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Abstract In this paper, we formulate a finite element
procedure for approximating the coupled fluid and me-
chanics in Biot’s consolidation model of poroelasticity.
Here, we approximate the pressure by a mixed finite
element method and the displacements by a Galerkin
method. Theoretical convergence error estimates are
derived in a continuous in-time setting for a strictly
positive constrained specific storage coefficient. Of
particular interest is the case when the lowest-order
Raviart–Thomas approximating space or cell-centered
finite differences are used in the mixed formulation,
and continuous piecewise linear approximations are
used for displacements. This approach appears to be
the one most frequently applied to existing reservoir
engineering simulators.
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1 Introduction

Poroelasticity1 – the modeling of coupled mechanics
and flow in porous media – is of increasing importance
today in a diverse range of engineering fields. Notable
contributions of poroelasticity have been made to areas
that include reservoir engineering, biomechanics, and
environmental engineering, and promising possibilities
hold for fields like earthquake engineering.

In reservoir engineering, terms like consolidation,
the reduction in volume of a porous medium due to
fluid extraction; compaction, volume reduction due to
air removal; and subsidence, vertically oriented consol-
idation or compaction, have entered the nomenclature
as a result of the observed side effects of drilling. Some-
times, the effects of fluid flow-induced deformations are
harmless, but there are indeed vivid examples that re-
mind that the fluid–solid coupling cannot be ignored. In
[18], Dean discusses one such case of an oil company’s
platforms in the North Sea at Ekofisk field:

They subsided so much they had to go in and raise
the platforms, costing them several billion dollars.
If they’d known ahead of time, they could have
built their platforms taller.

“Knowing ahead of time” is precisely why poroelas-
tic modeling has come to be viewed as an important tool

1A term coined by J. Geertsma in 1966 [33].
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by which reservoir engineers might attempt to avert
future financial calamities. Predicting drilling-induced
subsidence can sometimes be accomplished by running
computer simulations of various injection/extraction
well configurations. Another frequent problem con-
fronting the petroleum industry is borehole damage
caused by the shifting subsurface. Related work can be
found (see [7, 10, 23]); other work that also includes
thermal effects is found in [34].

In biomechanics, Roose et al. [26] used a poroelas-
tic model to estimate tumor-induced stress levels in
the brain, and thereby assist in a clinical diagnostic
setting; Smillie et al. [29] likewise modeled the brain,
but in this case, their goal was to study the pathologi-
cal condition hydrocephalus, which induces an irregu-
lar cerebrospinal fluid flow, thus causing the brain to
undergo potentially lethal deformations. Others, like
Swan et al. [30], used poroelastic modeling of bone in
order to estimate optimal (external) mechanical load-
ing in order to produce effective bone adaptation. Still
others used poroelasticity to assist in their develop-
ment of prosthetic devices (for cartilage, bone, heart
valves, etc.).

In environmental engineering, researchers are of-
ten concerned with understanding and, if necessary,
limiting the unintended effects from such activities
as groundwater pumping or oil extraction on the en-
vironment. One well-known case is where excessive
groundwater removal caused Venice to start sinking
[18]. Langford [14] pointed to the same problem in
Houston, TX, and how city planners are attempting
to avoid further subsidence by converting primarily to
surface water usage. Another environmentally related
problem is the attempt to control seepage flow from
buried hazardous waste sites to local groundwater. The
poroelastic model of [13] can be applied to this prob-
lem; the nuclear waste disposal problem is similarly
tackled in [12] and [27].

Within the field of earthquake engineering, a term
from poroelasticity that is frequently used is liquefac-
tion – the state in which the fluid pressure in a porous
medium becomes greater than the forces holding the
solid together, and thus converting the mostly solid-
like structure to a more fluid-like structure. Tectonic
shaking induces an increase in subsurface fluid pressure
and thus potentially devastating liquefaction. One such
example was the 1964 Niigata earthquake when lique-
faction caused many apartment buildings to be over-
turned. As the Civil Engineering Department at the
University of Washington points out on their website,
there are basically three ways to mitigate liquefaction
hazards: (1) avoid liquefaction-susceptible soils, (2)
build liquefaction-resistant structures, and (3) improve

the soil. The latter two methods can benefit from the
use of poroelastic model-based computer simulations.
In [16], one of the most highly cited experts in earth-
quake engineering, Dr. Jian Lin pointed to poroelastic
modeling as one of the reasons that he saw “. . . an
exciting possibility that future models will have signifi-
cantly improved predictive capability.”

Because of the complicated nature of the equa-
tions, only a few nontrivial analytical series solutions
have been found. The problems of Terzaghi (one-
dimensional), Mandel (two-dimensional), and Barry
and Mercer (two-dimensional) are examples of prob-
lems with such solutions. Conversely, whereas analyti-
cal solutions have been rare, there have been numerous
numerical solutions to various problems. Although
some groups have used finite difference methods, such
as the aforementioned one led by Roose, most have
used finite element methods and utilized continuous
Galerkin elements for both the displacements and pres-
sure. Lewis and Schrefler [15] presented and applied
such methods to one- and two-dimensional problems
in consolidation and to the problem of subsidence in
Venice. Other numerical work has been conducted at
the Center for Subsurface Modeling, at the University
of Texas at Austin. There, Liu [17] implemented a
scheme involving Taylor–Hood elements and, subse-
quently, a DG variant based on the work of Phillips and
Wheeler. He also implemented a model that includes
thermal effects and a plasticity model for the porous
medium. Also at the Center for Subsurface Modeling,
Gai [9] used continuous elements for displacements
and a cell-centered finite difference (CCFD) method
for pressure, but implemented an iteratively coupled
scheme to find the numerical solution. She also tack-
led the multiphase flow version of the poroelasticity
equations.

With the progress that has been made in the compu-
tational realm, there has also been concurrent increase
in the attention given to a priori error estimates. In
1996, Murad, Thomee, and Loula provided the first er-
ror estimates, but in a restricted sense. They assumed a
null constrained specific storage coefficient value, co =
0, and they considered only the case of zero Dirichlet
conditions for both pressure and displacements and an
initial condition of ∇ · u(0) = 0. These are somewhat
unnatural conditions and create a problem because
in the limit t → 0, the poroelasticity problem reduces
to Stokes problem with homogenous Dirichlet pres-
sure boundary conditions. Wheeler and Phillips [37]
later proposed an algorithm that models displacements
with continuous elements and the flow with a mixed
method. They then described their results of optimal
continuous-in-time and discrete-in-time error estimates
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for general boundary and initial conditions for the case
co > 0. It is then the purpose of this paper and its sequel
to supply the proofs of our findings.

The rest of this paper is organized as follows: Section
2 describes the Biot’s consolidation model. In Section
3, we formulate the numerical method and establish
existence and uniqueness. In Section 4, we state and
prove continuous convergence results. Lastly, Section
5 presents some of our numerical results.

2 Model formulation

2.1 Derivation of the model

The poroelasticity equations consist of a momentum
and a mass conservation equation and are derived at
the macroscopic scale in the work of Terzaghi [31] and
Biot [2, 3]. In our discussion of the equations, we follow
the presentation of Showalter [28].

The momentum conservation is similar to that found
in linear elasticity, the exception being the addition of
a fluid pressure term. Because the deformation of the
material is usually much slower than the flow rate, a
quasistatic assumption is made, so that the second time
derivative for displacements is ignored. To derive the
momentum equation, let � ⊂ Rd, and choose V to be
a fixed, arbitrary open subset of �. Then, for the total
stress tensor, σ̃ , and a body force, f, we have

−
∫

∂V
σ̃ ν ds =

∫
V

f dV,

where ν is the outward normal. Using the divergence
theorem on the left side allows us to conclude:

−
∫

V
∇ · σ̃ dV =

∫
V

f dV.

Because V was chosen arbitrarily, it follows that −∇ ·
σ̃ = f over �.

Turning to the mass conservation equation, we again
let V ⊂ � be a fixed, arbitrary open subset of �. We
refer to η as the fluid content of the medium, vf as its

Table 1 Summary of constitutive relations

σ̃ij(u, p) = σij(u) − αδij p Total stress
σij(u) = λδijεkk(u) + 2μεij(u) Effective stress
η = co p + α∇ · u Fluid content
vf = − 1

μ f
κ(∇ p − ρ f g) Volumetric fluid flux

Table 2 Summary of physical parameters

Parameter Description

λ, μ Positive Lamé constants
co Constrained Specific Storage Coefficient
α Biot–Willis
κ Symmetric permeability tensor
μf Fluid viscosity

flux, and h as the volumetric fluid source term. We then
conclude from elementary conservation principles

∂

∂t

∫
V

η dV = −
∫

∂V
vf · ν ds +

∫
V

h dV.

Then, using the divergence on the first term on the

right side of the above equation and the fact that V was
chosen arbitrarily implies that

∂η

∂t
= −∇ · vf + h.

In order to close the model, constitutive relations must
be formulated to relate the total stress σ̃ , flux vf, and
fluid content η to the primary variables pressure p
and deformation u (see Table 1). The total stress must
account for the usual material stress as in elasticity
and for the fluid pressure; consequently, we set σ̃ =
σ − α∇ p. Here, σ is the standard stress tensor from
elasticity (which we assume to be a linear function
of u) and is referred to as the “effective stress” in the
field of poroelasticity. The pressure term measures the
effect of fluid of the material medium; an increase in
pressure generally causes an expansion. The standard
assumption of Darcy’s law from porous media holds for
the flux, and we set vf = − 1

μf
κ(∇ p − ρfg). The perme-

ability tensor κ is assumed to be uniformly bounded and
uniformly elliptic; that is, there exist positive constants
λmin and λmax, such that for all x ∈ �, the following
relation holds:

λmin||ξ ||2 ≤ ξ tκ(x)ξ ≤ λmax||ξ ||2. (2.1)

It is natural to assume that the amount of fluid content
η depends on the fluid pressure p and the material vol-
ume, which is measured locally by ∇ · u. More specif-
ically, we set η = co p + α∇ · u and observe that co p
measures the amount of fluid that can be injected into a
fixed material volume, and α∇ · u measures the amount
of fluid that can be squeezed out. The constrained
specific storage coefficient co may, in general, be zero,
but in this paper, it is assumed to be strictly positive:

co ≥ γo > 0 (2.2)

for some positive constant γo (see Table 2).
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The momentum and mass conservation equations
are coupled through the Biot–Willis constant α, which
is usually close to unity. The material parameters are
usually found experimentally or through some homog-
enization technique.

2.2 Summary of the poroelasticity equations

We summarize the governing equations below and
complete the model by including the necessary bound-
ary and initial conditions. There are two distinct sets
of boundary conditions, one corresponding to the flow
and one corresponding to the deformation.

− (λ + μ)∇(∇ · u) − μ∇2u + α∇ p = f, (2.3a)

∂

∂t
(co p + α∇ · u) − 1

μf
∇ · κ(∇ p − ρfg) = h, (2.3b)

p(t) = po on �p, (2.4a)

− 1

μf
κ(∇ p − ρfg) · ν = q on �f, (2.4b)

u(t) = uD on �o, (2.4c)

σ̃ ν = tN on �t, (2.4d)

p(0) = po, (2.4e)

u(0) = uo, (2.4f)

where ∂� = �p
⋃

�f and ∂� = �t
⋃

�o. Also, ν repre-
sents the outward normal to ∂�.

Remark 2.1 Often in practice, initial conditions are
found by first setting p(0) equal to the hydrostatic
pressure (which amounts to solving ∇p(0) = ρ f g), and
then using p(0) in Eq. 2.3a to solve for u(0).

The most complete work to date on the mathemat-
ical properties of solutions to Eqs. 2.3a and 2.3b is
undertaken by Showalter [28]. The author’s theoretical
work assumed that the Dirichlet boundary terms for the
pressure and displacement are null, and his Neumann
boundary conditions differ somewhat from those con-
sidered here. His initial conditions also differ slightly
and require a certain compatibility condition. With the
further assumption that all the source data are functions
in Cβ([0, T]; L2) (Hölder continuous), the existence
and uniqueness of a pressure p and displacement u
solution are proved. The regularity is shown to satisfy

||u(t)||3 + ||p(t)||2 ≤ C
t
. (2.5)

Other work involving weak solutions has been under-
taken by Zenisek [38] for the case that co = 0 and by
Phillips [21] for the general case co ≥ 0.

3 The coupled formulation

This section presents a finite element algorithm for
linear poroelasticity that couples continuous Galerkin
elements for displacements with a mixed space formu-
lation for flow (CG/Mixed). The primary motivations
for doing so are threefold:

1. Flux a primary variable. This eliminates the need to
use postprocessing techniques to produce the flux
from the numerical pressure.

2. Element-wise mass conservation. By construction
of the mixed space, the flux normal is continu-
ous across element boundaries, thus ensuring local
mass conservation.

3. Error estimates for CCFD. Many commercial flow
simulators use a CCFD method to simulate flow.
Because CCFD is equivalent to the mixed method
with reduced integration [35], there is the potential
to reuse the time-tested CCFD code in the linear
poroelasticity algorithm presented here and main-
tain the optimality of the error estimates.

Our fully coupled algorithm includes a mixed formu-
lation for flow, so we first introduce the variable for the
flux, z = − 1

μf
κ(∇p − ρfg), and set κ̃ = 1

μf
κ . Equations

2.3a and 2.3b then become

− (λ + μ)∇(∇ · u) − μ∇2u + α∇p = f, (3.1a)

∂

∂t
(co p + α∇ · u) + ∇ · z = h, (3.1b)

κ̃−1z + ∇p = ρfg. (3.1c)

This set of equations will serve as the basis for a varia-
tional formulation. In order to proceed, we first define
suitable function spaces.

3.1 Bilinear form and function spaces

For the mixed formulation developed herein, the ap-
propriate function space for the pressure is L2(�).
The space used for the flux variable is H(div) ≡ {s ∈
(L2(�))d : ∇ · s ∈ L2(�)}. With H(div), we then define
the following subset:

S0 ≡ {s ∈ H(div) : s · ν|�f = 0}.

The function space relevant to the deformation is

V0 ≡ {v ∈ (H1(�))d : v|�o = 0}.
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Associated to this space is the bilinear form defined as

au(u, v) ≡
∫

�

σ (u) : ε(v)dx.

The linearized strain tensor is given by εkl ≡ 1
2 (∂kul +

∂luk), and thus

au(u, v) =
∫

�

(2μ(ε(u) : ε(v)) + λ(∇ · u)(∇ · v))dx.

(3.2)

Here, (σ : τ) = ∑
i

∑
j

σijτij. Clearly, au(, ) is symmet-

ric and continuous. Furthermore, given that |�o| > 0,
Korn’s inequality shows that au(, ) is also coercive on
V0 (see [5]). With the energy norm defined as ||u||2au

≡
au(u, u), the following inequalities hold for some posi-
tive real numbers Ccont and Ccoer:

au(u, v) ≤ Ccont||u||H1 ||v||H1, ∀u, v ∈ H1, (3.3)

Ccoer||u||2H1 ≤ ||u||2au
, ∀u ∈ V0. (3.4)

We now provide some definitions important for the
development of our finite element scheme. Our no-
tation follows Rivière and Wheeler [25]. Let Eh =
{E1, E2, ..., EMh} be a nondegenerate subdivision of �,
where E j is a triangle or a convex quadrilateral for
d = 2, or a tetrahedron if d = 3. Let h j = diam(E j);
then, nondegeneracy requires the existence of ρ > 0,
such that E j contains a ball of radius ρh j. We also set
h = max{h j : j = 1, ..., Mh}.

The finite dimensional approximating spaces are de-
fined as follows: Let (Wh, Sh) ⊂ (L2×H(div)) denote a
standard mixed finite element space defined on Eh; in
particular, let Sh,0 ≡ {s ∈ Sh : s · ν|�f = 0}. Let k refer to
the order of this space. Additionally, these spaces are
required to be endowed with two linear operators, �h :
H(div) → Sh and the L2 projection L2 → Wh, which
satisfy the following properties:

(∇ · (s − �hs), w) = 0, ∀w ∈ Wh, (3.5a)

||s − �hs||L2 ≤ Chr||s||Hr , 1 ≤ r ≤ k + 1, (3.5b)

∇ · �h = Ph∇·, (3.5c)

(∇ · sh, p − Ph p) = 0, ∀sh ∈ Sh, (3.5d)

||p − Ph p||L2 ≤ Chr||p||Hr , 0 ≤ r ≤ k + 1. (3.5e)

The Raviart–Thomas–Nedelec space of order k = 0
(see [20, 24]) is one example and is used for the nu-
merical examples that follow. Note that not all mixed-
spaces operators satisfy each of the above properties,
in particular, Eq. 3.5b, where the upper bound for r is
sometimes only k.

Regarding the deformation space, we let Vh be the
space of continuous piecewise polynomials of degree
r; set Vh,0 ≡ {v ∈ Vh : v|�o = 0}. The elliptic projection
operator P̃: (H1)d → Vh (see [36]) will be used in the
following theorem; P̃ satisfies

au(u − P̃u, vh) = 0 ∀vh ∈ Vh.

The following inequality describes its approximation
properties:

||u − P̃u||au ≤ Chs−1, 1 ≤ s ≤ r + 1. (3.6)

3.2 Coupled algorithm

In order for the variational formulation presented be-
low to make sense, the following regularity require-
ments on the data are assumed:

f ∈ C1([0, T]; (H−1(�))d), (3.7)

h ∈ C0([0, T]; L2(�)), (3.8)

po ∈ C0([0, T]; L2(�p)), (3.9)

q ∈ C0([0, T]; TrS), (3.10)

uD ∈ C1([0, T]; (H1/2(�o))
d), (3.11)

tN ∈ C1([0, T]; (H−1/2(�t))
d). (3.12)

Here, TrS ≡ {s · ν|�f : s ∈ H(div)}. As for the initial
time data, we require that uo ∈ (H1)d and po ∈ L2.

In order to produce a variational formulation, we
multiply Eq. 3.1a by v ∈ V0 and Eqs. 3.1b and 3.1c
by (w, s) ∈ L2 × S0. The formulation is completed by
integrating each of the equations over � and inte-
grating by parts when necessary. Now, the essential
boundary conditions for the displacement and flux
are allowed to be inhomogeneous, so it is necessary
to work in affine spaces. So, for each t ≥ 0, select
some ud(t, x) ∈ (H1)d such that ud(t, x)|�o = uD(t, x),
and choose some zd(t, x) ∈ H(div) such that zd(t, x) ·
ν|�f = q(t, x). With this, the variational problem be-
comes: find u ∈ ud + H1([0, T]; V0), p ∈ H1([0, T]; L2)

and z ∈ zd + L2([0, T]; S0), such that

au(u, v) − α(∇ · v, p) = l1(v), (3.13)

(co pt, w) + α(∇ · ut, w) + (∇ · z, w) = l2(w), (3.14)

(κ̃−1z, s) − (p, ∇ · s) = l3(s). (3.15)
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holds for every t ∈ [0, T] and (v, w, s) ∈ (V0, L2, S0).
Here, l1, l2, and l3 are bounded linear functionals de-
fined as

l1(v) =
∫

�

f · v +
∫

�t

tN · v, (3.16)

l2(w) =
∫

�

h w, (3.17)

l3(s) = −
∫

�p

pos · ν +
∫

�

ρ f g · s. (3.18)

Our fully coupled finite element algorithm is based on
the above variational formulation restricted to finite-
dimensional spaces. First, let ūd(t, x) = P̃ud(t, x) and
z̄d(t, x) = �hzd(t, x). Then, the scheme becomes: find
ū ∈ ūd + H1([0, T]; Vh,0), p̄ ∈ H1([0, T]; Wh), and z̄ ∈
z̄d + L2([0, T]; Sh,0), such that

au(ū, v) − α(∇ · v, p̄) = l1(v), (3.19)

(co p̄t, w) + α(∇ · ūt, w) + (∇ · z̄, w) = l2(w), (3.20)

(κ̃−1z̄, s) − ( p̄, ∇ · s) = l3(s), (3.21)

holds for every t ∈ [0, T] and for all (v, w, s) ∈
(Vh,0, Wh, Sh,0). Additionally, we choose the following
initial conditions for ū and p̄:

au(ū, v)t=0 = au(uo, v), ∀v ∈ Vh, (3.22)

( p̄, w)t=0 = (po, w), ∀w ∈ Wh. (3.23)

4 Existence and uniqueness

The existence and uniqueness of a solution of
Eqs. 3.19–3.21 can be established. For uniqueness, as-
sume that (ūa, p̄a, z̄a) and (ūb , p̄b , z̄b ) are two solutions
to Eqs. 3.19–3.21. Let (eu, ep, ez) be the error between
the two solutions. This error satisfies Eqs. 3.19–3.21
with null data, boundary and initial conditions. So take
v = ∂

∂t eu, w = ep, and s = ez. By adding Eqs. 3.19 and
3.20 together, we have

au

(
eu,

∂

∂t
eu

)
+ co

(
∂

∂t
ep, ep

)
+ (∇ · ez, ep) = 0. (4.1)

Now, from Eq. 3.21, we see that

(κ̃−1ez, ez) = (∇ · ez, ep).

Substituting this into Eq. 4.1, and by using the chain
rule from calculus, we see that

1

2

∂

∂t
au(eu, eu) + 1

2
co

∂

∂t
(ep, ep) + (κ̃−1ez, ez) = 0. (4.2)

Integrating above equation from 0 to t, we arrive at the
equation:

1

2
[au(eu(t), eu(t)) + co(ep(t), ep(t))]

− 1

2

= 0︷ ︸︸ ︷
[au(eu(0), eu(0)) + co(ep(0), ep(0))]

+
∫ t

0
(κ̃−1ez(τ ), ez(τ )) dτ = 0.

Now, since the middle term vanishes by assumption, the
above equation becomes

1

2
[au(eu(t), eu(t)) + co(ep(t), ep(t))]

+
∫ t

0
(κ̃−1ez(τ ), ez(τ )) dτ = 0.

Clearly, using the positive definiteness of au(·, ·) and
κ̃−1, we see that each term above must be zero. Thus,
we conclude that eu(t)=ep(t)=ez(t)=0. Hence, ūa(t)=
ūb (t), p̄a(t) = p̄b (t), and z̄a(t) = z̄b (t) for each t ≥ 0,
thus establishing uniqueness.

To show existence, note that Eqs. 3.19 and 3.21
are algebraic equations relating ū to p̄ and z̄ to p̄,
respectively. So, the strategy for proving existence is
to rewrite Eq. 3.20 as a square system of ordinary
linear differential equations for p̄ in its finite ele-
ment basis; thereafter, we can use ordinary differen-
tial equations (ODE) existence theory. To begin, we
write the functions ū(t, x), p̄(t, x), and z̄(t, x) as com-
ponents in their respective finite element basis func-
tions, Nu = [Nu,1, . . . , Nu,nu ], Np = [Np,1, . . . , Np,np],
and Nz = [Nz,1, . . . , Nz,nz ]:

ū(t, x) =
∑

j

u j(t)Nu, j +
∑

j

ud, j(t)Nu, j(x)

= uh(t, x) · Nu(x) + udh(t) · Nu(x),

p̄(t, x) =
∑

j

pj(t)Np, j(x)

= ph(t) · Np(x),

z̄(t, x) =
∑

j

z j(t)Nz, j(x) +
∑

j

zd, j(t)Nz, j(x)

= zh(t) · Nz(x) + zdh(t) · Nz(x).

Here, uh(t)=[u1(t), . . . , unu(t)]T, ph(t)=[p1(t), . . . , pnp

(t)]T, and zh(t) = [z1(t), . . . , znz(t)]T. The vectors udh =
[ud,1(t), . . . , ud,nu(t)]T , and zdh = [zd,1(t), . . . , zd,nu(t)]T

are the components of known functions ūd and z̄d,
respectively, that come from the inhomogeneous essen-
tial conditions.
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It is now instructive to rewrite Eqs. 3.19–3.21 in
matrix form:

Auuuh − αApuph = l1, (4.3)

co App
∂ph

∂t
+ αAT

pu
∂uh

∂t
+ Azpzh = l2, (4.4)

Azzzh − AT
zpph = l3. (4.5)

We remark that the rhs vectors have been modified to
include the effects of udh and zdh.

Now, we differentiate Eq. 4.3 with respect to time
and solve for uh to find

∂uh

∂t
= A−1

uu l
′
1 + αA−1

uu Apu
∂ph

∂t
. (4.6)

Here, l
′
1 ≡ ∂l1

∂t . Next, we use Eq. 4.5 to solve for zh:

zh = A−1
zz l3 + A−1

zz AT
zpph. (4.7)

Then, plugging Eqs. 4.6 and 4.7 into Eq. 4.4, we have
the following ODE:

(
co App + αAT

pu A−1
uu Apu

)∂ph

∂t

= l2 − αAT
pu A−1

uu l
′
1 − Azp A−1

zz l3 − Azp A−1
zz AT

zpph.

The matrix multiplying ∂ph

∂t is the sum of a symmetric,
positive-definite matrix App and a symmetric, nonneg-
ative definite2 matrix AT

pu A−1
uu Apu, and so is itself sym-

metric and positive definite. Therefore, given Eq. 2.2,
its inverse can be taken. This property and the smooth-
ness of the rhs (from the assumptions on the data) show
that the ODE for ph has a solution on [0, T] [4]. In turn,
given the nonsingularity of Auu and Azz, respectively,
uh and zh can be solved algebraically, thus establishing
their existence.

5 Error estimates

We begin this section with a useful lemma regarding
time derivatives;

Lemma 5.1 Let B be a continuous linear operator de-
fined on a Banach space X, and let f : [0, T] → X be
continuously differentiable in time. Then, B and ∂

∂t are a
commutative pair, that is, B ∂ f

∂t = ∂
∂t B( f ).

Remark 5.1 The above lemma is important when de-
veloping error estimates. In particular, we are inter-
ested in the cases B = Ph or B = P̃.

2Indeed, it is positive definite provided one shows Apu has full
column rank.

For convenience, we now introduce some additional
notation, in particular, the time-dependent auxiliary
and projection errors, as:

EA
p = Ph p − p̄, EI

p = p − Ph p,

EA
z = �hz − z̄, EI

z = z − �hz,

EA
u = P̃u − ū, EI

u = u − P̃u.

5.1 Continuous in time error estimates

Now, we examine a priori continuous time error es-
timates. We summarize our results in the following
theorem:

Theorem 5.2 (Auxiliary error estimate) Let r1 be as-
sociated with the degree of the polynomials used in the
mixed space (Wh, Sh) satisfying Eqs. 3.5a–3.5e, and let
r2 be the degree of the polynomials used in the dis-
placement space Vh satisfying Eq. 3.6. Then, assuming
sufficient regularity in the true solution, Eqs. 2.1 and 2.2,

||EA
u ||2L∞(H1) + ||EA

p ||2L∞(L2) + ||EA
z ||2L2(L2)

≤ C(h2r1+2 + h2r2), (5.1)

where C = C(T, κ, co, Ccoer, p, pt, z, ut)

Proof Here, for simplicity, we assume homogeneous
essential conditions for the displacement and flux.
We also assume α = 1. Note that these assumptions
affect the value of C in Eq. 5.1, but not the rate of
convergence.

We denote by (ū, p̄, z̄) the approximate solution.
Then, by Galerkin orthogonality, the following equa-
tions hold for all functions (v, w, s) ∈ (Vh,0, Wh, Sh,0):

au(u − ū, v) − (p − p̄, ∇ · v) = 0, (5.2)

(co(p − p̄)t + ∇ · (u − ū)t, w)

+ (∇ · (z − z̄), w) = 0, (5.3)

(κ̃−1(z − z̄), s) − (p − p̄, ∇ · s) = 0. (5.4)

Now, by noting that u − ū = EA
u + EI

u, p − p̄ = EA
p +

EI
p, and z − z̄ = EA

z + EI
z , and using the properties of
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the above projections, we find that Eqs. 5.3 and 5.4
become:

co(EA
p t

, w) +
= 0 b y L2 proj.︷ ︸︸ ︷
co(EI

pt
, w) (∇ · EA

u t, w) + (∇ · EI
ut, w)

× (∇ · EA
z , w) +

= 0 by Eq. (3.5a)︷ ︸︸ ︷
(∇ · EI

z, w) = 0, (5.5)

(κ̃−1 EA
z , s) + (κ̃−1 EI

z, s) − (EA
p , ∇ · s)

−
= 0 by Eq. (3.5d)︷ ︸︸ ︷
(EI

p, ∇ · s) = 0. (5.6)

Then, letting w = EA
p and s = EA

z in Eqs. 5.5 and 5.6,
after summing the non-zero terms in the above two
equations and using the chain rule (in time), we find
that, after some rearrangement,

1

2
co

∂

∂t
(EA

p , EA
p ) + (∇ · EA

u t, EA
p ) + (κ̃−1 EA

z , EA
z )

= −(κ̃−1 EI
z, EA

z ) − (∇ · EI
ut, EA

p ). (5.7)

Next, we set v = EA
u t in Eq. 5.2. Then, by using the

symmetry of au and the chain rule (in time), we find
that

1

2

∂

∂t
au(EA

u , EA
u ) +

= 0 by Elliptic proj.︷ ︸︸ ︷
au(EI

u, EA
u t)

− (EA
p , ∇ · EA

u t) − (EI
p, ∇ · EA

u t) = 0. (5.8)

If we then sum Eqs. 5.7 and 5.8, integrate from 0 to T,
and use Eqs. 3.22 and 3.23 to see that au(EA

u , EA
u )|t=0 =

0 and (EA
p , EA

p )|t=0 = 0 , we deduce a formula for the
auxiliary error,

1

2
[au(EA

u , EA
u ) + co(EA

p , EA
p )]|t=T

+
∫ T

0
(κ̃−1 EA

z (τ ), EA
z (τ ) dτ

= �1 + �2 + �3, (5.9)

where

�1 = −
∫ T

0
(κ̃−1 EI

z(τ ), EA
z (τ )) dτ, (5.10)

�2 = −
∫ T

0
(∇ · EI

ut(τ ), EA
p (τ )) dτ, (5.11)

�3 =
∫ T

0
(EI

p(τ ), ∇ · EA
u t(τ )) dτ. (5.12)

To bound the above quantities, we make use primar-
ily of the Cauchy–Schwarz and Young inequalities (i.e.,
for a, b ≥ 0, ε ≥ 0, ab ≤ 1

2ε
a2 + ε

2 b 2):

�1 = −
∫ T

0
(κ̃−1 EI

z(τ ), EA
z (τ )) dτ

≤
∫ T

0
||κ̃−1 EI

z(τ )||0||EA
z (τ )||0 dτ

≤ C
∫ T

0
||κ̃−1 EI

z(τ )||20 dτ + ε

∫ T

0
||EA

z (τ )||20 dτ

≤ C

λ2
min

∫ T

0
||EI

z(τ )||20 dτ + ε

∫ T

0
||EA

z (τ )||20 dτ.

�2 = −
∫ T

0
(∇ · EI

ut(τ ), EA
p (τ )) dτ

≤
∫ T

0
||∇ · EI

ut(τ )||0||EA
p (τ )||0 dτ

≤ 1

2

∫ T

0
||∇ · EI

ut(τ )||20 dτ + 1

2

∫ T

0
||EA

p (τ )||20 dτ

≤ 1

2

∫ T

0
||EI

ut(τ )||21 dτ + 1

2

∫ T

0
||EA

p (τ )||20 dτ.

To bound �3, we first integrate by parts and remem-
ber that ||∇ · EA

u (0)|| = 0:

�3 =
∫ T

0
(EI

p(τ ), ∇ · EA
u t(τ )) dτ

= −
∫ T

0
(EI

pt
(τ ), ∇ · EA

u (τ )) dτ + (EI
p, ∇ · EA

u )|T
0

≤
∫ T

0
||EI

pt
(τ )||0||∇ · EA

u (τ )||0 dτ

+ ||EI
p(T)||0||∇ · EA

u (T)||0

≤ 1

2

∫ T

0
||EI

pt
(τ )||20 dτ + 1

2

∫ T

0
||EA

u (τ )||21 dτ

+ C||EI
p(T)||20 + ε||EA

u (T)||21.

We now use the above bounds on �1 − �3 in Eq.
5.9; in addition, we use the inequalities au(EA

u ,

EA
u ) ≥ Ccoer||EA

u ||21 (coercivity) and (κ̃−1 EA
z , EA

z ) ≥
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1
λmax

||EA
z ||20 (boundedness of κ). So, after rearrange-

ment, we find:

(1

2
Ccoer − ε

)
||EA

u (T)||21 + 1

2
co||EA

p (T)||20

+
( 1

λmax
− ε

) ∫ T

0
||EA

z (τ )||20 dτ

≤ 1

2

[ ∫ T

0
||EA

p (τ )||20 dτ +
∫ T

0
||EA

u (τ )||21 dτ
]

+ C
[
||EI

p(T)||20 + 1

λ2
min

∫ T

0
||EI

z(τ )||20 dτ

+
∫ T

0
||EI

ut(τ )||21 dτ +
∫ T

0
||EI

pt
(τ )||20 dτ

]
,

where3 ε and C are independent of T and h. Then, pro-
vided that ε is small enough so that the lhs coefficients
are all positive, we may preserve the inequality by
setting each coefficient on the lhs to equal the smallest
of the terms. After dividing the equation by that term,
we find the inequality,

||EA
u (T)||21 + ||EA

p (T)||20 +
∫ T

0
||EA

z (τ )||20 dτ

≤ C(κ, co, Ccoer)

[ ∫ T

0
||EA

p (τ )||20 dτ

+
∫ T

0
||EA

u (τ )||21 dτ

]

+ C(κ, co, Ccoer)

[
||EI

p(T)||20 +
∫ T

0
||EI

z(τ )||20 dτ

+
∫ T

0
||EI

ut(τ )||21 dτ

+
∫ T

0
||EI

pt
(τ )||20 dτ

]
.

Using Gronwall’s inequality (see [8]),

||EA
u (T)||21 + ||EA

p (T)||20 +
∫ T

0
||EA

z (τ )||2 dτ

≤ C(T, κ, co, Ccoer)
[
||EI

p(T)||20 +
∫ T

0
||EI

z(τ )||20 dτ

+
∫ T

0
||EI

ut(τ )||21 dτ +
∫ T

0
||EI

pt
(τ )||20 dτ

]
.

3We remark that each ε can be chosen independently.

We note that the above estimate is true for all 0 ≤ T.
If, in addition, we apply the appropriate approximation
properties, we deduce

sup
0≤τ≤T

||EA
u (τ )||21 + sup

0≤τ≤T
||EA

p (τ )||20 +
∫ T

0
||EA

z (τ )||20 dτ

≤ C(T, κ, co, Ccoer)
[
h2r1+2 sup

0≤τ≤T
||p(τ )||2r1+1

+ h2r1+2
∫ T

0
||z(τ )||2r1+1 dτ

+ h2r2

∫ T

0
||ut(τ )||2r2+1 dτ

+ h2r1+2
∫ T

0
||pt(τ )||2r1+1 dτ

]
.

Or, using standard nomenclature,

||EA
u ||2L∞(H1) + ||EA

p ||2L∞(L2) + ||EA
z ||2L2(L2)

≤ C(T, κ, co, Ccoer, p, p,t, z, u,t)(h2r1+2 + h2r2).

�
The importance of auxiliary error estimates is found

when coupled with the triangle inequality and is sum-
marized in the following corollary:

Corollary 5.3 (Finite element error estimate) With the
same conditions as in the preceding theorem, the follow-
ing finite element error estimate holds:

||u − ū||2L∞(H1) + ||p − p̄||2L∞(L2) + ||z − z̄||2L2(L2)

≤ C(T, κ, co, Ccoer, p, p,t, z, u,t)(h2r1+2 + h2r2).

(5.13)

Proof Applying the triangle inequality to the lhs of
Eq. 5.13 yields:

|| u − ū||2L∞(H1) + ||p − p̄||2L∞(L2) + ||z − z̄||2L2(L2)

≤
Auxiliary error︷ ︸︸ ︷

||EA
u ||2L∞(H1) + ||EA

p ||2L∞(L2) + ||EA
z ||2L2(L2)

+
Interpolation error︷ ︸︸ ︷

||EI
u||2L∞(H1) + ||EI

p||2L∞(L2) + ||EI
z ||2L2(L2) .

Use of interpolation estimates and the theorem on
auxiliary estimates concludes the corollary. �
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6 Numerical results

The equations governing poroelasticity form a compli-
cated coupled system of partial differential equations,
and hence, there are very few analytical solutions avail-
able. However, there are some known solutions that
provide an ideal opportunity to examine the numerical
accuracy of the algorithms presented herein. In this
paper, we turn to the well-known case of Mandel’s
problem. This problem gives us a chance to test our
algorithm in a two-dimensional setting, and it also pro-
vides a nice example of the dynamics involved in a
fluid–solid interaction.

6.1 Mandel’s problem

Mandel’s problem is important because it admits an an-
alytical solution in two dimensions on a finite domain.
The original paper by Mandel [19] presented only an
analytical form for the pressure; later, Abousleiman [1]
extended the results to include analytical expressions
for the displacement and stress. It is therefore an ex-
cellent model to verify the accuracy of a poroelasticity
algorithm. Mandel’s problem is also fascinating from
the point of view that it clearly illustrates that solid–
fluid interactions can lead to unexpected behavior, and
thus highlights the need for poroelasticity theory in
practice.

For a precise formulation of the problem, we con-
sider a poroelastic slab of extent 2a in the x direction,
2b in the y direction, and infinitely long in the z di-
rection. The slab is sandwiched in between two rigid
plates as shown in Fig. 1. At time t = 0, a downward
surface force of magnitude 2F is applied to the top

Rigid Plate Constraint

Fig. 1 Mandel’s problem

plate, and an equal but upward force is applied to
the bottom plate. Because the plates are considered
rigid, we must impose the additional constraint that the
vertical displacements at the top and bottom, respec-
tively, are uniform. This requirement ensures that the
slab remains in contact with the plates. We incorporate
this constraint into our methods by use of Lagrange
multipliers. In addition, at all times, the slab at x = ±a
remains drained, thus leading to the boundary condi-
tion p(±a, y, t) = 0.

The application of a load causes an instantaneous
and uniform pressure increase throughout the do-
main; the theory predicts this to be p+ ≡ lim

t→0
p(x, t) =

1
3a B(1 + νu)F. Also, the x displacement depends only
on x and t, and the y displacement depends on y and t.
We can thus define the following x and y settlements:
sx(t) = ux(x = a, t) and sy = uy(y = b , t). It is pre-
dicted that there will be instantaneous and asymptotic
settlements,

sxo ≡ lim
t→0

sx(t) = Fνu

2μ
,

sx∞ ≡ lim
t→∞ sx(t) = Fν

2μ
,

syo ≡ lim
t→0

sy(t) = −F(1 − νu)b
2μa

,

sy∞ ≡ lim
t→∞ sy(t) = −F(1 − ν)b

2μa
.

At this point, it is useful to remark that the problem is
symmetric about the x and the y axes, and is indepen-
dent of the z direction. Therefore, we may reduce the
computational domain to only the upper-right quadrant
of the xy plane, as illustrated in Fig. 1. Thus, we add
to the governing equations 2.3a and 2.3b the following
boundary and initial conditions on the domain (0, a) ×
(0, b):

ux = 0, x = 0;
uy = 0, y = 0;

tN · ν = −2F, y = b , = 0 otherwise;
p = 0, x = a;

− 1

μ f
κ∇ p · ν = 0, x = 0, y = 0, y = b ;

uy(x, y = b) = constant (Rigid Plate Constraint);
p = u = 0, t = 0;

We also remark that the constant in the rigid plate
constraint is time-dependent.
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We refer now to the notation in Appendix A1 as
we list the analytical series solutions for the pressure,
displacement, and stress as found in Abousleiman [1]:

p = 2FB(1 + νu)

3a

∞∑
n=1

sin αn

αn − sin αn cos αn

×
(

cos
αnx

a
− cos αn

)
exp(−α2

ncft/a2),

ux =
[ Fν

2μa
− Fνu

μa

∞∑
n=1

sin αn cos αn

αn − sin αn cos αn

× exp(−α2
ncft/a2)

]
x

+ F
μ

∞∑
n=1

cos αn

αn − sin αn cos αn
sin

αnx
a

exp(−α2
ncft/a2),

uy =
[−F(1 − ν)

2μa
+ F(1 − νu)

μa

∞∑
n=1

sin αn cos αn

αn − sin αn cos αn

× exp(−α2
ncft/a2)

]
y,

σyy = − F
a

− 2FB(νu − ν)

a(1 − ν)

∞∑
n=1

sin αn

αn − sin αn cos αn

× cos
αnx

a
exp(−α2

ncft/a2)

+ 2F
a

∞∑
n=1

sin αn cos αn

αn − sin αn cos αn
exp(−α2

ncft/a2).

We note that all other components of the stress tensor
are zero, σxx = σxy = 0. We note that, for the above

Fig. 2 Mandel’s pressure solution and boundary layer as t → 0

Fig. 3 Mandel’s problem. The pressure integrals ||px(t)||20 and
||pxx(t)||20

equations, αn represents the positive solutions to the
nonlinear equation

tan αn = 1 − ν

νu − ν
αn,

and must be solved for numerically.

6.1.1 Results

Recall that the optimal error estimates presented
herein stipulate a sufficiently smooth analytical solu-
tion. However, full-order convergence for even the
lowest-order methods requires that p ∈ L2(H2). One
can see why by examining the proof of the error es-
timates given earlier. Assuming sufficient regularity
implied that the following integrals are finite:

∫ T

0
||EI

z(τ )||10dτ ≤ h2k+2
∫ T

0
||z(τ )||2k+1dτ < ∞,

where k is the order of the mixed space. However, even
for k = 0, if p �∈ L2(H2), then

∫ T
0 ||z(τ )||21dτ = ∞.

Indeed, for Mandel’s problem, Fig. 2 shows the true
pressure solution for a typical choice of physical para-
meters. As t → 0, a very large gradient occurs. Natu-
rally, this leads one to suspect that the regularity of the
pressure might be limited. This is confirmed by looking
at Fig. 3, which shows the regularity of the pressure by
computing ||px(t)||20 and ||pxx(t)||20. It is discovered that

||px(t)||20 ≈ O(t−0.488) (6.1)

||pxx(t)||20 ≈ O(t−1.447) (6.2)
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The order approximation (6.1) implies that p∈
L2(H1), but Eq. 6.2 shows that p �∈ L2(H2).

Thus, it is reasonable to assume that p ∈ L2(H1+s)

for some s ∈ [0, 1). Furthermore, it is precisely this
value of s that limits the best rate of convergence that
one might expect from the CG/Mixed algorithm for
Mandel’s problem.

For numerical verification of our algorithms, we use
a force F = 2, 000. Standard continuous linear ele-
ments are used to approximate the displacement, and
the lowest Raviart–Thomas space is used for the flow
variables. The backward Euler scheme is used. The top
image in Fig. 4 shows how the computed pressure error,
||p − p̄||L∞(L2), varies with element size h. The bottom
image shows the displacement error, ||u − ū||L∞(H1).
To minimize the effects of the error produced by the
time discretization, a small time step of �t = 1e − 6

Fig. 4 L∞(L2) pressure error (top) and L∞(H1) displacement
error (bottom) in Mandel’s problem

is chosen. The convergence rate is determined by the
slope of the logarithm of the error (≈ 0.500117).

The convergence rate (≈ 0.5) for both the pressure
and displacement conforms to the expectation that
the lack of regularity in the pressure solution would
degrade performance. From the convergence rate and
the theorem on error estimates, one might be led to
conclude that p ∈ L2(H

3
2 ±ε) for some small 0 ≤ ε <<1.

For a larger time step, the finite element solution
might exhibit a better convergence rate because the
large pressure gradient subsides over time. However,
the time-discretization error can become problematic
for those larger time steps. See Phillips and Wheeler
[22] for the analysis of the discrete-in-time case and
an example using Terzaghi’s consolidation problem,
which has a pressure solution profile similar to that for
Mandel’s problem.

An interesting aspect of Mandel’s problem is shown
in Fig. 5 – the increase in pressure (above the initial
increase) near the center of the medium. This is known
as the Mandel–Creyer effect and is a phenomenon par-
ticular to poroelastic material. The increase occurs be-
cause the deformation and rigid plate condition create
an effect similar to that of a source term in the pressure
equation. Indeed, Coussy [6] shows that one can reduce
the diffusion equation to one involving the normalized
pressure and a source as

∂ p̂

∂ t̂
− ∂2 p̂

∂ x̂2
= 2

∞∑
n=1

α2
n sin αn cos αn

αn − sin αn cos αn
exp(−α2

nt̂). (6.3)

The source term is time-dependent only (indepen-
dent of x), and it can be quite large at early times.
The interesting behavior has been confirmed exper-
imentally in the work of Gibson et al. [11] and
Verruijt [32].

Appendix A1: Additional notation and terms
in the literature

For completeness, we present here some additional
terms and notations commonly found in poroelastic
literature. Though not essential for the development of
our model and the subsequent error estimates, famil-
iarity with this additional nomenclature will be helpful
when discussing numerical results.

The first of the additional terms can be written in
terms of the Lamé coefficients μ and λ and are common
in the field of linear elasticity. They are, respectively,
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Fig. 5 The Mandel–Creyer
effect is captured by the
approximate solution
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the skeleton bulk modulus K, Young’s modulus E, and
Poisson’s coefficient ν:

K = λ + 2

3
μ,

E = μ
9K

3K + μ
,

ν = 3K − 2μ

2(3K + μ)
.

There are also “undrained” versions of the above coef-
ficients and are denoted by the subscript u: Ku, Eu, νu.
Additionally, Ku has the following relation,

Ku = K + α2

co
.

With the above, two useful terms have been defined:
the fluid diffusivity coefficient cf and Skempton’s coeffi-
cient B:

cf = 1

co
κ

K + 4
3μ

Ku + 4
3μ

,

B = α

co Ku
.

Clearly, cf is usefully defined only for the case where the
permeability κ is a constant. Skempton’s coefficient can

be used to reveal a useful relation between Poisson’s
coefficient and its undrained version,

αB(1 − 2ν)

3
= νu − ν

1 + 2νu
.
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