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Abstract In standard multi-phase flow models on
porous media, a capillary pressure saturation relation-
ship developed under static conditions is assumed.
Recent experiments have shown that this static rela-
tionship cannot explain dynamic effects as seen for
example in outflow experiments. In this paper, we use a
static capillary pressure model and a dynamic capillary
pressure model based on the concept of Hassanizadeh
and Gray and examine the behavior with respect to
material interfaces. We introduce a new numerical
scheme for the one-dimensional case using a Lagrange
multiplier approach and develop a suitable interface
condition. The behavior at the interface is discussed
and verified by various numerical simulations.
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1 Motivation

Flow processes in porous media involving two immisci-
ble fluids need to be understood and predicted when
dealing with subsurface hydrosystems or industrial
applications. For example, in the unsaturated zone, the
spatial distribution of the water and air phase as well
as their fluxes serve as a basis for modeling transport of
contaminants such as pesticides or heavy metals (e.g.,
[1]). As examples for industrial applications in two-
phase flow, the movement of fluids through a filter
or the infiltration of ink into paper (see [16]) can be
considered. The physical–mathematical model under-
lying simulations of two-phase flow on the Darcy scale
usually requires a constitutive relationship between
(wetting phase) saturation Sw and capillary pressure pc,
the pc(Sw) relationship.

Traditionally, one assumes that this relationship is
determined under quasi-static or steady-state condi-
tions but can be applied to any transient flow processes
fulfilling the Reynolds number criterion. However, re-
cently some works have questioned this assumption
(see, e.g., [17]). These authors were able to improve
simulation results by applying a model that accounts
for a rate dependence in the pc(Sw) function. One
possibility to obtain this new capillary pressure function
is adding a dynamic term, the static capillary pressure
relationship (see, e.g., [7–10]).

Although several works recently have analyzed rate-
dependent pc(Sw) relationships or have tried to deter-
mine a pertaining additional parameter, the importance
of including a rate dependence in the capillary pressure
relationship in simulations still needs to be identified.
From the simulation point of view, it is very important
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to integrate the dynamic pc(Sw) function into the
discretization scheme.

One of the other current challenging questions in the
modeling of two-phase flow processes is the approxima-
tion of the material interfaces. At these interfaces, the
use of a consistent model on the macroscale is manda-
tory to correctly describe the processes (see [4, 12, 18]).
The physical and mathematical complexity of the prob-
lem formulation crucially affects the requirements on
the associated numerical simulation. Moreover, the het-
erogeneous material leads to a possibly discontinuous
solution at material interfaces. This should be taken
into account in the discretization.

In this paper, we present a new discretization scheme
for the simulation of dynamic capillary effects in a
heterogeneous porous media. A special focus is put
on the analysis of the behavior at material interfaces.
Therefore, a suitable interface condition based on a
hybrid coupling is derived and included into the numer-
ical scheme.

The other parts of the paper are organized as follows.
In Section 2, the physical model of two-phase flow is
derived; in Section 3, the time and space discretization
is presented. The behavior of the saturation at inter-
faces from a physical view is discussed in Section 4. In
Section 5, the numerical results are presented. Finally,
in Section 6, we summarize our new approach and give
an outlook to further applications.

2 Physical–mathematical model

In this section, we derive the mathematical model
describing two-phase flow in a heterogeneous porous
media. For a more detailed and more general deriva-
tion, we refer to [11].

We consider an incompressible one-dimensional
two-phase flow process in heterogeneous porous media.
For simplicity, we assume no source/sink term and no
gravity influence, which coincides with the case of a
horizontal flow without outer influences. In our model
of two-phase flow in porous media, we have a wetting
phase (α = w) and a non-wetting phase (α = n). The
mass balance of each phase is described by

φ
dSα

dt
+ dvα

dx
= 0, α ∈ {w, n}, x ∈ �, (1)

where vα is the Darcy velocity (or Darcy flux) given by
the extended Darcy’s law,

vα = −
(

λα K
dpα

dx

)
.

In this paper, Sα describes the saturation; pα , the
pressure of the phase α; φ and K, the porosity and
permeability of the soil matrix, respectively; and the
mobility λα is defined by λα := krα

μα
, where krα is the

relative permeability function and μα the viscosity of
each phase. The computational domain � := R is split
into two subdomains, the left subdomain �l and the
right subdomain �r. The point of the interface is de-
noted by xI . We assume, that on each subdomain, φ and
K are constant.

To close the system, we need two additional supple-
mentary equations. The first is the saturation balance,∑
α=w,n

Sα = 1,

and the second describes the relation between the
pressures,

pc = pn − pw,

where pc is a given capillary pressure–saturation
function. In this paper, we use the dynamic
capillary pressure–saturation model introduced by
Hassanizadeh and Gray [8],

pc,l = pstat
c,l (Sw) − τl

dSw

dt
on �l,

pc,r = pstat
c,r (Sw) − τr

dSw

dt
on �r,

(2)

where pstat
c describes the static capillary pressure func-

tion and τ ≥ 0 is the dynamic factor. In contrast to stan-
dard capillary pressure models, the capillary pressure
is not only a function of the saturation Sw but also of
its time-derivative dSw

dt . The left picture in Fig. 2 shows
the two different static capillary pressure functions for
the left and right part of the domain (see Fig. 1). The
right picture of Fig. 2 depicts the dynamic capillary
pressure relationship depending on Sw and dSw

dt for the
left subdomain. On each subdomain, we assume pstat

c :
[0, 1] → [0, ∞) to fulfill the following conditions:

• pstat
c is continuously differentiable on (0, 1).

• pstat
c is strictly monotonous decreasing

• pstat
c (Sw = 1.0) = 0

Moreover, we assume that τ is constant and nonnega-
tive on each subdomain.
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Fig. 1 Material parameters and interface
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Fig. 2 Static (both domains)
and dynamic (only left
domain) capillary pressure
relationships
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We use a fractional flow formulation to get a de-
coupled set of equations equivalent to the two-phase
system (1). For the total velocity defined by vt := vw +
vn, we get the pressure equation,

dvt

dx
= 0,

and for Sw, the saturation equation,

φ
dSw

dt
+ d

dx

(
fw(Sw)vt + λ̄(Sw)K

dpc

dx

)
= 0,

where the fractional flow function fw is defined by
fw := λw

λn+λw
and λ̄ by λ̄ := λnλw

λn+λw
. The pressure equation

implies a constant total velocity. In the sequel, we as-
sume that vt > 0, which corresponds to a flow from the
left to the right subdomain. Using the dynamic capillary
pressure (2), the saturation equation results in a third
order evolution equation for the wetting saturation Sw.
To simplify the notation, we denote Sw by s and get

φ
ds
dt

+ d
dx

(
fw(s)vt + λ̄(s)K

d
dx

(
pstat

c (s) − τ
ds
d

))
= 0,

or

φ
ds
dt

+ d
dx

(
fw(s)vt + λ̄(s)K

(
dpstat

c

ds
(s)

ds
dx

− τ
d2s

dxdt

))
= 0.

(3)

In this formulation, the different parts of the flux term
can be easily characterized. The first order term fw(s)vt

and the third order term −λ̄(s)Kτ d2s
dxdt are convective

terms, while the second order term λ̄(s)K dpstat
c

ds
ds
dx plays

the role of a diffusion term. We will use (3) later to
define a suitable time and space discretization.

2.1 Material interfaces

To specify the behavior of the phases at the interface,
special interface conditions are needed. For a physical
consistent model, we use the continuity of the Darcy
flux vα and the pressure pα , which directly implies the

continuity of the capillary pressure pc at the material
interface.

The continuity of vα can be obtained by assuming
that the time derivative ds

dt of the saturation is bounded
and by integrating (1) in a small neighborhood of the
interface. The continuity of the capillary pressure at the
interface is derived using a regularization technique,
see [19].

Let us denote by vl
w, vr

w the flux of the wetting phase
through the interface on the left and right side of the
interface, i.e., vl

w = limx→x−
I
vw(x), vr

w = limx→x+
I
vw(x).

Then the continuity of the flux reads

vl
w = vr

w

In the saturation equation, the flux of the wetting phase
is given in terms of the saturation, see (3). Therefore,
to fulfill this continuity condition, we introduce the flux
through the interface as a new unknown, vI = vl

w = vr
w

and obtain

vl
w(s) = vI = vr

w(s) (4)
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Fig. 3 Relationship of saturations at the interface for static
capillary pressure



264 Comput Geosci (2007) 11:261–274

Sw

p
c

sl

pstat
c,l

pstat
c,r

d stτ
sr

0 1

inflow

outflow

Fig. 4 Relationship of saturations at the interface for dynamic
capillary pressure. Solid outflow case, dotted inflow case

We note that the continuity of the capillary pres-
sure yields no information about the continuity of the
saturation; more precisely, it implies in general a dis-
continuity of the saturation. However, the relationship
between the saturations can be specified by using this
continuity of pressures,

pl
c = pl

n − pl
w = pr

n − pr
w = pr

c.

Denoting by sl, sr the saturation on the left and
right side of the interface, i.e., sl = limx→x−

I
s(x), sr =

limx→x+
I

s(x), the continuity of the capillary pressure for
our dynamic capillary pressure relationship (2) then
reads (compare also [2])

pstat
c,l (sl) − τl

dsl

dt
= pstat

c,r (sr) − τr
dsr

dt
. (5)

Sw

p
c

pstat
c,l

d s < 0t

d s > 0t

sl

0 1
Fig. 5 Saturation and capillary pressure for non-monotonous
wave profile

For a static capillary pressure relationship, this im-
plies a discontinuity of the saturation that can be easily
specified by the properties of pstat

c , see Fig. 2. As strictly
decreasing function, pstat

c,l is invertible, and thus, the

saturations are related by sl = (
pstat

c,l

)−1 (
pstat

c,r (sr)
)
. For

the dynamic capillary pressure (τ > 0), the situation
is more involved. In this paper, the capillary pressure
depends on both s and ds

dt . As a result, the relationship
between the saturations at both sides of the interface is
given in terms of an ordinary differential equation. In
Section 4, we describe a suitable discretization for this
ordinary differential equation.

2.2 Initial conditions and behavior at ∞

As (3) describes a (possibly hyperbolic degenerated)
parabolic system, initial and boundary conditions have
to be specified. As boundary conditions, we use

lim
x→−∞ s(x) = s−∞, lim

x→∞ s(x) = s∞, (6)

with given constant values s−∞ and s∞. As initial condi-
tion, we assume that s(x, 0) is smooth on �k for k = l, r
and fulfills the boundary conditions (6) as well as a
static interface-condition,

pstat
c,l (sl) = pstat

c,r (sr). (7)

3 Discussion of the behavior

In this section, we discuss the solution from a physical
point of view. We first recall some results about the
behavior in the homogeneous case and then discuss the
setting with a material interface.

In the homogeneous case, the evolution of two-phase
flow can be determined by considering waves propa-
gating through the homogeneous medium. Therefore,
a crucial question is the existence of traveling waves,
i.e., waves with a constant wave profile. In the case
τ = 0, it is well known that traveling waves have a
monotonous profile [19, 20]. In the dynamic case, the
existence and behavior of traveling wave solutions was
studied in a recent paper ([21], see also [3]). In this

Δ xl Δ xr

xnxn–1/2xn–1 xn+1/2

standard mesh

Interface

dual mesh
Fig. 6 Standard and dual mesh
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Fig. 7 Discretization of the interface condition

paper, for a value of τ larger then a certain critical
value, non-monotonous wave profiles can be observed.
This non-monotonous solutions have to be taken into
account when discussing the behavior at material
interfaces. Moreover, for some parameter settings, one
can show that traveling wave solutions do not exist, and
we have to consider different types of solution profiles
(see, e.g., [13]).

We recall that, in the case of traveling waves, the
change of the saturation in time can be derived from the
spatial distribution of the saturation. Hence, we assume
that we are in a setting where traveling wave solutions –
monotonous or non-monotonous – exist, and thus, the
information about the time evolution of the saturation
is known. For problem settings where no traveling wave
solution exists, the behavior at the interface can be
derived in a similar way.

We now discuss the solution profile at material
interfaces. As the material interface is fixed in space,
global traveling wave solutions cannot occur, but at the
right side of the interface; that is, �r, we can get a
traveling wave solution. Therefore, in our discussion,
we assume a behavior of the saturation in time that is
generated by a traveling wave solution. We consider
inflow processes; that is, the wetting phase displaces the
non-wetting phase, and outflow processes, where the
wetting phase is displaced by the non-wetting phase.

3.1 Static capillary-pressure

We start with the discussion of the static capillary-
pressure relationship, i.e., τ = 0, and recall the basic

results, which are given in, e.g., [11]. We recall that
traveling waves have a monotonous wave profile, which
means that, during an inflow or outflow process, the
saturation at each point is a monotonous increasing or
decreasing function. At the interface, the continuity of
the capillary pressure has to be fulfilled and, hence, we
get a discontinuity of the saturation.

First, we consider the outflow process. In the begin-
ning, the non-wetting saturation at both sides of the
interface is zero and, hence, the capillary pressure is
zero on both sides, too. Then, the saturation increases
in a monotonous way. On the saturation–capillary pres-
sure graph, the evolution of the saturation on both sides
can be determined by following the graphs of the two
functions. The saturations are related to each other by
the continuity of the capillary pressure, see Fig. 3. The
saturation of the right side sr then converges to s−∞,
which is the time-asymptotic limit. Consequently, the
saturation on the left side sl converges to the saturation
that is given by the continuity of the capillary pressure,(

pstat
c,l

)−1 (
pstat

c,r (s−∞)
)
.

For an inflow process, we assume to start with an
equilibrium system (see Section 2.2); therefore, the
continuity of the capillary pressure has to be satis-
fied for the initial conditions. Then, the saturations at
both sides increases. Again, the relationship between
the saturation of both sides is given by the continuity
of the capillary pressure, see Fig. 3. In this manner,
the inflow and outflow processes behave the same
way at the interface and can be seen as invertible
processes.

3.2 Dynamic capillary-pressure – monotonous
wave profile

In the case of dynamic capillary pressure, the term
τ ds

dt changes the capillary pressure behavior and thus
the behavior of the saturations at the interface. For a

Fig. 8 Static capillary
pressure and initial condition
for outflow problem
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Fig. 9 τl = τr = 0, solution
at different timesteps
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monotonous wave profile, the time-derivative ds
dt does

not change the sign and so does the term τ ds
dt . As

a result, the static capillary pressure is enlarged for
outflow processes and decreased for inflow processes,
see Fig. 4. As the saturation is a monotonous function
with respect to time, for a given infiltration process, a
unique capillary pressure can be assigned to each value
of the saturation and for both sides of the interface.
However, because of the added dynamic term, it cannot

be guaranteed any longer that a unique saturation can
be assigned to a given capillary pressure. This is also
drafted in Fig. 4. The saturations of both sides are
again related by the continuity of the capillary pressure.
We note that, in the case of a dynamic capillary pres-
sure, the behavior of an outflow process is completely
different to the behavior of an inflow process. For
outflow, the dynamic term τ ds

dt ≥ 0 increases the static
capillary pressure, whereas for inflow processes, the

Fig. 10 τl = τr = 0. Left:
behavior of the saturation
at the interface, right static
capillary pressure
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Fig. 11 τl = 0.05, τr = 0.1,
solution at different timesteps
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static capillary pressure is decreased. Comparing with
the static case, see Fig. 3, we see a process that is locally
nonreversible. This effect has also been observed in
experiments [5, 6].

As time-asymptotic behavior, the saturation at the
right side sr converges to s−∞, and thus, dsr

dt converges to
zero. Therefore, we see the same time-asymptotic limit
as in the case of static capillary pressure. In particular,
the two saturations at the right and left side are related
by the same condition as in the static case.

3.3 Dynamic capillary-pressure – non-monotonous
wave profile

For larger values of τ , a non-monotonous behavior of
the saturation can occur at one or both sides of the
interface. This implies that the dynamic term τ ds

dt can
change the sign. Such a behavior can be interpreted
as a sequence of local outflow and inflow processes
with monotonous behavior, and thus, we see a dynamic
capillary pressure that is enlarged while the saturation

Fig. 12 τl = 0.05, τr = 0.1.
Left behavior of the
saturation at the interface,
right static (reference) and
dynamic capillary pressure
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Fig. 13 τl = 0.1, τr = 0.2,
solution at different timesteps

is decreasing, followed by a period where the capillary
pressure is decreased while the saturation is increasing
again, see Fig. 5. Therefore, one observes “loops” in the
pressure–saturation graph, and thus, we have neither
a unique relationship between capillary pressure and
saturation nor vice versa.

4 Numerical model

In this section, we derive and describe the numerical
model that is used in our simulations. We use a semi-
implicit upwind finite volume scheme on each sub-
domain and deduce a suitable discretization for the

Fig. 14 τl = 0.1, τr = 0.2.
Left behavior of the
saturation at the interface,
right static (reference) and
dynamic capillary pressure
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interface condition. The finite volume scheme is similar
to the one proposed in [2].

4.1 Time-discretization

As time-discretization, we use the semi-implicit Euler
scheme, i.e., an implicit Euler scheme where the non-
linearities are evaluated at the previous timestep. We
introduce the timestep ti+1 − ti =: �t and obtain for the
time-approximation si ≈ s(ti):

φ
si+1 − si

�t
+ d

dx
Fi(s) = 0,

where Fi(s) is the flux function,

Fi(s):= fw(si)vt+λ̄(si)K
((

∂s pstat
c

)
(si)∂xsi+1−τ

∂xsi+1−∂xsi

�t

)
.

We note that, for a linear capillary pressure relationship
and no dynamic term, an explicit discretization in time
shows good results. However, the dynamic capillary
pressure implies an implicit discretization in time.

4.2 Space-discretization

For the spatial discretization, we use a finite volume
scheme on a dual mesh and define suitable numerical
flux functions. We only consider a finite interval of
� = R. This interval is then split the computational
subdomains �l and �r.

The computational domains �k are divided into Nk

intervals [xn−1, xn] of length �xn := xn − xn−1. For sim-
plicity of notation, we assume that, for each subdo-
main, all intervals are of the same length �xk. We
define the midpoint of the intervals by xn+1/2 := xn+xn+1

2 ,

Fig. 15 Initial condition for inflow problem

n = 0, . . . , N − 1 and the dual mesh by the dual inter-
vals [xn−1/2, xn+1/2], see Fig. 6.

Now, we use a finite volume scheme with the in-
tervals of the dual mesh as integration domains. For
equidistant intervals, the length of the inner intervals
of the dual mesh is again �xk on each subdomain. The
saturation s is then approximated by its mean value,
sn = 1

�x

∫ xn+1/2

xn−1/2 s(x)dx and the fully discretized equation
reads

φ
sn

i+1−sn
i

�t
+ Fi(sn, sn+1)−Fi(sn−1, sn)

�x
= 0, n =1, . . . ,N,

where Fi(sn, sn+1) is the numerical flux defined by

Fi
(
sn, sn+1

) := αn+1/2vt + βn+1/2
sn+1

i+1 − sn
i+1

�x

−γ n+1/2
sn+1

i+1 − sn
i+1 + sn+1

i − sn
i

�x�t
.

The coefficients α, β, γ are defined in terms of si, the
saturation at the previous timestep i, by:

αn := fw
(
sn

i

)
, βn := λ̄

(
sn

i

)
K

(
pstat

c

)′ (
sn

i

)
, γ n := λ̄

(
sn

i

)
Kτ.

For β representing the diffusion term, a mean value is
used. The terms α and γ are parts of the convective
term. To get a stable numerical scheme, we therefore
have to use upwinding on these terms. In our setting, we
know that the total flux is constant and by assumption
positive, we therefore set

αn+1/2 := αn, βn+1/2 := 1

2

(
βn + βn+1

)
, γ n+1/2 := γ n.

We note that, using this kind of semi-implicit time
discretization, si+1 can be computed by solving a linear
system where the matrix entries and right hand side
depend on si.

4.3 Discretization of the interface condition

We recall that, at the interface, discontinuities of the
saturation can occur. This relationship between the
saturation at both sides of the interface was specified
by the interface condition (5). Moreover, the continuity
of the flux through the interface was forced by the
introduction of a Lagrange multiplier (4).

In our numerical model, we have to discretize the
Lagrange multiplier in a suitable way. As we are in
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Fig. 16 τl = τr = 0, solution
at different timesteps
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the one-dimensional case, the flux through the interface
yields just one new unknown FI ≈ vI , see Fig. 7.

The interface condition (5) is discretized implicit
in time,

pstat
c,l

(
sl

i+1

) − τl
sl

i+1 − sl
i

�t
= pstat

c,r

(
sr

i+1

) − τr
sr

i+1 − sr
i

�t
. (8)

To get a linear equation for si+1 also for the interface
condition, the term pstat

c (si+1) is approximated by

pstat
c (si+1) ≈ pstat

c (si) + (
pstat

c

)′
(si)(si+1 − si). (9)

We note that, for a linear static capillary pressure–
saturation relationship, the approximation is exact.
Using (9) in (8) gives the linearized interface condition

pstat
c,l

(
sl

i

) +
( (

pstat
c,l

)′ (
sl

i

) − τl

�t

) (
sl

i+1 − sl
i

)

= pstat
c,r

(
sr

i

) +
( (

pstat
c,r

)′ (
sr

i

) − τr

�t

) (
sr

i+1 − sr
i

)
. (10)

We recall that the length of the control volume at
the boundary of �k is �xk/2. Then, using the linearized

Fig. 17 τl = τr = 0, behavior
at the interface
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Fig. 18 τl = 0.1, τr = 0.2,
solution at different timesteps
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interface condition (10) and substituting on both subdo-
mains, the flux through the interface by the Lagrange
multiplier FI , we get the following discrete equations,
see Fig. 7,

φl
sl

i+1 − sl
i

�t
+ FI − Fl(. . . , sl)

�xl/2
= 0,

pstat
c,l +

((
pstat

c,l

)′− τl

�t

) (
sl

i+1−sl
i

) = pstat
c,r +

((
pstat

c,r

)′ − τr

�t

)

× (
sr

i+1 − sr
i

)
,

φr
sr

i+1 − sr
i

�t
+ Fr(sr, . . .) − FI

�xr/2
= 0.

5 Numerical simulation

5.1 Outflow problem

In our first three examples, we consider an outflow
problem; that is, the water phase is displaced by the
non-wetting phase. For simplicity, we assume vt = 1,
use φl = φr = Kl = Kr = 1, and a quadratic relative
permeability function. Together with μα = 1, this leads
to λw(s) = s2, λn(s) = (1 − s)2.

We use pstat
c,l (s)=(s−4/3−1)1/4 and pstat

c,r (s)=2(s−4/3−
1)1/4, which corresponds to a van-Genuchten capillary

Fig. 19 τl = 0.1, τr = 0.2,
behavior at the interface
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Fig. 20 Real-life example, solution at different timesteps

pressure relationship with n = 4, see [22]. The deriv-
ative of these function has a singularity at s = 0 and
s = 1. Therefore, they are regularized in a small neigh-
borhood of 0 and 1, respectively, and replaced by a
linear function. We note that, in this model problem,
the heterogeneity of the material is only modeled by
the different capillary pressure functions on both sub-
domains.

The domain is given by �l = (0, 0.5) and �r =
(0.5, 1). As initial condition, we use the cubic spline

sout
0 (x)=

{−(x/10)3+1.5(x/10)2+0.5 0<x<0.1
1 x≥0.1

. (11)

The static capillary functions and the initial condition
are depicted in Fig. 8. As boundary conditions, we
impose a saturation of 0.5 at the left side of �l and use
absorbing (free flow) boundary conditions on the right
side of �r.

For the space discretization, we use a dual mesh with
�x = 0.0025 and a timestep of �t = 0.001. We remark
that the timestep has to be chosen small enough such
that the Courant–Friedrich–Levy condition is fulfilled.

In the first example, we consider the problem
with static capillary pressure relationship in both
subdomains, i.e., τl = τr = 0. The solution at various

timesteps is depicted in Fig. 9. We observe a wave
with a monotone wave profile. On the left side of the
interface, a pooling of the non-wetting phase can be de-
termined. The solution in the given interval converges
toward a static solution for the flow problem.

In Fig. 10, we can see the behavior at the interface.
Due to the hyperbolic character of the problem, the
same monotone behavior of the saturation with respect
to time can be seen on both sides of the interface. On
the right picture of Fig. 10, the static capillary pressure
during the outflow process at both sides of the interface
is plotted. As τ = 0, the pressures exactly fit to the pc

function.
In the second example, we choose τl = 0.05, τr = 0.1.

In this paper, a non-monotonous behavior of the wave
profile can be observed in the domain �l, see Fig. 11.

The behavior at the interface is quite similar to the
first example, see Fig. 12. As the time derivate of s is
negative, we observe an increased capillary pressure
compared to the static capillary pressure relationship.

In the third example, we have τl = 0.1, τr = 0.2.
The saturation for various timesteps is depicted in
Fig. 13. For this values, we clearly see dynamic effects
and observe non-monotonous wave profiles in both
subdomains. At the interface, also a non-monotonous

Fig. 21 Real-life example,
behavior at the interface
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behavior of the saturation can be observed, see Fig. 14.
Therefore, some values of saturation are reached hav-
ing a negative time derivative in the beginning and
having a positive time derivative later. When consid-
ering the capillary pressure at the interface, this implies
that the capillary pressure cannot be written as a well-
defined function in terms of s, more precisely, some
“loops” occur until the solution converges to a static
solution.

5.2 Inflow problem

In our next examples, we consider an inflow problem.
In this paper, the non-wetting phase is displaced by the
water phase. We note that, at the interface, we start out
of a static equilibrium condition satisfying the interface
condition for a static problem. Moreover, on the left
side, we want to use s(0) = 1 as boundary condition and
a smooth transition. Denoting by seq, the equilibrium
solution with s(0) = 0.5 and s(1) = 0.5 (which is the
time-asymptotic limit for the outflow problem denoted
above) and using the spline defined in (11), we use the
following initial condition, see Fig. 15

sin
0 := seq

sout
0

.

We use the same material parameters and consti-
tutive relationships as in the outflow problems, i.e.,
φl = φr = Kl = Kr = 1, λw(s) = s2, λn(s) = (1 − s)2 and
pstat

c,l (s) = (s−4/3 − 1)1/4, pstat
c,r (s) = 2(s−4/3 − 1)1/4 with

the regularization introduced before. As time and space
discretization, we use �x = 0.0025 and �t = 0.001 as in
the previous examples.

The first example of inflow is with a static capil-
lary pressure relationship, τl = τr = 0, see Fig. 16. The
behavior at the interface can be seen in Fig. 17. As
expected, we get the same relationships between the
saturations and pressures as in the outflow problem, the
only difference is the increasing saturation.

In the second inflow example, we use a dynamic
capillary-pressure relationship with τl = 0.1, τr = 0.2.
The solution at various timesteps is depicted in Fig. 18,
and the behavior at the interface can be seen in Fig. 19.
First of all, we see that, although a non-monotonous
wave profile exists, we do not see a non-monotonous
behavior at the interface. As a result, no loops are
present in the capillary pressure picture, and we only
see a small influence of the dynamic term.

Comparing this result with the outflow problems
above, we see that the dynamic effect at the interface
is less distinct for inflow problems.

5.3 Real-data application

We now apply our scheme to a dynamic outflow
problem with realistic material parameters, see [15].
The domain � is given by �l = (0m, 0.5m) and �r =
(0.5m, 1m). We assume flow from left to right with
total velocity vt = 10−5ms−1. The material parameters
are given by φ1 = φ2 = 0.4 and K1 = 10−12m2, K2 =
1.6 · 10−11m2. For the static capillary pressure in the left
subdomain, we use a van-Genuchten relationship with
n = 4 and α = 10−3 Pa−1,

pstat
c,l (s) = 103 Pa · (s−4/3 − 1)1/4.

The Leverett relationship pc ∼
√

φ

K (see [14]) then
implies for the static capillary pressure in the right
subdomain

pstat
c,r (s) = 4 · 103 Pa · (s−4/3 − 1)1/4.

As dynamic capillary factors, we choose τl = 105 Pas
and τr = 4 · 105 Pas. For the fluids, we consider water
with a viscosity of μw = 10−3 Pas and oil with viscos-
ity μn = 10−3 Pas. The relative permeability functions
are given by krw = s2 and krn = (1 − s)2. The initial
and boundary conditions are chosen as in the model
problem.

As discretization parameters, we use a meshsize of
�xl = 0.00125 m and �xr = 0.0025 m and as time dis-
cretization �t = 50 s.

The solution at some timesteps before and after
the infiltration in the second subdomain is depicted in
Fig. 20. Here we see, that the dynamic capillary term
has a very small influence on the wave solution, only a
small peak can be seen. However, because of the steep
wave front, the behavior at the interface is nevertheless
dominated by the capillary effect, see Fig. 21.

6 Final remarks

In this paper, we presented a new method to model and
simulate two-phase flow in one-dimensional heteroge-
neous porous media under dynamic capillary condi-
tions. Under the assumption of incompressible phases,
the fractional flow formulation allowed us to separate
the model into the pressure equation and the satu-
ration equation. In this paper, the dynamic term in
the capillary pressure–saturation relationship could be
regarded as additional convective term. The key point
to model the process at material discontinuities was
using a Lagrange multiplier, which represents the flux
at the material interface. The model was discretized in
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a natural way, and thus, the numerical model yields the
flux through the interface as additional unknown. In
our numerical simulations, we applied the method to
outflow and inflow problems. For a small dynamic in-
fluence, the shape of the traveling wave did not change
much compared to the non-dynamic case. However,
the influence of the dynamic capillary pressure at the
material interface could be clearly observed.

For two- and three-dimensional problems, the idea
of using a Lagrange multiplier representing the flux and
an interface condition can be directly transferred. In
this paper, only the fluxes normal to the interface have
an influence in the modeling of saturation relationships.
Then, this flux plays the role of the dual variable in a
mortar setting. Therefore, special care has to be taken
in the space discretization: The discrete flux has to be
chosen in a suitable space with respect to the discretiza-
tion of the saturation such that the solvability and
optimality can be guaranteed. This will be considered
in a forthcoming paper.
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