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1. INTRODUCTION

Ferrocolloids (ferrofluids, magnetic fluids) are the
stable suspensions of the particles of ferro- or ferrimag-
netic materials (iron, cobalt, and nickel oxides) in liq-
uids. The characteristic diameter of magnetic cores is
equal to about 10 nm, i.e., it is smaller than the size of
magnetic domains. Therefore, each ferroparticle pos-
sesses magnetic moment 

 

m

 

 whose value is proportional
to the volume of the magnetic core of a particle and the
saturation magnetization of corresponding bulk mag-
netic material. The external magnetic field produces an
orienting effect on the particle magnetic moments to
thereby impart to ferrofluids the ability to interact with
the magnetic field with the conservation of the features
of liquid state. On the one hand, such a unique combi-
nation leads to many unexpected physicochemical
effects and, on the other hand, allows to refer the mag-
netic fluids to the class of substances with controllable
properties, thus predetermining their extensive applica-
tion in modern technologies.

The computer simulation of ferrofluids and polar
liquids by the Monte Carlo method and molecular
dynamics performed from the beginning of the 1990s
[1–11] demonstrated that the internal microstructure of
such systems seems to be much more complex com-
pared to the uniform colloidal suspension of single
magnetic particles. At low particle concentrations and
their intense magnetic interaction, the developed struc-
ture of chain aggregates is formed in a system [3–11],
whereas, at high particle concentrations, the spontane-
ous formation of ferroelectric structure was observed
[1, 2]. The presence of attractive central interaction
between particles (the Stockmayer fluid) leads to the
condensation phase transition [9].

A large volume of experimental data is available that
demonstrates not only the existence of chain aggregates
in ferrofluids, but also their significant influence on
optical [12–15], rheological [16–18], and other physic-

ochemical [19–22] properties of ferrofluids. The con-
densation of ferroparticles known as a phase separation
was also repeatedly observed in experiments [23, 24].
Note that there are no direct experimental evidences of
the spontaneous magnetization of magnetic colloids.

Because any types of microstructural formations in
polar liquids and magnetic colloids seem to be very sig-
nificant for the physics of liquid state due to their sub-
stantial effect on the macroscopic properties of these
systems, they are extensively studied theoretically. Spe-
cific features of magnetic fluids are determined by
dipole-dipole interaction 

 

U

 

d

 

 of magnetic moments of
ferroparticles

 

(1)

 

where 

 

r

 

ij

 

 = 

 

r

 

i

 

 – 

 

r

 

j

 

; 

 

r

 

i

 

 and 

 

r

 

j

 

 are the vector-radii of 

 

i

 

th and

 

j

 

th particles, respectively; As is seen from Eq. (1), 

 

U

 

d

 

 (

 

ij

 

)

 

depends not only on distance 

 

r

 

ij

 

 between ferroparticles,
but also on the mutual orientation of their magnetic
moments 

 

m

 

i

 

 and 

 

m

 

j

 

, and can correspond both to attrac-
tion and repulsion. The most energy favorable position
of the particle pair is their contact (doublet) with the
“head-to-tail” orientation of magnetic moments. There-
fore, the most typical (for ferrofluids) are the aggre-
gates in the form of flexible chains composed of ferro-
particles (Fig. 1). Naturally, such microstructural for-
mations can exist only in ferrofluids with sufficiently
large particles intensely interacting with each other. The
parameter of magnetodipole interaction 

 

λ

 

 = 

 

m

 

2

 

/

 

d

 

3

 

kT

 

 is
traditionally used as a measure of such intensity. This
parameter has the meaning of the ratio between the
characteristic interaction energy of the magnetic
moments of two particles upon their contact, 

 

m

 

2

 

/

 

d

 

3

 

, and
thermal energy 

 

kT

 

 (

 

d

 

 is the diameter of ferroparticle
with the steric shell). For real ferrofluids where most of
the particles has the sizes of 

 

≈

 

10

 

 nm, the average value
of parameter 

 

λ

 

 does not exceed unity. However, for the
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Abstract

 

—The behavior of a system of noninteracting chain aggregates of ferroparticles suspended in a liquid
matrix and subjected to a weak uniform permanent magnetic field was studied based on the free energy func-
tional of a monodisperse low-concentration magnetic colloid. The orientational response of a flexible chain to
a weak external field showed that the model of rigid rods is applicable only for short chains (doublets and trip-
lets) of large ferroparticles characterized by a strong magnetodipole interaction. The calculated values of the
initial magnetic susceptibility of aggregated ferrofluid agree well with the computer simulation data.
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particles of coarse fractions with sizes of 

 

≈

 

15–18

 

 nm,
which are always present in real ferrofluids, this param-
eter can be as high as 

 

λ ≈ 

 

3–5

 

 nm.
Two main theoretical approaches to the analysis of

the properties of chain structures are developed at
present. The first approach is based on the principles of
dynamic equilibrium between chains of different
lengths [25]; in this case, the attachment/detachment
process of single particles is treated as a chemical reac-
tion. In other approach, which is equivalent to the first
one from the standpoint of statistical mechanics, the
condition of free energy minimum of a system as a
functional of chain distribution density over the number
of constituting particles is used [26–32]. The formation
of chain aggregates in the monodisperse systems of
magnetic particles was studied in these works. How-
ever, there are studies where the polydispersity of real
ferrofluids was taken into account [33–35].

Only the limiting cases of the absence of field infi-
nitely strong external field were considered in theoreti-
cal works [28–35]. The mathematical aspect of a prob-
lem is slightly simplified in these cases; hence, one can
succeed in deriving the explicit expression for chain

length distribution. However, since the main interest to
ferrofluids is due to their ability to interact with the
external magnetic field, the problem of the influence of
this field on chain aggregates becomes fundamentally
important. There is no solution to the problem of the
effect of the external field strength on the aggregate
properties. The attempt to solve this problem was
undertaken only in [26, 27], but for the chains in the
form of rigid rods. The abandonment of the account of
intrachain fluctuations leads to the obvious overestima-
tion of system response to the external magnetic field.
Therefore, the solution derived in [26, 27] can be
regarded only as a qualitative estimation that is approx-
imately valid for the particles characterized by a high
value of parameter 

 

λ

 

.

This work is devoted to the analysis of the orienta-
tional response of a system of chain aggregates to weak
uniform permanent magnetic field. Assumptions that
are traditional for chain models are employed: the inter-
particle interaction inside chains is taken into account
only for the nearest neighbors; for low-concentration
ferrofluids, the interaction between the chains is disre-
garded. This model takes advantage of the condition of
minimum of the free energy functional (Section 2); the
matrix method of coordinate system rotation is
employed for calculating the configuration integral of a
chain. Using this technique, we studied in Section 3 the
orientational response of a single chain to the weak
external field and introduced the notion of correlation
coefficient for the directions of the magnetic moments
of two neighbor ferroparticles. The dependence of this
coefficient on the intensity of interparticle dipole–
dipole interactions, as well as on the admissible orien-
tational and spatial intrachain fluctuations, is studied in
Section 4. An exact (within the framework of assumed
approximations) expression for the initial magnetic
susceptibility of the ideal gas of the chains of ferropar-
ticles suspended in a liquid matrix is derived in Section 5.
Main conclusions are formulated in final Section 6.

2. FREE ENERGY FUNCTIONAL

The traditional approach to the description of chain
aggregates in ferrofluids [26–35] is based on Frenkel’s
theory of heterophase fluctuations. The monodisperse
ferrofluid is considered as a mixture of chain aggre-
gates of various lengths, where each particle is a single
structural element possessing intrinsic translational and
orientational degrees of freedom. For low concentrated
systems, the dipole–dipole interaction is accounted
only for the particles belonging to one chain. Thus, the
density of free energy 

 

F

 

 is represented as a sum of the
free energy of the mixture of the ideal gases of chains
with various lengths suspended in a liquid matrix and
free energies of single chains
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Fig. 1. 

 

Coordinate system employed for calculating config-
uration integral of the chain.
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Here, 

 

g

 

n

 

 and 

 

Q

 

n

 

 are the concentration and configuration
integral of chains composed of 

 

n

 

 particles, respectively,
and 

 

v

 

 =

 

 

 

π

 

d

 

3

 

/6

 

 is the volume of a ferroparticle with the
steric shell. The chain particle number distribution

 

g

 

n

 

 is determined from the minimum condition of func-
tional 

 

F

 

[

 

g

 

n

 

]

 

 (2) when accounting for the material bal-
ance in a system

 

(3)

 

where 

 

ρ

 

 is the volume density of dispersed phase in a
ferrofluid.

In functional (2), the specificity of chain microinclu-
sions is determined by the form of configuration inte-
gral 

 

Q

 

n

 

, which, with allowance made for the interac-
tions only between the nearest neighbors in a chain, has
the following form:

 

(4)

 

where 

 

d

 

τ

 

i

 

 is the element of phase volume in the space
of positions and orientations of 

 

ith particle in a chain;
Us and Ud are the potential energies of central and
dipole–dipole pair interparticle interactions, respec-
tively; and Um accounts for the interaction between the
particles and external uniform permanent magnetic
field H. The central symmetric part of interaction
energy Us(rij) includes the sterical repulsion, van der
Waals attraction, and the electrostatic repulsion of elec-
trical double layers (for electrostatically stabilized fer-
rofluids). In order to ignore the effects of demagnetiza-
tion, the volume of ferrocolloid is assumed to be in the
form of ellipsoid of revolution strongly stretched along
the direction of the field. In this case, the value of local
internal field acting on a single magnetic particle coin-
cides with the external field.

Therefore, we confined ourselves only to the consid-
eration of microinclusions in the form of chain aggre-
gates; the coordinate system, where the orientation and
position of each ith particle is determined with respect
to the preceding i – 1th particle in a chain, is the most
convenient (Fig. 1). The origin of each such ith coordi-
nate system is located in the center of i – 1th particle so
that the Ozi axis is directed along i – 1th magnetic
moment. Correspondingly (Fig. 1), the direction of the
magnetic moment of each i – 1th particle in ith coordi-
nate system is determined by the unit vector
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In each ith coordinate system, the radius vector and
magnetic moment of i – 1th particle are set by standard
rotation matrices Ri and Ti [25]

(5)

In expressions (5), vector Ωi (ωi, ζi) determines the
direction of magnetic moment of ith particle (mi = mΩi)
and vector ri (ri, θi, ϕi) connects the centers of i – 1th and
ith particles in a chain (i = 2, …, n); i.e., has the same
meaning as vector ri – 1 i (5). However, since vector ri
starts from the center of reference of ith coordinate sys-
tem, its direction and length depend only on the posi-
tion of ith particle. In order to emphasize such feature
of this particle, we used here the new designation for
the radius vector.

The orientation of the entire chain with respect to
the external magnetic field is set by angle ξ between the
directions of field H and magnetic moment m1 of the
first particle (Fig. 1) so that the field vector has the coor-
dinates

(6)

Because configuration integral (4) includes the aver-
aging over all possible directions of chains in a system
bulk, it is evident that the variation of angle within 0 ≤
ξ ≤ π range is equivalent to the account of all such ori-
entations. In other words, not all possible directions of
particles are accounted for, but the rotation of magnetic
field is performed around a single randomly chosen
chain. In addition, the averaging over corresponding
polar angle that does not contribute to the configuration
integral was immediately performed in expression (6).
This follows from the fact that magnetic interaction
Um(1) depends only on the cosine of angle ξ. In order to
determine magnetic interaction potential Um(i) of all
other particles in the chain and connect ith magnetic
moment mi with the vector of magnetic field H, it is
necessary to consecutively rotate and shift the coordi-
nate system from i – 1th particle to the first one

(7)

Unlike expressions (5), these relations determine
the coordinates and orientations of ith particle with
respect to the first particle (Fig. 1) and the field direc-
tion.
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As a result, configuration integral (4) acquires the
following form:

(8)

where the integration with respect to variables Ωi and ri
corresponds to the averaging over all fluctuations of
form and moment orientations inside the chain with the
account of the normalization in the space of orienta-
tions; the integration with respect to ξ denotes the nor-
malized averaging over all possible directions of flexi-
ble chain with respect to external field. This representa-
tion of the configuration integral proposed for the first
time in [25] seems to be very convenient, because when
writing each potential of dipole–dipole interaction (1)
between the i and i – 1 nearest neighbors in the chain,
the orientation of i – 1th moment is determined by unit
vector n. On the other hand, magnetic part Um of poten-
tial energy becomes more complex and acquires the
form

(9)

where Langevin multiplier α = mH/kT corresponds to
the ratio of the characteristic energy of interaction
between the magnetic moment and the external field to
thermal energy, and the Zi values are equal to the
cosines of corresponding angles. For their successive
determination, one should use recurrent relations
derived in the method of matrix rotation

(10)

Configuration integral (8) is substantially simplified
when the external filed is absent, because the succes-
sive integration with respect to the degrees of freedom
of all particles in a chain, beginning with the last parti-
cle, and the rotation of coordinate system lead to the
same n – 1th multiplier

(11)
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This feature of the factorization of the configuration
integral is valid also in the case of infinitely strong mag-
netic field, because the orientational degrees of free-
dom become degenerated

(12)

In the magnetic field of arbitrary strength, such a
factorization is absent, since the magnetic moments of
all particles in the chain become correlated due to their
interaction with the external field. That is why the struc-
ture of chain aggregates in an arbitrary field has not
been so far studied.

3. CONFIGURATION INTEGRAL OF A CHAIN
IN A WEAK MAGNETIC FIELD

When studying the magnetic properties of ferroflu-
ids, the response of a system to infinitely weak field
(initial static magnetic susceptibility) is of the most
interest. In this case

(13)

where linear (with respect to α) term vanishes because
of a system symmetry. Further transformations are
based on two facts. First, all Zi values are independent
of polar angles ϕi. Second, each polar angle ϕi is
present in integrand exponent (8) only once in corre-
sponding potential Ud (i – 1i). The use of common
transformation

allows us to reduce all potentials of interparticle
dipole–dipole interaction to the form (each in its own
coordinate system)

(14)

Then, all integrand exponents with potentials of dipole–
dipole interaction (8) cease to depend on angles ζi. The
dependence of these angles remains only in Zi (13).
These values depend also on angle ξ; however, the
dependence on ξ and ζi is such that makes it possible to
integrate multiplier (13) separately with respect to all
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angles ζi and ξ. Let us now consider all terms entering
into this factor separately

In other words, the average of all  becomes identical

Let us consider the averaging of cross terms ZkZj,
k < j in expression (13)

Thus, for weak fields, the averaging of expression (13)
for the chain composed of n particles over all angles ζi
and ξ gives

(15)

The use of this expression in configuration integral (8)
permits us to transform it to the form

(16)
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where all dipole–dipole potentials are determined by
formula (14). Note that expression (16) can be factored
again, because it represents the combinatorial sum of
the terms composed of independent factors

(17)

Here, we introduced designation K for the correlation
coefficient between the directions of the magnetic
moments of neighbor particles in the chain (the average
value of the projection of one moment on the other
moment)

(18)

It is evident that the value

(19)

has the meaning of dimensionless root-mean-square
magnetic moment of the chain composed of n particles.
In the limiting case of rigid rodlike chain (K = 1),

(20)

that corresponded to the approximation (used in [26, 27])
of the ideal gas of the chains of various lengths whose
magnetic moment mn is equal to mn = nm. Figure 2
shows the dependence of dimensionless root-mean-
square magnetic moment of the chain, 〈mn〉/n, related to
the number of particles in the chain, on correlation
coefficient K. It is seen that the chain can be considered
as rigid and rodlike (〈mn〉/n ≈ 0.9 and larger) only at suf-
ficiently large values of correlation coefficient (K ≈ 0.9
and larger). Moreover, short chains (doublets and trip-
lets) become “rigid” before the long ones. This quite
expected fact is associated with stronger bending fluc-
tuations of long chains.

4. CORRELATION COEFFICIENT OF NEIGHBOR 
MAGNETIC MOMENTS IN THE CHAIN

As follows from definition (18), the correlation
coefficient depends on the intensity of dipole–dipole
interaction, the type of central part of interparticle inter-
action Us, and the admissible spatial and orientational
fluctuations for each pair of neighbor particles (i.e., on
the integration domain in expressions (11) and (18)).
Fluctuation contribution depends actually on the calcu-
lation procedure for configuration integral q0 of doublet
(11) in the absence of external filed. The asymptotic
method of integral estimation (the saddle point approx-
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imation) is most frequently used. For central potential
Us corresponding to the interaction UHS between hard
spheres with a diameter of d, the following approxima-
tion expressions:

(21)

were derived for q0 and K [25]. More exact relations
were derived in [32] within the framework of similar
approach

(22)

Note that, even for unrealistic large (for ferrofluids)
values λ = 10, expressions (21) and (22) yield correla-
tion coefficient K ≈ 0.8. This means that such an
approach admits rather high orientational mobility of
magnetic moments inside dimers. In fact, this result fol-
lows from the calculation scheme of configuration inte-
gral of dimers (21) and (22), according to which unfa-
vorable (in advance) configurations corresponding to
angles 0 ≤ θ2 ≤ π/2 and 0 ≤ ω2 ≤ π are taken into account.
In addition, the gaps with a thickness of δ ≈ d/6λ
between the particles are admitted. It follows from the
comparison of relations (21) and (22) that smaller val-

q0 2λ( )exp / 3λ3( )≈ , K 1 2/λ–≈ , λ � 1
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81λ6
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λ � 1.

ues of correlation coefficient K correspond to large q0
values.

The model of “soft” spheres was employed in the
computer simulation of the magnetic properties of
aggregated ferrofluids by the molecular dynamics
method [10, 11]: central potential Us had the form of
the repulsive term of the Lennard-Jones potential

– (23)

where r is the distance between the centers of neighbor
ferroparticles. Correlation coefficient K (18) for this
potential appeared to be rather sensitive to the choice of
the domain of integration with respect to angles θ2 and
ω2. To demonstrate this effect, we consider four
domains of integration which can be realized when cal-
culating q0 and K:

(1) 0 ≤ ω2 ≤ π, 0 ≤ θ2 ≤ π/2, 0 < r2 < 21/6d that corre-
sponds to all possible orientations of the second mag-
netic moment with respect to the first moment, the posi-
tion of the second particle in the upper hemisphere for
the first particle (Fig. 1), and their soft contact;

(2) 0 ≤ ω2 ≤ π/2, 0 ≤ θ2 ≤ π/2, 0 < r2 < 21/6d. This case
differs from the previous one by that the orientation of
the second magnetic moment is admitted only in the
upper hemisphere in the space of orientations of the
first moment so that cosω2 ≥ 0;

(3) 0 ≤ ω2 ≤ π/2, 0 ≤ θ2 ≤ , 0 < r2 <
21/6d; here, the additional constraint on the deviation of
radius vector r2 from the Oz2 axis was used: 3cos2ω2 –
1 ≥ 0 (see expression (14));

(4) the domain of connected (by definition [10, 11])
particles: the particles are considered as connected into
the chain, if the absolute value of the energy of their
dipole–dipole interaction is no less than 70% of max-
imal energy of contact interaction equal 2λkT or Ud ≤
–1.4λkT.

Explicit expressions for the q0 and K values in all the
cases can be derived from definitions (11) and (18)
upon the substitution of potentials (14) and (23) and the
arrangement of corresponding integration limits. The
calculation results are shown in Figs. 3 and 4. Similar,
as for relations (21) and (22), correlation is observed:
smaller K values correspond to large q0 values. This
seems quite evident, because the passage from case (1)
to case (4) is associated with a decrease in the domain
of integration in definitions (11) and (18), thus decreas-
ing the value of configuration integral of doublet q0
(Fig. 3, curves 1–4). On the other hand, constraints on
admissible orientational fluctuations inside the doublet
become stronger; hence, the correlation of neighbor
magnetic moments increases (Fig. 4, curves 1–4). For
region 4, the doublet can be considered as a rigid rod,
the correlation coefficient is actually constant (K ≈
0.91). However, the q0 values turned out to be very low.
In other words, the number of such rigid rodlike chains
is small and they are short.

Us r( )/kT 1 2 d/r( )6
–[ ]2, 0 r 2

1 6/
d ,< <=

1/ 3( )arccos

0.6

0.5
0.2 K

1

2

3

4

5

0.4 0.6 0.80

0.7

0.8

0.9

1.0

mn〈 〉
n

-----------

Fig. 2. Dependences of dimensionless root-mean-square
magnetic moment of the chain, 〈mn〉/n, related to the num-
ber of particles in the chain on the correlation coefficient K
for chains consisting of different number of particles n:
(1) 1, (2) 2, (3) 3, (4) 4, and (5) 5.
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5. INITIAL SUSCEPTIBILITY OF FERROFLUID 
WITH CHAIN AGGREGATES

The response of noninteracting chains to the uniform
permanent external field (system magnetization M) can
generally be calculated from the functional of free
energy (2) and (3)

(24)

Using the results obtained above, for the initial sus-
ceptibility χ of a system of noninteracting chains, we
find

(25)

where χL = m2ρ/3vkT = 2λρ/π is the Langevin initial
susceptibility determining the magnetic response of the
ideal paramagnetic gas of ferroparticles to an infinitely
weak external field. The p value acts as the Lagrange
parameter upon the minimization of free energy func-
tional (2) in the absence of magnetic field, provided that
the conditions of material balance (3) are fulfilled.

The density of chain particle number distribution is
expressed via p

(26)

Corresponding concentration dependence of parameter
p is represented in Fig. 5. For low concentrated systems
(q0ρ � 1), we obtain p ≈ q0ρ that implies the absence of
aggregates. For a sufficiently large values of product
q0ρ ~ 10, this parameter increases very slowly (Fig. 5)
taking values p ≈ 0.7–0.8 and asymptotically tending to
unity. Thus, the behavior of initial susceptibility (25)
can be qualitatively represented as follows. At low con-
centrations, the susceptibility increases according to
Langevin’s law (χ ≈ χL). Then follows the region of the
linear rise of susceptibility. At rather high densities (p ≈ 1),
the linear rise with the slope larger than for Langevin’s
susceptibility is observed again χ ≈ χL (1 + K)/(1 – K).

Figures 6 and 7 demonstrate the concentration
dependences of initial susceptibility (25) of the system
of noninteracting chains for the four aforementioned
regions of intrachain fluctuations. Successive rise of the
susceptibility upon the passage from region (1) to
region (3) is related with a considerable increase in the
correlation coefficient (Fig. 4) at small decrease in the
configuration integral (Fig. 3). A decrease in q0 leads to
some shortening of chains, which, however, are more
rigid and are easier oriented in the external filed. The sus-
ceptibility sharply decreases in region (4) and acquires
the value close to that found for region (1) despite the
large correlation coefficient (Fig. 4, curve 4). This is
explained by much smaller values of q0 (Fig. 3, curve 4)

M H( ) kT gn H( )
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n 1=

∞

∑ .=

χ 2λ
π

------ gn 0( ) n 2 K

1 K–( )2
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n
nK–+( )+
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∞

∑=

=  χL 1 pK+( )/ 1 pK–( ),

gn 0( ) p
n
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1 2q0ρ 1 4q0ρ+–+
2q0ρ
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100

2 λ

1

2 3 4

40

101

102

q0

Fig. 3. Dependences of the configuration integral of doublet
q0 in the absence of magnetic field on the parameter of mag-
netodipole interaction λ for four regions (described in the
text) of the account of intrachain fluctuations: (1) 1, (2) 2,
(3) 3, and (4) 4.
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Fig. 4. Dependences of correlation coefficient K between
the directions of the magnetic moments of neighbor parti-
cles in the chain on the parameter of magnetodipole interac-
tion λ. Notations are the same as in Fig. 3.
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Fig. 5. Graphical representation of dependence (26).
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and p in region 4. In fact, the number of chains is small
in region (4) and they are short, although they can be
considered as rodlike chains.

Figures 6 and 7 show also the data for Langevin
effective susceptibility 4π〈ρm2〉/3vkT obtained on the
basis of computer simulation [10]; brackets denote the
averaging over all chain aggregates. This value exceeds
the susceptibility of the ideal gas of single particles χL,
thus indicating the formation of chain clusters in a sys-
tem already at low concentrations (ρ ≈ 0.05). As is seen
from Figs. 6 and 7, for the domains of integration (1)
and (4), expression (25) quite adequately describes the
data of computer simulation at low and moderate con-
centrations. The differences observed for λ = 4 (Fig. 7)
at ρ ≈ 0.15 (and larger) are, probably, related to the
retardation of aggregate growth due to an increase in
interchain interaction with the concentration, as was
mentioned in [10]. At λ = 3, the number of chains is
much smaller that is exhibited at higher concentrations.
Therefore, in this case, the correspondence between the
numerical and theoretical data is rather satisfactory also
at ρ ≈ 0.15 (Fig. 6).

6. CONCLUSIONS

In this work, we considered the behavior of a system
of chain aggregates in a weak magnetic field. The anal-
ysis was performed on the basis of the free energy func-
tional of a system. The formation of chain aggregates in
a low concentrated magnetic fluid was studied; hence,
interchain correlations were ignored. The interparticle
dipole–dipole interaction of the magnetic moments of
ferroparticles inside each chain was accounted only for
the nearest neighbors. Under such assumptions that are
traditional for the chain models of ferrofluids, we suc-
ceeded in calculating exactly the orientational correla-
tions in chains caused by their interaction with weak
uniform permanent external magnetic field. It was

shown that the orientational response of chain aggre-
gate to the magnetic field is determined by the coeffi-
cient of pair correlations of magnetic moments in a
doublet of ferroparticles. The value of this coefficient
depends on the orientational and spatial fluctuations
admissible upon calculating the average interparticle
bond energy inside the chain. Large values of the corre-
lation coefficient corresponds to the orientational
response that is typical of rigid rodlike particles; such a
behavior is typical of doublets and triplets composed of
large ferroparticles with a high intensity of magnetodi-
pole interaction. The expressions derived make it pos-
sible to calculate also the response of long flexible
chains to the weak magnetic field.

The degree of orientational rigidity turned out to be
related with the number of aggregates. The assumption
of strong intrachain correlations is unambiguously
accompanied by the conclusion about their small num-
ber and length. In the case when chain aggregates are
considered as flexible fluctuating structural elements,
their number can be large enough; however, the rigid
rod approximation becomes invalid for calculating the
response to weak magnetic filed. Even for flexible
chains in a low-concentration magnetic fluid, the sus-
ceptibility becomes substantially higher than that of the
ideal paramagnetic gas. This result is consistent with
the data of computer simulation of ferrofluids.
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