulk solution in the clay cluster domain as a fluid
characterized by local equality between co- and coun-
terion concentrations at local thermodynamic equilib-
rium with the cations and anions of the electrolyte
solution. To define mathematically thermodynamic
properties associated with the hidden bulk solution, we
make use of the decomposition (Eq. 2.13) and define
the electrochemical potential of the species in the bulk
fluid

(
μ±

b

)
by setting c+ = c− = Cb and �∗ = 	b (or

ϕb = 0) in Eq. 2.10, which gives μ±
b := μ± ± F	b +

RT ln Cb . This local characterization is based on ne-
glecting the EDL potential and the net charge density
in a bulk fluid. By construction, the thermodynamic
equilibrium between the species in the electrolyte so-
lution and in the hidden bulk fluid is governed by the
equality μ±

b = μ±. Using the above definition along
with Eq. 2.10, we have

μ±
b =μ± ± F	b +RT ln Cb=μ±=μ± ± F�∗+RT ln c±

(2.15)

which, using Eq. 2.13, leads to the nonequilibrium ver-
sion of the Boltzmann distributions (Eq. 2.11)

c± = Cb exp
(
∓�

∗ ± 	b

)
= Cb exp(∓ϕ) (2.16)

with ϕ := Fϕ/RT and 	b := F	b/RT the correspond-
ing dimensionless quantities. Like the streaming poten-
tial 	b in Fig. 3 and unlike the EDL variables {c±, ϕ},
the bulk concentration is not directly affected by the

surface charge of the particles and, consequently, does
not fluctuate transversally, varying only axially [50].
Using this result by averaging Eq. 2.16, we obtain

C± := 〈c±〉l
z = Cb G± . (2.17)

with G± := 〈exp(∓ϕ)〉l
z. An important consequence of

Eq. 2.17 is the extension of Eq. 2.12 to the nonequi-
librium case, provided the pair {Cf , 〈exp(∓�

∗〉l
z} is lo-

cally replaced by {Cb , G±} with Cb varying across the
cluster domain. Thus, unlike 	b , which only appears at
nonequilibrium conditions, ϕ plays the role of an EDL
potential, which dictates the Boltzmann distributions
for ion concentration in general thermodynamic con-
ditions. When the electrolyte solution is at equilibrium
with an outer saline bath of uniform concentration
Cb = Cf , the classical equilibrium distributions Eq. 2.12
are recovered by simply setting 	b = 0 and ϕ = �

�
.

One may clearly observe that, when the EDLs over-
lap, Cb becomes a hidden quantity in the sense that only
indirect measurements based on Eq. 2.17 can be used
to evaluate it for given values of {C±, G±}. One may
interpret Cb as an apparent concentration (same for
Na+ and Cl−), which is asymptotically achieved locally
by freezing each fluid particle instantaneously with an
isolating wall and letting the EDL potential ϕ → 0. For
a precise characterization of Cb in general nanopore
domains of nonparallel particles, we refer to the two-
scale homogenization analysis developed in Moyne and
Murad [49].

It remains to rephrase the averaged Nernst–Planck
equation (Eq. 2.9) in terms of Cb . This can be ac-
complished by making use of the averaged Boltzmann
transformations for C± and C�±. The former is repre-
sented by Eq. 2.17, whereas the latter can be derived by
up-scaling the equality between the nanoscale electro-
chemical potentials (Eq. 2.15). Thus, denoting μb± :=〈
μ±

b

〉l
z and μ± := 〈μ±〉l

z using Eq. 2.7 and recalling that
Cb and 	b are independent of the nanoscopic coordi-
nate, we have

μb±=μ± ± F	b +RT ln Cb=μ±=μ± ± F�∗+RT ln C∗
±

which implies

C∗
± =Cb exp

(∓�∗ ± 	b
)=Cb G∗

± (2.18)

where G∗± := exp(∓〈ϕ〉l
z). Note that, due to the non-

commuting property of the mean value operator
of a nonlinear function, G∗± �= G±, which implies
C∗± �= C±. Conversely, under the linearized Debye–
Huckel approximation of the Boltzmann distribution,
valid for low electric potentials (Hunter [35]), we have
G± ≈ 〈1 ∓ ϕ〉l

z = 1 ∓ 〈ϕ〉l
z ≈ G∗±, and consequently, the

two ion concentrations coincide.
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Making use of the above generalized Boltzmann
distributions, we are now ready to derive the relation
between C∗± and C±. From Eqs. 2.17 and 2.18, we have

C∗
± = Cb G∗

± = C±G−1
± G∗

± .

with shows C∗± and C± simply related by the correc-
tion factor G∗±G−1

± . In an analogous manner, we define
the diffusion coefficient for ∇C± in the form D�

± :=
G∗−1± G± D±. Therefore, using Eq. 2.17 and the decom-
position Eq. 2.14, one can rephrase Eq. 2.9 in terms of
Cb , ϕ, 	b , and D± as

∂

∂t

(
φ G±Cb

)+ ∇ · J± = 0 (2.19)

J± = Cb G±V± − D±G±
(∇Cb ± Cb ∇	b

)
(2.20)

which shows the same form of the averaged Nernst–
Planck derived in Moyne and Murad [49] by homoge-
nizing the nanostructure. The reader may verify that,
within the two-scale model discussed in Moyne and
Murad [49], the diffusivities admit the nanoscopic
representation D±G± = 〈D± exp(∓ϕ)(1 + χ±)

〉l
z, where

D± and χ± denote the binary ion–water nanoscopic
diffusion coefficients and χ± the effective tortuosity
factors for each solute.

The replacement of the unknowns {C±, C�±} by
{Cb , 	b } results in the appearance of the capacities
G± = 〈exp(∓ϕ〉l

z, which measure the storativity of the
ions in the EDL. The retardation factor G+ for the
cations is much larger than G−, owing to the high
concentration of positive charges in the EDL (recall
that ϕ < 0).

2.2.4 Bulk phase pressure

Like the ion concentrations c± in the EDL picture,
the nanoscopic counterpart of the fluid thermodynamic
pressure varies drastically in the fluid domain and
behaves discontinuously across the interface with the
bulk solution [47]. The magnitude of the microscopic
fluid pressure Pl incorporates the bulk phase pressure
of the outer solution Pf and the averaged Donnan
osmotic pressure π� := Pl − Pf , which, for dilute so-
lutions under equilibrium conditions, is classically de-
fined by Van’t Hoff relation π� := RT(C+ + C− − 2Cf )

(Donnan [20], Huyghe and Janssen [36]). In a similar
fashion to the pointwise characterization of Cb , define
the averaged hidden bulk pressure Pb in the clay clus-
ter domain by subtracting π� from Pl. By extending

pointwisely Van’t Hoff relation to nonequilibrium con-
ditions with Cf replaced by Cb , using the Boltzmann
distributions Eq. 2.17, we have

Pb : = Pl − π� = Pl − RT(C+ + C− − 2Cb )

= Pl − RTCb (G+ + G− − 2)

= Pl − 2RTCb
(〈cosh ϕ〉l

z − 1
)

. (2.21)

The hidden bulk phase pressure Pb exhibits the
same nonoscillatory properties of Cb and 	b [47,
49] and equalizes with the outer bulk phase pres-
sure Pf under equilibrium conditions. Like the local
characterization of Cb in Eq. 2.17, the above result
provides indirect measurement of Pb through the
triplet {Pl, 〈cosh ϕ〉l

z, Cb }.

2.2.5 Alternative Terzaghi’s decomposition

Using Eq. 2.21 in the modified Terzaghi’s effective
stress principle Eq. 2.2, we obtain

σ t = −Pb I + σ e − � with � := π� I − EM . (2.22)

The above decomposition provides an alternative
representation of the Terzaghi’s effective stress prin-
ciple with Pl replaced by Pb . The additional electro-
chemical stress � is commonly referred to as swelling
stress tensor [47, 49, 53] and can be viewed as the
total stress in the aggregates (σ t) relative to the sum
of contact stress and bulk phase pressure (Pb I − σ e).
This quantity may be regarded as a tensorial generaliza-
tion of the experimentally observed swelling pressure
�, defined by the difference between the overburden
normal stress (−1/3trσ t) and bulk phase pressure Pb

in a well-ordered parallel particle arrangement where
σ e = 0 [44]. For a nanostructure composed of parallel
particles within each cluster, the swelling pressure is
nothing but the projection of � normal to the particle
surface [47, 49]. At equilibrium where Cb = Cf and
Pb = Pf , the constitutive law � = �(φ, Cf ) can eas-
ily be constructed by invoking the EDL theory (see
[1, 49, 53] and Section 3).

2.3 Onsager’s reciprocity relations

To complete the system of microscopic equations in
the clay cluster domain, it remains to provide con-
stitutive laws for the fluxes {vD, J+, J+}. To repre-
sent them properly within the thermodynamic context
of Onsager’s reciprocity relations, we replace J± by
the electric current Ie and the overall purely diffu-
sive flux Jd, both relative to the motion of the solid
phase. This latter quantity is defined by subtracting the
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purely advective flux of nonionic solutes induced by
the Darcy’s seepage velocity (2Cb vD) from the over-
all flux of ions Jt := J+ + J−. Because this nonionic
convective component differs from the sum of the first
term in the RHS of Eq. 2.20 added over cations and
anions (whose form is given by Cb (G+V+ + G−V−)),
one may note that this latter component also exhibits a
diffusive part.

Let q� := F(C+ − C−) be the microscopic net charge
density and Gc := G+ + G−, Gs := G+ − G− the over-
all and net storativities of the ions in the EDL, re-
spectively. Using the Boltzmann distributions, Eq. 2.17
gives Gc = 2〈cosh ϕ〉l

z, Gs = −2〈sinh ϕ〉l
z, C+ + C− =

GcCb , and q∗ = FGsCb . Therefore, by definition the
new purely diffusive fluxes are given by

Jd : = Jt − 2Cb vD − φ(C+ + C−)
∂u
∂t

= Jt − 2Cb vD − φGcCb
∂u
∂t

, (2.23)

Ie : = F(J+ − J−) − Fφ(C+ − C−)
∂u
∂t

= F(J+ − J−) − φFGsCb
∂u
∂t

. (2.24)

The reciprocity relations express a linear law be-
tween {vD, Jd, Ie} and the driving forces {∇Pb ,

RT∇ ln Cb , ∇	b } [49, 57]

⎛
⎝ vD

Jd

Ie

⎞
⎠ = −

⎡
⎣ LPP LPC LPE

LCP LCC LCE

LEP LEC LEE

⎤
⎦
⎛
⎝ ∇Pb

RT∇ ln Cb

∇	b

⎞
⎠

(2.25)

where the matrix LI J (I, J = P, C, E) is commonly
referred to as Onsager’s matrix. It is worth noting that,
to embed the constitutive laws in the proper thermody-
namic context, the bulk concentration was replaced by
the Nernst potential N = RT ln Cb , whose gradient is
the driving force conjugated to the flux, which appears
in the dissipative inequality.

The components {LPP, LPE} of the first row of
Onsager’s matrix are nothing but the hydraulic and
electro-osmotic conductivities for fluid flow, whereas
LPC is directly related to the chemico-osmotic perme-
ability KC := LPC RT/Cb [49]. The coefficient LEE is
commonly referred to as electric conductivity in Ohm’s
law, whereas LEP and LCP are the streaming current
and ultrafiltration parameters, which reflect electric
current and total ion flux driven by hydraulic gradients
(see e.g. [16, 69]).

By adding and subtracting the transport equations in
Eq. 2.19 over cations and anions and using the above
Boltzmann distribution for q∗ along with Eqs. 2.23 and
2.24, we obtain the overall movement of the species and
charge conservation governed by

∂

∂t

(
φGcCb

)=−∇ ·
(

2Cb vD+ Jd+φGcCb
∂u
∂t

)
(2.26)

F
∂

∂t

(
φGsCb

) = ∂

∂t
(φq∗)

= −∇ ·
(

Ie + φFGsCb
∂u
∂t

)
. (2.27)

Furthermore, using the overall mass balance Eq. 2.4, we
can rewrite Eq. 2.26 in the alternative form

∂

∂t

(
φGcCb

) + ∂u
∂t

· ∇ (φGcCb ) − φGcCb∇·vD

+ ∇· (2Cb vD + Jd) = 0 (2.28)

The microscopic governing equations for the clay ag-
gregates, formulated in terms of {σ t, σ e, u, φ, Jd, Ie,
vD, Pb , Cb , and 	b }, are given by Eqs. 2.1, 2.3–2.5,
2.22, 2.25, 2.26, and 2.27 supplemented by constitutive
information on the coefficients {�, C, Gc, Gs}, and
{LI J, I, J = P, C, E}. After solving for these primary
unknowns, the averaged ion concentration C± and
fluid thermodynamic pressure Pl, which appear in the
primitive formulation, can be computed within a post-
processing approach considering Eqs. 2.17 and 2.21.

2.4 Small advection induced by the solid movement

As we shall further observe, to maintain the local
periodicity requirement for the subsequent homoge-
nization process, Lagrangian coordinates tied up to
the solid phase are more suitable for this task. Nev-
ertheless, hereafter, we assume slow movement of the
solid such that the material derivative following the
solid velocity can be identified with the local Euler
time derivative. Whence, we shall henceforth neglect
the convection induced by the solid velocity by drop-
ping terms involving ∂u/∂t · ∇. Under this assumption,
the mass balances of particles (2.5) and species (2.28)
reduce to

∂φ

∂t
− (1 − φ)∇ · ∂u

∂t
= 0

∂

∂t

(
φGcCb

)− φGcCb ∇· vD + ∇· (2Cb vD + Jd) = 0
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3 Nanoscopic representations

The magnitude of the Onsagers coefficients reflects the
nanoscale behavior of the electrolyte solution in the
nanopores. Electrochemical phenomena at these two
separate-length scales are linked by the so-called clo-
sure problems arising from the homogenization pro-
cedure posed in each unit nanoscopic cell Zl [49, 50].
Here, we present a particular form of the closure prob-
lems for the stratified nanostructure of parallel particles
within each cluster depicted in Fig. 2. We also illustrate
that the up-scaling of the compatibility condition be-
tween surface and net charged densities gives rise to the
electroneutrality restriction, which further implies in a
divergence-free electric current.

3.1 Nanoscopic governing equations

For each microscopic location, the nanoscopic govern-
ing equations of the electrolyte solution posed in the
subdomain Zl are represented in a local rectangular
coordinate system z. Whence, in what follows we adopt
the subscript z to designate spatial derivative with re-
spect to the nanoscopic coordinate to distinguish from
the derivatives with respect to micro- and macroco-
ordinates denoted further by y and x. Recalling that
the reference hidden bulk potentials for fluid flow
{Pb , Cb , 	b } do not fluctuate in the nanopores, they
appear identical to their averaged values and therefore
are independent of z [47]. Denoting {pl, π�} as the
nanoscopic counterpart of {Pl, π�}, the nanoscale ver-
sion of the Boltzmann distributions, Van Hoff relation,
and the total electric potential decomposition, incor-
porating the dependence on z and y, read as follows
(see [49]):

��(y, z, t) = ϕ(y, z, t) + 	b (y, t),

c±(y, z, t) = Cb (y, t) exp(∓ϕ) (3.1)

pl(y, z, t) = Pb (y, t) + π�(y, z, t)

= Pb + RT(c+ + c− − 2Cb )

= Pb + 2RTCb (cosh ϕ − 1) . (3.2)

Denoting E = −∇z�
∗ = −∇zϕ as the nanoscopic

EDL electric field, ε̃0 the vacuum permittivity, ε̃ the rel-
ative dielectric constant of the fluid (assumed constant),
and q∗ := F(c+ − c−) = −2FCb sinh ϕ the nanoscopic
counterpart of the net charge density q∗, the variables

{E, �∗, q∗} fulfill the equations of electrostatic (see e.g.
Landau and Lifshitz [40]).

ε̃ε̃0∇z·E = −ε̃ε̃0zz�
∗ =−ε̃ε̃0zzϕ = q∗ in Zl

ε̃ε̃0 E · n = −σ on ∂ Zls (3.3)

where σ < 0 is the surface charge density of the parti-
cles (assumed constant), Zls the interface between Zl

and Zs, and n the unit normal exterior to Zl. Using
the above definitions for q∗ and E, we obtain the
well-known Poisson–Boltzmann problem for the EDL
potential

ε̃ε̃0zzϕ = 2FCb sinh ϕ in Zl

ε̃ε̃0∇z ϕ · n = σ on ∂ Zls. (3.4)

The electroneutrality condition imposes the follow-
ing constraint between q∗ and σ

1

|Z |
∫

Zl

q∗ dZ = ε̃ε̃0

|Z |
∫

Zl

∇z·E dZ = ε̃ε̃0

|Z |
∫

∂ Zls

E · n d�

= − 1

|Z |
∫

∂ Z f s

σd� . (3.5)

We now turn to the electrohydrodynamics. Fol-
lowing Eringen and Maugin [27] and Lyklema [45],
the Stokesian flow of the electrolyte solution in the
nanopores is strongly affected by the Coulombic body
force q∗ E, which quantifies locally the viscous interac-
tion between ions and solvent. Denoting μ and v as the
viscosity and velocity of the liquid, neglecting gravity,
convective, and inertial effects, the modified Stokes
problem reads

μzzv − ∇z pl = −q∗E = q∗∇z�
∗

∇z · v = 0 in Zl (3.6)

The above momentum balance can also be rephrased
in terms of the Cauchy stress tensor of the electrolyte
solution σ l in the form

∇z · σ l = 0

σ l = −pl I + 2μEz(v) + τM (3.7)

where Ez(v) is the nanoscopic strain rate tensor of the
fluid and τM the Maxwell stress tensor (Landau and
Lifshitz [40])

τM := ε̃ ε̃0

2

(
2 E ⊗ E − E2 I

)
(3.8)

with ⊗ denoting the tensorial product between vectors.
Using Eq. 3.3 in Eq. 3.8, one may easily note that
∇z·τM = q∗ E, which shows that the divergence of the
Maxwell stress tensor is nothing but the Coulomb force.



Comput Geosci (2008) 12:47–82 59

At the nanoscale, the expansion of the clay lattice
is ruled by the disjoining stress tensor �d := π� I − τM,
defined by the difference between osmotic pressure and
Maxwell stress tensor [18, 47]. Together with Eqs. 3.7,
3.2, and 3.8, this definition yields

σ l = −Pb I + 2μEz(v) − �d (3.9)

with

�d = 2RTCb (cosh ϕ−1)I − ε̃ ε̃0

2

× (2 E ⊗ E−E2 I
)

. (3.10)

Like the second version of Terzaghi’s decomposition
(Eq. 2.22), the above result provides an alternative
representation of the constitutive law for σ l, with pl

replaced by Pb .
Finally, the movement of the ions is governed by the

nanoscopic counterpart of the Nernst–Planck equation
(Eq. 2.9)

∂c±

∂t
+ ∇z · (c±v) = ∇z ·

[
D±
(
∇zc± ± c±∇z�

∗)]

(3.11)

where D± denote the nanoscopic diffusion coefficients
of the ions. It is worth noting that, unlike the averaged
diffusivities tensors D±, which are strongly affected by
the EDL potential and the tortuosity of the nanopores,
D± only depend on water–ion interactions. Using the
nanoscopic Boltzmann distributions Eq. 2.16 along with
the decomposition Eq. 3.1a, the above result can be
rewritten in terms of the EDL dependent diffusivities
D±∗ (ϕ) := D± exp(∓ϕ) and hidden bulk properties in
the form

∂

∂t

(
exp (∓ϕ) Cb

)+ ∇z · J± = 0 in Zl

J± =Cb exp (∓ϕ) v−D±
∗
(∇zCb ±Cb∇z	b

)
. (3.12)

3.2 Consequence of the electroneutrality condition

We now aim at exploring the consequences of the
electroneutrality condition. To this end, denote cs :=
|Zs|−1

∫
∂ Zls

σd� as the fixed charge density per unit of
volume of the solid phase. Recalling that q∗ = 〈q∗〉l

z =
φ−1〈q∗〉z, we have from Eq. 3.5 and the above definition

〈q∗〉z = φq∗ = − 1

|Z |
∫

∂ Zls

σd� = − (1 − φ)

|Zs|
∫

∂ Zls

σd� = −(1 − φ)cs (3.13)

which yields (1 − φ)cs + φq∗ = 0. As the solid charge is
tied-up directly to the mass of the solid and because
particles are assumed nanoscopically incompressible,

the intrinsic volume averaging of the surface charge
does not vary, which implies cs constant. Therefore,
combining the previous relation with the mass and
charge conservations Eqs. 2.5 and 2.26b, this latter
balance can be rephrased as

∇ ·
(

Ie + φ q∗
∂u
∂t

)
= − ∂

∂t
(φ q∗) = ∂

∂t
[(1 − φ) cs]

= −∇ ·
[
(1 − φ) cs

∂u
∂t

]

= ∇ ·
(

φ q∗
∂u
∂t

)

which implies in a divergence free current

∇ · Ie = 0 . (3.14)

Because the above result also incorporates the elec-
troneutrality condition, we adopt Eq. 3.14 rather than
Eq. 2.27 as a more accurate representation of conserva-
tion of charge.

3.3 Stratified nanostructures

Hereafter, we consider the one-dimensional represen-
tation of the aforementioned nanoscopic governing
equations posed in the nanopore domain with geometry
delimited of long parallel particles of close face-to-face
contact separated by an interlayer spacing 2H (Fig. 3).
In this simplified clay fabric arrangement, the average
over the nanoscopic cell Z is nothing but the transver-
sal averaging in the direction normal to the solid
particles. In what follows, such transversal micro-
scopization procedure is applied to the nanoscopic
model to obtain representations for the Onsager’s coef-
ficients {LI J, I, J = P, C, E} and swelling stress tensor
� in terms of the local behavior of the EDL potential
ϕ. For simplicity and without loss of generality, we pos-
tulate a given microscopic elastic modulus C of the clay
clusters with components given by the well-established
micromechanics of linear elastic media (see, e.g., [59]).

3.3.1 Local electrostatics

In the one-dimensional setting depicted in Fig. 3, we
adopt the notation y and z (without boldface) to repre-
sent the one-dimensional micro- and nanocoordinates
in the axial (parallel to the particles) and transversal
directions, respectively. For parallel particles, the one-
dimensional flow and ion transport take place in the
axial direction, whereas the EDL develops transver-
sally in the z direction (Fig. 3) [50]. In the {y, z}
two-dimensional rectangular coordinate system, the
local vectorial variables are represented in the form
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v = {v, 0}, Jd = {Jd, 0}, Ie = {Ie, 0}, E = {0, E}, and
u = {0, u}, whereas the driving forces are represented
as ∇Pb = {∂ Pb/∂y, 0}, ∇Cb = {∂Cb /∂y, 0}, and ∇	b =
{∂	b /∂y, 0}. Recall that, unlike the local variables
{ϕ, E, pl, c±}, which depend on z, the potentials for
fluid flow {∂ Pb/∂y, ∂Cb ∂y, ∂	b/∂y} do not fluctuate
transversally and vary only in the axial direction with y
([50]). The pair {ϕ, E} varies transversally and satisfies
the one-dimensional version of the Poisson–Boltzmann
problem Eq. 3.4

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε̃0ε̃
d2ϕ

dz2
= −q∗ = 2FCb sinh ϕ; E = −dϕ

dz
E = 0 at z = 0,

E = − σ

ε̃ ε̃0
at z = H,

(3.15)

The solution of the above problem can be repre-
sented in terms of the electric potential in the middle
of the interlayer spacing ϕ0 := ϕ(z = 0). By multiplying
Eq. 3.15 by dϕ/dz and integrating from 0 to z, we obtain

ε̃ε̃0

2

(
dϕ

dz

)2

= 2F2Cb

RT

∫ ϕ

ϕ0

sinh ϕ dϕ

= 2F2Cb

RT

(
cosh ϕ−cosh ϕ0

)
(3.16)

which yields

E = − RT
F

dϕ

dz
= 2

√
RTCb

ε̃ε̃0
(cosh ϕ − cosh ϕ0);

ϕ = ϕ0 − 2F
∫ z

0

√
Cb

ε̃ε̃0 RT
(cosh ϕ − cosh ϕ0) dz . (3.17)

Together with the boundary condition at z = H in
Eq. 3.15, the above result consists of the integral repre-
sentation of the nonlinear, one-dimensional, Poisson–
Boltzmann problem Eq. 3.15.

The axial movement of the ions is governed by
the one-dimensional form of the Nernst–Planck equa-
tion (3.12)

∂

∂t
(exp(∓ϕ)Cb ) + ∂

∂y
(exp(∓ϕ)Cb v)

= ∂

∂y

[
D±

∗

(
∂Cb

∂y
± Cb

∂	b

∂y

)]
. (3.18)

Finally, to present the electrohydrodynamics in the
stratified arrangement, we insert the decompositions
Eqs. 3.1 and 3.2 in the two-dimensional Stokes problem

Eq. 3.6. Together with the one-dimensional Poisson–
Boltzmann problem (3.15), this yields

μ
∂2v

∂z2
− ∂ Pb

∂y
− ∂π�

∂y
= q∗

(
∂ϕ

∂y
+ ∂	b

∂y

)
(3.19)

− ∂π�

∂z
=q∗ ∂ϕ

∂z
=−ε̃ε̃0

∂2ϕ

∂z2

∂ϕ

∂z
=− ε̃ε̃0

2

∂

∂z

(
∂ϕ

∂z

)2

(3.20)

Integrating Eq. 3.20 from the reference bulk state char-
acterized by pl = Pb and π� = ϕ = ∂ϕ/∂z = 0 and
using Eq. 3.16 with ϕ0 = 0 gives

π�(y, z) = ε̃ε̃0

2

(
∂ϕ

∂z

)2

= 2RTCb

∫ ϕ

0
sinh ϕ dϕ

= 2RTCb [cosh ϕ − 1] (3.21)

which, as we may expect, shows P − Pb varying in the
transversal direction according to Van’t Hoff relation.
Using Eqs. 3.21 and 3.15 in Eq. 3.19, we obtain

μ
∂2v

∂z2
= ∂ Pb

∂y
+2 R T (cosh ϕ−1)

∂Cb

∂y
−ε̃ ε̃0

d2ϕ

dz2

∂	b

∂y
.

(3.22)

Hence, given the driving forces {∂ Pb/∂y, ∂Cb/∂y,

∂	b/∂y} (independent of z), we have by linearity

v = −vP
∂ Pb

∂y
− vC

∂Cb

∂y
− vE

∂	b

∂y
(3.23)

where the characteristic axial velocities {vP, vC, vE}
correspond to fundamental solutions of Eq. 3.22 for
unitary driving forces. In what follows, we exploit
this result to derive nanoscopic representations for
the axial components of the tensorial Onsager coef-
ficients, herein denoted by LI J (without boldface).
To embed Eq. 3.23 in the proper context of On-
sager’s reciprocity relations, we rewrite the chemico-
osmotic term in terms of the Nernst potential N :=
RT∇ ln Cb , which furnishes the alternative representa-
tion (vCCb/RT)∂ N/∂y for the middle term in the RHS.

Recalling that u = {0, u}, particles move transver-
sally to the direction of the flow and, consequently,
the axial component of the Darcy’s velocity relative
to the solid phase is nothing but vD := 〈v〉z. Thus, our
nanoscopic representations read as follows.

3.3.2 Hydraulic conductivity

The axial component of the hydraulic conductivity LPP

is nothing but the transversal averaging of the local
velocity vP, solution of the Poiseuille flow (3.22) with
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∂ Pb/∂y = −1 and ∂Cb/∂y = ∂	b /∂y = 0. We then
have LPP := 〈vP〉z = φ〈vP〉l

z with

μ
d2vP

dz2
= −1 . (3.24)

Denoting 2δ as the thickness of each clay particle, the
nanoporosity is given by φ = H/(δ + H). Hence, we
have, after averaging,

LPP = φ

H

∫ H

0
vPdz = φH2

3μ
= H3

3(δ + H)μ
. (3.25)

3.3.3 Electro-osmotic permeability

In a similar fashion to LPP, the axial component of
the electro-osmotic permeability LPE is the transversal
averaging of the velocity profile vE = vE(z) solution of
the local problem

μ
d2vE

dz2
= ε̃ ε̃0

d2ϕ

dz2
. (3.26)

After integration, exploring the symmetry at z = 0
along with the no-slip condition at z = H gives

μ
dvE

dz
(z)= ε̃ ε̃0

μ

dϕ

dz
(z); vE(z)= ε̃ ε̃0 (ϕ(z)−ϕ(H)) .

(3.27)

Hence, defining the zeta potential ζ := ϕ(H), we obtain
after averaging

LPE = φ

H

∫ H

0
vE dy = φ ε̃ ε̃0

H μ

∫ H

0
(ϕ(z) − ϕ(H)) dz

= φε̃ ε̃0

μ

(〈ϕ〉l
z − ζ

)
. (3.28)

From Eq. 3.28, one may extract important informa-
tion on the sources of electro-osmosis. The last term
in the RHS involving the ζ -potential is commonly
referred to as Helmholtz–Smoluchowski contribution
and consists of a primary component relating electro-
osmotic permeability to the ζ potential at the parti-
cle surface. This term establishes a direct correlation
between the magnitude of LPE and the EDL poten-
tial and dominates the conductivity for electro-osmotic
flow for large particle distances H >> �D where �D :=(
ε̃ ε̃0 R T/(2F2Cb )

)1/2 is the Debye screening length
(Hunter [35]). The secondary contribution involving
the averaged EDL potential stems from the overlap-
ping between adjacent EDLs and becomes relevant
when H = O(�D). This component acts to decrease
the electro-osmotic permeability and has been incorpo-
rated in Smoluchowski’s formula by means of a correc-
tion factor (see Hunter [34], Szymczyk et al. [67]).

When the thickness of the EDL is small compared to
the interlayer spacing H, the Smoluchowski model for
LPE is recovered from Eq. 3.28 (Hunter [34], Coelho
et al. [15], Shang [62]). Denoting {L∞

PE, ζ∞, ϕ∞} the
values of {LPE, ζ, ϕ} under the thin double layer as-
sumption (H � �D) the Smoluchowski’s formula reads

L∞
PE = −φε̃ε̃0ζ

∞

μ
. (3.29)

It is worth noting that by solving the Poisson–
Boltzmann (Eq. 3.15) for ϕ∞, parameterized by the
bulk concentration considering noninteracting adjacent
EDls using the definition ζ∞ := RT F−1ϕ∞(z = ±H),
one may easily build-up the constitutive laws ζ∞ =
ζ∞(Cb ) and L∞

PE = L∞
PE(Cb ).

3.3.4 Chemico-osmotic permeability

The axial component of the chemico-osmotic perme-
ability KC := RT LPC/Cb is the transversal averaging
of the velocity vC solution of

μ
d2vC

dz2
= −2 R T (cosh ϕ − 1) , (3.30)

so that

LPC = Cb φ

RT H

∫ H

0
vCdz . (3.31)

In a similar fashion to Smoluchowski’s regime, the as-
ymptotic model of thin EDLs for the chemico-osmotic
permeability can also be derived (Derjaguin [19] and
Prieve et al. [55]) (Moyne and Murad [50]). Such
derivation is presented in details in the Appendix. The
asymptotic result reads as

L∞
PC = −4Cb�2

Dφ

μ
ln

(
1 − tanh2

(
ζ

∞

4

))

= 8Cb�2
Dφ

μ
ln

(
cosh

(
ζ

∞

4

))
for �D << H .

(3.32)

where ζ := ϕ(H) is the dimensionless zeta potential.
The above formula is consistent with the results ob-
tained by Prieve et al. [55] and Moyne and Murad
[50] relating fluid velocity with the ζ -potential consid-
ering flow near an infinite surface charged particle with
thin EDLs.

3.3.5 Onsager’s matrix

We now complete the derivation of the nanoscopic
representations of the set of Onsager’s coefficients LI J .
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To this end we begin by recalling the two-scale rep-
resentation of Darcy’s law. Integrating Eq. 3.23 in the
transversal direction z and using Eqs. 3.25, 3.28, and
3.31, we have

vD := 〈v〉z = − LPP
∂ Pb

∂y
− LPC RT

∂ ln Cb

∂y

− LPE
∂	b

∂y

with

LPP = φH2

3μ
; LPC = Cb φ

RT
〈vC〉l

z;

LPE = φ ε̃ ε̃0

μ

(〈ϕ〉l
z − ζ

)
(3.33)

In the parallel particle arrangement, the axial diffusive
flux of ions Jd and electric current Ie (denoted without
boldface) are given by Jd = J+ + J− − 2 Cb vD and Ie =
F(J+ − J−). Inserting the local velocity decomposition
Eq. 3.23 in Eq. 3.12 and using Eq. 3.33, we obtain after
averaging

Jd = −LCP
∂ Pb

∂y
− LCC RT

∂ ln Cb

∂y
− LCE

∂	b

∂y

Ie = −LEP
∂ Pb

∂y
− LEC RT

∂ ln Cb

∂y
− LEE

∂	b

∂y
(3.34)

where the axial components LI J (I=C,E and J=P,C,E)
of the Onsager’s coefficients are given as

LCP = 2Cb 〈(cosh ϕ − 1)vP〉z;

LCC = Cb

RT

(
2Cb 〈(cosh ϕ − 1)vC〉z + φ D∗

)

LEP = −2FCb 〈sinh ϕ vP〉z;

LCE = FCb

RT

(
2〈(cosh ϕ − 1)vE〉z + φ�∗

)

LEC = FCb

RT

(
−2Cb 〈sinh ϕ vC〉z + φ �∗

)
;

LEE = F2 Cb

RT

(
−2〈sinh ϕ vE〉z + φD∗

)
(3.35)

with D∗ := 〈D+ exp(−ϕ) + D− exp(ϕ)〉l
z and �∗ :=

〈D+ exp(−ϕ) − D− exp(ϕ)〉l
z. By further manipulating

the closure problems for the Onsager’s coefficients

in the parallel particle arrangement, one may show
symmetry of the Onsager’s matrix LI J = LJI [49].

3.3.6 Swelling stress tensor

To complete the two-scale model in the parallel parti-
cle arrangement, it remains to provide the nanoscopic
representation for the swelling stress tensor �, which
appears in the modified Terzaghi’s decomposition
Eq. 2.22. As mentioned before, � plays the role of a
tensorial generalization of the swelling pressure for a
nanostructure composed of randomly oriented particles
[47, 48, 53]. For stratified nanostructures of parallel
particles, the scalar component of � normal to the
particle surface is the swelling pressure � measured
by Low [44] in a classical reverse osmosis experiment
(see [47, 48, 53] for details). The swelling pressure
may also be regarded as the intrinsic averaging of
the nanoscopic disjoining pressure �d introduced by
Derjaguin et al. [18]. In a similar fashion to �, the
electrostatic component of �d is locally defined as the
normal projection of the tensor �d in Eq. 3.10 to
the clay surface, i.e., �d = �dn · n.

Recalling the representation {0, E} of the EDL
electric field in the stratified arrangement, by invok-
ing definition Eq. 3.8, the component of τM nor-
mal to the clay surface is τM := τMn · n = ε̃ε̃0 E2/2 =
ε̃ε̃0(dϕ/dz)2/2. Thus, using Eq. 3.16 in Eq. 3.10, by de-
finition, the disjoining pressure is given by (Derjaguin
et al. [18], Dahnert and Huster [17])

�d : = �dn · n = π� − τM

= 2R TCb (cosh ϕ − 1) − ε̃ε̃0 R2T2

2F2

(
dϕ

dz

)2

= 2RTCb
(
cosh ϕ0 − 1

)
. (3.36)

The above result is consistent with the EDL theory [35]
and shows �d constant in the nanopore space, given
only by the EDL potential ϕ0 in the middle of the
interlayer spacing. The swelling pressure � is nothing
but the transversal averaging of the disjoining pressure
in the direction normal to the particles. Because �d

does not vary with z, we have

� := �n · n = 〈�dn · n〉l
z = 〈�d〉l

z = �d (3.37)

which shows � also given by Eq. 3.36. Unlike the dis-
joining pressure, the tangential component of � varies
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strongly with the local coordinate and gives rise to the
interfacial tension of the electrolyte solution and to
anisotropy of the stress tensor of the electrolyte solu-
tion [50]. Because the component does not produce any
disjoining stress upon the solid particles, for simplicity,
hereafter, we neglect this effect and adopt the repre-
sentation � = �n ⊗ n. For a general representation of
� in randomly oriented particles including off-diagonal
components, we refer to Moyne and Murad [47, 49] and
Murad and Moyne [53].

3.4 Summary of the two-scale model for parallel
particle arrangement

We are now ready to formulate the two-scale model
for the clay aggregates composed of parallel particles
of face-to-face contact. Recall that we have postulated
a given averaged elastic modulus C with components
calculated by the well-known micromechanics of linear
elasticity (see, e.g., Sanchez-Palencia [59]).

Let �s ⊂ Rn (1 ≤ n ≤ 3) with smooth boundary � be
the microscopic domain occupied by a clay cluster com-
posed of parallel particles and let n and t be the unitary
vectors normal and parallel to the particles within the
cluster. The two-scale model consists in finding the mi-
croscopic variables {σ t, u, vD, Jt, Jd, Ie, Pb , Cb , 	b , φ}
satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ t = 0

σ t = −Pb I + CE(u) − �

∇· vD + ∇ · ∂u
∂t

= 0

∂φ

∂t
= (1 − φ)∇ · ∂u

∂t

∂

∂t

(
φGcCb

)+ ∇ · Jt − φGcCb∇· vD = 0

Jt = Jd + 2Cb vD

∇ · Ie = 0 in �s

vD = −LPP∇ Pb − RT LPC∇ ln Cb − LPE∇	b

Jd = −LCP∇Pb − RT LCC∇ ln Cb − LCE∇	b

Ie = −LEP∇Pb − RT LEC∇ ln Cb − LEE∇	b

(3.38)

where the swelling stress tensor � and the Onsager’s
coefficients {LI J(I, J = P, C, E) are represented as
� = �n ⊗ n and LI J = LI J t ⊗ t, with the correspond-

ing scalars {�, LI J} and the retardation EDL parame-
ter Gc admitting the nanoscopic representations in the
subdomain Zl of the unit cell Z

Gc =2〈cosh ϕ〉l
z; �=2R TCb (cosh ϕ0−1)

LPP = φH2

3μ
; LPC = φCb

RT
〈vC〉l

z; LPE = φε̃ ε̃0

μ

(〈ϕ〉l
z−ζ

)
LCP =2Cb 〈(cosh ϕ −1)vP〉z;
LCC = Cb

RT

(
2Cb 〈(cosh ϕ − 1)vC〉z + φ D∗

)

LEP = −2FCb 〈sinh ϕ vP〉z;
LCE = FCb

RT

(
2〈(cosh ϕ − 1)vE〉z + φ�∗

)

LEC = FCb

RT

(
−2Cb 〈sinh ϕ vC〉z + φ �∗

)
;

LEE = F2Cb

RT

(
−2〈sinh ϕ vE〉z + φD∗

)
. (3.39)

In the above nanoscopic representations, 2H and 2δ

denote the interlayer spacing and particle thickness,
φ = H/(H + δ), the intracluster porosity, ϕ := Fϕ/RT
the dimensionless EDL potential, ζ = ϕ(z = H) the
zeta potential, and ϕ0 = ϕ(z = 0) the EDL potential in
the middle of the interlayer spacing. The set of local
variables {ϕ, vP, vE, vC} satisfy the Poisson–Boltzmann
problem Eq. 3.15 and the Stokes type flows Eqs. 3.24,
3.26, and 3.30. Finally, the EDL dependent diffusiv-
ities are defined as D∗ := 〈D+ exp(−ϕ) + D− exp(ϕ)〉l

z
and �∗ := 〈D+ exp(−ϕ) − D− exp(ϕ)〉l

z, with D± as the
molecular binary water-ions diffusion coefficients.

From the Poisson–Boltzmann problem (3.15), the
averaged EDL potential along with the pair {Gc, �}
depend on {Cb , φ}. Moreover, by invoking the above
local representations for the axial components of the
Onsagers coefficients and the local Stokes flows for
the characteristic fluid velocities {vP, vE, vC}, we ob-
tain the same constitutive dependence of the Onsager
parameters LI J = LI J(φ, Cb ). It should be noted that,
though the solid particles undergo small strains, if the
local cell geometry induced by the deformation varies
homothetically preserving symmetry (which is the case
of parallel particles), by choosing the reference config-
uration of the solid equal to the current one, we may
compute the constitutive dependence of the effective
coefficients on a large range of intracluster porosities.
Hence, we are constrained by the small strain assump-
tion to construct locally the aforementioned constitu-
tive laws.

Finally, after solving the two-scale formulation for
the hidden bulk variables {Pb , Cb , 	b }, the averaged
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total electric potential �∗, ion concentrations C±, and
fluid thermodynamic pressure Pl can be recovered
within a postprocessing approach considering Eqs. 2.14,
2.17, and 2.21.

4 Microscopic coupling between clay clusters
and micropores

We shall henceforth discuss the up-scaling of the two-
scale model to the macroscale and the derivation of the
three-scale model of dual-porosity type. To this end,
we begin by establishing the coupled cluster/micropore
model at the microscale.

4.1 Hydrodynamics and transport in the micropores

The aforementioned two-scale model governs the be-
havior of the clay aggregates in �s. In addition, let
� f be the micropore domain occupied by an aqueous
incompressible Newtonian bulk solution containing the
same monovalent ionic species with concentrations de-
noted by C±

f . Like the hydrodynamics of the electrolyte
solution, the movement of the bulk fluid is assumed
slow so that inertial, convective, and gravity effects
are omitted. Owing to the coarser structure of the
larger-sized micropores, we adopt the thin double layer
assumption where the thickness of the EDL around
the clusters is considered small compared to a charac-
teristic length scale of the micropores �f . Under this
assumption, the action of the thin EDLs is restricted
to the vicinity of the cluster/micropore interface, where
it enforces slip boundary conditions in the tangential
velocity of the liquid and screens the effective surface
charge density, i.e., (σ = 0) on �f s. In addition, we
neglect hydrodynamic dispersion effects, which entail
the dependence of the diffusion coefficients on fluid
velocity. Consequently, the only mechanisms governing
the spreading of solutes in the bulk fluid are Fickian
molecular diffusion and electromigration.

Let �f be the total microscopic electric potential
and 	 f the streaming potential of the bulk fluid.
Adopting the Debye’s length �D as the typical char-
acteristic measure of the EDL thickness, under the
assumption � f � �D, the order of magnitude of
the left-hand side of the Poisson problem (3.3) is
� f ≈ O(�f /�

2
f ) ≈ 0, which also implies in negligi-

ble RHS. Whence, the Poisson problem is naturally
fulfilled with q f := F

(
C+

f − C−
f

) = 0. Because qf =
−FCf sinh ϕ f where RT F−1ϕ f := �f − 	f , this further
implies ϕ f = 0, �f = 	f , and C+

f = C−
f = Cf , showing

that the electroneutrality condition Eq. 3.5 is satisfied
pointwisely. Whence, up to a boundary layer in the

vicinity of the clusters, the bulk medium is charac-
terized by local equality between co- and counterion
concentrations.

Let {Pf , Vf , σ f , Jf , If } be the pressure, velocity,
stress tensor, overall flux of species and electric cur-
rent in the bulk fluid and let μ+

f = μ−
f = μf = μ± ±

F 	f + R T ln Cf be the electrochemical potential of
the monovalent species given by Eq. 2.10 at equilibrium
conditions.

Recalling that qf = 0, the model in � f reduces to the
classical Stokes flow coupled with mass conservation of
the ions with absence of EDL effects. Setting φ = 1 (the
micropores are totally open) along with q∗ = τM = ϕ =
0, G+ = G− = Gc/2 = 1, v = Vf , Jf = J+

f + J−
f , and

D±
� = D± in Eqs. 3.7, 3.12 (added and subtracted over

cations and anions), and (3.14), we obtain

∇ · σ f = 0

σ f = −Pf I + 2μE(V f ) in � f (4.1)

∇ · V f = 0

2
∂Cf

∂t
+ ∇ · Jf = 0 (4.2)

Jf = 2 Cf V f + Jf d (4.3)

Jf d := −D f ∇C f − � f C f ∇	 f (4.4)

∇ · I f = 0 (4.5)

I f = −F
(
� f ∇C f + Df Cf ∇	 f

)
(4.6)

where Df := D+ + D−, �f := D+ − D−, and 	f :=
F	 f /RT. It should be noted that the diffusivities D+
and D− are the same nanoscopic coefficients that ap-
pear in Eq. 3.11. Unlike the homogenized diffusivities
D± in Eq. 2.20, which vary strongly with the EDL
potential, the pair {Df , �f } is a pure binary water-solute
property independent of ϕ.

In terms of {Vf , Pf , Cf , 	f }, the above system can be
rewritten in the form

μVf − ∇Pf = 0

∇ · Vf = 0 in � f

2
∂Cf

∂t
+2∇ · (Cf Vf )=∇ · (D f ∇Cf +� f C f ∇	f

)
(4.7)

∇ · (�f ∇Cf + Df Cf ∇	f
) = 0 (4.8)

4.2 Boundary conditions

The aforementioned microscopic equations are sup-
plemented by boundary conditions on the cluster/
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Fig. 4 Thin EDL surrounding each cluster responsible for the
slip in the tangential component of fluid velocity

micropore interface �f s and initial data. To match
conditions on �f s, we enforce continuity of the elec-
trochemical potentials and the normal component of
fluxes and stresses. Furthermore, we postulate an elec-
trochemical slip in the velocity of the fluid tangential to
the interface owing to the friction induced by the thin
EDLs around the clusters (Fig. 4) (see, e.g., Edwards
[26] Squiries and Bazant [65]).

4.2.1 Continuous interface conditions

Let N be the unit normal exterior to �s and Vf s :=
V f − ∂u/∂t the velocity of the fluid in the micropores
relative to the solid phase at the interface. Continuity of
the normal component of the diffusive Onsager’s fluxes,
electrochemical potentials, and the normal component
of overall and fluid stresses gives

vD · N =Vf s · N, Jf d · N = Jd · N,

Ie · N = If · N (4.9)

σ t N =σ f N, σ f N · N =−Pb ,

μ±
f =μ± on � f s . (4.10)

Recalling that electrochemical potentials are not pri-
mary unknowns in our formulation, we eliminate these
variables through their corresponding constitutive laws.
Thus, the last condition in Eq. 4.10 is rewritten in terms
of bulk concentrations and electric potentials. Together
with the equality μ± = μb±, this yields

±F	b + RT ln Cb = ±F	f + RT ln Cf .

Adding the above results over cations and anions, we
obtain

Cb = Cf , 	b = 	f on � f s (4.11)

which shows continuity of the potentials for chemico-
and electro-osmotic flows. An alternative form of rep-
resenting continuity of the solute flux at the interface is
in terms of conservation of the total ion flux relative to
the movement of the solid. This form can be obtained
by multiplying Eq. 4.9a by 2Cb adding to Eq. 4.9b,
using the interface condition Eq. 4.11a along with the
constitutive laws Eqs. 2.23 and 4.3. This yields

(Jd + 2vDCb ) · N = = (Jf d + 2Cf Vf s
) · N

=
(

J f −2Cf
∂u
∂t

)
·N on �f s

(4.12)

4.2.2 Liquid slippage

The presence of the thin EDL around the clusters
gives rise to a boundary layer with thickness of O(�D)

considered small compared to the characteristic length
scale of the micropores � f . In this context, the shape of
the velocity profiles shows a sharp layer in the vicin-
ity of the solid particles where the chemico-osmotic
and electro-osmotic tangential velocities exhibit high
gradients in contrast with flat profiles away from the
surface [6, 50]. Following Edwards [26], we postulate
that the electrochemical component of the velocity av-
eraged over the thin EDL thickness around the clusters,
herein denoted by Vmatch, governs the jump in the fluid
tangential velocities across the boundary. Whence the
boundary layer is replaced by the following averaged
slip condition in the tangential fluid velocities

(Vf s − vD) · τ = Vmatch on � f s (4.13)

where τ is the unit tangent vector to the boundary
and Vmatch stems from the transversal averaging of the
electro- and chemico-osmotic surface flows over the
EDL thickness around �f s (Fig. 4). By decomposing
the RHS into its chemico- and electro-osmotic compo-
nents, we have

Vmatch = VC
match + VE

match . (4.14)

To derive the constitutive laws for the terms in the
RHS, we postulate each component given by the
transversal averaging of the one-dimensional velocities
profiles in Eqs. 3.26 and 3.30 over the EDL thickness
around the clusters. This gives a Darcy-type surface
flow driven by concentration and electric potentials tan-
gential gradients. Because the characteristic length of
the micropores is much larger than the EDL thickness,
one can make use of the asymptotic results for the
electro-osmotic and chemico-osmotic conductivities in
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Eqs. 3.29 and 3.32 under the regime of thin EDLs.
Recalling that the micropores are totally open, we have

VE
match = −L∞

PE∇	f · τ with L∞
PE := ε̃ ε̃0 ζ∞

μ
,

VC
match = − RT L∞

PC

Cf
∇Cf · τ with

L∞
PC := 8 Cf �

2
D

μ
ln

(
cosh

(
ζ

∞

4

))
.

which, when combined with Eq. 4.14, yields

Vmatch =−
(

L∞
PE∇	f + RT L∞

PC

Cf
∇Cf

)
· τ on �f s .

(4.15)

Finally, assuming initially an incompressible response
of the clay clusters, a given nanoporosity φ, and the
equality between bulk concentration in the micropores
and clusters, the initial conditions are

Cf = Cb = C; ∇ · u = 0 φ = φ t = 0, .

5 Dual-porosity model derived by homogenization

The microscale interactions between aggregates and
micropores are still fine structure phenomena that must
be homogenized. We then up-scale to the macroscale
using the homogenization procedure. In this frame-
work, the swelling medium is idealized as a bounded
domain with periodic structure. To deal with the micro-
and macrostructures separately, we follow the general
framework of Sanchez-Palencia [59] and introduce the
microscopic characteristic length-scale � of O(�f ), for
which microscopic heterogeneities are relevant, and the
macroscopic length-scale (L) of resolution size of the
window of observation for which heterogeneities are
invisible. Defining the ratio ε := l/L as the perturba-
tion parameter inherent to the homogenization proce-
dure, we make use of the scale-separation assumption,
wherein l is much smaller than L so that ε << 1. We
then consider the perturbed domain �ε reconstructed
from a spatially repeated microcell Yε . Likewise, the
subdomains �ε

f and �ε
s along with the interface �ε

f s
are formed by the union of Yε

f and Yε
s cell domains

and ∂Yε
f s interfaces, respectively. Each cell Yε is con-

gruent to a unitary parallelepiped period Y composed
of subdomains Ys and Yf occupied by the aggregates
and micropores, respectively, along with the interface
∂Yf s (Fig. 5). Our starting point ε = 1 corresponds to
our microscopic model. The ε-model in �ε consists of

Fig. 5 Microscopic arrangement composed of a periodic cell (Y)

composed of subdomains occupied by the clay clusters (Ys) and
micropores (Yf )

properly scaled equations on the lattice of copies Yε .
The basic problem is to investigate the asymptotics of
the solution as ε → 0 and obtain the homogenized limit
as the scale of the inhomogeneity tends to zero.

In our subsequent development, we make use of
the classical spatial- and time-averaging theorems. De-
noting f ε and gε as general scalar and vectorial func-
tions defined in Yε and considering the velocity of the
cluster/micropore interface given by ∂uε/∂t, we have
[64, 71]

∂

∂t

(
1

|Yε |
∫

Yε

f εdY
)

= 1

|Yε |
∫

Yε

∂ f ε

∂t
dy

+ 1

|Yε |
∫

∂Yε
f s

f ε ∂uε

∂t
· N d�

∇ ·
(

1

|Yε |
∫

Yε

gεdY
)

= 1

|Yε |
∫

Yε

∇ · gεdY

− 1

|Yε |
∫

∂Yε
f s

gε · N d� . (5.1)

5.1 Scaling analysis of the microscopic model

To describe the physics correctly, the coefficients of the
microscopic model must be properly scaled. From the
well-established homogenization of the Stokes prob-
lem, the viscosity μ of the bulk fluid is rescaled by
ε2 (Auriault [7], Sanchez-Palencia [59]). Furthermore,
denoting vref and Dref as reference values of velocity
and diffusion coefficient of the bulk solution, we define
the macroscopic Peclet number PeL := vref L/Dref as



Comput Geosci (2008) 12:47–82 67

the dimensionless parameter whose magnitude quanti-
fies the ratio between convective and diffusive effects.
Assume these are of the same order of magnitude
so that PeL = O(1). Furthermore, to control the clus-
ter/micropore fluxes within a fixed volume as ε → 0, it
is also necessary to rescale the Onsager’s coefficients
{Lε

I J, I, J = P, C, E}. Following Arbogast and cowork-
ers [2, 4] and Douglas and Arbogast [24], within the
context of rigid fractured media, this is properly accom-
plished adopting the scaling Lε

I J of O(ε2). The square of
the perturbation parameter plays the role of turning the
aggregates progressively less permeable and diffusive
as ε → 0 and consequently prevents the degeneration
of the cluster/micropore mass transfer as ε → 0 (see
[2, 24] for details). Making use of these scaling argu-
ments, we rewrite Onsager’s reciprocity relations along
with the momentum and constitutive law for the bulk
fluid in the form

vε
D = −ε2

(
Lε

PP∇ Pε
b + Lε

PC RT∇ ln Cε
b + Lε

PE∇ 	ε
f

)

Jε
d = −ε2

(
Lε

CP∇Pε
b + Lε

CC RT∇ ln Cε
b + Lε

CE∇	ε
f

)

Iε
e = −ε2

(
Lε

EP∇Pε
b + Lε

EC RT∇ ln Cε
b + Lε

EE∇	ε
f

)

and

ε2μVε
f − ∇Pε

f = 0

σ ε
f = −Pε

f I + 2 ε2 μE
(

V ε
f

)
. (5.2)

We also consider the scaling analysis of the aver-
aging relations Eq. 5.1. Recalling that the ratio be-
tween volume and area of the periodic cell scales with
O(ε3)/O(ε2), we have |Yε |/|∂Yε

f s| of O(ε). Thus, con-
sidering the transformation of the integration domain
to the reference unit cell Y, we have

∂

∂t

(
1

|Y|
∫

Y
f εdY

)
= 1

|Y|
∫

Y

∂ f ε

∂t
dY

+ 1

ε |Y|
∫

∂Y f s

f ε ∂uε

∂t
· N d� (5.3)

∇ ·
(

1

|Y|
∫

Y
gεdY

)
= 1

|Y|
∫

Y
∇ · gεdY

− 1

ε |Y|
∫

∂Y f s

gε · N d� . (5.4)

5.2 Matched asymptotic expansions

The formal homogenization procedure is accomplished
by considering every property depending on both
global and local length scales in the form f = f (x, y),
with x and y denoting the macroscopic and microscopic
coordinates, respectively. By a straightforward appli-
cation of the chain rule to a function f = f (x, y) with
y = x/ε, the differential operator ∇ is replaced by ∇x +
ε−1∇y. Postulate two-scale asymptotic expansions for
the set νε of unknowns {σ t, σ e, u, φ, vD, Pb , Cb , 	b , Jt,

Jd, Ie, Vmatch} and {σ f , Pf , Cf , 	f , V f , Jf , Jf d, If } in
terms of the perturbation parameter ε

νε = ν0 + ε ν1 + ε2ν2 + ... (5.5)

with the coefficients νi, Y periodic in y. Insert the
expansions Eq. 5.5 into the set of microscopic governing
equations with the differential operator ∂/∂x replaced
by ∂/∂x + ε−1∂/∂y. After a formal matching of the suc-
cessive powers of ε, we obtain a recursive system of
equations. For the bulk fluid in the micropore system,
the different orders of perturbation read as follows:

σ0
f = −P0

f I, ∇y · σ0
f = −∇y P0

f = 0,

∇x · σ0
f + ∇y · σ1

f = 0 (5.6)

μyyV0
f − ∇y P1

f − ∇x P0
f = 0, ∇y · V0

f = 0,

∇x · V0
f + ∇y · V1

f = 0 (5.7)

∇y·
(
Df ∇yC0

f + � f C0
f ∇y	

0
f

)
= 0,

∇y·
[
�f ∇yC0

f + Df C0
f ∇y 	

0
f

]
= 0 (5.8)

∇y ·
(

2C0
f V0

f − D f

(
∇xC0

f + ∇yC1
f

)

− � f C0
f

(
∇x	

0
f + ∇y	

1
f

))

− ∇x ·
(
Df ∇yC0

f + � f C0
f ∇y	

0
f

)
= 0; (5.9)

J0
f d =−Df

(
∇xC0

f + ∇yC1
f

)
−� f C0

f

(
∇x	

0
f + ∇y	

1
f

)
,

∇x · I0
f + ∇y · I1

f = 0 (5.10)

∇y ·
[
� f

(
∇xC0

f + ∇yC1
f

)
+ Df C0

f

(
∇x	

0
f + ∇y	

1
f

)]

+ ∇x ·
(
� f ∇yC0

f + C0
f D f ∇y	

0
f

)
= 0 (5.11)
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I0
f = −F

[
� f
(∇xC0

f + ∇yC1
f

)

+ C0
f Df

(
∇x	

0
f + ∇y	

1
f

) ]
. (5.12)

2
∂C0

f

∂t
+ ∇x·

(
2C0

f V0
f + J0

f d

)

+ ∇y·
(

2
(
Cf Vf

)1 + J1
f d

)
= 0 . (5.13)

In addition, let ϕ0 = ϕ0(C0
b , φ0) be the solution of the

Poisson–Boltzmann Eq. 3.15 problem with Cb replaced
by C0

b and let {v0
E, v0

C} satisfying the flow problems
Eqs. 3.26 and 3.30 with ϕ replaced by ϕ0. Denot-
ing {L0

I J, G0
c, �

0} as the ε0 order of the correspond-
ing coefficients depending in a nonlinear fashion on
{C0

b , φ0} through the nanoscopic closure problems in
Eq. 3.39, (with {ϕ, vE, vC} replaced by {ϕ0, v0

E, v0
C}), the

set of perturbed equations for the clay clusters (3.38)
reads as

∇y·
(
CE y

(
u0
)) = 0, ∇y·σ 0

t = 0,

∇x·σ 0
t + ∇y·σ 1

t = 0 (5.14)

σ 0
t =−P0

b I+σ 0
e −�0, σ 0

e =C
[
Ex
(
u0
)+E y

(
u1
)]

(5.15)

v0
D =0, J0

d =0, I0
e =0 (5.16)

∇y·v1
D+∇y·∂u1

∂t
=−∇x·∂u0

∂t
(5.17)

∂φ0

∂t
=(1−φ0

) (∇x·∂u0

∂t
+∇y·∂u1

∂t

)
−φ1∇y·∂u0

∂t
(5.18)

∂φ0

∂t
+(1−φ0

)∇y·v1
D+φ1∇y·∂u0

∂t
=0 (5.19)

∂

∂t

(
φ0G0

c C0
b

)+∇y·
(
2C0

b v1
D+ J1

d

)

−φ0G0
cC0

b ∇y·v1
D =0, ∇y·I1

e =0 (5.20)

v1
D =−L0

PP∇y P0
b −L0

PC RT∇y ln C0
b −L0

PE∇y	
0
b (5.21)

J1
d =−L0

CP∇y P0
b −L0

CC RT∇y ln C0
b −L0

CE∇y	
0
b (5.22)

I1
e =−L0

EP∇y P0
b −L0

EC RT∇y ln C0
b −L0

EE∇y	
0
b . (5.23)

Furthermore, denoting 〈·〉y ≡ |Y|−1
∫

Yα
·dYα (α = f, s),

the mean value operator over the reference cell Y, the
O(ε0) of the averaging relations Eqs. 5.3 and 5.4, and
the mass balance Eq. 2.26 are given by
〈
∂ f 0

∂t

〉
y
= ∂〈 f 0〉y

∂t
− 1

|Y|
∫

∂Y f s

(
f
∂u
∂t

)1

· Nd� (5.24)

〈∇x · g0+∇y · g1
〉
y = ∇x · 〈g0

〉
y + 1

|Y|
∫

∂Y f s

g1· Nd� .

(5.25)

and

∂

∂t

(
φ0G0

cC0
b

)+ ∇x·J0
t + ∇y·J1

t = 0 (5.26)

with J0
t = φ0G0

cC0
b

∂u0

∂t
and

J1
t = 2C0

b v1
D + J1

d +
(

φGcCb
∂u
∂t

)1

.

Finally, denoting V0
f s :=V0

f −∂u0/∂t, L∞0
PC := L∞

PC(C0
f )

and L∞0
PE := L∞

PE(C0
f ), the different orders of boundary

conditions Eqs. 4.9–4.13 and 4.15 are

V0
f s · N = 0, v1

D · N =
(

V1
f − ∂u1

∂t

)
· N,

V0
f s · τ = V0

match (5.27)

V0
f s · τ = −

[
L∞0

PE

(
∇x	

0
f + ∇y	

1
f

)

+ RT

C 0
f

L∞0
PC

(
∇xC 0

f + ∇yC1
f

)]
· τ (5.28)

CE y
(
u0
)

N =0,
(
σ 1

t −σ1
f

)
N =0,

(
σ 0

e −�0
)

N =0 (5.29)

P0
b = P0

f , C0
b = C0

f , 	0
b = 	0

f (5.30)

(
Df ∇yC0

f + � f C0
f ∇y	

0
f

)
· N = 0,

(
� f ∇yC0

f + Df C0
f ∇y	

0
f

)
· N = 0 (5.31)

[
2C0

f V0
f s − Df

(
∇xC0

f + ∇yC1
f

)

−� f C0
f

(
∇x	

0
f + ∇y	

1
f

)]
· N = 0 (5.32)

[
� f

(
∇xC0

f + ∇yC1
f

)

+ Df C0
f

(
∇x	

0
f + ∇y	

0
f

)]
· N = 0 (5.33)
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J1
d · N = J1

f d · N, I1
e · N = I1

f · N (5.34)

(
J1

d + 2(vDCb )1
) · N =

(
J1

f d + 2(Cf Vf s)
1
)

· N (5.35)

and the initial conditions at O(ε0)

C0
b =C0

f =C; φ0 =φ, ∇x·u0 =∇y·u1 =0, t=0 (5.36)

Next, we formally collect our homogenized results.

5.2.1 Nonoscillatory variables

From Eq. 5.6b, we have P0
f (x, y, t) = P0

f (x, t). Also

note that u0, C0
f and 	

0
f satisfy the Neumann problems

given by Eqs. 5.14a and 5.8 along with boundary condi-
tions Eqs. 5.29a and 5.31, whose solution is u0(x, y, t) =
u0(x, t), C0

f (x, y, t)=C0
f (x, t), and 	

0
f (x, y, t)=	

0
f

(x, t). Hence, our set of nonoscillatory variables
(depending only on (x, t)) is {P0

f , C0
f , 	

0
f , u0}. Further-

more, using the divergence theorem for the last term
in the RHS of Eq. 5.25, we obtain the commuting
property

〈∇x · g0〉y = ∇x · 〈g0〉y . (5.37)

5.2.2 Closure relations for the fluctuations

We begin by deriving the closure problem for C1
f and

	1
f . Recalling that local hydrodynamic dispersion in

the bulk fluid was neglected, the diffusion coefficients
{D f , � f } are constants. Thus, given C0

f = C0
f (x, t) and

	0
f = 	0

f (x, t), combine Eq. 5.9 with Eq. 5.11 and the
local incompressibility constraint Eq. 5.7b to obtain

∇y ·
(
Df ∇yC1

f + �f C0
f ∇y	

1
f

)
= 0,

∇y ·
(
Df C0

f ∇y	
1
f + �f ∇yC1

f

)
= 0

By further manipulating the above result, using bound-
ary conditions Eqs. 5.32, 5.33, and 5.27a, we are left with
the local Neumann problems for {C1

f , 	
1
f }

yyC1
f =0 in Yf(

∇yC1
f +∇xC0

f

)
· N =0

on ∂Y f s .

∣∣∣∣∣∣∣
yy	

1
f =0 in Yf(

∇y	
1
f +∇x	

0
f

)
·N =0

on ∂Y f s .

By linearity, the solution can be represented as

C1
f = f (y) · ∇xC0

f +Ĉ(x, t), 	
1
f = f (y) · ∇x	

0
f +	̂(x, t)

(5.38)

where f is the classical tortuosity vectorial function
satisfying the cell problem

yy f = 0 in Yf(∇y f + I
) ·N = 0 on ∂Y f s . (5.39)

Using Eq. 5.38 in Eqs. 5.10 and 5.12, the averaged flux
of species and electric current are given by

J0
FD := 〈J0

f d〉y = −
(
Def f ∇x C0

f +�ef f C0
f ∇x	

0
f

)
(5.40)

I0
F := 〈I0

f 〉y = −F
(
�ef f ∇x C0

f + Def f C0
f ∇x 	

0
f

)
(5.41)

where Def f := D f 〈I + ∇y f 〉y and

�ef f := � f 〈I + ∇y f 〉y (5.42)

are the macroscopic diffusion coefficients of the species
in the bulk solution. It is worth noting that, in the
absence of hydrodynamic dispersion, f is constant for a
periodic medium. Thus, by invoking the above closure
problem (5.42), Def f and �ef f are also constants.

5.2.3 Overall mass balance of the solutes

We are now ready to derive the overall macroscopic
mass balance of the species. To this end, we begin
by averaging the transport Eqs. 5.26 and 5.20a, use
Eqs. 5.24 and 5.25 with { f, g} = {2Cf , 2Cf Vf + Jf d}
and {φGcCb , Jt}, respectively. Recalling the nonoscilla-
tory behavior of C0

f , so that 〈C0
f 〉y = n f C0

f , with n f :=
|Yf |/|Y| denoting the macroscopic porosity, we have
(recall that N was chosen outward to Ys)

2
∂

∂t

(
nf C0

f

)
+ ∇x·

(
2C0

f 〈V0
f 〉y + 〈J0

f d〉y

)

= − 1

|Y|
∫

∂Y f s

(
2C0

f Vf s

)1 + J1
f d

)
· N d�

∂

∂t

(〈φ0G0
cC0

b 〉y
)+ ∇x·〈J0

t 〉y

= 1

|Y|
∫

∂Y0
f s

(
2C0

b v1
D + J1

d

) · N d�

By adding the above results, using boundary conditions
Eqs. 5.35 and 5.34a and definition Eq. 5.40, we obtain

∂

∂t

(
2 n f C0

f + 〈φ0 G0
c C0

b

〉
y

)

+ ∇x ·
(

2 C0
f V0

DF +
(

2 n f C0
f + 〈φ0 G0

c C0
b

〉
y

) ∂u0

∂t

)

= −∇x·J0
FD (5.43)
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where V0
DF :=〈V0

f s〉y =〈V0
f 〉y−n f ∂u0/∂t is the Darcian

velocity of the bulk fluid relative to the solid phase.
To express the above result in a more concise form,
introduce the overall macroscopic ion concentration
in both cluster and micropore systems as 2C0

T :=
〈C0

t 〉y with

C0
t :=

{
2C0

f in Yf

φ0
(
C0+ + C0−

) = φ0G0
cC0

b in Ys
(5.44)

so that

2C0
T = 2n f C0

f + 〈φ0G0
cC0

b

〉
y . (5.45)

Using the above definition and the constitutive law
Eq. 5.40 in Eq. 5.43, we obtain

2
∂

∂t

(
n f C0

f

)+ ∇x ·
(

2C0
f V0

DF + 2C0
T

∂u0

∂t

)

= −∇x·
(

Def f ∇xC0
f + �ef f C0

f ∇x	
0
f

)

= − ∂

∂t

〈
φ0G0

cC0
b

〉
y . (5.46)

The above result shows a macroscopic convection–
diffusion equation for the concentration of the species
in the bulk solution with an additional source/sink
mass transfer term in the RHS, which quantifies the
interchange of the solutes between micropores and
aggregates. One may clearly observe electrochemical
effects manifested in the mass transfer through the
EDL storativity parameter G0

c . Because G0
c ≥ 2, this

coefficient acts to enhance the adsorption/desorption
process. In the case of nonionic species discussed in
Arbogast [2] and Douglas and Spagnuolo [23], we
have ϕ0 = 0 and G0

c = 2, which shows adsorption solely
due to the existence of the secondary intracluster
porosity φ0.

5.2.4 Macroscopic conservation of charge

The macroscopic equation governing conservation of
charge can be derived in a straightforward fashion. By
averaging the second equations in Eqs. 5.10 and 5.20
using definition Eq. 5.41b for the macroscopic current
and boundary condition Eq. 5.34b, we have

∇x · I0
F = ∇x·

〈
I 0

f

〉
y

= −
〈
∇y·I1

f

〉
y

= 1

|Y|
∫

∂Y f s

I1
f · Nd�

= 1

|Y|
∫

∂Y f s

I1
e · Nd�

= 1

|Y|
∫

Ys

∇y·I1
edY = 0 .

Because the electroneutrality condition precludes
the transient accumulation of electrical charges, like
Eq. 3.14, the above result shows a divergence macro-
scopic free current in the micropores. Together with the
constitutive law Eq. 5.41, the above result gives

∇x ·
(
�ef f ∇xC0

f + C0
f Def f ∇x	

0
f

)
= 0 (5.47)

Let J0
f be the overall convective/diffusive flux of

species in the bulk fluid. Recalling that Def f and �ef f

are constants, by eliminating the term involving the
electric potential in the above result and substituting
back in Eq. 5.46, we obtain the decoupled form of the
homogenized transport equation

∂

∂t

(
n f C0

f

)+ ∇x · J0
f = − ∂

∂t

〈
φ0〈cosh ϕ0〉l

zC0
b

〉
y (5.48)

J 0
f := C0

f V0
DF + C0

T
∂u0

∂t
− D�

ef f ∇xC0
f (5.49)

with the effective diffusivity given by

2D�
ef f := D−1

ef f

(
D2

ef f − �2
ef f

)
(5.50)

Thus, given C0
f solution of Eqs. 5.48 and 5.49, the

component involving this quantity in Eq. 5.47 can be
treated as a source term in a Poisson-type problem for
	

0
f . It is worth noting that, when the difference between

cation and anion diffusivities decreases, D2
ef f >> �2

ef f ,
which implies D�

ef f ≈ Def f /2.

5.2.5 Macroscopic Darcy’s law

To derive the macroscopic form of Darcy’s law for the
movement of the bulk solution in the micropores, we
begin by using the closure relations Eq. 5.38 in the slip
boundary condition Eq. 5.28 to obtain

V0
f s · τ = −

[
L∞0

PE(I + ∇y f )∇x	
0
f

+ RT L∞0
PC

C0
f

(I + ∇y f )∇xC0
f

]
· τ on ∂Y f s .

(5.51)

Thus, given the nonoscillatory potentials {P0
f , C0

f ,

	0
f , u0}, combine the two former equations in Eq. 5.7

with boundary conditions Eq. 5.27a and the above
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result to obtain a local periodic Stokes problem for
{V0

f s, P1
f } with slip boundary condition

μyyV0
f s − ∇y P1

f = ∇x P0
f

∇y · V0
f s = 0 in Yf

V0
f s · N = 0 on ∂Y f s

V0
f s · τ = −

[
L∞0

PE(I + ∇y f )∇x	
0
f

+ (RT)
(

C0
f

)−1
L∞0

PC(I + ∇y f )∇xC0
f

]
· τ

on ∂Y f s (5.52)

To derive Darcy’s law, we decompose the rel-
ative velocity and pressure fluctuation into their
hydraulic, chemico-osmotic and electro-osmotic com-
ponents V0

f s = V0
p + V0

c + V0
e and P1

f = P1
p + P1

c + P1
e .

The pair {V0
p, P1

p} satisfies the classical local Stokes
problem driven only by a macroscopic pressure
gradient

μyyV0
p − ∇y P1

p = ∇x P0
f

∇y·V0
p = 0 in Yf

V0
p = 0 on ∂Y f s (5.53)

whereas the electro- and chemico-osmotic components
satisfy

μyyV0
e −∇y P1

e =0

∇y·V0
e =0, in Yf

V0
e · N =0, V0

e · τ =−L∞0
PE(I+∇y f )∇x	

0
f · τ on ∂Yf s

(5.54)

and

μyyV0
c −∇y P1

c =0

∇y·V0
c =0 in Yf

V0
c · N =0, V0

c ·τ =−RT
(
C0

f

)−1
L∞0

PC

(
I+∇y f

)∇xC0
f · τ

on ∂Y f s (5.55)

Problem Eq. 5.53 for (V0
p, P1

p) is nothing but the
classical closure problem for the hydraulic conductiv-
ity [7, 59]. Following classical superposition arguments
for linear problems, denote {e j}, ( j = 1, 2, 3) as an or-
thonornal basis and define the periodic characteristic

tensorial functions κ p, with vectorial components κ
j
p

( j = 1, 2, 3), and the scalars p̃p
j as the solution of the

canonical problems

μyyκ
j
p − ∇y p̃p

j = −e j

∇y·κ j
p = 0, in Y f j = 1, 2, 3

κ j
p = 0 on ∂Y f s (5.56)

Furthermore, by invoking the closure problem Eq. 5.39
for the tortuosity function f , one may verify that prob-
lems Eqs. 5.54 and 5.55 admit solutions of the type

V0
e = −L∞0

PE(I + ∇y f )∇x	
0
f ,

V0
c = −RT

(
C0

f

)−1
L∞0

PC(I + ∇y f )∇xC0
f ,

P1
j = P1

j(x, t) j = e, c

Exploiting linearity after averaging, we obtain the
modified form of Darcy’s law for the bulk fluid

V0
DF :=

〈
V0

f s

〉
y
=−KP∇x P0

f −KC∇xC0
f −KE∇x	

0
f ,

with KP := 〈κ p〉 and KE := L∞0
PE〈I + ∇y f 〉y,

KC := RT L∞0
PC

C0
f

〈I + ∇y f 〉y. (5.57)

In a similar fashion to its two-scale counterpart in
Eq. 2.25 for overlapping EDLs, the above result shows
(in addition to a pressure gradient) bulk flow driven
by gradients in concentration (chemico-osmosis) and
electric potential (electro-osmosis). On the other hand,
one may observe crucial differences between the two-
and three-scale closure problems for the electro- and
chemico-osmotic conductivities. Unlike the homoge-
nization of the modified Stokes problem (3.6) in the
nanopores with overlapping EDLs, whose homoge-
nized form of Darcy’s law for parallel particles is given
by Eq. 3.33, the solution of the closure problems for
KC and KE is simply given by the corresponding values
for thin double layers L∞0

PC and L∞0
PE modified by the

tortuosity factor ∇y f .

5.2.6 Overall mass balance

We now derive the overall macroscopic mass bal-
ance. By averaging Eqs. 5.7c and 5.17 using boundary



72 Comput Geosci (2008) 12:47–82

condition Eq. 5.27b along with Eq. 5.37, the divergence
theorem, and the periodicity, we get

〈∇x · V0
f 〉y = ∇x·〈V0

f 〉y = −|Y|−1
∫

Yf

∇y · V1
f dY

= |Y|−1
∫

∂Y f s

V1
f · N d�

= |Y|−1
∫

∂Y f s

(
v1

D + ∂u1

∂t

)
· N d�

=
〈
∇y · v1

D + ∇y · ∂u1

∂t

〉
y

= −
〈
∇x ·∂u0

∂t

〉
y

= −∇x ·
〈
∂u0

∂t

〉
y

= −∇x ·
(

(1 − n f )
∂u0

∂t

)
.

In terms of the macroscopic Darcy’s velocity, V0
DF , the

above result can be rewritten as

∇x · ∂u0

∂t
+ ∇x · V0

DF = 0 (5.58)

which shows the same form of the two-scale result
Eq. 2.4. Whence, the overall mass balance for locally
incompressible media that commonly appear in the
governing equations of Poromechanics applies to both
single and double porosity media.

5.2.7 Overall momentum balance

To derive the overall momentum balance, we aver-
age Eqs. 5.14c and 5.6c and use boundary condition
Eq. 5.29b together with the constitutive laws Eqs. 5.6a
and 5.15a to obtain

∇x · 〈σ 0
t

〉
y = ∇x · 〈σ 0

e

〉
y − ∇x

〈
P0

b

〉
y − ∇x · 〈�0

〉
y

= − 1

|Y|
∫

Ys

∇y · σ 1
t dY

= − 1

|Y|
∫

∂Y f s

σ 1
t N d� = − 1

|Y|
∫

∂Y f s

σ1
f N d�

= 1

|Y|
∫

Yf

∇y · σ1
f dY = 〈∇x P f 0〉

y = ∇x

(
n f P0

f

)

where the divergence theorem, periodicity, and
Eq. 5.37 have also been used. Hence, denoting

ns := 1 − n f as the macroscopic volume fraction of the
clusters, we get

∇x ·
[〈

σ 0
e

〉
y − 〈�0

〉
y −
(〈

P0
b

〉
y − (1 − ns)P0

f

)
I
]

= 0

(5.59)

where the macroscopic averaging of the representation
Eqs. 3.36–3.37 for � furnish at O(ε0)

〈
�0
〉
y = 〈�0

〉
y n ⊗ n= 〈�0

d

〉
y n ⊗ n

=2RT
[〈

C0
b cosh ϕ0

〉
y − 〈C0

b

〉
y

]
n ⊗ n . (5.60)

To express Eq. 5.59 in a more compact form, denote P0

as the excess in hidden bulk phase pressure of the clay
clusters relative to its micropore counterpart

P0 : = P0
b − P0

f (x, t) with

〈P0〉y =|Y|−1
∫

Ys

(
P0

b −P0
f

)
dY = 〈P0

b

〉
y − ns P0

f . (5.61)

Making use of the above definitions, we collect the local
microscopic relations in Eqs. 5.14b and 5.15 along with
boundary conditions Eqs. 5.29c and 5.30a to obtain

∇y · (CE y
(
u1
))− ∇y P0 − ∇y · �0 = 0 in Ys

[
C
(
Ex
(
u0
)+ E y

(
u1
))− �0

]
N = 0 on ∂Y f s

P0 = 0 on ∂Y f s .

The above linear coupling between mechanical and
electro-chemical effects suggests an additive decompo-
sition for the fluctuating displacement. We then split u1

in a purely expansive component u1
π , induced by the

transmissibility of �0 between adjacent clusters, and
the remaining poroelastic component u1

e := u1−u1
π as

∇y · (CE y
(
u1

e

))
−∇y P0 = 0 in Ys(

C
(
Ex
(
u0
)

+ E y
(
u1

e

)))
N = 0

P0 = 0 on Y f s

∇y · (CE y
(
u1

π

))
−∇y · �0 = 0 in Ys(

CE y
(
u1

π

)
− �0

)
N = 0 on Y f s.

(5.62)

It should be noted that by invoking the nanoscopic
representation Eqs. 3.36 and 3.37 at O(ε0) for �0, with
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ϕ0 solution of the O(ε0)–Poisson–Boltzmann problem
shows u1

π fully determined by Eq. 5.62b parametrized
by the pair {C0

b .φ0}.
By invoking the constitutive law Eq. 5.15b, the con-

tact stresses inherit the above decomposition. This
suggests the following definitions for the macro-
scopic contact stress tensor σ 0

E and effective swelling
stress �0

ef f

σ 0
E : = 〈C(Ex

(
u0
)+ E y

(
u1

e

)〉
y − 〈P0〉y I,

�0
ef f : = − 〈CE y

(
u1

π

)− �0
〉
y (5.63)

which, when combined with Eq. 5.15, gives 〈σ 0
t 〉y =

ns P0
b I + σ 0

E − �0
ef f . Using the above definitions and

Eq. 5.61 in Eq. 5.59 gives

∇x·σ 0
T = 0, where

σ 0
T : = −P0

f I+σ 0
E − �0

ef f =−n f P0
f I+ 〈σ 0

t

〉
y (5.64)

denotes the overall macroscopic stress tensor. Like
the two-scale result (Eq. 2.22), the above equation
represents the modified Terzaghi’s decomposition at
the macroscale with �0

ef f identified with the upscaled
version of �0 governing the repulsive force between
adjacent clusters. The double micro/nano down-scaling
provided by Eqs. 5.63b, 5.62b, and 5.60 brings new
information on the constitutive behavior of �0

ef f . In
particular, one may observe from Eq. 5.62b that �0

ef f
incorporates two different components arising from the
macroscopic averaging of the EDL contribution �0

and the fluctuation of the electrochemical displacement
u1

π . This latter component captures the transmissibility
of the disjoining stresses between adjacent clusters. It
is worth observing that such transmissibility requires
clusters touching each other; otherwise, the terms in-
volving u1

π and �0 in definition Eq. 5.63b would cancel
out, implying �0

ef f = 0. This fact highlights the essential
feature underlying the survival of swelling stresses in
the three-scale, which strongly relies on the balance
between disjoining and contact forces. The contact be-
tween adjacent clusters leads to the variability of �0

within each cluster and to the consequent appearance
of the term involving the divergence of this quantity in
Eq. 5.62b.

5.2.8 Mass balance of the clusters

To close the system of macroscopic governing equa-
tions, it remains to derive a mass balance for the clay
clusters to compute the evolution of the porosity n f . To
this end, in Eq. 5.24, we select f equal to the macropore
distribution function γ (y) := 1 if y ∈ Yf and γ (y) := 0
if y ∈ Ys. Thus, with f 0 = γ , f 1 = 0, and 〈 f 0〉y = n f ,
using the divergence theorem and the mass balance of
the solid phase Eq. 5.18, we get (recall again that N was
chosen outward to Ys)

∂n f

∂t
= 1

|Y|
∫

∂Y f s

∂u1

∂t
· Nd� =−

〈
∇y·∂u1

∂t

〉
y

= (1 − n f )

(
∇x · ∂u0

∂t
−
〈

1

(1−φ0)

∂φ0

∂t

〉s

y

)
(5.65)

where 〈·〉s
y := |Y−1

s | ∫Ys
· dYs = (1 − n f )〈·〉y denotes the

intrinsic volume averaging over the solid phase. The
above result is the three-scale mass balance of the clay
clusters. Unlike its two-scale counterpart for incom-
pressible particles Eq. 2.5, the RHS describes the defor-
mation of the compressible aggregates by the sum of
two components. The first, involving the divergence
of the displacement, incorporates the deformation
induced by the relative movement of adjacent clusters,
whereas the latter fluctuating component, involving the
intracluster porosity, captures the local consolidation
process within each cluster due to secondary drainage
of the electrolyte solution in the nanopores.

5.3 Summary of the three-scale model
of dual-porosity type

Let C be the elastic modulus of the particles and
let {ϕ0, f , κ p} be the set of variables composed
of the EDL potential and characteristic functions
satisfying Eqs. 3.15, 5.39, and 5.56, respectively.
Furthermore, denote {Ł0

I J, G0
c, �

0} as the microscopic
electrochemical parameters of the clusters satisfying
the cell problems Eq. 3.39 at O(ε0). Finally, let
{Def f , �ef f , D�

ef f , KP, KC, KE, and �0
ef f } be the set

of macroscopic coefficients defined by the closure
relations Eqs. 5.42, 5.50, 5.57, and 5.63b and C0

T the
overall concentration of solutes given by Eq. 5.45.
Application of the formal homogenization procedure
leads to the following dual-porosity model: Find
{u0, σ 0

E, P0
f , C0

f , 	0
f , n f , V0

DF , J0
f , and I0

F} func-
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tions of (x, t) and {P0, u1
e , u1

π , φ0, v1
D, C0

b , 	0
b , I1

e ,
and J1

d} functions of (x, y, t) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇x · σ 0
E − ∇x P0

f − ∇x · �0
ef f = 0

σ 0
E = −〈P0〉y I + C(1 − n f )Ex(u0) + C〈E y

(
u1

e

)〉y

∇x · ∂u0

∂t
+ ∇x · V0

DF = 0

V0
DF =−KP∇x P0

f −KC∇xC0
f −KE∇x	

0
f in �, t>0

∂n f

∂t
−
(

1 − n0
f

)
∇x · ∂u0

∂t
= −

〈
1(

1 − φ0
) ∂φ0

∂t

〉
y

∂

∂t

(
n f C0

f

)
+ ∇x · J0

f = − ∂

∂t

〈
φ0 〈cosh ϕ0〉l

z C0
b

〉
y

∇x · I0
F = 0

J0
f = 2 C0

f V0
DF + C0

T
∂u0

∂t
− D�

ef f ∇xC0
f

I0
F = F

(
�ef f ∇xC0

f + Def f C0
f ∇x	

0
f

)
.

(5.66)

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇y · (CE y
(
u1

e

))− ∇y P0 = 0

∇y · (CE y
(
u1

π

))− ∇y · �0 = 0

∇y · v1
D + ∇y · ∂u1

e

∂t
+ ∇y · ∂u1

π

∂t
= −∇x · ∂u0

∂t
∂φ0

∂t
+ (1 − φ0

)∇y · v1
D = 0 in Ys, t > 0

∂

∂t

(
φ0G0

cC0
b

)+∇y·
(
2 C0

b v1
D+ J1

d

)−φ0G0
cC0

b∇y·v1
D =0

∇y · I1
e = 0

v1
D = −L0

PP∇y P0 − L0
PC RT∇y ln C0

b − L0
PE∇y	

0
b

J1
d = −L0

CP∇y P0 − L0
CC RT∇y ln C0

b − L0
CE∇y	

0
b

I1
e = −L0

EP∇y P0 − L0
EC RT∇y ln C0

b − L0
EE∇y	

0
b

(5.67)

with the following boundary conditions on the clus-
ter/micropore interface and initial conditions⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−CE y
(
u1

e

)
N = CEx

(
u0
)

N
−CE y

(
u1

π

)
N = �0 N, on ∂Y f s

P0 = 0, C0
b = C0

f , 	0
b = 	0

f

∇x · u0 = ∇y · u1 = 0, t = 0 ,

C0
b = C0

f = C, φ = φ, n f = n f , t = 0 ,

(5.68)

along with boundary conditions on the outer frontier
of the macroscopic medium ∂�. It should be noted
that, once P0

f = P0
f (x, t), the hydraulic driving force

∇y P0
b in Onsager’s relations in Eq. 5.67 was replaced

by ∇y P0 = ∇y(Pb − P f ). After solving for P0, the av-
eraged bulk phase pressure of the electrolyte solution
can be computed within the postprocessing approach
〈P0

b 〉y = 〈P0〉y + (1 − n f )P0
f .

The above results show a three-scale model of dual-
porosity type wherein the swelling clay is represented

by three overlaying nano-, micro-, and macrocontinua:
The effective medium is governed by the macroscopic
Eq. 5.66 posed in the domain �. This global system
describes the evolution of a porous medium composed
of micropores occupied by the bulk solution where
macroscopic Darcy’s flow, ion transport, and electric
current take place. This system appears locally coupled
with the microscopic governing equations (5.67) posed
in each cluster domain Ys. Moreover, the microscale
coefficients are represented by local problems posed
in a periodic nanocell Zl with idealized nanogeometry
of parallel particles. The local problems represent the
influence of the micro- and nanostructures upon each
macroscopic location x.

The essential feature underlying the dual-porosity
model is the accurate representation of the adsorp-
tion/desorption of the species by the clay clusters, which
is measured by the source term in the RHS of Eq. 5.46.
Compared to the adsorption of nonionic species, the in-
fluence of electrical effects on adsorption is manifested
through the EDL storativity G0

c . Within our three-scale
portrait of the swelling medium, the computation of this
quantity along with the other effective electrochemical
parameters is accomplished by performing a double
averaging of the electrochemistry of the electrolyte
solution in the nanopores.

Finally, it should be noted that, because the nano-
scale closure problems are stationary, the dual-porosity
model appears ruled by two disparate time scales asso-
ciated with the transient phenomena at micro- and
macroscales. In the context of the modified Green’s
functions technique, it has been shown in Arbogast
[5] that, in the linear case, the simultaneous micro-/
macroequations are equivalent to a single macroscopic
model exhibiting fading memory effects in the effec-
tive constitutive laws. When applied to double poros-
ity poroelastic media, this equivalence shows effective
stresses given by a viscoelastic constitutive law repre-
sented in terms of an hereditary integral with memory
(see Murad et al. [52] and Murad and Cushman [51]).

6 Quasisteady model

We shall henceforth discuss a simplified version of the
dual-porosity model, which is derived assuming that
nonequilibrium phenomena within the clay clusters
occur in a much shorter time scale compared to the
one associated with flow and transport in the micro-
pores. Within this time-scale assumption, we consider
fast transient phenomena in the aggregates so that
they reach equilibrium instantaneously when perturbed
by the thermodynamic processes taking place in the
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micropore system. Under this local equilibrium sce-
nario, microscopic flow and ion transport in the clay
clusters are neglected, and consequently, the time evo-
lution of the clusters is dictated by a sequence of steady
states, each one at local equilibrium with the bulk
solution in the micropores. Whence the nature of the
mass interchange between clusters and micropores re-
duces to that of an instantaneous adsorption/desorption
process. This approach gives rise to the so-called quasi-
steady models, which have been proposed for double-
porosity systems under the assumption of disparity
between the time scales associated with global and
local phenomena [22, 23]. The main feature underlying
a quasisteady model is that the macroscopic system
follows a regular evolution process, whereas local ex-
changes between the two media are regarded station-
ary. A typical example of a system governed by this
reduced model is the fractured media with small-sized
matrix blocks (see Douglas et al. [22]).

In the notation that follows, we adopt the addi-
tional superscript “∞′′ to designate the correspond-
ing variable under the quasisteady approximation.
Within the current context, local equilibrium is en-
forced by neglecting the local variability of the po-
tentials within the clusters by dropping the terms
{∇y P0∞

b , ∇yC0∞
b ∇y, 	

0∞
b } in Eq. 5.67. Together with

the Dirichlet boundary conditions in Eq. 5.68, this as-
sumption enforces the equality with the corresponding
potentials in the micropore system. This yields

P0∞
b (x, y, t) = P0∞

f (x, t); C0∞
b (x, y, t) = C0∞

f (x, t);

	0∞
b (x, y, t) = 	0∞

f (x, t) (6.1)

which, when combined with the reciprocity relations in
Eq. 5.67, implies in the absence of the local Onsager’s
fluxes v1∞

D = J1∞
d = I1∞

e = 0. Thus, under the above as-
sumptions, the convection–diffusion–reaction Eqs. 5.48
and 5.49 reduce to

∂

∂t

(
n∞

f C0∞
f

)
+ ∇x·

(
C0∞

f V0∞
DF + 1

2
C0∞

T
∂u0∞

∂t

)

− ∇x ·
(

D�
ef f ∇xC0∞

f

)
= −1

2

∂

∂t

(〈
φ0∞G0∞

c

〉
yC0∞

f

)

= −1

2

∂

∂t

(〈
φ0∞G0∞

c

〉s
y

(
1 − n∞

f

)
C0∞

f

)

where G0∞
c := 〈cosh ϕ0∞〉l

z with ϕ0∞ satisfying que
quasisteady version of the one-dimensional Poisson–
Boltzmann problem Eq. 3.15 at O(ε0)

ε̃0ε̃
d2ϕ0∞

dz2
= 2FC0∞

f (x, t) sinh ϕ0∞. (6.2)

Defining the sorbed concentration C0∞
S := 0.5 C0∞

f 〈φ0∞

G0∞
c 〉s

y, we obtain the following reactive transport sys-
tem in terms of {C0∞

f , C0∞
S }

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂t

(
n∞

f C0∞
f

)
+ ∇x ·

(
C0∞

f V0∞
DF + C0∞

T
∂u0∞

∂t

)

−∇x ·
(

D�
ef f ∇xC0∞

f

)
= − ∂

∂t

(
C0∞

S

(
1 − n∞

f

))
C0∞

S = KdC0∞
f

where

Kd : = 1

2

〈
φ0∞G0∞

c

〉s
y =

〈
φ0∞ 〈cosh ϕ0∞〉l

z

〉s
y

=
〈〈

cosh ϕ0∞〉
z

〉s
y

(6.3)

denotes the partition coefficient. Thus, under the qua-
sisteady approximation, the movement of the species
is dictated by a macroscopic convection–diffusion–
reaction equation with an adsorption/desorption source
term, which governs the instantaneous immobilization
of the solutes in the nanopores of the aggregates. The
above system can also be represented in the form

∂

∂t

(
RC0∞

f

)
+ ∇x·

(
C0

f V0
DF + C0∞

T
∂u0∞

∂t

)

= ∇x·
(

D�
ef f ∇xC0∞

f

)

where R designates the retardation factor defined as

R := n∞
f +

(
1 − n∞

f

)
Kd . (6.4)

A notable consequence of our three-scale approach is
the above representations for Kd and R, which provide
new insight in the physics of adsorption/desorption
phenomena in charged clays. The nanoscopic repre-
sentation Eq. 6.3 shows direct correlation between the
magnitude of Kd and the electrochemistry of the elec-
trolyte solution whose electric potential distribution
in the nanopores is ruled by the Poisson–Boltzmann
problem Eq. 6.2. It is worth noting that the quasisteady
model for transport of nonionic species discussed in
Douglas and Spagnuolo [23] can easily be recovered
by dropping the EDL contribution, setting ϕ0∞ = 0 →
G0∞

c = 2. This implies that, in the absence of elec-
trochemical effects, Kd reduces to a purely geometric
quantity defined by the averaging of the secondary
porosity 〈φ0∞〉s

y.
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The quasisteady approximation for flow and trans-
port also implies stationary of the closure problems of
the poromechanics. In fact, using assumption Eq. 6.1a
(P0 = 0) in Eq. 5.62a and exploring linearity yields
the stationary closure relation for the fluctuating
displacement.

u1∞
e (x, y, t) = ξ(y)

[
Ex
(
u0∞(x, t)

)]+ û(x, t) (6.5)

where the third-order tensor ξ satisfies the canonical
cell problem

∇y·(CE y(ξ)) = 0 in Ys (6.6)

(
CE y(ξ)

)
N = −(CI ⊗ I)N on ∂Y f s (6.7)

with I ⊗ I denoting the unity fourth-order tensor with
components δijδkl (here δ designates the Kronecker
delta symbol). Defining the effective elastic modulus

Cef f := 〈C(I ⊗ I + E y(ξ))
〉
y (6.8)

we then have using Eqs. 6.5 and 6.1a in Eq. 5.63

σ 0∞
E = Cef f Ex

(
u0∞) (6.9)

which reproduces the classical linear elastic law for the
contact stress. Furthermore, using Eqs. 5.60 and 6.1b in
Eq. 5.63b, we obtain〈
�0∞〉

y = 〈�0∞〉
y n ⊗ n

= 2RTC0∞
f (x, t)

(
1− n∞

f

) (〈
cosh ϕ0

〉s
y−1

)
n ⊗ n

(6.10)

�0∞
ef f = −C〈E y(u1∞

π )〉y

+2RTC0∞
f (1 − n∞

f )(〈cosh ϕ0〉s
y − 1)n ⊗ n .

(6.11)

By eliminating σ 0∞
E and �0∞

ef f through their constitutive
laws in Eqs. 6.9 and 6.11, the quasisteady version of
Terzaghi’s decomposition Eq. 5.64 reads

σ 0∞
T = − P0∞

f I + Cef f Ex
(
u0∞)+ C

〈
E y
(
u1∞

π

)〉
y

− 2C0∞
f RT

(
1 − n∞

f

) (〈
cosh ϕ0

〉s
y − 1

)
n ⊗ n

(6.12)

It is worth noting that, unlike the fully transient case
(Eq. 5.64), where the appearance of the secondary
time scale gives rise to a viscoelastic behavior for the
effective stresses [52], the above quasisteady form of
Terzaghi’s decomposition is ruled by a single macro-
scopic time scale showing absence of fading memory
effects.

Finally, we derive the steady form of the mass
balance of the clay clusters Eq. 5.65. Using the sta-
tionary closure Eq. 6.5 in the mass balance Eq. 5.65
and defining

β := 〈∇y · ξ 〉y, γπ := 〈∇y·u1∞
π

〉
y (6.13)

we have

∂n∞
f

∂t
+ β : Ex ·

(
∂u0∞

∂t

)
= −∂γ ∞

π

∂t
. (6.14)

where A : B =∑ij AijBij denotes the classical inner
product between tensors. Note that −β plays the role of
a tensorial generalization of the Biot’s poroelastic bulk
modulus Qn f /R = α − n f (Biot [11]), which accounts
for microscopic solid compressibility with α denoting
the Biot–Willis coupling parameter [12]. The above
form shows a typical mass balance for locally com-
pressible aggregates with an additional electrochemical
compressibility, which captures swelling/ shrinking of
the clusters due to the instantaneous mass exchange
with the bulk fluid. Finally, it should be noted that,
for incompressible clusters, we have β = −Qn f /RI =
−(1 − n f )I, α = 1, and γπ = 0.

6.1 Summary of the three-scale quasisteady model

Let ϕ0∞ be the EDL potential satisfying Eq. 6.2 and
{KP, KC, KE, Def f , D�

ef f , �ef f } be the same variables
that appear in Eq. 5.66. Furthermore, let {R, Cef f ,

�0∞
ef f , β.γπ } be the new set of effective coefficients de-

fined by the stationary closure Eqs. 6.4, 6.8, 6.11, and
6.13. The model consists in finding the macroscopic
unknowns (σ 0∞

T , u0∞, P0∞
f , V0∞

DF, n∞
f , C0∞

f ) satisfying
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇x·σ 0∞
T = 0

σ 0∞
T = −P0∞

f I + Cef f Ex
(
u0∞)− �0∞

ef f ,

∇x · ∂u0∞

∂t
+ ∇x · V0∞

DF = 0

V0∞
DF = −KP∇x P0∞

f − KC∇x C0∞
f − KE∇x 	0∞

f

∂n∞
f

∂t
+ β : Ex · ∂u0∞

∂t
= −∂γπ

∂t
∂

∂t

(
RC0∞

f

)
+ ∇x ·

(
C0∞

f V0∞
DF + C0∞

T
∂u0∞

∂t

)

−∇x ·
(

D�
ef f ∇xC0∞

f

)
= 0

∇x ·
(
�ef f ∇xC0∞

f + Def f C0∞
f ∇x	

0∞
f

)
= 0 .

The stationarity of the microscopic closure problems
reflects the absence of relaxation phenomena associ-
ated with secondary flow in the system of clay clusters.
Whence, information available at the microscale is used
to compute the time-independent effective electro-
chemo-mechanical parameters.
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7 Computational of the effective electro-chemical
coefficients

To illustrate the potential of the three-scale approach
in developing constitutive laws for the effective elec-
trochemical parameters of the quasisteady model, in
what follows, we present the numerical solution of
the aforementioned closure problems. For concise-
ness of notation, hereafter, we omit the superscript
′′0∞′′ of the unknowns. For the type of nanostructure
considered herein of parallel particles within each clus-
ter, the integral form of the one-dimensional Poisson–
Boltzmann problem Eq. 3.17 can easily be solved
numerically adopting a well-established change of vari-
ables in conjunction with numerical integration of ellip-
tic integrals. Such discretization procedure is presented
in details in Moyne and Murad [50] and is omitted
here for convenience. In the subsequent numerical
simulations, we adopt the following values for the in-
put data: σ = −0.2 Cm−2, R = 8.314, F = 96490, T =
293K, ε̃ = 8.854 × 10−12, ε̃0 = 80.

We begin by displaying the nanoscopic EDL po-
tential profile parametrized by Cf and H� := H/�D.
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Fig. 6 Local electric potential and electric field distributions:
a H/LD = 0.1 and Cf = 2.32 × 10−4mol/l; b H/LD = 1.0 and
Cf = 2.32 × 10−2mol/l
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Fig. 7 Dependence of the partition coefficient on Cf for different
values of the intracluster porosity φ

Denoting z∗ = z/H and E := FEH/RT a dimension-
less electric field, the plots ϕ = ϕ(z∗) and E = E(z∗) are
depicted in Fig. 6 for two values of Cf and H�. The
ticks in the left and right margins show the range of
values of ϕ and E, respectively. As expected, in the line
of symmetry (z∗ = 0), ϕ attains maximum value and
decreases negatively in a symmetric fashion toward the
location of the particles z∗ = ±1. Owing to symmetry,
the electric field vanishes at z∗ = 0 and behaves in a
skew symmetric fashion with z∗.

The local distribution ϕ = ϕ(z∗) is then used as input
data in the numerical solution of the closure problems
for the effective coefficients. By invoking the repre-
sentation (6.3) for Kd, for each pair {Cb , φ}, the av-
erage of the hyperbolic cosine of the EDL potential
in the transversal direction furnishes the constitutive
law Kd = Kd(Cf , φ). Figure 7 displays the logarithm
of the partition coefficient Kd divided by the intra-
cluster porosity φ vs Cf for different values of φ. As
EDL effects are more pronounced for low values of
Cf and φ, this range is characterized by high values
of Kd/φ, which decrease asymptotically in a nearly
linear fashion to the unity (Gc = 2 and Kd = φ) at high
salinity wherein EDL effects are absent. The nearly
linear behavior of ln Kd with Cf suggests a power law fit
Kd = O(C−α

f ) (for fixed φ) with the exponent 0 ≤ α ≤ 1
depending on Cf . To characterize more precisely the
dependence α = α(Cf ), we invoke the relation CS =
KdCf and multiply the aforementioned power-law for
Kd by Cf to obtain the constitutive response of the
sorbed concentration CS = CS(Cf , φ). Such response
appears ruled by the following generalized Freundlich
isotherm

CS = F∗(φ)C(1−α)

f (7.1)
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Fig. 8 Dependence of the sorbed concentration on Cf for differ-
ent values of the intracluster porosity φ

where F∗(φ) denotes a function of the intracluster
porosity with values given by the asymptotic behavior
of CS when α(Cf ) → 1. The above form suggests the
decomposition CS = CS(Cf , φ) = F∗(φ)G∗(Cf ) with
G∗(Cf ) := C(1−α)

f . The numerical plots associated with
Eq. 7.1 are depicted in Fig. 8. In the range of high
salinity where EDL effects vanish, α → 0, and there-
fore, adsorption is ruled by the linear isotherm
CS = F�(φ)Cf . This asymptotic regime corresponds
to the adsorption of nonionic species, which is ruled
by the purely geometric quantity Kd = F�(φ) = φ.
Conversely, when Cf → 0, the EDL effects increase
adsorption in a nonlinear fashion. Under the Langmuir
approximation valid for low concentrations, CS is
almost insensitive to variations in Cf ; i.e., dCS/dCf → 0
and therefore α → 1 and CS → F∗(φ) as Cf → 0.
The set of discrete points F�(φ) are given by the
intersection of the isotherms with the y axis, where
each curve reaches minimum value. Such intersection
can be calculated by invoking the electroneutrality
condition. In fact, when Cf → 0, the strength of
the EDL is high and the concentration of cations
is much higher than that of the anions. Thus, using
the assumption C+ >> C− in Eq. 3.5 along with the
Boltzmann distribution Eq. 2.17 yields

q� = 〈q�〉z = F(C+ − C−) ≈ F(C+ + C−)

= 2FCf φ〈cosh ϕ〉l
z = − 1

|Z |
∫

∂ Zls

σd�

= σa f s, for Cf → 0 and α → 1

where a f s := |∂ Zls|/|Z | = 1/(H + δ) is the surface
volume fraction of the particles. For equally spaced par-
ticles, we have 〈a f s〉s

y = a f s, and thus, using the above

result in the three-scale representation of the partition
coefficient Kd Eq. 6.3, we obtain

Kd =φ
〈〈cosh ϕ〉l

z

〉s
y = σa f s

2FCf
for Cf → 0 and α → 1.

Together with the relation CS = Kd Cf and the gener-
alized Freundlich isotherm Eq. 7.1, this yields

CS = F∗(φ) = −σa f s

2F
for Cf → 0 α → 1 .

As mentioned before, the numerical values of the
above asymptotic result are given by the intersection
of each isotherm with the y axis in Fig. 8. Such results
show F∗ a decreasing function of φ with lower bound
F(1) = 0.

In Figs. 9 and 10, we display the constitutive response
of the effective chemico-osmotic and electro-osmotic
conductivities KC and KE of the bulk fluid vs {Cf , n f }.
The numerical results are obtained by solving the clo-
sure problems Eq. 5.57 arising from the slip bound-
ary conditions in conjunction with Smoluchowski’s and
Prieve’s formulas Eqs. 3.29 and 3.32 for {L0∞

PE, L0∞
PC}

under thin double-layer approximation. In the com-
putation of the tortuosity factor ∇y f in Eq. 5.57, we
adopt an isotropic arrangement of spherical clusters of
equally spaced particles within each cluster (Fig. 5).
In this particular clay morphology, the conductivities
reduce to multiple of the identity K J = KJ I(J = C, E)

and the tortuosity can be computed by invoking the
empirical relation

〈
I + ∇y f

〉 = n3/2
f I [25]. As displayed

in Figs. 9 and 10, the magnitude of the scalars {KC, KE}
decreases asymptotically to zero as Cf → ∞ where
EDL effects vanish.

Fig. 9 Dependence of the electro-osmotic conductivity on Cf for
different values of the intercluster porosity nf
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Fig. 10 Dependence of the chemico-osmotic conductivity on Cf
for different values of the intercluster porosity nf

8 Conclusions

In this work, we have successfully developed a three-
scale model of dual-porosity type for expansive clays.
The morphology of the swelling medium is charac-
terized by two porous structures; the permeable clay
clusters with nanopores filled by an electrolyte solution
and the micropores saturated by bulk phase water.
The model was rigorously derived within the asymp-
totic homogenization procedure applied to a microscale
problem governing flow and transport of the species in
the bulk solution lying in the micropores in conjunction
with an electro-chemo-mechanical model for the clay
aggregates based on Onsager’s reciprocity relations.
The effective governing equations incorporate distrib-
uted mass transfer functions between the two systems
along with modified forms of Darcy’s law and Terza-
ghi’s effective stress principle. Considering a particular
form of nanostructure wherein each clay cluster is com-
posed of parallel particles, nanoscopic representations
were provided for the microscale coefficients of the clay
clusters in terms of the local EDL potential satisfying a
Poisson–Boltzmann problem, which rules the electro-
chemistry of the electrolyte solution in the nanopores.

Adopting a local instantaneous equilibrium assump-
tion between the two systems, a quasisteady version of
the dual-porosity model was derived. In this simplified
scenario, the general history dependency in the consti-
tutive law inherent to the fully-transient case reduces to
a local equation in time ruled by a single macroscopic
time scale associated with the evolution of the macro-
scopic medium. In this simplified case, the constitutive
behavior of the mass transfer function reduces to that
of an instantaneous equilibrium adsorption/desorption

process and gives rise to a retardation coefficient that
appears explicitly correlated with the local distribution
of the EDL potential in the nanopores. In a similar
fashion, nanoscopic representations were provided for
the other effective electro-chemical parameters such as
electro- and chemico-osmotic permeabilities.

This bridge between electrochemical phenomena at
different scales obtained herein allows us to build-up
constitutive laws for the macroscopic electrochemical
parameters from exploitation of the nanoscopic cell
problems. Numerical simulations depicting the behav-
ior of the effective electrochemical parameters were
obtained by solving the Poisson–Boltzmann problem
numerically at the nanoscale and double averaging to
the macroscale.

The proposed three-scale approach captures the cor-
rect physics underlying each electro-chemo-mechanical
parameter and therefore provides new insight in the
multiscale modeling of swelling porous media. Al-
though the two-scale computations were performed
for a particular form of nanostructure, they provide
guidance for further developments considering random
geometries. Further work is in progress to incorporate
more realistic irreversible elastoplastic constitutive re-
lations including chemical hardening/softening of the
solid matrix (Loret et al. [43]).
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Appendix

Chemico-osmotic permeability of a clay cluster
in the regime of thin EDL’s

In this appendix we show the derivation of Eq. 3.32 for
the chemico-osmotic permeability.

To this end we begin by introducing the more con-
venient coordinate z′ := z − H so that z′ = 0 at the
particle surface. Under the assumption �D << H, elec-
trical effects are absent away from the particle surface,
which implies ϕ = dϕ/dz′ = dvC/dz′ = 0 as z′ → ∞.
Thus, integrating Eq. 3.30 from z′ to ∞ and using the
thin EDL assumption, we get

μ
dvC

dz′ = 2 R T
∫ ∞

z′
(cosh ϕ − 1) dz′ . (8.1)

To compute the RHS, we make use of the identity

2 (cosh ϕ − 1) = 4 sinh2 ϕ

2
= 16 tanh2 ϕ/4(

1 − tanh2 ϕ/4
)2 . (8.2)
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Using Poisson–Boltzmann, one can relate tanh(ϕ/4)

to the dimensionless zeta potential ζ := ϕ(H). To
this end, we multiply Eq. 3.15 by 2 dϕ/dz′ to ob-
tain d/dz′(dϕ/dz′)2 = 2/�2

D d(cosh ϕ) dz′. Integrating
the above result from ∞ to z′ and using Eq. 8.2,
we obtain(

dϕ

dz′

)2

= 2

�2
D

(cosh ϕ − 1)= 4

�2
D

sinh2

(
ϕ

2

)

→ dϕ

dz′ =− 2

�D
sinh

(
ϕ

2

)
→ dϕ

sinh (ϕ/2)
=− 2

�D
dz′.

(8.3)

To integrate the above result, we adopt the change of
variables w= tanh(ϕ/4)dw=1/4(1−w2)dϕ; sinh (ϕ/2)=
2w/(1 − w2), which, when combined with the last equa-
tion in Eq. 8.3, gives dw/w = −dz′/�D. Hence, after
integrating from 0 to z′, we obtain

tanh

(
ϕ

4

)
= tanh

(
ζ

4

)
exp

(
− z′

�D

)
.

Moreover, denoting A = tanh
(
ζ/4
)
, using the above

result in Eq. 8.2, we get

2 (cosh ϕ − 1) = 16A2 exp(−2z′/�D)[
1 − A2 exp(−2z′/�D)

]2 . (8.4)

Moreover, denoting u = A2 exp(−2z′/�D) with du =
−(2u/�D)dz′, integrating Eq. 8.4, we obtain

2
∫ ∞

z′
(cosh ϕ − 1) dz′ = 8 �D

∫ u

0

du

(1 − u)2 = 8 �D u
1 − u

.

Finally, using the above result in Eq. 8.1 yields

μ
dvC

dz′ = 8 R T �D A2 exp(−2z′/�D)

1 − A2 exp(−2z′/�D)

in which integrating from 0 to z′ and using the nonslip
condition at the wall yields

vC(z′) = 8RT�D

μ

∫ z′

0

A2 exp(−2z′/�D)

1 − A2 exp(−2z′/�D)
dz′

= −4RT�2
D

μ

∫ u

A2

du
1 − u

= 4RT�2
D

μ

[
ln(1 − u)

]u

A2

= 4RT�2
D

μ
ln

[
1−tanh2

(
ζ/4
)

exp(−2z′/�D)

1−tanh2
(
ζ/4
)

]
. .

(8.5)

In a similar fashion to Eq. 3.28, the above result shows
that the magnitude of LPC = (Cb φ/RT)〈vC〉l

z given by

the sum of two contributions: one solely dictated by the
ζ -potential, independent of z′ playing a similar role of
the Smoluchowski’s component of LPE, which domi-
nates the behavior of LPC for H � �D, and a secondary
EDL component, strongly dependent on the Debye’s
length, which becomes pronounced when H = O(�D).
This is similar to the asymptotic regime of thin EDLs
because the primary component is independent of z′
and becomes equal to its averaged value L∞

PC. Thus,
under the assumption tanh2(ζ/4) exp(−2z′/�D) << 1,
we have

L∞
PC = −4Cb�2

Dφ

μ
ln

(
1 − tanh2

(
ζ

∞

4

))

= 8Cb�2
Dφ

μ
ln

(
cosh

(
ζ

∞

4

))
for �D << H .
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