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Abstract We develop and analyze a mixed finite
element method for the solution of an elliptic system
modeling a porous medium with large cavities, called
vugs. It consists of a second-order elliptic (i.e., Darcy)
equation on part of the domain coupled to a Stokes
equation on the rest of the domain, and a slip bound-
ary condition (due to Beavers–Joseph–Saffman) on the
interface between them. The tangential velocity is not
continuous on the interface. We consider a 2-D vuggy
porous medium with many small cavities throughout its
extent, so the interface is not isolated. We use a cer-
tain conforming Stokes element on rectangles, slightly
modified near the interface to account for the tangential
discontinuity. This gives a mixed finite element method
for the entire Darcy–Stokes system with a regular spar-
sity pattern that is easy to implement, independent of
the vug geometry, as long as it aligns with the grid.
We prove optimal global first-order L2 convergence
of the velocity and pressure, as well as the velocity
gradient in the Stokes domain. Numerical results verify
these rates of convergence and even suggest somewhat
better convergence in certain situations. Finally, we
present a lower dimensional space that uses Raviart–
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Thomas elements in the Darcy domain and uses our
new modified elements near the interface in transition
to the Stokes elements.
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1 Introduction

We consider the approximation of the equations gov-
erning the flow of an incompressible fluid in a medium
� ⊂ R

2 composed of a porous material that also con-
tains relatively large cavities. Such cavities are called
vugs in the geological literature. They occur ubiqui-
tously throughout, for example, most carbonate rock
formations. Although small, vugs can significantly in-
crease both the effective porosity and permeability of
the medium.

Since only low Reynold’s number flow is to be
expected, the system is governed in the rock matrix
�d ⊂ � by a second-order elliptic equation represent-
ing Darcy’s law and mass conservation, and in the
vugs �s = � \ �̄d by the Stokes equation, with the
Beavers–Joseph–Saffman boundary condition [5, 21]
on the interface between the two regions � = ∂�d ∩
�s. The system is difficult to approximate because the
Darcy and Stokes solutions have very different regu-
larity properties, and, more importantly, the tangential
velocity may be discontinuous on the Darcy–Stokes
interface �.

Previous studies have developed numerical tech-
niques appropriate to the case where the porous
medium and the open (vuggy) region are well sepa-
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rated [14, 19, 22]. However, these techniques are not
so readily adapted to the case of a vuggy medium, for
which there is no distinct separation between the vuggy
regions and the porous rock, i.e., to the case where
the vugs and porous matrix are essentially intertwined
everywhere. For example, Layton et al. [19] used a
Lagrange multiplier on the interface � to both aid in the
approximation of the Beavers–Joseph–Saffman bound-
ary condition and to allow the use of existing Darcy
and Stokes flow simulators in a domain–decomposition
(�d and �s) iterative technique. They also provided a
very thorough error analysis of their underlying method
and the equations in general. However, this approach
is not so useful when � is large because the size of
the Lagrange multiplier space would preclude efficient
solution.

The approach taken here is to design a finite ele-
ment that is appropriate for both the Stokes and Darcy
regions of the domain. The rationale is that then an
efficient code can be written with little regard to the
nature of the underlying equations, i.e., whether an ele-
ment lies in �s or �d. For simplicity, we use conforming
elements. Since the Stokes equations are necessarily a
saddle point system, we consider the second-order ellip-
tic Darcy equations in mixed form. Stokes approxima-
tion requires that the fluid velocities be approximated
in (H1(�))2, which is more restrictive than the Darcy
simulation requires. Mixed methods approximate ve-
locities only in the space H(div) = {u ∈ (L2)2 : ∇ · u ∈
L2} [11, 20]. This requires only the (weak) continuity of
normal velocity components, whereas Stokes requires
both normal and tangential components to be (weakly)
continuous. We thereby restrict ourselves to using a
finite element appropriate for Stokes simulation that
simultaneously works well for Darcy simulation. We
adopt the low-order space due to Fortin [13]. This space
and higher order generalizations have been shown by
Arbogast and Wheeler [3] to approximate well second-
order elliptic systems. To approximate the combined
Darcy–Stokes system, since the tangential velocity may
be discontinuous, this finite element space must be
modified near �, but the modification is relatively mi-
nor and easily handled in a computer code. In principle,
our results should extend to 3-D elements. Since this
has not been tested, we present only the 2-D case here.

The outline of the rest of the paper follows. In the
next section, we state in detail the governing equations
and a mixed variational form suitable for finite ele-
ment approximation. In Section 3, we define our finite
element spaces as a small modification of the Fortin
spaces, and then the finite element method follows
immediately. In Section 4, we present a π projection
operator for the velocity and examine its properties.

This operator is used in Section 5, where we present
an a priori error analysis. We show that the method
approximates both the true velocity and pressure to the
optimal first order in the standard energy norm. That is,
the Stokes velocity error is measured in the (H1)2 norm,
the Darcy velocity error is measured in (L2)2, and the
pressure error is measured in L2. We present the results
of several numerical experiments to verify these rates of
convergence in Section 6. Since these test cases lead to
very ill-conditioned linear systems, in Section 6, we also
discuss our solution strategy. Finally, in the last section,
we consider a finite element space with lower total
dimension by replacing the Fortin elements by Raviart–
Thomas [20] elements on Darcy elements away from
the Darcy–Stokes interface.

We close the introduction with a remark about sim-
ulation of flow in vuggy media. When the medium
is large in extent, such as an aquifer or petroleum
reservoir, it is not reasonable to solve the Darcy–Stokes
system over the entire domain for several reasons. First,
there are inadequate data regarding the geometry of
the vugs over the many square-kilometer areal extent
of the domain. Second, at the centimeter resolution
that would be required to resolve the vugs, the problem
would be computationally intractable. Finally, the data
generated would be much too detailed to be of use in
engineering analyses, where only meter-scale average
flows would be used.

Recently, Arbogast and Lehr [2] derived from the
microscale model of the next section a macroscopic
model using the mathematical theory of homogeniza-
tion [6, 16, 17, 23]. The theoretical prediction is that
Darcy flow results at the macroscale. What is important
here is that an expression for the effective permeability
is also derived. This expression involves the solution of
a Darcy–Stokes system on a representative cell involv-
ing the vug geometry (except that periodic boundary
conditions must be imposed). The numerical method of
this paper is suitable for solving this cell problem, and
thereby allowing one to obtain effective permeabilities
for vuggy media.

2 The governing equations

In all of �, denote the fluid velocity by u and the pres-
sure by p. We will often need to distinguish between
these quantities on �s or �d, and especially their traces
on �. Thus, let

us = u|�s , ud = u|�d , ps = p|�s , and pd = p|�d .

Let μ > 0 be the fluid viscosity, K ∈ L∞(�) the uni-
formly positive permeability of the porous rock matrix,
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α > 0 the Beavers–Joseph slip coefficient, q ∈ L2(�)

an external source or sink term (satisfying the com-
patibility condition that its average over � vanishes),
and f ∈ (L2(�))2 a term related to body forces such as
gravity. Let ν be the outer unit normal to ∂�, and on �,
let it be the outer unit normal to ∂�s. Let τ be a unit
tangent to �, and let D be the symmetric gradient, i.e.,

D(ψ) is the matrix
1

2

(
∂ψi

∂x j
+ ∂ψ j

∂xi

)
. Then the governing

equations are [5, 18, 21].

Vuggy region (Stokes equations)

− 2μ∇ · Du + ∇ p = f in �s , (2.1)

∇ · u = q in �s , (2.2)

Rock matrix (Darcy equations)

μK−1u + ∇ p = f in �d , (2.3)

∇ · u = q in �d , (2.4)

Interface

us · ν = ud · ν on � , (2.5)

2ν · Dus · τ = −αK−1/2us · τ on � , (2.6)

2μν · Dus · ν = ps − pd on � , (2.7)

Outer boundary

us = 0 on ∂� ∩ ∂�s , (2.8)

ud · ν = 0 on ∂� ∩ ∂�d . (2.9)

The interface conditions represent continuity of
mass flux Eq. 2.5, the Beavers–Joseph–Saffman condi-
tion on the tangential stress Eq. 2.6, and the continuity
of normal stress Eq. 2.7. Note that because we do not
assume a vanishing divergence in Eq. 2.2, we must pose
Eq. 2.1 in terms of the symmetric gradient.

A suitable variational form is posed with the velocity
u in the space

V = {v ∈ H(div; �) : vs = v|�s ∈ (H1(�s))
2,

v · ν = 0 on ∂�, v = 0 on ∂�s ∩ ∂�} ,

in which the outer boundary condition is imposed and
pressure p in the space W = L2(�)/R. Note that the
vector valued functions in V have (weakly) continuous
normal components on � [11], but that the tangential
components need not agree. Let (·, ·) denote the L2(�),
(L2(�))2, or (L2(�))2×2 inner product or duality pair-
ing, as appropriate. Also, (·, ·)
, 
 = s, d, will be the
same with � replaced by �
, and 〈·, ·〉 will be the L2(�)

inner product or duality pairing.

To derive the variational form, for v ∈ V, the left side
of Eq. 2.1 is manipulated as

−2μ(∇ · Du, v)s + (∇ p, v)s = 2μ(Du, Dv)s

− 2μ〈ν · Dus, v〉 − (p, ∇ · v)s + 〈ps, v · ν〉 ,

and the first interface term on the right is further ma-
nipulated as

−2μ〈ν · Dus, v〉 = − 2μ〈ν · Dus · ν, v · ν〉
− 2μ〈ν · Dus · τ, vs · τ 〉

= − 〈ps − pd, v · ν〉
+ μ〈αK−1/2us · τ, vs · τ 〉 ,

using the interface conditions (2.6) and (2.7). Thus,
Eq. 2.1 becomes

2μ(Du, Dv)s +μ〈αK−1/2us · τ, vs · τ 〉 − (p, ∇ · v)s

+ 〈pd, v · ν〉 = ( f, v)s . (2.10)

Similarly, Eq. 2.3 is manipulated as

μ(K−1u, v)d + (∇ p, v)d = μ(K−1u, v)d − (p, ∇ · v)d

− 〈pd, v · ν〉 = ( f, v)d , (2.11)

since ν points into �d. Thus, the entire system (2.1)–
(2.9) for (u, p) ∈ V × W becomes, for test functions
(v, w) ∈ V × W,

2μ(Du, Dv)s + μ〈αK−1/2us · τ, vs · τ 〉
+ μ(K−1u, v)d − (p, ∇ · v) = ( f, v) , (2.12)

(∇ · u, w) = (q, w) . (2.13)

Note that Eq. 2.5 is implicit, and Eqs. 2.8 and 2.9 are
explicit, in the space V.

3 The finite element space

We begin by recalling the definition of the standard
Stokes finite element space that we used [3, 13]. The
finite element itself is defined on a rectangle R =
(0, a) × (0, b). On R, we approximate pressure as a con-
stant and the velocity in the space Vh(R) = Q1,2(R) ×
Q2,1(R), where Qi, j(R) are the polynomials of degree i
in x1 and degree j in x2 defined over R. The degrees
of freedom for v = (v1, v2) ∈ Vh(R) are the 8 corner
values

v j(0, 0) , v j(a, 0) , v j(0, b) , v j(a, b) , j = 1, 2 ,

(3.1)



210 Comput Geosci (2007) 11:207–218

Fig. 1 The seven patterns (up to symmetries) around a corner
point in the modified space Vh. Here d represents a Darcy
element, s is a Stokes element, and a heavy line is a part of �. For
x1 velocity components, a quarter circle in an element indicates

that the corner basis function is present over the element. The
corner in Pattern 5 is called a checkerboard corner. The edge
tick marks indicate which edges may be used to define the corner
value via the Scott–Zhang operator

and the 4 edge average normal fluxes

− 1

b

∫ b

0
v1(0, x2) dx2 ,

1

b

∫ b

0
v1(a, x2) dx2 ,

−1

a

∫ a

0
v2(x1, 0) dx1 ,

1

a

∫ a

0
v2(x1, b) dx1 . (3.2)

For purposes of implementation, the 4 edge degrees of
freedom may be replaced by the nodal values at the
midpoints of the edges; however, for easier definition of
the space and for the analysis, we represent the degrees
of freedom as above.

We assume henceforth that both �s and �d are
unions of rectangles. Let Th be a rectangular finite
element partition of �, with h being the maximum
element diameter, so that each element R is in either
�s or �d. Then � is a union of edges of Th. We tacitly
assume that the aspect ratio of the rectangles does not
degenerate as h → 0.

The standard Stokes finite element space is formed
in the usual way. Let Wh ⊂ W consist of piecewise
constant functions over Th. Let Ṽh = {v ∈ V ∩ C(�̄) :
v|R ∈ Vh(R) for all R ∈ Th}, which is formed by piecing
together the elements by matching the degrees of free-
dom at corners and edges of the partition.

The elements of Ṽh must be modified near the
Darcy–Stokes interface � since, in general, the tan-
gential component of the velocity is not continuous
there. We must remove some of the corner degrees of
freedom to allow for a discontinuous tangential velocity
component on � and simultaneously reduce the size
of the polynomial space (but we must not degrade
its approximation properties). We want to do this as
simply as possible, so that there are minimal changes
to a finite element code using the unmodified elements
everywhere.

Around a corner point, exactly seven patterns arise,
as depicted in Fig. 1. Modification is made in only three
of the cases. For ease of exposition, we consider the
case of horizontal, x1-components only (x2-components
are handled similarly). If two Darcy elements share a
vertical edge e and a corner on �, we remove the corner
nodal value (which disconnects the tangential velocity).

We also reduce the polynomial space by one degree on
e. Thus, Pattern 2 has two modified elements on top,
whereas Pattern 4 has its two lower elements modified.

Pattern 5 of Fig. 1 has alternating Stokes and Darcy
elements around the corner, so we call it a checkerboard
corner. Such corner points are problematic because the
entire horizontal interface is part of �, which means
that the x1 velocity of the solution on the top two
elements is potentially discontinuous with that on the
bottom. We need to break the continuity, so we remove
the corner nodal value systematically on, say, the bot-
tom Darcy and Stokes elements.

For a corner point on ∂�, it is trivial to examine
the possibilities, as depicted in Fig. 2. If the corner
point is also a corner of the domain, there is only one
element containing the corner point and no modifica-
tion is needed. Otherwise, the corner point is part of
two elements, and modification is required only if the
elements are of different types, and then only to the
Darcy element, and only to the component normal to
∂� (i.e., tangential to �). Thus, only Pattern 5 in Fig. 2
is modified.

We have a grand total of 16 types of elements
for each velocity component, depending on which of
the four corners are affected. Removing symmetries,
we are left with the seven distinct types depicted in
Fig. 3. Each of these elements has degree 0, 1, or 2
on the left and right vertical edges. On R = (0, a) ×
(0, b), with P j(ξ) denoting polynomials in ξ of degree
up to j, the polynomial spaces for x1-components are
(a − x1)Pi(x2) + x1 P j(x2), i, j = 0, 1, 2 [and for the x2-

Fig. 2 The five patterns (up to symmetries) around a corner
point in the modified space Vh on ∂�. Here d represents a Darcy
element, s is a Stokes element, unspecified is either, and a heavy
line is a part of �. For x1 velocity components, a quarter circle in
an element indicates that the corner basis function is present over
the element



Comput Geosci (2007) 11:207–218 211

Fig. 3 The seven elements
(up to symmetries) for the x1
velocity components, on
R = (0, a) × (0, b), in the
modified space Vh. The
quarter circles represent
corner nodal values, and the
edge crosses represent
normal fluxes (or,
equivalently, nodal values)

components, the spaces are Pk(x1)(b − x2) + P
(x1)x2,
k, 
 = 0, 1, 2]. Note that in the most reduced case, the
element becomes the lowest order space due to Raviart
and Thomas [20].

Denote by Vh ⊂ V the modified finite element space.
Note that no global basis function disappears (we al-
ways have an unmodified Stokes element near �). Of
course, the finite element method is to find (uh, ph) ∈
Vh × Wh such that Eqs. 2.12 and 2.13 hold for test
functions (v, w) restricted to Vh × Wh. It is trivial to
verify that there is a unique solution.

In a computer code, in the matrix assembly rou-
tines, one needs to check the type of element (Stokes
or Darcy) to decide which of two forms is used:
2μ(Du, Dv)s or μ(K−1u, v)d. On a Darcy element, we
need to check the nearest neighbors to decide on the
local basis. When we are in contact with �, we also
include the interface term μ〈αK−1/2us · τ, vs · τ 〉. More-
over, when in contact with �, for x1 velocity compo-
nents, we need to check the two lower corners to see
if either or both are checkerboard corners (Pattern 5
of Fig. 1) and modify the local basis accordingly (we
check, say, the two left-most corners for x2 velocity
components). Since the number of global basis func-
tions is determined a priori by the number of corner
points and edges, the global matrix problem has a
regular sparsity pattern.

In closing this section, we note that for checkerboard
corners, we could instead remove the corner nodal
value altogether. However, two issues then need to be
addressed. First, if a larger checkerboard pattern of
Stokes and Darcy elements were to arise, so that we
have an edge with checkerboard corners on both ends,
then the polynomial space would drop to a constant

along that edge. This would be insufficient to approx-
imate the Stokes equations. We conclude that omitting
checkerboard corner nodal values is acceptable only if
such edges do not arise in the finite element partition.
Second, if we indeed omit a nodal value, the sparsity
structure of the matrix problem changes. Since checker-
board corner points will likely not occur in nature, it is
not particularly important how we handle them. In our
computer code, in fact, we ignored the issue and used
the strategy that Pattern 5 of Fig. 1 is left unmodified,
and only the other two Patterns 2 and 4 were treated in
a special way.

4 A π operator for the velocity

We now define an important operator that will be used
heavily in the next section to analyze the approximation
error. For the unmodified space Ṽh, the operator has
been defined in, e.g., [3, 15]. Let π̃ : (H1(�))2 → Ṽh de-
note this unmodified operator. We have the following
properties [3], where PW : L2(�) → Wh denotes the
L2 projection operator and | · | j,ω is the usual H j(ω)

Sobolev seminorm,

|ψ |2j,ω =
∑

α,|α|= j

∫
ω

∣∣∣∣∂
αψ(x)

∂xα

∣∣∣∣
2

dx ,

where the sum is taken over all jth-order derivatives
(i.e., α runs over all multi-indices of order j). Later we
will also need the usual H j(ω) Sobolev norm ‖ · ‖ j,ω,
which is

‖ψ‖2
j,ω =

j∑
k=0

|ψ |2k,ω .
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We omit ω if ω = �, and write s or d in place of �s

or �d.

Lemma 4.1 Assume that v ∈ (H1(�))2. There exists
some constant C independent of h, so that the following
hold.

(a) The linear operator π̃ is bounded on (H1(�))2

independently of h.
(b) For R ∈ Th and v ∈ (Hr(R′))2,

|π̃v − v| j,R ≤ C|v|r,R′hr− j
R , 1 ≤ r ≤ 2, j = 0, 1 ,

where R′ is the union of R and its four nearest
neighbor elements that share edges with R, and
hR = diam(R).

(c) For v ∈ (Hr(�))2,

|π̃v − v| j ≤ C|v|rhr− j , 1 ≤ r ≤ 2, j = 0, 1 .

(d) PW∇ · v = PW∇ · π̃v.

By definition [3], π̃ is defined locally, element by ele-
ment, as essentially the interpolant of the finite element
degrees of freedom 3.1 and 3.2 (where the edge degrees
of freedom must be understood as the average normal
velocity component, not the midpoint nodal value). The
only problem is that corner values are not defined for
functions in H1(�), so the corner nodal values are
set using the Scott–Zhang operator [24]. This operator
defines corner point values through integration over
an adjoining edge of the finite element partition. The
above results are proved by using the Trace theorem
locally to relate edge integrals to area integrals. Thus,
in (b), R′ is larger than R and only needs to include
for each corner point the element over which the area
integral is computed. (We note in passing that π̃ is
actually a projection because of the way the Scott–
Zhang operator is defined.)

We now modify π̃ locally near � wherever the
space Ṽh has been modified to form Vh. We must
begin by making a specific choice regarding the use of
the Scott–Zhang operator. We apply the operator to
x1- and x2-components of the velocity independently.
Since tangential velocity components may be discon-
tinuous across �, we need to define point values
only using edges on which the given velocity compo-
nent is continuous. Thus, we require that horizontal,
x1-component point values be defined only on vertical
edges, and similarly x2-components use only horizontal
edges. Moreover, we insist that the edge chosen for the
integration borders both a Darcy and a Stokes element,
so the Trace theorem analysis can be taken entirely in
either �d or �s, as needed. The only exception is when

this is not possible, in which case we take the edge that
borders two Stokes elements.

To illustrate the ideas, we refer to Fig. 1 and consider
only x1-components. We may choose any edge in the
first and last (seventh) patterns since these do not
involve �. We must choose a vertical edge for the other
five patterns. Patterns 2 and 6 require the lower edge,
and Patterns 4 and 5 require the upper edge. We can
choose either vertical edge in the third pattern.

The definition of π : (H1(�))2 → Vh is now immedi-
ate: it is the interpolant of the modified finite element
degrees of freedom of Vh Eqs. 3.1 and 3.2, using the
Scott–Zhang operator to define corner points, using
edges as noted above near � to avoid discontinuities in
the tangential velocity.

Lemma 4.2 Let R ∈ Th and hR = diam(R). Suppose
that R ⊂ �
, where 
 is either s or d. Let R′ be the union
of R and its nearest neighbor elements that are also in
�
. There exists some constant C independent of h, so
that the following hold.

(a) If either R ⊂ �s or R̄ ⊂ �d, and v ∈ (Hr(R′))2,
then

|πv − v| j,R ≤ C|v|r,R′ hr− j
R , 1 ≤ r ≤ 2, j = 0, 1 .

(b) If R ⊂ �d and ∂ R ∩ � = ∅, and v ∈ (H1(R′))2,
then

‖πv − v‖0,R ≤ C‖v‖1,R′ hR .

(c) For v ∈ V such that vs ∈ (H2(�s))
2 and vd ∈

(H1(�d))
2,

‖πv − v‖1,s + ‖πv − v‖0,d ≤ C{‖v‖2,s + ‖v‖1,d}h .

(d) PW∇ · v = PW∇ · πv.

Proof Result (c) follows from (a) and (b). Result (d)
follows from the edge flux degrees of freedom Eq. 3.2
and a simple application of the divergence theorem:

∫
R

∇ · v dx =
∫

∂ R
v · ν ds =

∫
∂ R

πv · ν ds =
∫

R
∇ · πv dx .

It remains only to show (a) and (b).
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Suppose element R ∈ Th is unmodified from that
in the space Ṽh. Since π̃ and π agree on unmodified
elements, we have (a) and (b) by Lemma 4.1(b). The re-
striction of R′ to �s or �d follows by treating the Scott–
Zhang operator analysis from the appropriate side of
each chosen edge, as discussed above and illustrated
in Fig. 1.

Suppose now element R ∈ Th is modified from that in
the space Ṽh. Let π̃R be the unmodified Stokes operator
defined above, except that at corner points where a
basis function was removed from R when forming Vh,
π̃R should be defined using an appropriate edge of R,
so that it is defined over �
. We illustrate by referring
to Fig. 1 and x1-components. If 
 = d and a Pattern 2
modification arises, we use the top vertical edge to
define π̃R for the purposes of this proof. If 
 = d and
a Pattern 4 or 5 modification arises, or if 
 = s and a
Pattern 5 modification arises, then we need to take the
lower edge to define π̃R for the purposes of this proof,
so π̃R maps onto Ṽh.

Note that

v − πv = (v − π̃Rv) + (π̃Rv − πv) ,

= (v − π̃Rv) + ((π̃Rv) − πR(π̃Rv)) ,

where πR is the same as π except that the Scott–
Zhang operator is not used. For Darcy elements, by
Lemma 4.1, we need only show the result (b) for
the operator πR and for v = vh ∈ Vh(R) = Q1,2(R) ×
Q2,1(R). But πR is a linear projection on the finite
dimensional space Vh(R), so it is bounded in the L2(R)

norm. Moreover, a scaling analysis shows that it is
bounded independently of h. Since πR preserves poly-
nomials of degree 0, we have (b) by the Bramble–
Hilbert lemma [7, 12]. For the modified Stokes
elements, we have that πR preserves polynomials of
degree 1, so (a) follows. This completes the proof. ��

5 A convergence analysis

We now present an a priori analysis of the approxi-
mation error. The analysis on �d is relatively delicate
and follows the ideas in [3]. Let V̂h be the lowest
order Raviart–Thomas space, and let π̂ : (H1(�d))

2 →
V̂h be the usual Raviart–Thomas projection opera-
tor [11, 20]. Among other properties, ∇ · π̂ = PW∇·.
Let PV̂ : (L2(�d))

2 → V̂h be (L2(�d))
2 projection. The

following lemma is shown in [3].

Lemma 5.1 If v ∈ Ṽh, then π̂v = PV̂v.

Take v ∈ Vh and substitute π̂v = PV̂v for v in
Eq. 2.11 to obtain

μ(PV̂(K−1u), v)d − (PW p, ∇ · v)d

−〈P̂ pd, v · ν〉 = (PV̂ f, v)d , (5.1)

where P̂ is the projection onto piecewise constants
over the interface grid of rectangle edges since π̂v · ν
is piecewise constant. Now combine this equation with
Eqs. 2.10 and 2.13, and subtract the finite element
method (2.12) and (2.13) posed over the space Vh × Wh

with w ∈ Wh to obtain

2μ(D(u − uh), Dv)s + μ〈αK−1/2(us − uh,s) · τ, vs · τ 〉
+ μ(K−1(u − uh), v)d − (PW p − ph, ∇ · v)

= (PV̂ f − f, v)d + μ(K−1u − PV̂(K−1u), v)d

+ (p − PW p, ∇ · v)s − 〈pd − P̂ pd, v · ν〉 , (5.2)

(∇ · (u − uh), w) = 0 . (5.3)

Let us take v = πu − uh ∈ Vh and w = PW p − ph ∈
Wh. The sum of the equations leads to

2μ(D(u − uh), D(u − uh))s

+ μ〈αK−1/2(us − uh,s) · τ, (us − uh,s) · τ 〉
+ μ(K−1(u − uh), (u − uh))d

= (PV̂ f − f, πu − uh)d

+ μ(K−1u − PV̂(K−1u), πu − uh)d

+ (p − PW p, ∇ · (πu − uh))s

− 〈pd − P̂ pd, (πu − uh) · ν〉
+ 2μ(D(u − uh), D(u − πu))s

+ μ〈αK−1/2(us − uh,s) · τ, (us − πus) · τ 〉
+ μ(K−1(u − uh), (u − πu))d . (5.4)

Table 1 The numerical test cases 1–4

Case p us ud

1 0
(

0
1
2 − y2

) (
0
0

)

2 ex sin(x + y)

(
cos(xy)

ex+y

) (
cos(xy)

0

)

3 cos(x2 y)

(
sin(x2 y)

cos(x2 y)

) (
sin(x2 y)

ex+y

)

4 −y4ex
(

y4ex

ey cos(2x)

) (
y4ex

4y3ex

)
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Table 2 Observed convergence rates using the unmodified space
Ṽh for the errors Ep = p − ph and Eu = u − uh for test cases 1–4
on a uniform grid

Case ‖Ep‖0 ‖PW Ep‖0 ‖Eu‖0 ‖∇Eu‖0 ‖∇ · Eu‖0

1 1.2081 1.2081 0.5084 –0.4986 0.5298
2 0.9997 0.9690 0.4982 –0.5032 0.5196
3 1.0082 1.0780 0.5003 –0.5054 0.5174
4 0.9961 1.0161 0.5618 –0.4743 0.6228

Since |∇ · v| ≤ |Dv|, for some ε > 0 as small as we
like and C > 0, it is straightforward to estimate

‖D (u − uh)‖2
0,s + ‖(us − uh,s) · τ‖2

0,� + ‖u − uh‖2
0,d

≤ C
{‖PV̂ f − f‖2

0,d + ‖K−1u − PV̂(K−1u)‖2
0,d

+ ‖p − PW p‖2
0,s + ‖pd − P̂ pd‖2

0,�

+ ‖D(u − πu)‖2
0,s + ‖u − πu‖2

0,d

+ ‖(us − πus) · τ‖2
0,�

}
+ ε‖πu − uh‖2

1,s . (5.5)

We require a Korn inequality for V.

Lemma 5.2 If ω is a Lipschitz domain and v ∈ (H1

(ω))2, then there is some constant C such that

‖v‖1,ω ≤ C
{‖Dv‖0,ω + ‖v · τ‖0,∂ω

}
.

Proof We use a relatively standard proof by contra-
diction technique for proving this variant of Korn’s
inequality (see, e.g., [10, Proof of Theorem 9.2.16]). The
proof is based on the direct sum decomposition

(H1(ω))2 = H ⊕ R ,

where

H =
{

v = (v1, v2) ∈ (H1(ω))2 :
∫

ω

v dx

=
∫

ω

(
∂v1

∂x2
− ∂v2

∂x1

)
dx = 0

}

are the rotation free vectors and

R = span
{ (

1
0

)
,

(
0
1

)
,

(−x2

x1

)}

are the infinitesimal rigid motions.
Following the standard proof (as in [10, Proofs of

Theorem. 9.2.16 and Corollary 9.2.22]), we are led to
the following requirement: If v ∈ R and v · τ = 0, then
v = 0. Since v = (c1 − b x2, c2 + b x1), Stokes theorem
immediately implies that b = 0. But then v is constant,
and the result is trivial. ��

Thus, we can bound the left side of Eq. 5.5 from
below by a multiple of ‖u − uh‖2

1,s + ‖u − uh‖2
0,d. Ap-

plying standard approximation results for the various
projection operators, we are led to the error estimate

‖u − uh‖1,s + ‖u − uh‖0,d

≤ Ch
{‖ f‖1,d + ‖u‖2,s + ‖u‖1,d + ‖p‖1,s + ‖pd‖1,�

}
.

(5.6)

We also prove an estimate for the pressure. Let
v ∈ (H1(�))2 satisfy ∇ · v = p − ph and ‖v‖1 ≤ C‖p −
ph‖0; such a v exists by [4]. Substitute πv ∈ Vh as test
function in Eq. 5.2, and note that PW∇ · πv = PW p −
ph. We are led to the estimate

‖p − ph‖2
0 ≤ C

{‖u − uh‖1,s + ‖u − uh‖0,d

+ ‖PV̂ f − f‖2
0,d + ‖K−1u

− PV̂(K−1u)‖2
0,d

+ ‖p − PW p‖2
0 + ‖pd − P̂ pd‖2

0,�

}
+ ε

{‖πv‖2
1,s + ‖πv‖2

0,d

}
, (5.7)

where again ε > 0 is as small as we wish. Now π is
bounded on (H1(�s))

2, so

‖πv‖1,s ≤ C‖v‖1,s ≤ C‖p − ph‖0 ,

and

‖πv‖0,d ≤ ‖v‖0,d + ‖v − πv‖0,d

≤ ‖v‖0,d + Ch‖v‖1,d ≤ C‖p − ph‖0 ,

so we can remove the last two terms on the right side
of Eq. 5.7 and apply standard approximation results.

Table 3 Observed
convergence rates using the
modified space Vh for the
errors Ep = p − ph and
Eu = u − uh for test cases
1–4 on a uniform grid

Case ‖Ep‖0 ‖PW Ep‖0 ‖Eu‖0 ‖∇Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0

1 2.004 2.004 2.001 1.000 1.000 1.000
2 1.001 1.509 1.431 0.431 1.258 0.975
3 1.060 1.610 1.431 0.419 1.002 0.982
4 1.038 1.703 1.437 0.412 1.037 0.965
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Table 4 Observed
convergence rates using the
modified space Vh for the
errors Ep = p − ph and
Eu = u − uh for test cases 1–4
on a randomly perturbed grid

Case ‖Ep‖0 ‖PW Ep‖0 ‖Eu‖0 ‖∇Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0

1 1.983 1.983 1.963 0.988 0.988 0.988
2 0.987 1.458 1.137 0.114 1.239 0.616
3 1.038 1.596 1.157 0.114 0.999 0.682
4 1.006 1.664 1.173 0.159 1.024 0.781

Collecting this estimate, Eq. 5.6, and using Eq. 5.3, we
have the following theorem.

Theorem 5.3 There is some constant C such that

‖u − uh‖1,s + ‖u − uh‖0,d + ‖p − ph‖0

≤ Ch
{‖ f‖1,d + ‖u‖2,s + ‖u‖1,d

+ ‖p‖1,s + ‖p‖1,d + ‖pd‖1,�

}
.

Moreover, PW∇ · uh = PWq.

6 Some numerical results

We present some simple test cases involving smooth
solutions to verify the convergence rates. Additional
numerical examples related to simulation of flow in
vuggy porous media can be found in [1]. For simplicity,
in all our examples, � is the unit square and α = μ =
K = 1.

6.1 A remark on the solution procedure

As noted earlier in Section 3, the resulting linear system
is symmetric and has a completely regular structure.
However, the matrix is quite ill-conditioned; moreover,
it has a saddle-point structure. We briefly remark on
our solution strategy, which is very effective for prob-
lems up to grid sizes of perhaps 128 × 128. We chose
to implement a solver for the scheme using an inexact

Uzawa technique [8, 9]. For a rectangular grid with
nx × ny elements, the matrix problem is of the form
⎡
⎣Axx Axy Bx

AT
xy Ayy By

BT
x BT

y 0

⎤
⎦

⎡
⎣ux

uy

p

⎤
⎦ =

⎡
⎣ fx

fy

q

⎤
⎦ ,

where ux represents the (nx + 1)(2ny + 1) nodal values
of the x1 velocity components vx

i , uy represents the
(2nx + 1)(ny + 1) nodal values of the x2 velocity com-
ponents vy

i , and p represents the nxny nodal values of
the pressure.

Except for modification for boundary conditions,

Axx,ij = 2μ(Dvx
i , Dvx

j)s + μ〈αK−1/2vx
s,i · τ, vx

s, j · τ 〉
+ μ(K−1vx

i , vx
j)d ,

Ayy,ij = 2μ(Dvy
i , Dvy

j )s + μ〈αK−1/2vy
s,i · τ, vy

s, j · τ 〉
+ μ(K−1vy

i , vy
j )d ,

Axy,ij = 2μ(Dvx
i , Dvy

j )s ,

so both Axx and Ayy are positive definite. Since these
submatrices arise from a two-dimensional rectangular
grid, they are banded with a reasonable band size, so
direct factorization is feasible for problems not too
large.

The inexact Uzawa procedure starts with an initial
guess for the solution, say p0 = 0, u0

x = 0, and u0
y = 0,

and then for 
 = 1, 2, ..., it defines iteratively

u

x = A−1

xx ( fx − Axyu
−1
y − Bx p
−1) , (6.1)

u

y = A−1

yy ( fy − AT
xyu
−1

x − By p
−1) , (6.2)

p
 = p
−1 + βM(BT
x ux + BT

y uy − q) , (6.3)

where β > 0 is the Uzawa parameter and M is some
preconditioner for the system.

Table 5 The numerical
test cases 5 and 6 Case ps pd us ud ( 1

2 , 1) × (0, 1
2 )

5 e−2xy − 1
2 e−1/2 0

(
xe−y + 1

2 e−x

ye−x + 1
2 e−y

) (
x(e−2xy + e−x)

y(4y2e−x + e−y)

)
�d

6 2e−y 0
(

(2x + 1)e−y

−2e−y

) (
2e−2xy

(y − 1
2 )3e−x − 2e−1/2

)
�s
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Table 6 Observed
convergence rates using the
modified space Vh for the
errors Ep = p − ph and
Eu = u − uh for test cases 5
and 6

Case ‖Ep‖0 ‖PW Ep‖0 ‖Eu‖0 ‖∇Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0 Grid

5 1.000 2.066 2.005 1.007 1.033 1.004 Uniform
6 1.001 1.895 1.993 1.007 1.005 1.000 Uniform
5 1.000 1.988 2.006 1.011 1.004 1.011 Perturbed
6 1.000 1.771 1.983 1.003 0.999 1.000 Perturbed

A relatively good preconditioner is needed. We took

M =
[(

BT
x BT

y

) (
A−1

xx 0
0 A−1

yy

)(
Bx

By

)]−1

, (6.4)

which is invertible (after modification for the compati-
bility condition that p is defined only up to a constant).
This computation is quite expensive since the matrix is
full, but again, direct factorization is feasible for prob-
lems not too large. (For larger problems, some inexact
inverse could be used.) This preconditioner is exact
when Axy = 0 and β = 1. We found that the Jacobi
preconditioner given by inverting only the diagonal of
Eq. 6.4 performed very poorly, requiring sometimes
hundreds of thousands of iterations to converge and
worsening greatly with the size of the problem. On the
other hand, M solved problems on grids of size 8 × 8 up
to 64 × 64 using only around 100 iterations (the worse
case took under 500 iterations).

This preconditioner is very expensive for larger
problems, and more research is needed to improve the
linear system solution methodology.

6.2 Some simply constructed examples

In our first set of examples, �s = (0, 1/2) × (0, 1), �d =
(1/2, 1) × (0, 1), and � is the line x = 1/2. It is difficult
to construct solutions that satisfy the entire Darcy–
Stokes system (2.1)–(2.9). If u and p are chosen some-
how, we can easily satisfy Eqs. 2.1–2.4 by defining f and
q appropriately. Moreover, rather than requiring the
solution to satisfy the outer boundary conditions (2.8)
and (2.9), we can simply allow for a more general

Table 7 The numerical test cases 7 and 8

Case ps pd us ud

7 0 0
( 1

4 (−2y2 + y + 1)

0

) (
1
0

)

8 y 1 − y
(

0
2

) (
0
2

)

and nonhomogeneous set; again, the nonhomogeneous
terms are defined from the solution.

The difficulty is finding a solution satisfying the in-
terface conditions (2.5)–(2.7). In this subsection, we
simply use the same trick of generalizing the equations
to include a nonhomogeneous term. That is, we replace
Eqs. 2.6 and 2.7 by

2ν · Dus · τ = −αK−1/2us · τ + g1 on � , (6.5)

2μν · Dus · ν = ps − pd + g2 on � . (6.6)

The construction is now clear: choose u satisfying
Eq. 2.5, and then define f , q, g1, g2, and the outer
boundary conditions from the solution. These test cases
are summarized in Table 1. The variational form for this
modified system has only a small change: Eq. 2.12 now
includes the two terms 〈g2, v · ν〉 + μ〈g1, vs · τ 〉 on the
right side.

If we use the unmodified finite element space Ṽh

of Fortin [3, 13], we see poor convergence results in
Table 2. This is due to the fully continuous approxima-
tion of the velocity. However, our constructed solutions
have a discontinuity in u · τ on �. The modified space
Vh defined in Section 3 corrects this defect, as seen by
the convergence rates in Tables 3 and 4.

In Table 3, we have used uniform grids of size 8 ×
8, 16 × 16, 32 × 32, and 64 × 64. In Table 4, we have
randomly perturbed the points of the uniform grid by
plus or minus one quarter of the uniform cell spacing,
except that the center lines have been unperturbed so
as to resolve �. We clearly see at least O(h) conver-
gence for the pressure and velocity as measured in the
L2-norm, and at least O(h) convergence for the gradi-
ent of the velocity on �s, as proved in Theorem 5.3.
In fact, we see more from these computational results.
It appears that there is some superconvergence of or-
der perhaps O(h3/2) for the error PW p − ph in the
L2-norm, although it is not the usual O(h2) that
mixed methods often produce. Moreover, on uniform
grids only, we see perhaps O(h1/2) convergence in the
L2-norm of ∇(u − uh) over all of �. Such convergence
was observed for the unmodified elements when solving
Darcy systems on uniform grids (see [3]). Finally, we
see convergence in the L2-norm of ∇ · (u − uh) of order
perhaps O(h) on uniform grids and O(h1/2) in general.
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Table 8 Observed convergence rates using the modified space Vh for the errors Ep = p − ph and Eu = u − uh for test case 8

Case ‖Ep‖0 ‖PW Ep‖0 ‖Eu‖0 ‖∇Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0 Grid

8 1.000 — 2.415 1.424 1.424 2.000 Uniform
8 0.988 — 2.482 1.449 1.449 1.977 Perturbed

6.3 Some smooth examples with corners

In our second set of examples, we take � = ({1/2} ×
(0, 1/2]) ∪ ([1/2, 1) × {1/2}). That is, � has a corner
and separates off the lower right quarter of the square
(1/2, 1) × (0, 1/2), which will be �d in test case 5 and
�s in test case 6. Note that test case 6 uses a modified
element near the central corner (see Fig. 1, Pattern 2).
Overall, these two cases require all modification pat-
terns depicted in Fig. 1, except for the checkerboard
Pattern 5.

In this set of examples, we fully satisfy the sys-
tem (2.1)–(2.7). We handle Eqs. 2.1–2.4 by defining
f and q and the external boundary conditions (2.8)
and (2.9) as above, once u and p are fixed. We first
choose some us satisfying Eq. 2.6 and then take pd con-
stant and find some ps that satisfies Eq. 2.7. Finally, ud is
chosen to satisfy Eq. 2.5. Our test cases are summarized
in Table 5.

From Table 6, we see very good convergence. Ac-
tually, the L2 and H1 errors for u − uh are somewhat
better than expected. We see clearly from these two
test cases that there is no convergence difficulty with
modifying the basis over a Darcy element.

6.4 Some simple layered examples

In our last set of examples, �s = (0, 1) × (0, 1/2), �d =
(0, 1) × (1/2, 1), and � is the line y = 1/2. We use the
analytical solution of [2]. These test cases are summa-
rized in Table 7.

Table 9 Observed convergence rates using the modified space
V̄h for the errors Ep = p − ph and Eu = u − uh for test cases
1–6 and 8 on a uniform grid

Case ‖Ep‖0 ‖PW Ep‖0 ‖Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0

1 2.004 2.004 2.001 1.000 1.000
2 1.000 1.936 0.994 1.262 0.801
3 1.009 1.950 1.000 1.002 0.971
4 1.011 1.925 0.998 1.054 0.914
5 1.006 1.787 0.993 1.037 0.739
6 1.001 1.920 0.969 1.005 0.560
8 1.000 —– 2.415 1.424 2.000

Test case 7 has a solution (p, u) that is in the finite
dimensional space Vh, so it is solved exactly up to
rounding error. The solution to test case 8 is not in
the space, and only ph = PW p is computed exactly.
However, as shown in Table 8, the convergence is as
good as or better than that expected from the earlier
test cases.

7 A lower dimension modification

In this section, we further modify Vh so that extra
tangential continuity is removed from the Darcy side
of the space. That is, remove the corner degrees of
freedom 3.1 whenever the corner has Darcy elements
surrounding it (see Fig. 1 – we modify only Pattern 1).
Call the resulting space V̄h. The effect is to use Raviart–
Thomas elements V̂h strictly inside �d, the full Fortin
Stokes elements Ṽh strictly inside �s, and our modified
elements Vh as transition elements near �. We may
lose some global basis functions and therefore also the
regular sparsity structure of the matrix (although this
regular structure can be recovered with some so-called
“slave nodes” that are set to zero if desired).

The definition of the operator π̄ : (H1(�))2 → V̄h

is defined analogously as to that in Section 4, and a
similar error estimate to Lemma 4.2 holds. Moreover,
an a priori error analysis will yield a result analogous to
Theorem 5.3.

In Tables 9 and 10, we show the convergence of
this modified scheme. These test cases are the same
as in the previous section, but note that we omit the

Table 10 Observed convergence rates using the modified space
V̄h for the errors Ep = p − ph and Eu = u − uh for test cases 1–6
and 8 on a randomly perturbed grid

Case ‖Ep‖0 ‖PW Ep‖0 ‖Eu‖0 ‖∇Eu‖0,s ‖∇ · Eu‖0

1 1.983 1.983 1.963 0.988 0.988
2 0.986 2.041 0.971 1.243 0.802
3 0.996 2.141 0.986 0.998 0.962
4 0.982 1.935 0.975 1.042 0.903
5 1.006 1.712 0.990 1.008 0.740
6 1.001 1.812 0.955 1.000 0.567
8 0.988 —– 2.482 1.449 1.977
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H1 errors on � since now there are discontinuities in
�d and no convergence can be expected. We also do
not show convergence rates for test case 7 because
it is essentially solved exactly up to rounding error.
We see the expected convergence rates of at least
O(h) for the pressure and velocity as measured in the
L2-norm, and at least O(h) convergence for the gradi-
ent of the velocity on �s, as proved in the analogue to
Theorem 5.3. It appears that there is some superconver-
gence of order perhaps O(h2) for the error PW p − ph

in the L2-norm. Finally, we see convergence in the
L2-norm of ∇ · (u − uh) of order perhaps only order
O(h1/2) in general. There does not appear to be any
advantage to using a uniform grid.

These rates are consistent with those from the previ-
ous scheme using Vh, except that previously the PW p −
ph error only converged at the rate O(h3/2). The mag-
nitude of the pressure errors in the L2-norm was very
comparable. However, the velocity and divergence er-
rors are a bit better for the previous scheme. This would
be expected since the velocity polynomial space of Vh

is somewhat richer on �d than that of V̄h. The solution
time of the two schemes is also very comparable. Thus,
although the modification of the finite element space
V̄h in this section results in a smaller space and is simple
to implement, it does not appear to be better than the
previous space Vh.
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