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We introduce a discrete fracture network model of stationary Darcy flow in fractured rocks.
We approximate the fractures by a network of planar circle disks, which is generated on the
basis of statistical data obtained from field measurements. We then discretize this network
into a mesh consisting of triangular elements placed in three-dimensional space. We use geo-
metrical approximations in fracture planes, which allow for a significant simplification of the
final triangular meshes. We consider two-dimensional Darcy flow in each fracture. In order to
accurately simulate the channeling effect, we assign to each triangle an aperture defining its
hydraulic permeability. For the discretization we use the lowest order Raviart–Thomas mixed
finite element method. This method gives quite an accurate velocity field, which is computed
directly and which satisfies the mass balance on each triangular element. We demonstrate
the use of this method on a model problem with a known analytical solution and describe the
generation and triangulation of the fracture network and the computation of fracture flow for
a particular real situation.

Keywords: fractured medium, Darcy flow, stochastic discrete fracture network model, chan-
neling effect, mixed-hybrid finite element method

1. Introduction

Underground granitoid massifs are proposed as nuclear waste repositories. How-
ever, they are always disrupted by a system of geological faults, fractures. We study in
this paper the percolation of groundwater in such massifs, called fracture flow.

According to [4] or [21], there are three main approaches to modeling fracture
flow. When only a large-scale model is required and there is no need to know the de-
tailed flow behavior in any site subarea, it is possible to use equivalent porous medium
models. More complex are dual porosity models with two distinct interacting subsys-
tems – fractures and porous blocks. Finally, we can approximate the original three-
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dimensional fractures by planar elliptic or polygonal disks whose frequency, size, as-
signed aperture, and orientation are statistically derived from field measurements and
consider two-dimensional Darcy flow in such a network. However, because of the high
computer requirements, it is only possible to solve local problems by using stochastic
discrete fracture network models. We refer to [1] for more details.

In [7,8,12] the networks of polygonal disks are replaced by networks of one-
dimensional pipes. This allows for fast calculations with large networks, but the pre-
cision is compromised. The models proposed in [2,3,9,10,17] discretize the polygonal
networks into triangular or quadrilateral meshes. The numbers of mesh elements are
often sizably increased. Finite difference, finite volume, finite element, or boundary el-
ement methods are used for the discretization. We refer, for instance, to [5] for a more
detailed survey of the stochastic discrete fracture network models proposed in the lit-
erature. The intention of this paper is twofold. First, we describe how to construct a
very accurate approximation of the fracture network, which has at the same time as few
elements as possible. This allows us to represent realistic fractured media while simul-
taneously decreasing the time of calculations. Second, we propose to use a mixed finite
element method for the discretization of the fracture flow problem.

We generate the fracture network on the basis of statistical data obtained from field
measurements. We enable the definition of hydraulically important fractures, zones with
an increased density of fractures, and the insertion of deterministic fractures. The orig-
inal three-dimensional fractures are approximated by planar circle disks and each disk
is subsequently discretized into a triangular mesh respecting the intersections with its
neighbors. In order to simplify the geometrical situation in fracture planes, the computed
intersections are slightly moved and stretched. In this way, one obtains a higher-quality
mesh; however, the three-dimensional geometrical correspondence vanishes and has to
be replaced with an element edges correspondence. Finally, we assign an aperture to
each element. Based on this aperture, the hydraulic permeability of the element is set,
considering also fracture wall roughness and filling. The classical parallel plate model is
thus avoided and the channeling effect is simulated. We can see an example of a simple
triangular mesh in figure 1.

Mixed finite element methods are known to accurately approximate the velocity
field and to locally conserve the mass on each element. We have thus decided to use
the lowest order Raviart–Thomas mixed finite element method (see [6] or [16]) in order
to find an approximate solution of the locally second-order elliptic problem with a dis-
continuous permeability tensor. We can easily note an essential property of the fracture
networks: there exist inter-element edges which belong to three or more triangular ele-
ments, see figure 1. The parallel article [20] (cf. also [19]) is devoted to the problem of
the definition of mixed methods for fracture networks. The existence and uniqueness of
weak and discrete solutions to our problem, as well as error estimates, follow from this
article.

The outline of the paper is as follows. We give the formulation of the problem of
stationary Darcy flow in a fracture network in the next section. In section 3 we define
function spaces and the weak and discrete solutions and give error estimates. We sketch
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Figure 1. Fracture network made of 3 polygons, discretized into a triangular mesh.

the implementation of the lowest order Raviart–Thomas mixed finite element method
in the form of the Fracture Flow Solver in section 4. Section 5 is devoted to a numer-
ical experiment with a model problem with a known analytical solution. We describe
the generation of fracture networks and their subsequent discretization into triangular
meshes by the Fracture Network Generator in sections 6 and 7, respectively. An exam-
ple of the computation of fracture flow for a real problem is given in section 8. Finally,
in section 9 we make some concluding remarks.

2. Stationary Darcy flow in a fracture network

We define the fracture network S by

S ≡
{⋃

�∈L

α� \ ∂S
}
, (1)

where α� is an open two-dimensional polygon placed in three-dimensional space. We
call α�, the closure of α�, a fracture. L is the index set of fractures and ∂S is the
boundary of S . For the purpose of the mathematical description, we suppose that the
fractures are only connected through their boundary edges. We suppose that there is a
two-dimensional orthogonal coordinate system given in each fracture. The system S of
the model problem in figure 2 may serve as an example. In this case S consists of four
fractures α1–α4 and ∂S consists of twelve edges �1–�12.

We seek the fracture flow velocity u (a two-dimensional vector in each α�), which
is the solution of the problem

u = −K(∇p + ∇z) in α�, � ∈ L, (2a)
∇ · u = q in α�, � ∈ L, (2b)

p = pD on �D, u · n = uN on �N, (2c)

where all the variables are expressed in the local coordinates of appropriate α� and also
the differentiation is always done with respect to these local coordinates. The equa-
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Figure 2. Fracture network of the model problem.

tion (2a) is Darcy’s law, (2b) is the mass balance equation, and (2c) prescribes Dirich-
let and Neumann boundary conditions. The variable p denotes the piezometric head,
p = p̃/(�g), where p̃ is the fluid pressure, g is the gravitational acceleration constant,
and � is the fluid density, q represents stationary sources or sinks density, and z is the
elevation, i.e. the upward vertical three-dimensional coordinate. The second-rank ten-
sor K of hydraulic conductivity is a function of the original three-dimensional fracture
aperture, wall roughness, and filling. We suppose that K is symmetric and uniformly
positive definite on each α�. We finally require that �D ∩ �N = ∅, �D ∪ �N = ∂S , and
�D �= ∅. The system (2a)–(2c) is closed by the requirement of the continuity of p and
of the mass balance of u over the inter-fracture boundary edges.

3. Mixed-hybrid finite element method

We give in this section the definitions of continuous and discrete function spaces
on the system of fractures S . We then state the weak mixed solution, mixed-hybrid
approximation, and give error estimates.

3.1. Function spaces

We use the product of L2 spaces on individual fractures in order to define the L2(S)

and L2(S) spaces on the system S ,

L2(S) ≡
∏
�∈L

L2(α�), L2(S) ≡ L2(S) × L2(S). (3)
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For each fracture α�, we denote by H 1(α�) the Sobolev space of scalar functions
with square-integrable weak derivatives, H 1(α�) = {ϕ ∈ L2(α�); ∇ϕ ∈ L2(α�)}. We
define H 1(S) as the space of functions whose restrictions on each α� are from H 1(α�)

and which coincide on inter-fracture boundaries in the sense of traces,

H 1(S) ≡ {
v ∈ L2(S); v|α�

∈ H 1(α�) ∀� ∈ L,

(v|αi
)|f = (v|αj

)|f ∀f = αi ∩ αj , i, j ∈ L
}
. (4)

We then have the spaces H 1/2(∂S), H−1/2(∂S), and the space H 1
D(S) of the functions

from H 1(S) vanishing on �D as in the standard planar case.
For each fracture α�, we denote by H(div, α�) the space of vector functions with

square-integrable weak divergences, H(div, α�) = {v ∈ L2(α�); ∇ · v ∈ L2(α�)}.
We define H(div,S) as the space of functions whose restrictions on each α� are from
H(div, α�) and whose sum of normal traces over all fractures sharing the given interior
edge f is zero in the appropriate sense,

H(div,S) ≡
{

v ∈ L2(S); v|α�
∈ H(div, α�) ∀� ∈ L,

∑
i∈If

〈v|αi
· n∂αi

, ϕi〉∂αi
= 0, ∀f such that |If | � 2,

∀ϕi ∈ H 1
∂αi\f (αi), ϕi |f = ϕj |f ∀i, j ∈ If , If = {i ∈ L; f ⊂ ∂αi}

}
. (5)

Finally, we denote

H0,N(div,S) ≡ {
v ∈ H(div,S); 〈v · n, ϕ〉∂S = 0 ∀ϕ ∈ H 1

D(S)
}

as the space of functions from H(div,S) such that their normal trace on �N is equal to
zero in the appropriate sense.

We use (·, ·)0,α�
to denote the L2 scalar product, ‖·‖0,α�

to denote the associated L2

norm, ‖ ·‖1,α�
to denote the H 1(α�) norm, and ‖ ·‖H(div,α�) to denote the H(div, α�) norm

given by ‖v‖2
H(div,α�)

= ‖v‖2
0,α�

+‖∇ · v‖2
0,α�

. The bracket 〈v ·n, ϕ〉∂S denotes the duality
pairing between H−1/2(∂S) and H 1/2(∂S) and may be written formally as

∫
∂S v · nϕ ds.

The norms on the spaces defined by (3), (4), (5) are given by

‖ · ‖2
·,S =

∑
�∈L

‖ · ‖2
·,α�

.

Remark. The definitions (4) and (5) coincide with the characterizations of the spaces
H 1(S) and H(div,S) for the standard planar case, see [16, theorem 1.3]. Note that (4)
ensures the appropriate continuity of a scalar function also for fracture networks. Sim-
ilarly, (5) ensures the continuity of the normal trace of a vector function, i.e. the mass
balance condition, even if the interior edge is shared by three or more fractures. Simply,
what is the outflow from one fracture has to be the inflow into the neighboring ones.
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We now introduce the discrete spaces. Let us suppose a triangulation Th of the
system S . For a given triangular element e, we define RT0(e) as the space of linear
vector functions with the basis ve

i , i ∈ {1, 2, 3},

ve
i = 1

2|e|
(

x − xi

y − yi

)
,

where |e| is the area of the element e and [xi, yi] are the coordinates of its ith vertex.
The Raviart–Thomas space RT0

−1(Th) of elementwise linear vector functions without
any continuity requirement is defined by

RT0
−1(Th) ≡ {

v ∈ L2(S); v|e ∈ RT0(e) ∀e ∈ Th

}
. (6)

The space M0
−1(Th) of elementwise constant scalar functions is defined by

M0
−1(Th) ≡ {

φ ∈ L2(S); φ|e is constant ∀e ∈ Th

}
. (7)

We denote the set of all edges by �h and the set of all edges except those from �D by
�h,D , �h,D = �h \ �D . On �h,D we set

M0
−1(�h,D) ≡ {µ : �h → R; µ|f is constant ∀f ∈ �h,µ|f = 0 ∀f ∈ �D}. (8)

3.2. Weak mixed solution

We now define the weak mixed solution of the problem (2a)–(2c). We denote
A = K−1 on each α�, characterizing the medium resistance. Let us consider ũ ∈
H(div,S) such that ũ · n = uN on �N in the appropriate sense.

Definition 1. As the weak mixed solution of the steady saturated fracture flow problem
(2a)–(2c), we understand functions u = u0 + ũ, u0 ∈ H0,N(div,S), and p ∈ L2(S)

satisfying

(Au0, v)0,S − (∇ · v, p)0,S

= −〈v · n, pD〉∂S + (∇ · v, z)0,S

− 〈v · n, z〉∂S − (Aũ, v)0,S ∀v ∈ H0,N(div,S), (9a)

−(∇ · u0, φ)0,S = −(q, φ)0,S + (∇ · ũ, φ)0,S ∀φ ∈ L2(S). (9b)

We require Aij ∈ L∞(S), q ∈ L2(S), pD ∈ H 1/2(�D), and uN ∈ H−1/2(�N).

The existence and uniqueness of the solution of (9a)–(9b) is shown in [20].

3.3. Mixed-hybrid approximation

We now introduce the mixed-hybrid finite element approximation of (9a)–(9b).
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Definition 2. As the hybridization of the lowest order Raviart–Thomas mixed finite el-
ement approximation of the problem (9a)–(9b), we understand functions uh = u0,h + ũ,
u0,h ∈ RT0

−1(Th), ph ∈ M0
−1(Th), and λh ∈ M0

−1(�h,D) satisfying∑
e∈Th

{
(Au0,h, vh)0,e − (∇ · vh, ph)0,e + 〈vh · n, λh〉∂e∩�h,D

}

=
∑
e∈Th

{−〈vh · n, pD〉∂e∩�D
+ (∇ · vh, z)0,e − 〈vh · n, z〉∂e

− (Aũ, vh)0,e

} ∀vh ∈ RT0
−1(Th), (10a)

−
∑
e∈Th

(∇ · u0,h, φh)0,e = −
∑
e∈Th

{
(q, φh)0,e − (∇ · ũ, φh)0,e

} ∀φh ∈ M0
−1(Th),

(10b)∑
e∈Th

〈u0,h · n, µh〉∂e∩�h,D
= 0 ∀µh ∈ M0

−1(�h,D). (10c)

It is immediate that if vh ∈ RT0
−1(Th), then vh ∈ H0,N(div,S) if and only if∑

e∈Th

〈vh · n, λh〉∂e∩�h,D
= 0 ∀λh ∈ M0

−1(�h,D).

Equation (10c) thus ensures the continuity of the normal trace of the velocity field (mass
balance condition) even for fracture networks. The demonstration of the existence and
uniqueness of the solution of the problem (10a)–(10c) is given in [20].

3.4. Error estimates

We now give two error estimates. If the solution (u, p) of (9a)–(9b) is smooth
enough and if (uh, ph, λh) is the solution of (10a)–(10c), we have

‖u − uh‖H(div,S) + ‖p − ph‖0,S � Ch
(‖p‖1,S + ‖u‖1,S + ‖q‖1,S

)
,

where the constant C does not depend on h (see [6, proposition IV.1.2]).
Using the piecewise linear but nonconforming approximation p∗

h given by the val-
ues of the Lagrange multiplier λh in the midpoints of the edges, we have (see [6, theo-
rem V.3.1]) ∥∥p − p∗

h

∥∥
0,S � Ch2(‖p‖1,S + ‖u‖1,S + ‖q‖1,S

)
.

4. Implementation

Original software called Fracture Flow Solver was developed as the implementa-
tion of the introduced mixed-hybrid model. It works with fracture networks discretized
into triangular meshes, where the inter-element edges are possibly shared by more than
two elements. It also works with meshes with no real geometrical correspondence, i.e.
when the triangulations of two intersecting fractures do not match along the intersection
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line. This is necessary for the use of geometrical simplifications in fracture planes, see
figures 4 and 5 and the description in section 7.

The resulting matrix problem has the form

AU + BP + C� = q1,

B
TU = q2,

C
TU = q3.

There can be more than two 1’s in one column of the submatrix C, unlike in the classical
planar case. This represents an interior edge shared by more than two elements. We
have used the solver GI8 of the Institute of Computer Science, Academy of Sciences
of the Czech Republic, see [14] or [15] for its description. This solver is based on the
sequential elimination onto a system with Schur’s complement and subsequent solution
of this system by a preconditioned conjugate gradients method.

5. Model problem

In this section we consider a simple model problem of the form

S = α1 ∪ α2 ∪ α3 ∪ α4 \ ∂S,

u = −(∇p + ∇z) in αi , i = 1, 2, 3, 4,

∇ · u = 0 in αi , i = 1, 2, 3, 4,

p = 0 on �1, p = 0 on �2,

u · n = 0 on �3, u · n = 0 on �4,

p = sin

(
πx1

2X

)
sinh

(
π(A + B)

2X

)
+ SA on �5, p = Sy1 on �6,

p = 0 on �7, p = 0 on �8,

u · n = 0 on �9, u · n = 0 on �10,

p = sin

(
πx4

2X

)
sinh

(
π(B + B)

2X

)
on �11, p = 0 on �12,

where A = |�4| = √
5/4, X = |�2| = 1, B = |�3| = |�9| = |�10| = √

13/4, and
S = ∂z/∂y2 − ∂z/∂y1. The fracture network is viewed in figure 2. The exact solution
can be found as

p|α1 = sin

(
πx1

2X

)
sinh

(
π(y1 + B)

2X

)
+ Sy1,

u|α1 =
(

− π

2X
cos

(
πx1

2X

)
sinh

(
π(y1 + B)

2X

)
,

− π

2X
sin

(
πx1

2X

)
cosh

(
π(y1 + B)

2X

)
− S − ∂z

∂y1

)
,

p|α2 = sin

(
πx2

2X

)
sinh

(
πy2

2X

)
,
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Table 1
Piezometric head and velocity errors in α1.

N # triangles ‖p − ph‖0,S ‖p − p∗
h
‖0,S ‖u − uh‖H(div,Th)

2 8 × 4 0.4445 0.1481 1.2247
4 32 × 4 0.2212 0.0389 0.6263
8 128 × 4 0.1102 0.0098 0.3150

16 512 × 4 0.0550 0.0025 0.1577
32 2048 × 4 0.0275 6.18 · 10−4 0.0789
64 8192 × 4 0.0138 1.54 · 10−4 0.0394

128 32768 × 4 0.0069 3.87 · 10−5 0.0197
256 131072 × 4 0.0034 9.73 · 10−6 0.0099

u|α2 =
(

− π

2X
cos

(
πx2

2X

)
sinh

(
πy2

2X

)
,− π

2X
sin

(
πx2

2X

)
cosh

(
πy2

2X

)
− ∂z

∂y2

)
,

p|α3 = sin

(
πx3

2X

)
sinh

(
πy3

2X

)
,

u|α3 =
(

− π

2X
cos

(
πx3

2X

)
sinh

(
πy3

2X

)
,− π

2X
sin

(
πx3

2X

)
cosh

(
πy3

2X

)
− ∂z

∂y3

)
,

p|α4 = sin

(
πx4

2X

)
sinh

(
π(y4 + B)

2X

)
,

u|α4 =
(

− π

2X
cos

(
πx4

2X

)
sinh

(
π(y4 + B)

2X

)
,

− π

2X
sin

(
πx4

2X

)
cosh

(
π(y4 + B)

2X

)
− ∂z

∂y4

)
.

Note the occurrence of the term S ensuring the continuity of the normal trace of the
velocity field; the gradients of z in α1 and α2 are different.

Table 1 gives approximation errors in the first fracture α1. The fracture network is
discretized into 4 × 2N2 regular triangular elements, h ≈ 1/N . There is the expected
O(h) convergence of the velocity, O(h) convergence of the original elementwise constant
piezometric head, and O(h2) convergence of the elementwise linear but discontinuous
piezometric head. We refer to [20] for a comparison of the mixed-hybrid finite element
method on standard two-dimensional domains and on fracture networks with multiply
shared inter-element edges.

6. Fracture networks generation

In order to generate fracture networks, original software called Fracture Network
Generator was developed. Each fracture (originally a three-dimensional object) is ap-
proximated by a flat circle disk characterized by its middle coordinates, radius, orien-
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tation, hydraulic permeability or aperture distribution, and wall roughness. Fractures
are divided into four sets: fractures in fracture zones, deterministically measured sin-
gle fractures, hydraulically important fractures, and common fractures. Fractures are
further supposed to be divided into three types according to their mean orientation in the
three-dimensional Cartesian coordinates: [0, 0, 1], [0, 1, 0], or [1, 0, 0]. Each combina-
tion of set and type, except for deterministically measured single fractures, is treated as
an independent statistical population. The fracture frequency is defined as the number
of fractures per one depth unit in each part of the simulated domain. Fracture lengths
are supposed to be lognormally distributed (cf. [7]), i.e. with the probability density
function

f (x) = 1

σ
√

2πx
exp

(
−1

2

(
ln x − µ

σ

)2)
.

Here, µ is the mean of the logarithm and σ is the standard deviation of the logarithm
of fracture lengths. Fractures are supposed to have the Fisher–von Mises distribution
of orientations around the mean orientations. The probability density function is
given by

f (α) = k

exp(k)
exp(k cos α) sin α,

where α is the angle between the fracture normal vector and the vector of its mean
orientation and k is a parameter.

The user has to specify the domain, deterministic single fractures, position of frac-
ture zones, and all statistical parameters. The generator first generates fractures into the
fracture zones and then common fractures into the remaining part of the domain. Finally,
a network of hydraulically important fractures is generated into the whole domain. One
can later add fractures or change the parameters of already generated fractures. For an
example of a generated network see figure 3.

In order to validate the methods used for the statistical description and generation
algorithms, χ2 tests were carried out. One has to strictly distinguish between the sta-
tistical distributions and in ‘exploration boreholes’ measured distributions. The latter
are affected by a selective effect. Indeed, while ‘drilling a borehole’, the probability of
intersecting a larger fracture is higher than that of intersecting a smaller one.

7. Final triangular meshes construction

The discretization of fracture networks into triangular meshes has presented a cru-
cial problem. First, each fracture has to be discretized into a triangular mesh respect-
ing the intersections with other fractures. In order to decrease the number of elements
and to avoid ill-conditioned matrices resulting from the cases where there exist ele-
ments with very small angles, the algorithm should in addition simplify the geometrical
situation. In the Fracture Network Generator, originally developed discretization al-
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Figure 3. Generated fracture network in a 5 × 5 × 8 m domain.

Figure 4. Geometrical simplifications – moving, stretching, and merging intersections in the fracture planes.

gorithm is implemented. It consists of a preliminary phase and of an Algorithm for
Triangulation of a Polygonal Domain with Pre-defined Interface Lines (triangulation
algorithm).

In the preliminary phase identification, intersections computation, and various geo-
metrical simplifications are made. Close, almost parallel fractures are removed or equiv-
alently replaced. In each fracture the computed intersections are moved, stretched, and
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Figure 5. Three-dimensional consequences of geometrical simplifications in the fracture planes.

Figure 6. Final discretization of the fracture from figure 4.

merged in order to simplify the two-dimensional geometrical situation. We can see an
example of these simplifications in figure 4. If the simplifications are used, then the
three-dimensional geometrical correspondence vanishes, see figure 5. It is then replaced
with an element edges correspondence stating which triangular element through which
edge ensures the communication of its fracture with another fracture, more specifically
with which element of this fracture and through which edge. The edges of neighboring
elements are then not geometrically identical; the only condition is that the outflow from
one triangle has to be the inflow into the connected ones.

The triangulation algorithm is based on combining the Domain Decomposition
Conception expressing that the domain is split into two parts along an intersection when-
ever possible and the Advancing Front Method. Many user settings influencing the ratio
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Figure 7. Triangulation of the network from figure 3.

between the precision and the complexity of final triangulations are possible. We can
see the final discretization of the fracture from figure 4 in figure 6.

Natural three-dimensional fractures have varying apertures. Consequently, flow is
not evenly distributed within the fracture planes. So-called channels of flow occur. In
order to simulate this channeling effect, an on-element aperture distribution function is
used after the discretization. It assigns to each triangular element an aperture. Based on
this aperture, the hydraulic permeability of the element is set, also taking into account
the fracture wall roughness and filling. The final triangular mesh of the network from
figure 3 can be seen in figure 7. The colours represent various values of the hydraulic
permeability assigned to individual elements.

8. An example of a real problem

In this section we give an example of fracture flow around the explorational drill
hole Ptp-3 in the granitoid massif of Potůčky, Western Bohemia. An almost complete
set of input data for the Fracture Network Generator was available from the results of
field measurements (core-log evaluation, acoustic camera scanning, . . .) given in [13].
The only missing characteristic was the distribution of fracture lengths, which has been
adapted from [18]. The statistical characteristics of separate types according to their
mean orientation are given in tables 2–4. The fracture network covered a domain of
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Table 2
Statistical characteristics of fractures with the mean orientation [0, 0, 1].

Depth Mean Std. dev. Mean of the Std. dev. of the Fish.
(m) number of the ln of length ln of length distr.

number (m) (m) par.

0–60 64.5 13 0.3 0.5 13.7
60–120 28.5 5 0.7 0.3 13.7

120–180 27 8 0.3 0.7 13.7
180–240 36 7.5 0.5 0.2 13.7

Table 3
Statistical characteristics of fractures with the mean orientation [0, 1, 0].

Depth Mean Std. dev. Mean of the Std. dev. of the Fish.
(m) number of the ln of length ln of length distr.

number (m) (m) par.

0–60 51 8 0.1 0.4 21
60–120 27 6.5 0.5 0.6 21

120–180 76.5 22.5 0.2 0.4 21
180–240 36 10 0.7 0.2 21

Table 4
Statistical characteristics of fractures with the mean orientation [1, 0, 0].

Depth Mean Std. dev. Mean of the Std. dev. of the Fish.
(m) number of the ln of length ln of length distr.

number (m) (m) par.

0–60 21 4 0.3 0.3 11.5
60–120 24 7.5 0.7 0.2 11.5

120–180 28.5 7 0.5 0.2 11.5
180–240 26.4 11.5 0.5 0.5 11.5

5 × 5 × 3 meters and consisted of 206 fractures, which were discretized into approx.
4000 triangular elements. The intention was to simulate fracture flow in the immediate
vicinity of the borehole as precisely as possible; we also wanted to have a very small
number of elements to make many tests easily possible.

8.1. Problem setting and boundary conditions

We have solved the problem with various boundary conditions, sources distribu-
tion, and prescribed material properties in order to check the performance of the model.
We have used the testing setting, where the hydraulic conductivity of the elements is
given in the magnitude of 1 to 0.1 m/day and the differences between piezometric heads
prescribed for the sides with Dirichlet boundary condititions are in the magnitude of the
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Table 5
Average velocity in fractures.

Velocity (m/day) Number of fractures

> 10−1 13
10−2–10−1 56
10−3–10−2 32
10−4–10−3 12

< 10−4 53

Table 6
Average velocity in elements.

Velocity (m/day) Number of elements

> 10−1 297
10−2–10−1 1048
10−3–10−2 794
10−4–10−3 323

< 10−4 906

geometrical distances of these sides, and the real setting, where these quantities were
set, respectively, to 10−4–10−7 m/day and 10−3 m.

8.2. Adjustment of the mesh

Obviously, one can only simulate a connected fracture system. On the other hand,
the existence of fractures or sets of fractures which are not connected to the rest of the
network is a natural characteristic of rock massifs, hence their existence in the generated
network. As we are only interested in flow in the whole massif, exclusion of unconnected
subsystems was used. The final mesh had 166 fractures and 3368 elements.

8.3. Results

The results of the problems with the testing setting have the same nature as the
results of the same problems with the real setting, which shows the linearity of the model.
The difference between these results is proportional to the difference of the boundary
conditions and permeability. This makes it possible to use the scaling of real problems.

Next, the hypothesis that the majority of flow is only conducted by a small number
of fractures was confirmed. These fractures create several channels of flow in the massif
and the flux through the other fractures is negligible. The results are documented in
tables 5 and 6, where the distribution of the average velocity of flow over fractures,
mesh elements respectively for the testing setting is shown. The average velocity of flow
in the whole mesh was 0.032 m/day.

The same distribution of flow as in the whole mesh can be observed in particular
fractures. In each fracture there exist one or two channels of flow and the flux through
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Figure 8. Flow in one fracture.

Figure 9. Distribution of the piezometric head in the fracture network.

the rest of the fracture is almost equal to zero. This situation is shown in figure 8. Inter-
element fluxes are viewed as two parallel lines and the distribution of the piezometric
head is interpolated and viewed with the help of the GWS viewer system. The intersec-
tions with neighboring fractures are depicted as thick red lines. Finally, figure 9 shows
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the distribution of the piezometric head in the whole simulated fracture network, for the
case of the testing setting and for flow from the upper left to the lower right corner of the
simulated domain.

9. Conclusions

In the present paper we have used a mixed-type finite element method to solve a
locally second-order elliptic problem on a fracture network with a discontinuous perme-
ability tensor. This ensures good accuracy of the velocity field and the fact that the mass
balance is satisfied on each element. The hybrid version of the mixed finite element
method of Raviart and Thomas produces symmetric and positive definite matrices. It
applies directly to an arbitrary number of fractures intersecting through one edge. This
is another advantage in comparison with the original mixed formulation for fracture
networks, where the velocity basis functions for multiply shared edges are quite com-
plicated, see [20]. The presented model problem demonstrates the validity of classical
error estimates even on fracture networks.

The performed simulations of the real situation have proved good correspondence
between observed phenomena and numerical approximations. The model gives an ac-
curate velocity field within fracture planes and thus in the whole simulated network.
Namely, the channeling effect was observed both in fracture planes and in the entire
network. In order to obtain good-quality meshes, the use of the proposed geometri-
cal simplifications seems essential. The three-dimensional geometrical correspondence
vanishes, but the mesh is much simpler and still approximates the simulated fracture
network accurately. For the mixed-hybrid finite element method, the element edges cor-
respondence is sufficient. However, only the simulation of small domains is possible
with the introduced model. To simulate large scale domains, we plan to use an equiva-
lent porous-block approach as in [11]. In this approach one uses an equivalent porous
medium model, where the permeability tensors of the elements of the partition are set
up based on local stochastic discrete fracture network models.

In the near future, our main interest is the simulation of contaminant transport
in fracture networks. We plan to consider a nonlinear convection–reaction–diffusion
equation to simulate miscible displacements.
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