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Abstract The determination of the optimal type and
placement of a nonconventional well in a heterogeneous
reservoir represents a challenging optimization problem.
This determination is significantly more complicated if
uncertainty in the reservoir geology is included in the
optimization. In this study, a genetic algorithm is applied to
optimize the deployment of nonconventional wells. Geo-
logical uncertainty is accounted for by optimizing over
multiple reservoir models (realizations) subject to a pre-
scribed risk attitude. To reduce the excessive computational
requirements of the base method, a new statistical proxy
(which provides fast estimates of the objective function)
based on cluster analysis is introduced into the optimization
process. This proxy provides an estimate of the cumulative
distribution function (CDF) of the scenario performance,
which enables the quantification of proxy uncertainty.
Knowledge of the proxy-based performance estimate in
conjunction with the proxy CDF enables the systematic
selection of the most appropriate scenarios for full
simulation. Application of the overall method for the
optimization of monobore and dual-lateral well placement
demonstrates the performance of the hybrid optimization
procedure. Specifically, it is shown that by simulating only

10% or 20% of the scenarios (as determined by application
of the proxy), optimization results very close to those
achieved by simulating all cases are obtained.

Keywords advanced wells . cluster analysis . reservoir
simulation . risk analysis . stochastic optimization .

uncertainty management . well placement

1 Introduction

Nonconventional wells, which include horizontal, highly
deviated, and multilateral wells, offer great possibilities for
field development. By contacting much larger portions of
the reservoir than traditional (vertical) wells, they provide a
means to dramatically enhance recovery. As drilling and
completion technologies improve, the proportion of non-
conventional wells being drilled continues to rise [9].

The optimization of field development scenarios involv-
ing nonconventional wells, however, is particularly chal-
lenging. A key issue is the very large number of variables
to consider when designing such wells. Because there are a
vast number of possible well configurations (e.g., planar
dual-lateral, stacked trilateral, herringbone quadrilateral)
and placements, it is impossible to exhaustively evaluate
(via reservoir simulation) all of the potential scenarios.
Another major issue is the uncertainty in the reservoir
model (referred to here as geological uncertainty), which
leads to uncertainty in the performance prediction for each
well configuration. The quantification of this uncertainty,
which, in practical cases, is accomplished through use of
some type of Monte Carlo analysis, also requires a large
number of simulations. In practice, the overall uncertainty
in performance does not solely arise from the reservoir
model, and other stochastic parameters (such as economic
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constraints) must be included, ideally within a decision
analysis framework [5].

Our objective was to introduce and apply a new and
general type of statistical proxy that has the potential to greatly
accelerate optimizations of nonconventional well type and
placement under geological uncertainty. Unlike previous
proxies applied in this setting, this proxy provides an estimate
in terms of a cumulative distribution function (CDF), which
enables the quantification of proxy uncertainty. This, in turn,
leads to an optimization algorithm that focuses computational
effort on those scenarios to which the optimum is most
sensitive. Although this treatment of uncertainty could be used
with any evaluation-only optimization procedure, we incor-
porate it here within the context of a genetic algorithm (GA).
Genetic algorithms, described in more detail below, mimic
Darwinian natural selection and entail the use of a population
of individuals (each individual represents a potential solution
to the optimization problem) that evolve over the course of
the optimization. Selection and combination rules lead to an
improvement in fitness (value of the objective function) as
the optimization proceeds.

We describe some recent studies addressing well optimi-
zation, and discuss previous uses of proxies to accelerate
these calculations. Bittencourt and Horne [3] and Güyagüler
et al. [7] used a GA to optimize the placement of multiple
vertical wells for deterministic reservoir models. Güyagüler
and Horne [6] investigated the problem of well placement
under geological uncertainty (using a GA) by optimizing
over multiple geological realizations of the reservoir model.
In this case, the objective function was a utility function
that depended on the performance of the particular well
placement scenario over the different realizations. The
utility function is a standard tool in decision analysis and
accounts, in this setting, for both the variability in the
performance of the scenario over the different realizations
as well as for the risk attitude of the decision maker.

Yeten et al. [20] developed a GA-based optimization for
nonconventional well deployment, both for deterministic and
uncertain reservoir geologies. Their approach provided the
ability to optimize the number, type, and trajectory of
multilateral wells. Recently, Klie et al. [10] and Bangerth et
al. [2] used simultaneous perturbation stochastic approxima-
tion (SPSA) and very fast simulated annealing (VFSA)
techniques for optimizing the deployment of vertical wells in
a deterministic reservoir model. They compared these
algorithms with the use of a GA, showing that their
approaches were less intensive computationally. However,
no comparison was made in the case of optimizing noncon-
ventional wells in the presence of geological uncertainty, for
which the number of parameters and the computational cost
are expected to increase dramatically for every method.

As indicated above, a considerable reduction in the
computational requirements must be achieved in order to

apply optimization algorithms to practical problems involv-
ing nonconventional wells. Bittencourt and Horne [3] and
Güyagüler et al. [7] hybridized the basic GA with other
search techniques in order to achieve a faster convergence.
Specifically, Bittencourt and Horne [3] introduced a
polytope search while Güyagüler et al. [7] used response
surface modeling techniques. The response surface was built
from a calibration pool of individuals and their associated
fitness by using kriging techniques. The pool and the
response surface were updated after each generation. This
was shown to provide much faster convergence than the
basic stand-alone GA for vertical well optimizations. When
dealing with nonconventional wells, however, the dimension
of the parameter space can be very large, and the response
surface approach may be less appropriate in this case.

Yeten et al. [20] applied artificial neural networks to
estimate the value of the objective function from simple well
and reservoir parameters (e.g., total well length, average
contacted permeability). The neural network was trained
from a calibration pool of previously simulated scenarios and
updated after each generation. They used this proxy as a way
to identify the best individuals in the current population and
only performed simulations on these individuals. This
technique was shown to significantly reduce the number of
simulations required for each generation. These authors also
used a hill climbing procedure to achieve faster convergence
and upscaling techniques to accelerate the simulations.
When dealing with nonconventional wells, however, the
number of parameters to take into account is very large and it
can be difficult to adequately train a neural network.
Moreover, the effects of the uncertainty introduced through
the use of artificial neural network proxies and/or upscaling
were not investigated.

This paper proceeds as follows. In Section 2, we
describe the basic GA optimization procedure including
the treatment of risk and uncertainty. Next, in Section 3, we
present our new statistical proxies. This includes a
discussion of simply computed attributes, the use of cluster
analysis, prior and posterior fitness estimates, and the
modified GA flowchart. Section 4 contains several exam-
ples demonstrating substantial efficiency gains from the
new procedure. Conclusions are drawn in Section 5. Note
that more details on the GA and statistical proxy procedures
can be found in Onwunalu [15].

2 Optimization under geological uncertainty

2.1 The optimization problem

The objective is to optimize a set of parameters I describing
a field development scenario (number, type, and trajectory
of wells to be deployed in a field) in order to maximize
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performance, quantified via an objective function f (e.g.,
cumulative oil production, net present value). Different well
types can be considered during the optimization. The
mainbore can be vertical, horizontal, or slanted, and several
junctions can be drilled into the mainbore. A number of
laterals can emanate from the junctions, with different
possible orientations. The diameters of the mainbore and
laterals can be either defined a priori or determined as part of
the optimization. In this study, when one or more laterals
exist, the mainbore is not perforated (i.e., not open to inflow
from the reservoir). In addition, we consider only straight
segments, with one segment comprising the mainbore or any
lateral. Curved wells could be readily accommodated by
allowing multiple segments for the mainbore and laterals.

Any well (or multiple wells) can be represented by a set of
parameters specifying the heel (start) and toe (end) of the
mainbore, the positions of the junctions along the mainbore
(which represent the heels of the laterals), the toe of each
lateral, segment diameters, etc. Well rates and other field
parameters can also be included in the parameter set. In this
study, we apply the parameterization described by Yeten [19].

For any development scenario (with one or several
wells) defined in terms of a set of parameters I, the value of
the objective function f (I) can be evaluated by using a
reservoir simulator. In order to introduce financial consid-
erations into the optimization process, the objective
function can be prescribed as the net present value (NPV),
defined as the current value of a stream of future payments:

NPV ¼
XN
i¼1

CFi
1þ rð Þi ; ð1Þ

where N is the total number of discount periods (years), r is
the discount rate, and CFi is the cash flow for the period i,
defined as:

CFi ¼ Ri � Ei; ð2Þ
where Ri and Ei indicate the revenue and expenses. The
revenue is directly proportional to the production during the
considered period. The cost of a particular development
scenario is highly case-specific and is influenced by many
parameters [4]. We define the revenues and expenses due to
production during a discount period as:

EOPEX
i ¼ QL

i C
OPEX; ð3Þ

where Qi
L is the total production of oil, water, and gas (in

STB: Standard Barrel or SCF: Standard Cubic Feet) and
COPEX represents operation revenue or costs (*$/STB or
*$/SCF). The cost of the scenario at the beginning of the
project (prior to any production) is given by:

ESCEN ¼
XNWELL

n¼1

CCAPEX þ LnC
DRILL þ

XN JUNC
n

j¼1

CJUNC

2
4

3
5; ð4Þ

where NWELL is the number of wells; Nn
JUNC is the number

of junctions for the nth well; CCAPEX is the fixed cost per
well, including the cost of the platform and the cost of
drilling to the top of the reservoir; CJUNC is the cost of a
junction; Ln is the length of the nth well (in feet); and
CDRILL is the cost per unit length of drilling the well.
Although the cost of drilling varies depending on the type of
the segment, the orientation and the well length, we chose to
use a constant price in this study. A more general cost
function could be easily implemented in this formulation.

To account for economic variability, time-dependent
discount rates can be applied to production costs and
revenues (dual discount NPV model). This introduces
another kind of uncertainty, as it can be used to introduce
optimistic or pessimistic economic scenarios in the optimi-
zation process.

2.2 Geological uncertainty and risk attitude

As discussed above, accounting for geological uncertainty
is a key issue when optimizing development scenarios.
Because of the probabilistic nature of the reservoir
description, the performance of each scenario is also
stochastic, and the optimum scenario directly depends on
a strategy toward risk. For example, consider a scenario S1
that exhibits low variability over the possible realizations of
the reservoir and another scenario S2 with a higher average
(expected value) performance but with a much higher
variability. For some geological realizations, therefore, S2
will exhibit lower performance than S1. Within an optimi-
zation framework, the relative ranking of S1 and S2 depends
on the decision maker’s attitude toward risk. It is therefore
necessary to quantify this risk attitude prior to performing
the optimization, as it will influence the optimization
process and the optimal solution.

A simple treatment of risk was used by Yeten et al. [20]
and Aitokhuehi et al. [1]. For Nreal possible realizations of
the geological model, they defined an overall objective
function F that incorporates geological uncertainty as
follows:

F Ið Þ ¼ f Ið Þh i þ rσI: ð5Þ
In the above equation, 〈f (I)〉 is the expectation of f for
scenario I over Nreal realizations. The rσI term accounts for
both the geological uncertainty and the decision maker’s
strategy toward risk. Specifically, σI is the standard
deviation of f (I) over the realizations:

σI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nreal

XNreal

n¼1

f I; nð Þ � f Ið Þh ið Þ2
vuut ; ð6Þ

where f (I,n) is the value of the performance for scenario I
in realization n and r is the risk factor. If r<0, the decision
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maker is risk-averse, i.e., the objective function will be
higher for scenarios that minimize the standard deviation of
f over the realizations. In the case of r=0, the decision
maker is risk-neutral and the expected value 〈f (I)〉 will be
optimized without any consideration to the variability over
the different realizations. This procedure is close to the use
of utility functions proposed by Güyagüler and Horne [6].

Here, we apply a more general approach to define the
value of the objective function under geological uncertainty.
From the f (I,n) for all realizations, we can derive CDF
{ f (I)}. From this distribution, we determine f10(I), f50(I),
and f90(I), where f10 is the value of f corresponding to a
probability of 0.1 (i.e., there is a 10% probability that the
actual f will be less than f10), and similarly for f50 and f90.
We then define the objective function (fitness) under
geological uncertainty as:

F Ið Þ ¼ r10f10 Ið Þ þ r50f50 Ið Þ þ r90f90 Ið Þ; ð7Þ
where the values of r10, r50, and r90 depend on our strategy
toward risk. A risk-neutral attitude corresponds to:

r10 r50 r90½ � ¼ 0 1 0½ �; ð8Þ
while a risk-averse attitude could correspond to:

r10 r50 r90½ � ¼ 0:5 0:5 0½ �; ð9Þ
This definition can of course be modified to include more
(or different) information from the CDF of the property of
interest and does not require any Gaussian assumption. As
shown in Section 3, this representation will be particularly
useful when we account for both geological and proxy
uncertainty.

2.3 Description of the genetic algorithm

Genetic algorithms are stochastic optimization methods
patterned on natural genetics and Darwinian selection. Each
possible solution of the problem (a well deployment scenario
in our context) is called an individual. The value of the
objective function for each individual is referred to as fitness.
The idea behind GAs is to perform a stochastic combination
of the parameters of the most fit individuals within a given
population in order to create new individuals. These new
individuals comprise the next generation, and the population
evolves iteratively from one generation to another. The main
steps of the algorithm are described below.

The first step of a GA consists of defining a represen-
tation for any possible scenario in terms of a string of
binary values, called a chromosome (which represents an
individual). This is done by coding the values of every
parameter defining the scenario into a binary format and
chaining the binary codes. When this procedure has been
defined, any string of binary values represents a particular
development scenario, as each part of the string is a code

for the value of a particular parameter. The parameterization
and basic GA applied here are based on the implementation
of Yeten [19].

A set of Nind chromosomes can then be generated, creating
an initial population of individuals. The individuals in this first
generation can be randomly created or they can be explicitly
specified. As each individual corresponds to a particular field
development scenario, the associated fitness can be evaluated
through the use of a reservoir simulator. Individuals are then
ranked according to their fitness and are assigned a probability
for selection as parents for the next generation. To increase
the influence of the best individuals during the optimization
process, individuals with higher ranks receive a higher
selection probability. The specific correspondence between
the selection probability and the rank is called the selection
strategy (see Yeten [19] for more discussion).

In the next step, Nind individuals are randomly selected,
with probabilities based on the rank and the selection
strategy, to act as parents for the next generation. The last
step randomly mates the selected individuals via crossover
and mutation operations. Crossover randomly selects a
position on the chromosome string of the two parents and
swaps the content of the strings after this position to
produce two children. A random number is drawn before
this operation, and crossover is performed only if the
random number is less than the predefined crossover
probability pc. Mutation visits all of the bits of each child
and flips the bit with a predefined mutation probability pm.
Once reproduction has been applied, a set of Nind new
individuals (the next generation) is obtained. During the
reproduction, elitism can also be applied. This means that a
small number of the best individuals within a population at
generation i are carried directly (without any modification)
to the next generation i+1. This option is the only way to
ensure that the fitness of the best individual will not
decrease during the optimization process.

The population evolves from one generation to another,
according to the procedure described above, until a conver-
gence criterion is met (such as no change in the best indi-
vidual over a specified number of generations). The most fit
individual obtained in the last generation is the solution of
the overall optimization process. During the reproduction
step, newly generated individuals (well configurations) can
be nonphysical (e.g., extend beyond the reservoir bound-
aries) or violate some a priori constraint. In these cases, the
scenario is not simulated and a very low fitness value is
assigned to these invalid individuals.

3 Statistical proxies

Optimization of nonconventional wells under geological
uncertainty usually requires many simulation runs. For
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example, using the base-state GA without proxies, the
number of simulations required is about:

Nsim ¼ Ngen � Nind � Nreal; ð10Þ
where Ngen is the number of generations simulated, Nind is
the number of individuals in the population, and Nreal is the
number of geological realizations. As the number of
individuals and the number of generations are often large
(e.g., ∼O(100)), the computational requirements can quick-
ly exceed available capabilities even if relatively few
geological realizations are considered. Similar computa-
tional issues will arise with any stochastic optimization
engine, i.e., the computational demands of optimization
under geological uncertainty are not unique to the GA
employed here.

Our objective is therefore to develop new techniques
capable of the fast and (sufficiently) accurate evaluation of
scenario performance in the context of field development
optimization under uncertainty. These proxies should esti-
mate fitness (i.e., reservoir performance) for general cases
and in addition identify the most promising individuals in the
population, which are candidates for full simulation.

3.1 Scenario attributes

We propose to generate the proxy by first calibrating the
performance (fitness) to a set of scenario attributes. These
attributes are physical properties that provide indirect
information on the performance of the scenario. Examples
of very simple attributes are total (perforated) well length,
mean permeability along the well, wellbore diameter, and
number of high permeability channels intersected. More
complex and potentially more predictive attributes entail

approximate numerical solutions of the performance of the
scenario. These can be performed by using highly upscaled
models, semianalytical approximations for single-phase flow
[18], or streamline simulation with only one pressure solve
(as was previously investigated for use in history matching
by Idrobo et al. [8] and Mishra et al. [13]). Results from
neural network estimation can also be applied [20].

A calibration step provides the link between the scenario
attributes and the performance. For this calibration, we use
a pool composed of all of the simulations already
performed during the course of the optimization (as in
Güyagüler and Horne [6] and Yeten et al. [20]). In our
approach, however, the calibration is performed in the
space of the attributes rather than in the space of the
optimization parameters. As the dimension of the attribute
space is smaller than the dimension of the optimization
parameter space, and because the attributes are chosen to
provide performance estimation, this approach is expected
to give reliable estimates of the performance. If a relatively
large number of attributes are used, principal component
analysis (PCA) can be applied to remove correlations
between the attributes themselves and to reduce the
dimension of the calibration space. The principal compo-
nents are linear combinations of the original attributes (see,
e.g., Ripley [16] and Scheevel and Payrazyan [17]).

Once the scenario attributes are selected (and PCA
applied if necessary) and a calibration pool is simulated, the
proxy estimation can proceed. The main steps of the proxy
estimation, detailed in the following sections, are as
follows:

– Apply cluster analysis to provide a prior estimate of the
CDF for the performance of any new scenario (given
the scenario attributes). This provides a fast estimate

Figure 1 Partition of data from
the calibration pool into the
space of two attributes. Color
corresponds to performance.
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(and the associated uncertainty) of the performance of
new configuration I for any realization n without
performing any simulations.

– Average the CDFs for the performance of the new
scenario over all of the realizations to give a prior
estimate of the overall fitness F of scenario I. This also
provides an estimate of the prior uncertainty due to
both the geological uncertainty and the proxy error.

– Given prior estimates for all cases, a small number of
scenarios and realizations are selected for simulation.
This selection is based on both the prior overall fitness
and the estimate of proxy error. From these simulations,
the prior estimates are updated to provide posterior
estimates for the selected scenarios. These estimates of
the scenario fitness are then used in the GA.

We note that this framework shares some similarities
with previous work on error modeling for the correction of
upscaled simulations, as described by Lødøen et al. [11]
and Omren and Lødøen [14]. In these studies, upscaling
error (which is analogous to proxy error in the current
context) was modeled by using a number of fine-scale
calibration runs. The stochastic model for upscaling error
was then combined with the effects of geological uncer-
tainty to provide improved estimates for expected values
and confidence interval based on coarse scale simulations.

3.2 Cluster analysis

We determine the proxy estimate for new individuals from
the values of their attributes. This is accomplished by
calibrating the performance to the attributes, by using a pool
of available individuals for which the performance and
attributes were previously computed. An initial pool is
established before the optimization or over the first few

generations, using random and/or predefined test scenarios.
The pool is updated over the course of the optimization by
using results for simulations performed for selected scenar-
ios. We use this pool to predict the fitness of new individuals
and the uncertainty associated with this prediction.

For each case {I,n} (this notation refers to individual I in
realization n) in the calibration pool, the values of the
attributes and the value of the performance are known.
Different attributes can be analyzed in terms of their
correlation with simulated performance and the most
appropriate attributes selected. It is important to note that
the set of attributes will in general be problem-specific, so it

Figure 2 Partitioning of the
data points from figure 1 into
four clusters. Attribute values
have been rescaled by their
variance.

Figure 3 Cumulative distribution function of the performance for
each cluster, as evaluated from figure 2.
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is essential that the attributes be carefully determined for
the case at hand. If the attributes are closely related to the
performance, points that cluster together in attribute space
should correspond to relatively similar performance. This is
illustrated in figure 1, which is a simplified but realistic
example based on the optimization of a producer in a
channelized system, where Attribute 1 is a measure of the
volume of high permeability zones contacted and Attribute
2 is the well length.

The next step is to apply clustering techniques to
partition the attribute data into different classes. Different
methods exist for this clustering. We use a method referred
to as c-means or k-means [16]. This technique divides the
calibration points into a predefined number nc of clusters,
so as to minimize the distance of each data point to the
center of its cluster. The algorithm proceeds in an iterative
way: first, nc centers are drawn in the space of the attributes

(rescaled by their variance). Then, every data point is
related to the nearest cluster center (usually using the
Euclidean norm), hence defining nc clusters of points. The
position of the center of each cluster is then updated based
on the points in the cluster. Then, every data point is related
again to its nearest cluster center by using the new positions
of the centers. This process is repeated until convergence is
reached. With this algorithm, different clusters may include
different numbers of points, and some may eventually be
empty. Although it always converges, this algorithm does
not ensure that the optimum partition has been reached
[12].

Thus this method provides a predefined number of
clusters of data points in the attribute space using scenarios
from the calibration pool (figure 2). It should be empha-
sized that this clustering is performed with respect to the
attributes only, and is not based on the performance values.

Figure 4 Prior distribution
function of the performance for
two individuals. Left plots show
the expected performance and
confidence interval for each re-
alization. Plots on the right show
the prior cumulative distribution
function of the performance. On
right plots, dashed lines corre-
spond to f10

prior(I) and f90
prior(I)

values, while the solid vertical
lines correspond to the prior
value of the fitness (using r10=
0.5, r50=0.5, r90=0).
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As the performance of each individual inside each cluster is
known, a simple statistical analysis provides an experimen-
tal CDF of the values of the performance for each cluster
(figure 3). Then, when the prior performance of a new case
{I,n} is to be estimated, its attribute values are computed,
indicating which cluster this case falls into. As each cluster
has an associated CDF for the performance, we immedi-
ately have a prior estimate (in terms of a CDF) for the
performance of the new case. This estimation is described
in more detail in the next section.

3.3 Prior value of the fitness

As indicated above, depending on the value of its attributes,
every new case {I,n} can be related to an existing cluster
and the associated CDF. This gives a direct estimate of the
proxy uncertainty. As the attributes take different values
depending on the geological realization, the cluster into
which the scenario falls will, in general, differ for each
realization. For each case {I,n}, therefore, there is a
different CDF of the objective function, which we term

Figure 5 Flowchart of the ge-
netic algorithm hybridized with
statistical proxies.
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cdfprior{ f (I|n)}. This function is a prior estimate because no
simulations have been performed on the new individuals.
From this distribution, we can determine the expected value
of the fitness of this case, and the associated confidence
interval in terms of f10

prior(I,n), f50
prior(I,n), and f90

prior(I,n).

Two types of uncertainty therefore exist for any
individual I. The first uncertainty is due to geological
uncertainty, which results in the individual falling into
different clusters for different realizations. This uncertainty
would exist even if we had a perfect proxy estimate (i.e., if
the CDF in each cluster was a step function). The second
uncertainty is due to the uncertainty in the proxy itself and
is characterized by the CDF for the particular cluster.

A simple way to combine these two uncertainties is to
average the prior CDFs for individual I over all of the
realizations. Weightings could also be introduced to reflect
the probabilities associated with the various realizations.
This provides a prior cumulative distribution function for
the overall performance of the individual:

cdf prior f Ið Þf g ¼ 1

Nreal

XNreal

n¼1

cdf prior f I njð Þf g: ð11Þ

The way that this prior CDF accounts for both geological
and proxy uncertainty is illustrated in figure 4 for two
individuals and five realizations. In this figure, the first
individual is assumed to fall in clusters 1, 2, and 4 (from

Figure 6 Histogram of the logarithm of the permeability field.

Figure 7 Four realizations of
the channelized permeability
field.
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figures 2 and 3) over the different realizations, while the
second individual is assumed to fall in clusters 2 and 4. In
the left figures, the stars correspond to the expected
performance derived from the cluster for each realization,
while the vertical bars are the proxy uncertainty associated
with each cluster. Summing the CDFs associated with each
cluster over the five realizations leads to the prior
distributions shown on the right plots, which account for
both proxy and geological uncertainty.

At this point, we can compute a prior value of the
objective function for the individual based on the CDF and
the strategy toward risk. For example, from the overall prior
CDF we can compute f50

prior(I,n), f10
prior(I,n), f90

prior(I,n)
and thus the prior value of the fitness as:

Fprior Ið Þ ¼ r10f
prior
10 Ið Þ þ r50f

prior
50 Ið Þ þ r90f

prior
90 Ið Þ; ð12Þ

where r10, r50, and r90 depend on our strategy toward risk.
In the example shown, the value of the prior fitness is
computed using [r10 r50 r90]=[0.5 0.5 0], which corre-
sponds to a risk-averse attitude.

3.4 Posterior value of the fitness

The idea at this point is to identify a relatively small number
of selected cases {I,n} for simulation. This determination is
based on the prior CDF as well as the estimate of proxy

uncertainty, as we now describe. We focus on individuals I
that provide high prior estimates of the objective function,
F(I), as given by equation (12). However, because this prior
objective function includes proxy uncertainty, we are also
interested in cases {I,n} for which the uncertainty in F(I) is
reduced after the simulation.

For each individual I and realization n, we define a
weight W(I,n) as:

W I; nð Þ ¼ W1 Ið Þ þW2 I; nð Þ; ð13Þ
where W1(I) is proportional to the prior objective function
for the individual and W2(I,n) is proportional to the
uncertainty on the proxy, defined from the shape of
cdfprior{ f (I|n)} (e.g., confidence interval). For example,
we can set:

W1 Ið Þ ¼ Fprior Ið Þ; ð14Þ
and

W2 I; nð Þ ¼ a f prior90 I; nð Þ � f prior10 I; nð Þ
j k

; ð15Þ

where α is the scaling factor that can be used to set the
relative weightings of the two terms. Once all cases {I,n}
have received a weight W(I,n), a predefined percentage of
cases are selected for simulation. The likelihood of
selection for a particular case depends on the value of W
(I,n). Assume, for example, that we have 30 individuals and
10 geological realizations (which means that we have about
300 scenarios to evaluate at each generation) and that we
can afford to simulate only 10% of the cases. In the
approach taken here, we simulate the 30 cases at each
generation with the highest values of W(I,n). An alternate

Figure 8 Example A: repartition of the calibration data in the space
of the attributes after two generations for case A.2. Color corresponds
to the performance. Attributes are well length, volume of channels
intersected by the well, and average permeability along the well.

Figure 9 Example A: mean value of the performances for each
cluster (solid line). Dashed lines correspond to the confidence interval.

Grid dimensions 40×40×7
Field dimension 6000×6000×210 ft3

ϕ 0.2
k1 90 mD

k2 1 mD
C 3×10−5 psi−1

Bo 1.3

Table 1 Example
A: reservoir and
fluid properties.
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approach would be to use a selection strategy in which
cases with the highest values of W(I,n) have the greatest
probability of selection, but other cases also have nonzero
selection probabilities.

The weighting process is hence a way to choose
individuals with a high overall prior fitness (high W1(I)),
but also to identify, for a particular individual I, which
realizations n bring the largest uncertainty in the fitness
estimate (quantified via W2(I,n)). For example, assume that
we wish to simulate only two of the 10 cases (defined by
the two individuals and five realizations) from figure 4. Our
weighting process leads to the selection of the second
individual in realizations 1 and 4. This is because (1) this
individual exhibits a higher prior fitness than the first in-

dividual and (2) individual 2 in realizations 1 and 4
corresponds to clusters with broad CDFs.

From the simulations of the selected cases, the actual
value of the fitness is obtained and we can update the prior
CDFs to obtain posterior CDFs. If the set {I,n} was
actually simulated, then we know the actual value of the
fitness f (I,n) and cdfpost{ f (I|n)} is simply a step function. If
{I,n} was not simulated, no new information is added and
cdfpost{ f (I|n)} = cdfprior{ f (I|n)}.

We can now form the posterior CDF of the overall fitness:

cdf post f Ið Þf g ¼ 1

Nreal

XNreal

n¼1

cdf post f I njð Þf g: ð16Þ

This posterior distribution function for the fitness differs
from the prior distribution in that the uncertainty due to the
use of the proxy is reduced, particularly if this individual
was simulated for several realizations. From this posterior
CDF, we can derive f50

post(I), f10
post(I), and f50

post(I). At this
point, we compute a posterior value of the objective
function for the individual as:

Fpost Ið Þ ¼ r10f
post
10 Ið Þ þ r50f

post
50 Ið Þ þ r90f

post
90 Ið Þ: ð17Þ

The difference between Fpost(I) and Fprior(I) will be
illustrated in Section 4.

All the individuals in the population are now ranked
according to the posterior value of the objective function,
Fpost(I). At this point, we return to the basic GA. Specifically,
a selection probability, depending on the selection strategy
and rank, is assigned to each individual. The next generation is
then formed from the selected individuals, as described in
Section 2.3.

3.5 Hybridization of the genetic algorithm: flowchart

A detailed flowchart of the new hybrid GA is illustrated in
figure 5. Cross-validation can be used to check the accuracy

Figure 11 Example A: evolu-
tion of the best individual in the
population with the number of
generations and with the total
number of simulations.

Figure 10 Example A: result of the cross-validation of the calibration
pool for case A.1 after 10 generations. Only a priori best cases are
updated for posterior estimation of the fitness.
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of the proxy derived from the calibration pool. This is
accomplished by removing some individuals {I,n} from the
calibration pool and then predicting their fitness using the
proxy. From this process, a regression coefficient between
the actual fitness and the proxy estimate can be determined.
If the value of this regression is below some predefined
value, more simulations must be performed, and the proxy
recalibrated, before the proxy is used. For some particular {I,
n}, the values of the attributes may not correspond to any
existing cluster or they may correspond to a cluster with very
few points. When this occurs, the case is simulated.

The main steps of the algorithm are as follows:

1 At each generation, determine clusters in the attribute
space. Associate each new case {I,n} with a cluster
(unless it falls outside of all existing clusters, in which
case we perform a flow simulation).

2 Compute a priori values for the performance for each
individual I from the CDFs for each of the {I,n} (i.e.,
average the appropriate cluster CDFs).

3 Weight each case {I,n} according to equation (13).
Simulate a predefined percentage of the cases (selected
based on the weights).

4 Derive the posterior fitness for every individual and
update the calibration pool.

5 Rank individuals based on posterior fitness and select
parents for the next generation.

6 Apply crossover and mutation operations to provide the
next generation of individuals.

This algorithm proceeds until some convergence criterion is
met (e.g., no improvement in the most fit individual over a
prescribed number of generations) or a stop criterion is reached.

4 Examples

We now present three example cases that illustrate the use of
the statistical proxy described in the previous section. These
examples involve the optimization of monobore or dual-
lateral wells under geological uncertainty. An additional
example involving the optimization of a monobore well
under varying risk attitudes is presented by Onwunalu [15].

4.1 Example A: sensitivity to the proxy selection

In this example, we illustrate the sensitivity of the
optimization result to the percentage of scenarios simulated.
The well is constrained to be a monobore. The reservoir
model is a channelized system. Five realizations con-
strained to data from three observation wells were randomly
generated (figures 6 and 7). The key properties of the
reservoir are summarized in table 1 (note that C stands for
total compressibility and Bo is oil formation volume factor).
Reservoir flow in this case involves only a single phase
(oil) and frictional pressure losses in the well are neglected.
Permeability is highly heterogeneous but locally isotropic
(kx=ky=kz).

The goal is to determine the placement of a monobore
production well to maximize the cumulative oil produced
over 500 days of primary depletion. Initial pressure at the
top of the reservoir is 3500 psi and the bottomhole pressure

Figure 12 Example B: evolu-
tion of the best individual in the
population with the number of
generations and with the total
number of simulations.

Table 2 Example A: results with different percentages selected for
simulation.

5% 10% 20%

Fitness of the best scenario
(bbl)

2,809,000 3,066,000 3,060,000

Number of simulations 630 918 1520
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(BHP) constraint is 3200 psi. The mainbore can be oriented
in any direction, but is limited in horizontal extent to a
maximum of 1500 ft. We optimize under a risk-neutral
attitude, which means that we seek to maximize the
expected cumulative oil production over the five realiza-
tions, regardless of the variance.

We base the proxy estimate on three attributes expected to
correlate with cumulative oil production – well length,
volume of channels intersected by the well, and average
permeability along the well. For a given individual, the
determination of the proxy estimate required about 2 s
processing for each realization, while each reservoir simu-
lation consumed about 30 s. Simulations are very fast for this
small problem (11,200 cells), so there is only a factor of 15
differences between the proxy calculations and the simula-
tion runs. However, because the processing time required to
determine the attribute values is largely independent of the
model size, substantially greater differences between the
times required for deriving attributes and for performing
simulations are expected for larger problems.

In this example, we used 30 individuals and 50
generations in the GA. The calibration pool was initiated

by simulating all of the individuals in each realization in the
first generation (for a total of 150 simulations) and was
updated at each generation using the simulated cases.
Twenty clusters were used to determine the prior fitness
of each individual. Prior predictions obtained from a given
cluster were used only if the cluster contained more than 10
data points; otherwise, a simulation was performed.

Three cases were tested in order to quantify the
sensitivity of the optimization results to the percentage of
(valid) scenarios simulated. These cases correspond to 5%
(case A.1), 10% (case A.2), and 20% (case A.3) simulated,
with the remainder estimated using the proxy. Figure 8
shows the data in the three-dimensional attribute space after
two generations. It is evident from the figure that the data
tend to cluster based on fitness, which suggests that the
variability within a cluster will not be excessive. At the end
of the second generation, there are about 300 individuals in
the calibration pool (most of the cases in the second
generation were also simulated because the clusters did not
yet contain enough points). The fitness of all individuals in
the calibration pool was then partitioned into 20 clusters
using the selected attributes.

The CDF of the fitness in all clusters is now readily
determined. Figure 9 depicts the f10

prior(I,n), f50
prior(I,n),

and f90
prior(I,n) values of the performance for the 20 clusters

(the clusters are now ordered in terms of increasing f50
prior).

For subsequent generations, we compute the attributes for
all new cases and then determine the prior fitness. A subset
of cases is then simulated as determined by the procedure
described in Section 3.4. In general, there are 8, 15, and 30
actual simulations for case A.1 (5%), case A.2 (10%), and
case A.3 (20%), respectively, for each generation of the
optimization. A comparison of the posterior and actual
fitness for case A.1 (from cross-validation of the calibration
pool at generation 10) is shown in figure 10. We see from
figure 10 that, although only about eight simulations are
performed at each generation, there is little difference between
the prior and posterior fitness. Using cross-validations of the
calibration pool, updated after each generation, we compute
the correlations between the prior and posterior fitness values
with the actual fitness. The regression coefficient between the
prior fitness and the actual fitness is seen to be quite high –
greater than 0.9 at all generations of the optimization.

In figure 11 (left), we present the fitness of the best
individual as a function of generation, while in figure 11

Figure 13 Example B: Comparison of the best wells found with and
without proxy.

Table 3 Example B: comparison of the performances of the best
wells found with and without proxy.

With proxy Without proxy

Average performance (bbl) 2,831,000 2,872,000
Standard deviation (bbl) 219,300 279,100
Number of simulations 1873 13,597

Table 4 Example C: comparison of the performances of the best
wells found with and without proxy.

With proxy Without proxy

Average performance (bbl) 3,269,000 3,067,000
Standard deviation (bbl) 164,300 463,100
Number of simulations 1626 6677
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(right) we present the fitness of the best individual as a
function of the number of simulations performed. From
figure 11 (left), it is evident that cases A.2 and A.3 (10%
and 20% simulated) provide very similar results in terms of
best fitness, while case A.1 (5% simulated) provides a
somewhat lower fitness. However, by using only 630
simulations, the best individual in case A.1 is more than
90% of the fitness in case A.2 and case A.3 (figure 11).

The key results from figure 11 are summarized in table 2.
These results suggest that once a “threshold” percentage of
the cases are simulated, the optimization result is relatively
insensitive to higher percentages of simulated cases. Note
that the number of simulations does not decrease by a factor
of 2 when the percent simulated is halved. This is because
considerably more than the specified percentage of cases
must be simulated in early generations to build clusters with
10 points or more. In more extensive optimizations, halving
the percent simulated will result in about half the number of
simulations as expected.

4.2 Example B: optimization of a monobore production well

In this example, we again optimize the placement of a
monobore producer in order to maximize the cumulative oil
production after 500 days of primary depletion. We consider
the same reservoir properties and constraints as in Example A
(table 1), except that here we consider 10 realizations
constrained to the three vertical observation wells. Our goal
here is to assess the proxy by comparing optimization results
obtained by simulating all cases with those achieved through
use of the statistical proxy. Maximum well length is again
1500 ft and the optimization was again performed with 30
individuals (50 generations) under a neutral-risk mode.
Following the initial generations (in which high percentages
of individuals were simulated to generate 20 clusters with at

least 10 data points per cluster), the proxy was applied to
select 10% of the valid population for simulation at each
generation (with the remainder of the individuals assessed
through use of the proxy).

Figure 12 presents the evolution of the best individual over
the course of the optimization. The solid line shows the result
when all cases are simulated (no proxy) and the dashed line the
result when the proxy is applied. From figure 12 (left), we see
that the no proxy case provides a slightly better fitness (see
also table 3). It is apparent from figure 12 (right), however,
that the proxy result is achieved by using more than a factor
of 7 fewer simulations. It is thus apparent that the use of the

Figure 14 Example C: evolu-
tion of the best individual in the
population with the number of
generations and with the total
number of simulations.

Figure 15 Example C: comparison of the best wells found with and
without proxy.
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proxy is able to greatly reduce the number of simulation runs
while impacting only slightly the optimal fitness.

The positions of the optimal wells, as determined by the
optimizations with and without the proxy, are shown in
figure 13. The optimal wells clearly differ between the two
optimizations, though in both cases they lie near the center
of the reservoir and contact several channels. This figure
suggests that a number of different wells may provide
comparable optimums, although it is interesting to see that
in this case the two optimizations result in wells that are
similar.

4.3 Example C: optimization of a dual-lateral producer

In this example, we optimize the placement of a dual-lateral
production well. We again seek to maximize the cumulative
oil production over 500 days of primary depletion. We
consider the same reservoir properties as in Example A
(table 1), using five realizations constrained to three vertical
observation wells. We again specify a BHP constraint of
3200 psi with an initial reservoir pressure of 3500 psi. The
well in this case is required to have two laterals. The
mainbore and the laterals can be oriented in any direction,
and their horizontal lengths can take values from zero (for a
vertical segment) to a maximum of 1500 feet. We again
used populations of 30 individuals and ran the optimization
for 50 generations. The strategy toward uncertainty was
risk-neutral. In the optimizations using the proxy, we
populated the clusters as described in the previous
examples. When the proxy was applied, 20% of the cases
were simulated.

Figure 14 compares the fitness of the best individual
over the course of the optimization when all cases are
simulated and when the proxy is applied. Optimization
results are also summarized in table 4. It is evident that the
proxy optimizations actually achieve a slightly better
solution than the optimization without the proxy, in which
all cases are simulated. The proxy optimizations require
about a factor of 4 fewer simulations. The optimum well
locations for both cases are shown in figure 15. Although
the locations differ, it is clear that the wells in both cases
contact several channels and are located around the middle
of the reservoir.

The examples presented in this section demonstrate that
the statistical proxy developed in this paper acts to
significantly accelerate the GA optimization. In cases where
a comparison to the full simulation (no proxy) optimization
was made, the optimums achieved by the two procedures
were found to be very close. As more generations and more
individuals are considered in the optimization, the speedups
offered by the proxy will increase, as the cost of the
calibration runs will become a smaller component of the
overall computations. Thus, the approach presented here

clearly provides substantial speedup while maintaining the
quality of the optimization procedure.

5 Summary and conclusions

In this paper, we applied a GA for optimizing the
deployment of nonconventional wells under geological
uncertainty. As the direct application of the base method
leads to excessive computational demands, we developed
and tested a new statistical proxy which acts to significantly
reduce the number of cases actually simulated. This proxy
incorporates ideas from cluster analysis and provides an
estimate of the CDF of the fitness (or objective function).
The specific conclusions from this study are as follows:

& Cluster analysis based on calibrating simply computed
attributes (e.g., well length, number of channels
intersected, highly simplified flow simulations) to
simulation results provides a means for forming prior
CDFs for the performance of a well in a particular
geological model. By combining these proxy estimates
for multiple geological realizations, a prior CDF for
well performance, which accounts for both geological
and proxy uncertainty, can be developed.

& The prior performance estimate, in conjunction with the
proxy uncertainty, can be used to select a subset of
cases most appropriate for full simulation. The fitness
of the remainder of the cases is determined by using the
proxy. It was demonstrated that the proxy is effective in
terms of identifying appropriate cases for simulation
and that a high degree of correlation exists between the
proxy estimate and the simulated result.

& In examples involving the optimization of well place-
ment for monobore and dual-lateral wells, the use of the
proxy was shown to provide excellent results. Specifi-
cally, by simulating only 10% of the cases (as determined
by application of the proxy), optimums very close to
those achieved by the full procedure were attained.

Acknowledgement We are grateful to the industrial affiliates of the
SUPRI-HW (Advanced Wells) research program at Stanford Univer-
sity for partial support of this work. V.A. also thanks the Institut
Français du Pétrole (IFP) for partial funding. We thank Schlumberger
for providing us with the ECLIPSE simulator, which was used for the
simulations.

References

1. Aitokhuehi, I., Durlofsky, L.J., Artus, V., Yeten, B. Aziz, K.:
Optimization of advanced well type and performance. In: Proc. of
the 9th European Conf. on the Mathematics of Oil Recovery,
Cannes, France, (2004) 30 August–2 September

2. Bangerth, W., Klie, H., Wheeler, M.F., Stoffa, P.L., Sen, M.K.: On

Comput Geosci (2006) 10:389–404 403



optimization algorithms for the reservoir oil well placement
problem. Comput. Geosci., in press

3. Bittencourt, A.C., Horne, R.: Reservoir development and design
optimization (paper SPE 38895). In: SPE Annual Technical
Conference and Exhibition, San Antonio, Texas, (1997) 5–
8 October

4. Cho, H.: Integrated optimization on a long horizontal well length.
SPE Reserv. Evalu. Eng. 81–87, (2003) April

5. Couët, B., Bailey, W.J., Wilkinson, D.: Reservoir optimization
tool for risk and decision analysis. In: Proc. of the 9th European
Conf. on the Mathematics of Oil Recovery, Cannes, France,
(2004) 30 August–2 September

6. Güyagüler, B., Horne, R.: Uncertainty assessment of well
placement optimization, (paper SPE 71625). In: SPE Annual
Technical Conference and Exhibition. New Orleans, Louisiana,
(2001) 30 September–3 October

7. Güyagüler, B., Horne, R., Rogers, L., Rosenzweig, J.J.: Optimi-
zation of well placement in a Gulf of Mexico waterflooding. SPE
Reserv. Evalu. Eng. 229–236 (2002) June

8. Idrobo, E.A., Choudhary, M.K., Datta-Gupta, A.: Swept volume
calculations and ranking of geostatistical reservoir models using
streamline simulation (paper SPE 62557). In: SPE/AAPG
Western Regional Meeting, Long Beach, California, (2000)
19–23 June

9. Joshi, S.D.: Costs/benefits of horizontal wells (paper SPE 83621).
In: SPE Western Regional/AAPG Pacific Section Joint Meeting,
Long Beach, California, (2003) 19–24 May

10. Klie, H., Bangerth, W., Wheeler, M.F., Parashar, M., Matossian,
V.: Parallel well location optimization using stochastic algorithms
on the grid computational framework. In : Proc. of 9th European

Conf. on the Mathematics of Oil Recovery, Cannes, France,
(2004) 30 August–2 September

11. Lødøen, O.P., Omre, H., Durlofsky, L.J., Chen, Y.: Assessment of
uncertainty in reservoir production forecasts using upscaled flow
models. Proc. of 7th International Geostatistics Congress. Banff,
Canada, (2004) 26 September–1 October

12. Martinez, W.L., Martinez, A.R.: Computational Statistics Hand-
book with Matlab. Chapman & Hall/CRC, Boca Raton, LA (2002)

13. Mishra, S., Choudhary, M.K., Datta-Gupta, A.: A novel approach
for reservoir forecasting under uncertainty. SPE Reserv. Evalu.
Eng. 42–48 (2002) February

14. Omre, H., Lødøen, O.P.: Improved prediction forecasts and
history matching using approximate fluid flow simulators. SPE
J. 339–351 (2004) September

15. Onwunalu, J.: Optimization of nonconventional well placement
using genetic algorithms and statistical proxy. MSc thesis,
Stanford University (2006)

16. Ripley, B.D.: Pattern Recognition and Neural Networks. Cam-
bridge Univ. Press (1996)

17. Scheevel, J.R., Payrazyan, K.: Principal component analysis
applied to 3D seismic data for reservoir property estimation.
SPE Reserv. Evalu. Eng. 64–72 (2001) February

18. Wolfsteiner, C., Durlofsky, L.J., Aziz, K.: Approximate model for
productivity of nonconventional wells in heterogeneous reser-
voirs. SPE J. 218–226 (2000) June

19. Yeten, B.: Optimum deployment of nonconventional wells. PhD
thesis, Stanford University (2003)

20. Yeten, B., Durlofsky, L.J., Aziz, K.: Optimization of nonconven-
tional well type, location and trajectory. SPE J. 200–210 (2003)
September

404 Comput Geosci (2006) 10:389–404


	Optimization of nonconventional wells under uncertainty using statistical proxies
	Abstract
	Introduction
	Optimization under geological uncertainty
	The optimization problem
	Geological uncertainty and risk attitude
	Description of the genetic algorithm

	Statistical proxies
	Scenario attributes
	Cluster analysis
	Prior value of the fitness
	Posterior value of the fitness
	Hybridization of the genetic algorithm: flowchart

	Examples
	Example A: sensitivity to the proxy selection
	Example B: optimization of a monobore production well
	Example C: optimization of a dual-lateral producer

	Summary and conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


