One-pot synthesis of azacyclodiynes by reaction of α, ω -diacetylenes with 1,5,3-dioxazepanes using copper-containing catalysts

Guzel R. Khabibullina¹*, Firuza T. Zaynullina¹, Boris I. Kutepov¹, Askhat G. Ibragimov¹, Usein M. Dzhemilev¹

¹ Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, 141 Oktyabrya Ave., Ufa 450075, Russia; e-mail: khabibguzel@gmail.com

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2018, 54(1), 86–88

Submitted August 16, 2017 Accepted October 3, 2017

 $R-N = HC = -(P_n + HC) + HC =$

An effective method has been developed for the synthesis of cyclic propargylamines by aminomethylation of α,ω -diacetylenes with *N*-alkyl-substituted 1,5,3-dioxazepanes in the presence of copper-containing catalysts.

Keywords: *N*-alkyl-substituted 1,5,3-dioxazepanes, α, ω -diacetylenes, cyclic propargylamines, aminomethylation, catalysis.

Azacycloalkynes have been previously obtained in reactions of primary amines with α,ω -dihaloalkadiynes,¹ by intramolecular cyclization of diacetylenic *gem*-amino ethers under high dilution conditions,² by a three-component cyclocondensation of terminal alkadiynes, aldehydes, and amines (A³-coupling) in the presence of CuCl catalyst,³ as well as by aminomethylation of α,ω -diacetylenes by using *N*,*N*-bis(ethoxymethyl)amines in the presence of CuBr₂ catalyst.⁴

It has been previously reported that 1,5,3-dioxazepanes⁵ can be effectively used as Mannich bases in aminomethylation reactions of β -keto esters⁶ and cyclopentanone.⁷ In the current work, we present data about the synthesis of azacycloalkadiynes by catalytic cycloaminomethylation of α , ω -diacetylenes using *N*-substituted 1,5,3-dioxazepanes.

The interest toward azacycloalkadiynes is motivated by their applications in organic synthesis, for example, in thermal intramolecular cyclization reactions of 1,6-diaza-cyclodeca-3,8-diynes⁸ or 1-thia-6-azacyclodeca-3,8-diynes.⁹

While continuing our exploration of aminomethylation reactions of terminal acetylenes using 1,5,3-dioxazepanes,¹⁰ as well as for the purpose of developing an effective method for the synthesis of azacyclodiynes, we studied the reaction of α, ω -diacetylenes with *N*-substituted 1,5,3-dioxazepanes **1a**–**c** in the presence of copper-containing catalysts. The selection of catalysts on the basis of copper compounds was justified by their high activity in reactions between terminal acetylenes and *N*,*N*-bis(ethoxymethyl)amines.⁴

By using the model reaction of 3-butyl-1,5,3-dioxazepane (1b) with 1,7-octadiyne (2b), we screened catalysts that were either pure copper compounds (CuCl (5% yield of the product), CuBr (16%), CuI (25%), CuCl₂ (36%), CuBr₂(65%), CuSO₄(7%)) or immobilized copper catalysts on solid supports (CuCl₂·2H₂O-γ-Al₂O₃ (25% yield of the product), CuBr₂-y-Al₂O₃ (23%), CuBr₂-microSiO₂ (7%), CuBr₂-mesoSiO₂ (16%), CuBr₂-macroSiO₂ (15%), CuBr₂-ASM-40 (14%), CuBr₂-HY-BS (10%)). The highest yield (~65%) of 1-butyl-1-azacycloundeca-3,9-diyne (3d) was achieved by using 5 mol % of CuBr₂ catalyst at 80°C over 6 h in toluene under argon atmosphere. The reaction of α, ω -alkadiynes **2a**-**d** with 1,5,3dioxazepanes 1a-c under these conditions led to 1-alkyl-1-azacycloalkadiynes **3a-g** in 42–72% yields (Scheme 1). The spectral characteristics of compounds 3c,d,e,g matched the literature data.4

Scheme 1

Cycloalkyl(cyclopropyl,cyclopentyl,cyclohexyl)- and arylsubstituted 1,5,3-dioxazepanes did not react with α,ω -diacetylenes under the aforementioned conditions, because the indicated 1,5,3-dioxazepanes were converted to 1,3,5triazines under the reaction conditions developed during our study. The α,ω -diacetylenes containing a heteroatom – (di(propyn-2-yl)ether and *N,N*-di(propyn-2-yl)amine) showed low activity in the reaction with alkyl-substituted 1,5,3-dioxazepanes, probably due to conformational rigidity caused by the effects of lone electron pairs of the heteroatom on the structure of α,ω -diacetylene.

Thus, we have developed a new one-pot method for the synthesis of azacyclodiynes by cycloaminomethylation of α, ω -diacetylenes using *N*-substituted 1,5,3-dioxazepanes in the presence of CuBr₂ catalyst.

Experimental

IR spectra were recorded on a Bruker Vertex 70v spectrometer for samples in the form of thin films. ¹H and ¹³C NMR spectra were recorded on Bruker Avance 400 (400 and 100 MHz, respectively) and Bruker Ascend 500 (500 and 125 MHz, respectively) spectrometers in CDCl₃. Homonuclear (COSY) and heteronuclear (¹H–¹³C HSQC, ¹H⁻¹³C HMBC) two-dimensional NMR experiments for compounds 3a-e were performed on a Bruker Avance 500 spectrometer. The chemical shifts were determined relative to solvent signals (δ_H 7.28 ppm and δ_C 77.1 ppm, respectively). GC/MS analyses were performed on a Shimadzu GC 2010 chromatograph with a Shimadzu GCMS-QP2010 Ultra mass selective detector. The gas chromatograph was equipped with a Supelco 5ms capillary column (60 m \times 0.25 mm \times 0.25 um), carrier gas – helium, injector temperature 260°C, interface temperature 260°C, ion source temperature 200°C, EI ionization (70 eV). The content of C, H, and N was determined with a Carlo Erba 1106 CHN-analyzer. Gas chromatography was performed on a Shimadzu GC-9A with a flame ionization detector, using SE-30 stationary phase (5%) on a Chromaton N-AW-HMDS support, 2000×3 mm packed steel column, temperature program 50-280°C, 8°C/min, the carrier gas was helium. Thin-layer chromatography was performed on Sorbfil PTSKh-AF-A plates, with visualization in iodine vapor. Individual compounds were isolated by chromatographic separation on KSK silica gel (50-160 µm). The eluent used for column chromatography is indicated for each compound.

The starting α, ω -diacetylenes **2a–d** with \geq 98% assay were commercially available from Acros Organics and were used without additional purification, while 1,5,3-dioxazepanes **1a–c** were synthesized according to published procedures.⁵ Copper salts (CuBr, CuI, CuCl₂, CuBr₂, CuCl₂·2H₂O, CuSO₄, and Cu(CH₃CO₂)₂) with \geq 99% assay were commercially available from Acros Organics. The catalysts on solid support were obtained by coating copper salts on solid carriers. The procedure involved treatment of γ -Al₂O₃, micro-meso, meso, and macroporous silica gels, as well as acidic amorphous alumosilicate and micromesomacroporous zeolite HY (HY-BS) with the aforementioned copper salts as solutions in alcohol or ether, followed by drying at 110°C according to a published method.¹¹ All samples contained 10–12 mass % of the respective copper salts.

Synthesis of 1-alkyl-1-azacycloalkadiynes 3a–g (General method). A Schlenk vessel was charged under argon atmosphere with the appropriate 1,5,3-dioxazepane 1a–c (1 mmol), toluene (3 ml), α,ω -diacetylene 2a–d (1 mmol), and CuBr₂ (0.01 g, 0.05 mmol). The reaction mixture was stirred at 80°C for 6 h and filtered through a layer of silica gel; the solvent was evaporated on a rotary evaporator. The product was isolated by column chromatography.

1-Propyl-1-azacyclododeca-3,10-diyne (3a). Yield 0.085 g (42%), yellow oil. R_f 0.53 (hexane-dichloromethane, 1:1). IR spectrum, v, cm⁻¹: 1140 (C-N), 1432 (CH₃), 1457 (CH₂), 2258 (C=C), 2860 (CH₂), 2934 (CH₃). ¹H NMR spectrum (500 MHz), δ , ppm (J, Hz): 0.93 (3H, t, J = 7.5, CH₃); 1.48–1.53 (8H, m, (C=CCH₂CH₂)₂CH₂, CH₂CH₃); 2.21–2.23 (4H, m, N(CH₂C=CCH₂)₂); 2.45 (2H, t, J = 7.5, $CH_3CH_2CH_2N$; 3.38 (4H, s, $N(CH_2C\equiv C)_2$). ¹³C NMR spectrum (125 MHz), δ, ppm: 12.0 (CH₃); 18.7 $(2C \equiv CCH_2); 20.7 (CH_2CH_3); 28.3 ((C \equiv CCH_2CH_2)_2CH_2);$ $(2C \equiv CCH_2CH_2);$ 42.5 $(N(\underline{C}H_2C\equiv C)_2);$ 54.9 28.5 $(CH_2CH_2N);$ 75.1 $(N(CH_2C\equiv C)_2);$ 84.8 $(N(CH_2C\equiv C)_2).$ Mass spectrum, m/z (I_{rel} , %): 203 [M]⁺ (11), 188 [M–CH₃]⁺ (3), 174 $[M-CH_2CH_3]^+$ (100), 160 $[M-CH_3(CH_2)_2]^+$ (9), 132 $[M-N(CH_2)_3CH_3]^+$ (7). Found, %: C 82.76; H 10.34; N 6.91. C₁₄H₂₁N. Calculated, %: C 82.70; H 10.41; N 6.89.

1-Propyl-1-azacyclotrideca-3,11-diyne (3b). Yield 0.132 g (60%), yellow oil. $R_{\rm f}$ 0.45 (hexane–dichloromethane, 1:1). IR spectrum, v, cm⁻¹: 1170 (C–N), 1433 (CH₃), 1461 (CH₂), 2118 (C≡C), 2859 (CH₂), 2933 (CH₃). ¹H NMR spectrum (500 MHz), δ , ppm (J, Hz): 0.93 (3H, t, J = 7.5, CH₃); 1.38-1.44 (4H, m, (C=CCH₂CH₂CH₂)₂); 1.49-1.56(6H, m, (C=CCH₂CH₂CH₂)₂, CH₂CH₂N); 2.19–2.22 (4H, m, N(CH₂C=CC<u>H₂</u>)₂); 2.47 (2H, t, J = 7.5, CH₂CH₂N); 3.39 (4H, s, N(CH₂C \equiv C)₂). ¹³C NMR spectrum (125 MHz), δ, ppm: 11.96 (CH₃); 18.7 (2C=CCH₂); 20.7 (CH₂CH₃); 28.4 $(2C \equiv CCH_2CH_2CH_2)$; 28.8 $(2C \equiv CCH_2CH_2)$; 42.5 (N(<u>CH</u>₂C=C)₂); 54.9 (CH₂<u>C</u>H₂N); 75.1 (N(CH₂<u>C</u>=C)₂); 84.9 $(N(CH_2C\equiv \underline{C})_2)$. Mass spectrum, m/z (I_{rel} , %): 217 $[M]^+$ (10), 202 $[M-CH_3]^+$ (3), 188 $[M-CH_2CH_3]^+$ (100), 174 $[M-CH_3(CH_2)_2]^+$ (3), 160 $[M-N(CH_2)_3CH_3]^+$ (3), 91 $[NH(CH_2C\equiv C)_2]^+$ (18). Found, %: C 82.94; H 10.61; N 6.45. C₁₅H₂₃N. Calculated, %: C 82.89; H 10.67; N 6.44.

1-Butyl-3,4,8,9-tetradehydro-1,2,5,6,7,10-hexahydroazecine (3c). Yield 0.085 g (45%), yellow oil. $R_{\rm f}$ 0.53 (cyclohexane–ethyl acetate–CH₂Cl₂, 1:10:2). IR spectrum, v, cm⁻¹: 1110 (C–N), 1432 (CH₃), 1455 (CH₂), 2220 (C≡C), 2861 (CH₂), 2931 (CH₃). ¹H NMR spectrum (500 MHz), δ , ppm (*J*, Hz): 0.94 (3H, t, *J* = 9.0, CH₃); 1.33–1.39 (2H, m, CH₂CH₃); 1.40–1.49 (2H, m, CH₂CH₂CH₃); 1.71–1.76 (2H, m, (C≡CCH₂)₂CH₂); 2.32–2.35 (4H, m, (C≡CCH₂)₂CH₂); 2.50 (2H, t, *J* = 9.0, CH₂CH₂N); 3.38 (4H, s, N(CH₂C≡C)₂). ¹³C NMR spectrum (125 MHz), δ , ppm: 14.0 (CH₃); 18.0 ((C≡CCH₂)₂CH₂); 20.6 (CH₂CH₃); 28.2 ((C≡CCH₂)₂CH₂); 29.6 (CH₂CH₂CH₃); 42.6 (N(CH₂C≡C)₂); 52.7 (CH₂CH₂N); 75.6 (N(CH₂C≡C)₂); 84.0 (N(CH₂C≡C)₂). Mass spectrum, *m/z* (*I*_{rel}, %): 188 [M–H]⁺ (6), 174 [M–CH₃]⁺ (6), 146 [M–(CH₂)₂CH₃]⁺ (100), 117 [M–NH(CH₂)₃CH₃]⁺ (45), 103 $[M-CH_3(CH_2)_3NHCH_2]^+$ (13), 91 $[NH(CH_2C\equiv C)_2]^+$ (83). Found, %: C 82.53; H 10.07; N 7.35. $C_{13}H_{19}N$. Calculated, %: C 82.48; H 10.12; N 7.40.

1-Butyl-1-azacycloundeca-3,9-diyne (3d). Yield 0.132 g (65%), yellow oil. R_f 0.60 (hexane-ethyl acetate, 1:2). IR spectrum, v, cm⁻¹: 1111 (C-N), 1325 (C-N), 1385 (CH₃), 1432 (CH₃), 1458 (CH₂), 2230 (C≡C), 2863 (CH₂), 2931 (CH₃). ¹H NMR spectrum (400 MHz), δ , ppm (*J*, Hz): 0.94 (3H, t, J = 7.2, CH₃); 1.33–1.38 (2H, m, CH₂CH₃); 1.40–1.48 (2H, m, CH₂CH₂CH₃); 1.63–1.65 (4H, m, (C=CCH₂CH₂)₂); 2.24 (4H, br. s, (C=CCH₂CH₂)₂); 2.50 (2H, t, J = 7.2, CH₂CH₂N); 3.38 (4H, s, N(CH₂C=C)₂). ¹³C NMR spectrum (100 MHz), δ, ppm: 14.0 (CH₃); 18.2 $(2C \equiv CCH_2CH_2); 20.6 (CH_2CH_3); 27.9 (2C \equiv CCH_2CH_2);$ 29.6 (CH₂CH₂CH₃); 42.5 (N(CH₂C=C)₂); 52.6 (CH₂CH₂N); 75.3 (N(CH₂C=C)₂); 84.4 (N(CH₂C=C)₂). Mass spectrum, m/z (I_{rel} , %): 202 [M–H]⁺ (9), 160 [M–(CH₂)₂CH₃]⁺ (100), 117 $[M-CH_2NH(CH_2)_3CH_3]^+$ (38), 91 $[M-N(CH_2C=C)_2]^+$ (51). Found, %: C 82.74; H 10.45; N 6.92. C₁₄H₂₁N. Calculated, %: C 82.70; H 10.41; C 6.89.

1-Butyl-1-azacyclotrideca-3,11-diyne (3e). Yield 0.167 g (72%), yellow oil. $R_{\rm f}$ 0.45 (cyclohexane–ethyl acetate–CH₂Cl₂, 1:10:2). IR spectrum, v, cm⁻¹: 1111, 1144 (C-N), 1361 (CH₃), 1436 (CH₂), 2261 (C=C), 2857 (CH₂), 2930 (CH₃). ¹H NMR spectrum (500 MHz), δ, ppm (J, Hz): 0.94 (3H, t, $J = 7.2 \text{ CH}_3$; 1.35–1.38 (2H, m, CH₂CH₃); 1.39–1.43 (4H, m, (C=CCH₂CH₂CH₂CH₂)₂); 1.44-1.49 (2H, m, CH₂CH₂CH₃); 1.51-1.53 (4H, m, (C=CCH₂CH₂CH₂)₂); 2.21 (4H, t, J = 7.0 $(C \equiv CCH_2CH_2CH_2)_2$; 2.50 (2H, t, J = 7.5, CH_2CH_2N); 3.38 (4H, s, $\overline{N}(C\underline{H}_2C\equiv C)_2$). ¹³C NMR spectrum (125 MHz), δ , ppm: 14.0 (CH₃); 18.7 (2C=CCH₂CH₂CH₂); 20.7 (CH₂CH₃); 28.4 $(2C \equiv CCH_2CH_2CH_2);$ 28.8 $(2C \equiv CCH_2CH_2CH_2);$ 29.6 (<u>CH₂CH₂CH₃); 42.6 (N(<u>CH₂C=C)₂); 52.6 (CH₂<u>C</u>H₂N);</u></u> 75.1 (N(CH₂C \equiv C)₂); 84.9 (N(CH₂C \equiv C)₂). Mass spectrum, m/z (I_{rel} , %): 231 [M]⁺ (6), 207 [M–C=C]⁺ (27), 188 $[M-(CH_2)_2CH_3]^+$ (87), 40 $[CNCH_2]^+$ (100). Found, %: C 83.11; H 10.92; N 6.01. C₁₆H₂₅N. Calculated, %: C 83.06; H 10.89; N 6.05.

1-*tert*-Butyl-3,4,8,9-tetradehydro-1,2,5,6,7,10-hexahydroazecine (3f). Yield 0.12 g (63%), yellow oil. $R_{\rm f}$ 0.38 (hexane–ethyl acetate–CH₂Cl₂, 1:2:1). IR spectrum, v, cm⁻¹: 1018 (C–N), 1366 (CH₃), 1392 (CH₃), 1453 (CH₃), 2118 (C=C), 2200 (C=C), 2910 (CH₂), 2960 (CH₃). ¹H NMR spectrum (500 MHz), δ , ppm (*J*, Hz): 1.20 (9H, s, 3CH₃); 1.68–1.76 (2H, m, (C=CCH₂)₂CH₂); 2.29–2.36 (4H, m, (C=CCH₂)₂); 3.60 (4H, s, N(CH₂C=C)₂). ¹³C NMR spectrum (125 MHz), δ , ppm: 18.2 ((2C=CCH₂)₂); 27.5 ((CH₃)₃); 28.0 ((C=CCH₂)₂CH₂); 36.8 (N(CH₂C=C)₂); 55.0 (C(CH₃)₃); 78.1 (N(CH₂C=C)₂); 83.3 (N(CH₂C=C)₂). Mass spectrum, *m*/*z* (*I*_{rel}, %): 189 [M]⁺ (9), 174 [M–CH₃]⁺ (100), 144 [M–3(CH₃)]⁺ (13), 132 [M–C(CH₃)]⁺ (30), 117 [M–NHC(CH₃)₃]⁺ (40), 91 $[NH(CH_2C\equiv C)_2]^+$ (45). Found, %: C 82.61; H 10.08; N 7.43. C₁₃H₁₉N. Calculated, %: C 82.48; H 10.12; N 7.40.

1-(*tert***-Butyl)-1-azacycloundeca-3,9-diyne (3g)**. Yield 0.103 g (51%), yellow oil. R_f 0.48 (hexane–ethyl acetate– CH₂Cl₂, 1:2:1). IR spectrum, v, cm⁻¹: 1202 (C(CH₃)₃), 1262 (C–N), 1364 (CH₃), 1390 (CH₃), 1431 (CH₃), 1457 (CH₂), 2130 (C≡C), 2863 (CH₂), 2938 (CH₃). ¹H NMR spectrum (400 MHz), δ , ppm (*J*, Hz): 1.17 (9H, s, 3CH₃); 1.59–1.62 (4H, m, (CH₂C<u>H₂)₂); 2.20 (4H, br. s, (CH₂CH₂)₂); 3.57 (4H, s, N(C<u>H₂C</u>≡C)₂). ¹³C NMR spectrum (100 MHz), δ , ppm: 18.5 (2C≡C<u>C</u>H₂CH₂); 27.5 (CH₃); 27.9 ((C≡CCH₂<u>C</u>H₂)₂); 36.7 (N(CH₂C≡<u>C</u>)₂). Mass spectrum, *m*/*z* (*I*_{cel}, %): 203 [M]⁺ (7), 188 [M–CH₃]⁺ (100), 146 [M–C(CH₃)₃]⁺ (9), 117 [M–CH₂NHC(CH₃)₃]⁺ (16), 91 [NH(CH₂C≡C)₂]⁺ (29). Found, %: C 82.83; H 10.52; N 6.84. C₁₄H₂₁N. Calculated, %: C 82.70; H 10.41; N 6.89.</u>

A Supplementary information file containing ¹H and ¹³C NMR spectra of compounds **3b** and **3e** is available at the journal website at http://link.springer.com/journal/10593.

This work was supported by grant of the President of the Russian Federation (NSh-6651.2016.3) and the Russian Science Foundation (RSF-DST No.16-43-02010).

Structural characterization of the compounds was performed at the Center for Collective Use "Agidel" at the Institute of Petrochemistry and Catalysis of the Russian Academy of Sciences.

References

- (a) Gleiter, R.; Ritter, J. Liebigs Ann./Recl. 1997, 2113.
 (b) Gleiter, R.; Ritter, J.; Irngartinger, H.; Lichtenthäler, J. Tetrahedron Lett. 1991, 32, 2887.
- 2. Epsztein, R.; Goff Le, N. Tetrahedron Lett. 1985, 26, 3203.
- (a) Pang, T.; Yang, Q.; Gao, M.; Wang, M.; Wu, A. Synlett 2011, 3046. (b) Cai, Q.; Yang, Q.-W.; Zhang, J.-M. Chin. J. Struct. Chem. 2014, 33, 785.
- 4. Khabibullina, G. R.; Zaynullina, F. T.; Valiakhmetova, A. R.; Ibragimov, A. G.; Dzhemilev, U. M. *Synthesis* **2016**, 2294.
- 5. Kapnang, H.; Charles, G. Tetrahedron Lett. 1983, 24, 1597.
- Sparrow, K.; Barker, D.; Brimble, M. A. *Tetrahedron* 2012, 68, 1017.
- 7. Ooka, K.; Inoue, H. JP Patent 2008094744.
- 8. Gleiter, R.; Ritter, J. Angew. Chem., Int. Ed. 1994, 33, 2470.
- 9. Gleiter, R.; Ritter, J.; Irngartinger, H.; Lichtenthäler, J. *Tetrahedron Lett.* **1991**, *32*, 2883.
- Khabibullina, G. R.; Zaynullina, F. T.; Karamzina, D. S.; Ibragimov, A. G.; Dzhemilev, U. M. *Tetrahedron* 2017, 73, 2367.
- Veklov, V. A.; Kutepov, B. I.; Talipova, R. R.; Grigor'eva, N. G.; Dzhemilev, U. M.; Drozdov, V. A. RU Patent 2420455; *Byul. Izobret.* 2011, (16).