Synthesis of 10-alkylsulfanyl-substituted pyrido-[4',3':4,5]thieno[3,2-*d*]pyrimidines annulated with pyran, cyclohexane, and cyclopentane rings

Ervand G. Paronikyan¹, Shushanik Sh. Dashyan¹*, Nune S. Minasyan², Grachya M. Stepanyan¹, Evgene V. Babaev³

² Molecular Structure Research Center, Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of Armenia, 26 Azatutyan Ave., Yerevan 0014, Armenia; e-mail: nunemin@gmail.com

³ Moscow M. V. Lomonosov State University, 1 Leninskie Gory, Moscow 119991, Russia; e-mail: babaev@org.chem.msu.ru

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2016, *52*(5), 337–345

Submitted March 3, 2016 Accepted after revision April 29, 2016

We propose a single-step procedure for the synthesis of 8-oxo-10-sulfanylpyrido[4',3':4,5]thieno[3,2-d]pyrimidines, annulated with pyran, cyclohexane, or cyclopentane rings. The alkylation of these compounds in aqueous DMF solution of KOH at room temperature was shown to proceed regioselectively and led to the formation of *S*-substituted products. Amino- and alkoxy-substituted derivatives of tetracyclic thieno[3,2-d]pyrimidines were synthesized. The antimicrobial activity of the obtained compounds was studied on Grampositive staphylococci and Gram-negative rods.

Keywords: 10-alkylsulfanyl-8-oxothieno[3,2-d]pyrimidines, carbon disulfide, functionalized pyrimidines, antimicrobial activity, regioselectivity.

The pyrimidine ring is a part of many natural and synthetic compounds, while pyridine derivatives and condensed systems containing pyridine rings have antiinflammatory, analgesic, and antibacterial properties.^{1–4} The preparation of tricyclic pyrido[4',3':4,5]thieno[3,2-*d*]pyrimidines from 3-amino-2-cyano(ethoxycarbonyl)thieno-[2,3-*b*]pyridines has been described in the literature, and these compounds show antitumor, antiviral, and antimicrobial effects.^{5–12} The biological importance of condensed pyrimidine derivatives has motivated significant interest towards the synthesis of new pyrido[4',3':4,5]thieno[3,2-*d*]pyrimidine derivatives annulated with pyran, cyclohexane, and cyclopentane rings.

In this work, we continued the synthetic studies of functionalized tetracyclic thieno[3,2-d]pyrimidines by focusing on the methods for preparing derivatives of the respective heterocycles. Previously we have reported a two-stage method for the synthesis of 8-oxo-10-thioxothieno[3,2-*d*]-pyrimidines **4a**–e: in reactions of 1-amino-2-ethoxycarbonyl-thieno[2,3-*b*]pyridines **1a**–e with benzoylisothiocyanate, involving the formation of *N*,*N*-disubstituted thioureas **2a**–e as intermediates, which were subsequently cyclized in the presence of alkali.¹³ We also described a more efficient one-step procedure¹⁴ for the synthesis of compounds **4b**,**d** by a reaction of 1-amino-2-carbamoylthieno[2,3-*b*]pyridines **3b**,**d** with carbon disulfide in the presence of pyridine. In that case, potassium hydroxide solution in ethanol was selected as base for the synthesis of compounds **4a**–e from aminoamides **3a**–e, ¹⁵ allowing to increase the yields of target products to 90–95% (Scheme 1).

A. L. Mndzoyan Institute of Fine Organic Chemistry, Scientific Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of Armenia, 26 Azatutyan Ave., Yerevan 0014, Armenia; e-mail: shdashyan@gmail.com

Scheme 1

a X = O, n = 1, R = Me, R¹ = pyrrolidin-1-yl; **b** X = O, n = 1, R = Me, R¹ = morpholin-4-yl; **c** X = CH₂, n = 1, R = H, R¹ = pyrrolidin-1-yl **d** X = CH₂, n = 1, R = H, R¹ = morpholin-4-yl; **e** X = CH₂, n = 0, R = H, R¹ = morpholin-4-yl

Scheme 2

5a, **6a** X = O, n = 1, R = Me, R¹ = pyrrolidin-1-yl, R² = Me; **5b–e**, **6c** X = O, n = 1, R = Me, R¹ = morpholin-4-yl **5f**, **6d** X = CH₂, n = 1, R = H, R¹ = pyrrolidin-1-yl, R² = Me; **5g**, **h**, **i**, **6e** X = CH₂, n = 1, R = H, R¹ = morpholin-4-yl **5j**, **6f** X = CH₂, n = 0, R = H, R¹ = morpholin-4-yl, R² = Me; **5b**, **6c** R² = Bn **5c** R² = n-C₄H₉, **d** R² = CH₂CONHPh, **e** R² = CH₂CH=CH₂, **g** R² = Me, **h** R² = CH₂COPh; **5i**, **6e** R² = Bn

We found that alkylation of 8-oxo-10-thioxothieno[3,2-*d*]pyrimidines **4a–e** in aqueous DMF solution of KOH at 20– 22°C occurred regioselectively with the formation of *S*-alkyl derivatives **5a–j**. The regioselectivity of this reaction was explained by the greater polarizability of sulfur atom, compared to the nitrogen and oxygen atoms.¹⁶ The signals of *S*-methyl and *S*-methylene group protons were observed in ¹H NMR spectra of compounds **5a–j** at the ranges of 2.60–2.62 and 3.22–4.90 ppm, respectively, while ¹³C NMR signals of these groups were at 13.0– 13.5 ppm (compounds **5a,f,g,j**) and 31.1–38.5 ppm (compounds **5b–e,h,i**), confirming the formation of *S*-alkylated products.¹⁷

The treatment of *S*-alkyl derivatives **5**a,**b**,**f**,**i**,**j** with phosphorus oxychloride further gave 10-alkylsulfanyl-8-chlorothieno[3,2-*d*]pyrimidines **6**a,**c**-**f** (Scheme 2). The preparation of compound **6b** was described previously.¹⁸

The reactions of compounds $6\mathbf{a}-\mathbf{f}$ with amines provided 5,8-diamino-substituted 10-alkylsulfanylthieno[3,2-*d*]pyrimidines $7\mathbf{a}-\mathbf{k}$, while treatment with sodium alkoxide in the

appropriate alcohol gave the 8-alkoxy derivatives **8a–f** (Scheme 3). The signals of NH group in ¹H NMR spectra of compounds **7a,c,d,f,h** were observed in the range of 7.30–8.09 ppm, while the signals of OCH₃, OCH₂, and OCH groups in spectra of compounds **8a–f** were observed in the range of 4.16–5.61 ppm.

The antimicrobial activity of compounds **5a–j**, **7a–k**, and **8a–f** was studied by the agar diffusion assay.¹⁹ Experiments were performed with Gram-positive staphylococci (*Sta-phylococcus aureus* 209P, JC-1) and Gram-negative rods (*Shigella dysenteriae flexneri* 6858, *Escherichia coli* 0-55). The studies showed that compounds **5b,h**, **7a,d,e,h**, and **8c,d,f** had weak activity against all tested microbial strains: the diameters *d* of growth inhibition zones were 10–15 mm (Table 1). The indicated compounds were significantly less active than the reference drug furazolidone (*d* 24–25 mm).²⁰

Thus, as a result of our studies, an efficient method has been developed for the preparation of 8-oxo-10-sulfanyl-pyrido[4',3':4,5]thieno[3,2-*d*]pyrimidines annulated with saturated rings, and 90–95% yields were achieved.

Scheme 3

7a,b, **8a** X = O, n = 1, $R = R^2 = Me R^1 = pyrrolidin-1-yl$; **7c,d**, **8b,c** X = O, n = 1, $R = R^2 = Me$, $R^1 = morpholin-4-yl$ **7e,f**, **8d** X = O, n = 1, R = Me, $R^1 = morpholin-4-yl$, $R^2 = Bn$; **7g,h**, **8e** $X = CH_2$, n = 1, R = H, $R^1 = pyrrolidin-1-yl$, $R^2 = Me$ **7i**, **8f** $X = CH_2$, n = 1, R = H, $R^1 = morpholin-4-yl$, $R^2 = Bn$; **7j,k** $X = CH_2$, n = 0, R = H, $R^1 = morpholin-4-yl$, $R^2 = Me$ **7a** $R^3 = H$, $R^4 = 3$ -PyCH₂; **b**,k $R^3R^4 = morpholin-4-yl$; **c** $R^3 = H$, $R^4 = (CH_2)_2Ph$; **d** $R^3 = H$, $R^4 = n-C_6H_{13}$ **e** $R^3 + R^4 = 4$ -methylpiperazin-1-yl; **f** $R^3 = H$, $R^4 = Bn$; **g** $R^3 = Et$, $R^4 = n-C_4H_6$; **h** $R^3 = H$, $R^4 = 2$ -FurCH₂ **i**, **j** $R^3 + R^4 = pyrrolidin-1-yl$; **8a,d,e,f** $R^5 = Et$; **b** $R^5 = Me$, **c** $R^5 = i$ -Pr

Table 1. The antimicrobial activity of compounds 5b,h, 7a,d,e,h,	
8c , d , f and furazolidone (diameter of growth inhibition zone, mm)	

Com-	S. aureus		S. dysenteriae	E coli 0 55
pound	209p	1	flexneri 6858	<i>E. coll</i> 0-33
5b	11	10	11	13
5h	10	11	14	10
7a	12	14	13	12
7d	13	12	13	15
7e	10	12	13	14
7h	12	11	10	15
8c	13	10	15	14
8d	14	11	14	15
8f	10	13	11	14
Furazolidone	25	24	24	24

Reaction conditions were found for alkylation of the latter compounds with various alkyl halides, enabling good regioselectivity. Functionalized derivatives of condensed pyrido[4',3':4,5]thieno[3,2-*d*]pyrimidines were synthesized and biological activity of the obtained compounds was evaluated, allowing to identify compounds with antimicrobial effects on the bacterial strains *Staphylococcus aureus* 209p, JC-1, *Shigella dysenteriae flexneri* 6858, and *Escherichia coli* 0-55, opening possibilities for further search of potential antimicrobial agents among this type of compounds.

Experimental

IR spectra were recorded for Nujol mulls on a Nicolet Avatar 330 FT-IR spectrometer. ¹H and ¹³C NMR spectra were acquired on a Varian Mercury Vx 300 instrument (300 and 75 MHz, respectively) in DMSO- d_6 , with TMS as internal standard. The assignment of ¹H and ¹³C NMR signals was supported by DEPT, NOESY, and HMQC data when needed (mixing time 1 s). Elemental analysis of the C, H, N, and S content was performed on a Euro EA 3000 Elemental Analyzer. The content of chlorine was determined by the classic Pregl procedure. Melting points were determined on a Boetius micro hot stage. The aminoamides **3a–e** were synthesized according to a previously published procedure.¹⁵

Preparation of compounds 4a–e (General method). Compound **3a–e** (10 mmol) and carbon disulfide (20 ml, 0.33 mol) were added to a solution of KOH (1.68 g, 30 mmol) in EtOH (50 ml). The mixture was refluxed on a water bath at 60–70°C for 24 h. The solution was cooled, the excess of carbon disulfide was removed by distillation and the residue was acidified with dilute acetic acid solution. The obtained precipitate was filtered off, washed with water, and recrystallized from DMSO.

2,2-Dimethyl-5-(pyrrolidin-1-yl)-10-thioxo-1,4,10,11-tetrahydro-2*H*-**pyrano**[4'',3'':4',5']**pyrido**[3',2':4,5]**thieno-**[**3,2-***d*]**pyrimidin-8(9***H*)-**one** (**4a**). Yield 5.41 g (92%), light-yellow crystals, mp > 360°C. IR spectrum, v, cm⁻¹: 1260 (C=S), 1668 (CO), 3427 (2NH). ¹H NMR spectrum, δ, ppm: 1.35 (6H, s, 2CH₃); 1.92–2.00 (4H, m, 3,4-CH₂ pyrrolidine); 3.28 (2H, s, 1-CH₂); 3.57–3.65 (4H, m, N(CH₂)₂ pyrrolidine); 4.75 (2H, s, 4-CH₂); 11.04 (1H, br. s, NH); 12.44 (1H, br. s, NH). ¹³C NMR spectrum, δ, ppm: 25.0 (3,4-CH₂ pyrrolidine); 26.1 (2CH₃); 35.9 (1-CH₂); 49.5 (2,5-CH₂ pyrrolidine); 59.9 (4-CH₂); 68.6 (C-2); 108.9; 112.5; 114.2; 140.0; 140.1; 156.0; 156.1; 160.2 (C-8); 174.6 (C-10). Found, %: C 55.72; H 5.25; N 14.48; S 16.47. $C_{18}H_{20}N_4O_2S_2$. Calculated, %: C 55.65; H 5.19; N 14.42; S 16.51.

2,2-Dimethyl-5-(morpholin-4-yl)-10-thioxo-1,4,10,11-tetrahydro-2*H***-pyrano[4'',3'':4',5']pyrido[3',2':4,5]-thieno[3,2-***d***]pyrimidin-8(9***H***)-one (4b)**. Yield 3.84 g (95%), light-yellow crystals, mp > 360° C. ¹H NMR spectrum, δ , ppm: 1.35 (6H, s, 2CH₃); 3.18–3.27 (4H, m, N(CH₂)₂ morpholine); 3.37 (2H, s, 1-CH₂); 3.72–3.81 (4H, m, O(CH₂)₂ morpholine); 4.64 (2H, s, 4-CH₂); 11.25 (1H, br. s, NH); 12.59 (1H, br. s, NH). ¹³C NMR spectrum, δ , ppm: 26.1 (2CH₃); 35.8 (1-CH₂); 49.5 (3,5-CH₂ morpholine); 59.2 (4-CH₂); 66.0 (2,6-CH₂ morpholine); 69.5 (C-2); 108.4; 113.5; 118.9; 140.7; 143.3; 156.9; 157.2; 159.4 (C-8); 175.6 (C-10). Found, %: C 53.52; H 4.93; N 13.97; S 15.72. C₁₈H₂₀N₄O₃S₂. Calculated, %: C 53.45; H 4.98; N 13.85; S 15.85.

5-(Pyrrolidin-1-yl)-10-thioxo-1,2,3,4,10,11-hexahydropyrimido[4',5':4,5]thieno[2,3-*c***]isoquinolin-8(9***H***)-one (4c). Yield 3.26 g (91%), yellow crystals, mp > 360°C. ¹H NMR spectrum, δ, ppm (***J***, Hz): 1.66–1.77 (2H, m, 2-CH₂); 1.86– 2.00 (6H, m, 3-CH₂, 3,4-CH₂ pyrrolidine); 2.71 (2H, br. t, J = 5.8, 4-CH₂); 3.35 (2H, br. t, J = 6.3, 1-CH₂); 3.58–3.65 (4H, m, N(CH₂)₂ pyrrolidine); 10.48 (1H, br. s, NH); 12.43 (1H, br. s, NH). ¹³C NMR spectrum, δ, ppm: 20.9 (2-CH₂); 22.0 (3-CH₂); 25.2 (3,4-CH₂ pyrrolidine); 26.0 (4-CH₂); 27.1 (1-CH₂); 49.8 (2,5-CH₂ pyrrolidine); 108.3; 113.0; 117.7; 140.3; 143.1; 156.3; 159.4; 159.5 (C-8); 174.3 (C-10). Found, %: C.88; H 5.12; N 15.72; S 17.76. C₁₇H₁₈N₄OS₂. Calculated, %: C 56.96; H 5.06; N 15.63; S 17.89.**

5-(Morpholin-4-yl)-10-thioxo-1,2,3,4,10,11-hexahydropyrimido[4',5':4,5]thieno[2,3-*c***]isoquinolin-8(9***H***)-one (4d**). Yield 3.41 g (91%), white crystals, mp 313–315°C. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.68–1.79 (2H, m, 2-CH₂); 1.87–2.00 (2H, m, 3-CH₂); 2.68 (2H, br. t, *J* = 5.9, 4-CH₂); 3.21–3.32 (4H, m, N(CH₂)₂ morpholine); 3.45 (2H, br. t, *J* = 6.7, 1-CH₂); 3.72–3.81 (4H, m, O(CH₂)₂ morpholine); 10.70 (1H, br. s, NH); 12.59 (1H, br. s, NH). ¹³C NMR spectrum, δ , ppm: 21.4 (2-CH₂); 22.0 (3-CH₂); 26.2 (4-CH₂); 26.8 (1-CH₂); 49.8 (3,5-CH₂ morpholine); 66.2 (2,6-CH₂ morpholine); 108.3; 113.1; 118.1; 141.3; 145.1; 154.3; 157.8; 159.2 (C-8); 174.8 (C-10). Found, %: C.61; H 4.90; N 14.88; S 17.21. C₁₇H₁₈N₄O₂S₂. Calculated, %: C 54.52; H 4.84; N 14.96; S 17.13.

4-(Morpholin-4-yl)-9-thioxo-2,3,9,10-tetrahydro-1*H*cyclopenta[4',5']pyrido[3',2':4,5]thieno[3,2-*d*]pyrimidin-7-(8*H*)-one (4e). Yield 3.24 g (90%), gray crystals, mp > 360° C. ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.08–2.20 (2H, m, 2-CH₂); 2.95 (2H, t, *J* = 7.2, 3-CH₂); 3.43 (2H, t, *J* = 7.3, 1-CH₂); 3.51–3.57 (4H, m, N(CH₂)₂ morpholine); 3.71– 3.77 (4H, m, O(CH₂)₂ morpholine); 11.49 (1H, br. s, NH). 12.43 (1H, br. s, NH). ¹³C NMR spectrum, δ , ppm: 25.2 **Preparation of compounds 5a–j** (General method). DMF (25 ml) and compound **4a–e** (5 mmol) were added to a solution of KOH (0.28 g, 5 mmol) in water (2.5 ml). The mixture was treated by dropwise addition of the appropriate alkyl halide (5 mmol) solution in ethanol (15 ml). The mixture was stirred for 5 h at room temperature. The obtained crystals were filtered off and recrystallized from 2:1 mixture of EtOH and DMF.

2,2-Dimethyl-10-methylsulfanyl-5-(pyrrolidin-1-yl)-1,4-dihydro-2*H***-pyrano**[4'',3'':4',5']**pyrido-**[3',2':4,5]**thieno**[3,2-*d*]**pyrimidin-8(9***H***)-one (5a). Yield 1.95 g (97%), white crystals, mp > 360°C. IR spectrum, v, cm⁻¹: 1652 (CO), 3420 (NH). ¹H NMR spectrum, \delta, ppm: 1.30 (6H, s, 2CH₃); 1.84–1.91 (4H, m, 3,4-CH₂ pyrrolidine); 2.60 (3H, s, SCH₃); 3.35 (2H, s, 1-CH₂); 3.56–3.62 (4H, m, N(CH₂)₂ pyrrolidine); 4.81 (2H, s, 4-CH₂); 12.85 (1H, br. s, NH). ¹³C NMR spectrum, \delta, ppm: 13.1 (SCH₃); 25.1 (2CH₃); 26.4 (3,4-CH₂ pyrrolidine); 37.8 (1-CH₂); 49.6 (2,5-CH₂ pyrrolidine); 60.1 (4-CH₂); 68.7 (C-2); 114.8; 116.4; 141.4; 152.4; 152.5; 156.3; 157.6; 158.2 (C-8); 160.0 (C-10). Found, %: C 56.76; H 5.56; N 13.83; S 15.81. C₁₉H₂₂N₄O₂S₂. Calculated, %: C 56.69; H 5.51; N 13.92; S 15.93.**

10-Benzylsulfanyl-2,2-dimethyl-5-(morpholin-4-yl)-1,4-dihydro-2*H*-pyrano[4",3":4',5']pyrido[3',2':4,5]-thieno-[3,2-d]pyrimidin-8(9H)-one (5b). Yield 2.25 g (98%), white crystals, mp 314–315°C. ¹H NMR spectrum, δ , ppm: 1.17 (6H, s, 2CH₃); 3.15–3.21 (4H, m, N(CH₂)₂ morpholine); 3.34 (2H, s, 1-CH₂); 3.72-3.76 (4H, m, O(CH₂)₂ morpholine); 4.59 (2H, s, SCH₂); 4.65 (2H, s, 4-CH₂); 7.23-7.36 (3H, m, H Ph); 7.43-7.47 (2H, m, H Ph); 13.10 (1H, br. s, NH). ¹³C NMR spectrum, δ, ppm: 26.6 (2CH₃); 33.8 (SCH₂); 37.0 (1-CH₂); 49.9 (3,5-CH₂ morpholine); 59.2 (4-CH₂); 66.1 (2,6-CH₂ morpholine); 69.3 (C-2); 119.4; 119.8; 127.2 (C-4 Ph); 128.3 (C-3,5 Ph); 128.4 (C-2,6 Ph); 136.9 (C-1 Ph); 142.9; 151.8; 157.8; 157.9; 158.0; 158.9 (C-8); 159.1 (C-10). Found, %: C 60.62; H 5.35; N 11.22; S 13.10. C₂₅H₂₆N₄O₃S₂. Calculated, %: C 60.71; H 5.30; N 11.33; S 12.97.

10-Butylsulfanyl-2,2-dimethyl-5-(morpholin-4-yl)-1,4dihydro-2H-pyrano[4'',3'':4',5']pyrido[3',2':4,5]thieno-[3,2-d]pyrimidin-8(9H)-one (5c). Yield 2.25 g (98%), white crystals, mp > 360°C. ¹H NMR spectrum, \delta, ppm (*J***, Hz): 0.92 (3H, t,** *J* **= 7.3, CH₂CH₃); 1.30 (6H, s, 2CH₃); 1.39–1.51 (2H, m, SCH₂CH₂); 1.67–1.77 (2H, m, CH₂CH₃); 3.16–3.21 (4H, m, N(CH₂)₂ morpholine); 3.22 (2H, t,** *J* **= 7.4, SCH₂); 3.41 (2H, s, 1-CH₂); 3.72–3.77 (4H, m, O(CH₂)₂ morpholine); 4.68 (2H, s, 4-CH₂); 12.99 (1H, br. s, NH). ¹³C NMR spectrum, \delta, ppm: 13.5 (CH₂CH₃); 21.6 (CH₂); 26.8 (2CH₃); 29.9 (CH₂); 31.1 (SCH₂); 37.0 (1-CH₂); 49.9 (3,5-CH₂ morpholine); 59.2 (4-CH₂); 66.1 (2,6-CH₂ morpholine); 69.4 (C-2); 115.0; 117.9; 119.4; 119.8; 142.8; 157.8; 158.3; 158.9 (C-8); 159.1 (C-10).** Found, %: C 57.46; H 6.17; N 12.04; S 13.81. $C_{22}H_{28}N_4O_3S_2.$ Calculated, %: C 57.37; H 6.13; N 12.16; S 13.92.

2-{[2,2-Dimethyl-5-(morpholin-4-yl)-8-oxo-1,4,8,9-tetrahydro-2H-pyrano[4",3":4',5']pyrido[3',2':4,5]thieno-[3,2-d]pyrimidin-10-yl]sulfanyl}-N-phenylacetamide (5d). Yield 2.58 g (96%), light-yellow crystals, $mp > 360^{\circ}C$. ¹H NMR spectrum, δ, ppm: 1.13 (6H, s, 2CH₃); 3.12–3.20 (4H, m, N(CH₂)₂ morpholine); 3.67–3.76 (4H, m, O(CH₂)₂ morpholine); 3.31 (2H, s, 1-CH₂); 4.23 (2H, s, SCH₂); 4.60 (2H, s, 4-CH₂); 6.99–7.06 (1H, m, H Ph); 7.24–7.32 (2H, m, H Ph); 7.52–7.58 (2H, m, H Ph); 10.19 (1H, br. s, NH); 13.14 (1H, br. s, 9-NH). ¹³C NMR spectrum, δ, ppm: 26.5 (2CH₃); 36.8 (SCH₂); 38.7 (1-CH₂); 49.8 (3,5-CH₂) morpholine); 59.0 (4-CH₂); 66.0 (2,6-CH₂ morpholine); 69.5 (C-2); 119.1 (C-3,5 Ph); 119.5; 119.8; 123.3 (C-4 Ph); 128.7 (C-2,6 Ph); 138.8 (C-1 Ph); 138.9; 143.1; 152.0; 157.7; 158.8; 158.9 (C-8); 159.1 (C-10); 164.8 (CH₂<u>C</u>O). Found, %: C 58.16; H 5.10; N 13.15; S 12.10. C₂₆H₂₇N₅O₄S₂. Calculated, %: C 58.08; H 5.06; N 13.03; S 11.93.

10-Allylsulfanyl-2,2-dimethyl-5-(morpholin-4-yl)-1,4-dihydro-2H-pyrano[4",3":4',5']pyrido[3',2':4,5]thieno-[3,2-d]pyrimidin-8(9H)-one (5e). Yield 2.09 g (94%), white crystals, mp 288–290°C. ¹H NMR spectrum, δ , ppm (J, Hz): 1.31 (6H, s, 2CH₃); 3.17–3.25 (4H, m, N(CH₂)₂) morpholine); 3.43 (2H, s, 1-CH₂); 3.74-3.81 (4H, m, $O(CH_2)_2$ morpholine); 3.88 (2H, dt, J = 6.6, J = 1.2, SCH₂); 4.67 (2H, s, 4-CH₂); 5.15 (1H, dq, *J*=.0, *J* = 1.2) and 5.34 (1H, dq, J = 17.0, J = 1.2, CH=CH₂); 6.04 (1H, ddt, J = 17.0, J = 10.0, J = 6.6, CH=CH₂); 12.75 (1H, br. s, NH). ¹³C NMR spectrum, δ, ppm: 26.4 (2CH₃); 32.6 (SCH₂); 37.0 (1-CH₂); 49.9 (3,5-CH₂ morpholine); 59.2 (4-CH₂); 66.0 (2,6-CH₂ morpholine); 69.0 (C-2); 117.2 (CH=CH₂); 118.8; 120.2; 132.8 (CH=CH₂); 141.2; 142.3; 151.4; 156.9; 157.8; 158.6 (C-8); 159.4 (C-10). Found, %: C 56.62; H 5.49; N 12.71; S 14.34. C₂₁H₂₄N₄O₃S₂. Calculated, %: C 56.73; H 5.44; N 12.60; S 14.43.

10-Methylsulfanyl-5-(pyrrolidin-1-yl)-1,2,3,4-tetrahydropyrimido[4',5':4,5]thieno[2,3-c]isoquinolin-8(9*H***)-one (5f**). Yield 1.73 g (93%), light-yellow crystals, mp > 360°C. ¹H NMR spectrum, δ , ppm: 1.61–1.72 (2H, m, 2-CH₂); 1.76–1.93 (6H, m, 3,4-CH₂ pyrrolidine, 3-CH₂); 2.60 (3H, s, SCH₃); 2.67–2.74 (2H, m, 4-CH₂); 3.39–3.47 (2H, m, 1-CH₂); 3.53–3.61 (4H, m, N(CH₂)₂ pyrrolidine); 12.81 (1H, br. s, NH). ¹³C NMR spectrum, δ , ppm: 13.0 (SCH₃); 22.1 (2-CH₂); 25.1 (3,4-CH₂ pyrrolidine); 25.4 (3-CH₂); 26.0 (4-CH₂); 26.8 (1-CH₂); 49.7 (2,5-CH₂ pyrrolidine); 113.7; 115.4; 141.2; 151.8; 152.3; 155.6; 157.4; 158.5 (C-8); 161.0 (C-10). Found, %: C 58.13; H 5.45; N 14.92; S 17.14. C₁₈H₂₀N₄OS₂. Calculated, %: C 58.04; H 5.41; N 15.04; S 17.22.

10-Methylsulfanyl-5-(morpholin-4-yl)-1,2,3,4-tetrahydropyrimido[4',5':4,5]thieno[2,3-*c***]isoquinolin-8(9***H***)-one (5g). Yield 1.85 g (95%), white crystals, mp > 360^{\circ}C. ¹H NMR spectrum, \delta, ppm: 1.70–1.80 (2H, m, 2-CH₂); 1.85–1.96 (2H, m, 3-CH₂); 2.62 (3H, s, SCH₃); 2.68–2.74 (2H, m, 4-CH₂); 3.19–3.24 (4H, m, N(CH₂)₂ morpholine); 3.75– 3.80 (4H, m, O(CH₂)₂ morpholine); 3.51–3.57 (2H, m,** 1-CH₂); 12.85 (1H, br. s, NH). ¹³C NMR spectrum, δ , ppm: 13.0 (SCH₃); 20.8 (2-CH₂); 21.9 (3-CH₂); 26.0 (4-CH₂); 26.7 (1-CH₂); 49.6 (3,5-CH₂ morpholine); 65.7 (2,6-CH₂ morpholine); 113.2; 115.7; 141.4; 152.1; 153.5; 156.4; 157.6; 158.2 (C-8); 160.5 (C-10). Found, %: C 55.73; H 5.15; N 14.33; S 16.41. C₁₈H₂₀N₄O₂S₂. Calculated, %: C 55.65; H 5.19; N 14.42; S 16.51.

5-(Morpholin-4-yl)-10-[(2-oxo-2-phenylethyl)sulfanyl]-1,2,3,4-tetrahydropyrimido[4',5':4,5]thieno[2,3-c]isoquinolin-8(9H)-one (5h). Yield 2.29 g (93%), white crystals, mp 274-275°C. ¹H NMR spectrum, δ, ppm (J, Hz): 1.18-1.27 (2H, m, 2-CH₂); 1.49-1.58 (2H, m, 3-CH₂); 2.57 (2H, t, J = 5.9, 4-CH₂); 3.09 (2H, t, J = 6.4, 1-CH₂); 3.14–3.21 (4H, m, N(CH₂)₂ morpholine); 3.71– 3.78 (4H, m, O(CH₂)₂ morpholine); 4.90 (2H, s, SCH₂); 7.52-7.58 (2H, m, H Ph); 7.61-7.68 (1H, m, H Ph); 8.05-8.11 (2H, m, H Ph); 12.97 (1H, br. s, NH). ¹³C NMR spectrum, δ, ppm: 20.9 (2-CH₂); 21.8 (3-CH₂); 25.8 (4-CH₂); 26.8 (1-CH₂); 38.5 (SCH₂); 49.5 (3,5-CH₂ morpholine); 65.9 (2,6-CH₂ morpholine); 115.6; 120.4; 121.4; 127.8 (C-3,5 Ph); 128.2 (C-2,6 Ph); 132.8 (C-4 Ph); 135.4 (C-1 Ph); 145.5; 151.7; 156.3; 157.6; 158.4 (C-8); 160.9 (C-10); 190.4 (CH2CO). Found, %: C 60.87; H 4.96; N.49; S 13.10. C₂₅H₂₄N₄O₃S₂. Calculated, %: C 60.95; H 4.91; N 11.37; S 13.02.

10-Benzylsulfanyl-5-(morpholin-4-yl)-1,2,3,4-tetrahydropyrimido[4',5':4,5]thieno[2,3-c]isoquinolin-8(9H)one (5i). Yield 2.21 g (95%), white crystals, mp 325-327°C. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.61–1.84 (4H, m, 2,3-CH₂); 2.67 (2H, t, J = 5.3, 4-CH₂); 3.16–3.22 (4H, m, N(CH₂)₂ morpholine); 3.40 (2H, t, J = 5.8, 1-CH₂); 3.72-3.79 (4H, m, O(CH₂)₂ morpholine); 4.55 (2H, s, SCH₂); 7.23-7.38 (3H, m, H Ph); 7.43-7.47 (2H, m, H); 13.06 (1H, br. s, NH). ¹³C NMR spectrum, δ , ppm: 21.5 (2-CH₂); 22.0 (3-CH₂); 26.0 (4-CH₂); 26.9 (1-CH₂); 34.0 (SCH₂); 49.7 (3,5-CH₂ morpholine); 66.1 (2,6-CH₂ morpholine); 120.3; 122.3; 127.2 (C-4 Ph); 128.4 (C-3,5 Ph); 128.5 (C-2,6 Ph); 136.7 (C-1 Ph); 146.2; 152.1; 155.5; 157.4; 157.8; 158.2 (C-8); 161.5 (C-10). Found, %: C 61.95; H 5.26; N 12.18; S 13.71. C₂₄H₂₄N₄O₂S₂. Calculated, %: C 62.04; H 5.21; N 12.06; S 13.80.

9-Methylsulfanyl-4-(morpholin-4-yl)-2,3-dihydro-1*H***cyclopenta[4',5']pyrido[3',2':4,5]thieno[3,2-***d***]pyrimidin-7(8***H***)-one (5j). Yield 1.80 g (96%), white crystals, mp > 360°C. ¹H NMR spectrum, \delta, ppm (***J***,Hz): 2.06–2.16 (2H, m, 2-CH₂); 2.60 (3H, s, SCH₃); 2.95 (2H, t,** *J* **= 7.2, 3-CH₂); 3.34 (2H, t,** *J* **= 7.5, 1-CH₂); 3.47–3.53 (4H, m, N(CH₂)₂ morpholine); 3.70–3.76 (4H, m, O(CH₂)₂ morpholine); 12.87 (1H, br. s, NH). ¹³C NMR spectrum, \delta, ppm: 13.5 (SCH₃); 25.1 (2-CH₂); 30.5 (3-CH₂); 30.9 (1-CH₂); 47.9 (3,5-CH₂ morpholine); 66.1 (2,6-CH₂ morpholine); 113.2; 117.5; 140.2; 151.9; 154.3; 155.6; 156.7; 158.6 (C-7); 163.6 (C-9). Found, %: C 54.61; H 4.79; N 14.87; S 17.02. C₁₇H₁₈N₄O₂S₂. Calculated, %: C 54.52; H 4.84; N 14.96; S 17.13.**

Preparation of compounds 6a,c–f (General method). A mixture of compound **5a,b,f,i,j** (5 mmol), phosphorus oxychloride (25 ml, 0.268 mol), and pyridine (1.3 ml, 16 mmol) was refluxed for 6 h. The excess of phosphorus

oxychloride was removed by distillation, the residue was quenched with ice water (50 ml) and neutralized with aqueous ammonia solution. The obtained crystals were filtered off, washed with water, and recrystallized from a 4:1 mixture of CHCl₃ and EtOH.

8-Chloro-2,2-dimethyl-10-methylsulfanyl-5-(pyrrolidin-1-yl)-1,4-dihydro-2*H***-pyrano[4'',3'':4',5']pyrido-[3',2':4,5]thieno[3,2-***d***]pyrimidine (6a). Yield 1.71 g (81%), light-yellow crystals, mp 224–226°C. ¹H NMR spectrum, \delta, ppm: 1.35 (6H, s, 2CH₃); 1.96–2.02 (4H, m, 3,4-CH₂ pyrrolidine); 2.60 (3H, s, SCH₃); 3.36 (2H, s, 1-CH₂); 3.66–3.73 (4H, m, N(CH₂)₂ pyrrolidine); 4.84 (2H, s, 4-CH₂). ¹³C NMR spectrum, \delta, ppm: 13.8 (SCH₃); 25.1 (3,4-CH₂ pyrrolidine); 27.6 (2CH₃); 36.5 (1-CH₂); 50.1 (2,5-CH₂ pyrrolidine); 60.3 (4-CH₂); 68.6 (C-2); 115.6; 118.4; 121.5; 144.9; 151.7; 159.2; 160.5; 160.4 (C-8); 165.2 (C-10). Found, %: C 54.30; H 5.09; N 13.15; S 15.33; CI 8.51. C₁₉H₂₁CIN₄OS₂. Calculated, %: C 54.21; H 5.03; N 13.31; S 15.23; CI 8.42.**

8-Chloro-2,2-dimethyl-10-methylsulfanyl-5-(morpholin-4-yl)-1,4-dihydro-2*H***-pyrano[4",3":4',5']pyrido[3',2':4,5]thieno[3,2-***d***]pyrimidine (6b).¹⁸ White crystals, mp 261– 262°C. ¹H NMR spectrum, \delta, ppm: 1.34 (6H, s, 2CH₃); 2.53 (3H, s, SCH₃); 3.16–3.27 (4H, m, N(CH₂)₂ morpholine); 3.51 (2H, s, 1-CH₂); 3.73–3.81 (4H, m, O(CH₂)₂ morpholine); 4.64 (2H, s, 4-CH₂). ¹³C NMR spectrum, \delta, ppm: 13.6 (SCH₃); 27.3 (2CH₃); 36.9 (1-CH₂); 48.4 (3,5-CH₂ morpholine); 60.2 (4-CH₂); 66.9 (2,6-CH₂ morpholine); 68.4 (C-2); 115.7; 118.0; 121.7; 145.4; 151.7; 159.3; 160.6; 161.0 (C-8); 165.2 (C-10). Found, %: C 52.45; H 4.56; N 12.74; S 14.56. C₁₉H₂₁ClN₄O₂S₂. Calculated, %: C 52.23; H 4.84; N 12.82; S 14.67.**

10-Benzylsulfanyl-8-chloro-2,2-dimethyl-5-(morpholin-4-yl)-1,4-dihydro-2*H*-pyrano[4'',3'':4',5']pyrido[3',2':4,5]thieno[3,2-d]pyrimidine (6c). Yield 1.90 g (74%), white crystals, mp 247–248°C. ¹H NMR spectrum, δ, ppm: 1.27 (6H, s, 2CH₃); 3.28–3.37 (4H, m, N(CH₂)₂ morpholine); 3.34 (2H, s, 1-CH₂); 3.75–3.82 (4H, m, O(CH₂)₂ morpholine); 4.50 (2H, s, SCH₂); 4.64 (2H, s, 4-CH₂); 7.18-7.32 (3H, m, H Ph); 7.40-7.46 (2H, m, H Ph). ¹³C NMR spectrum, δ, ppm: 27.4 (2CH₃); 34.1 (SCH₂); 36.2 (1-CH₂); 47.8 (3,5-CH₂ morpholine); 60.1 (4-CH₂); 66.8 (2,6-CH₂ morpholine); 69.9 (C-2); 116.4; 119.7; 126.5 (C-4 Ph); 128.3 (C-3,5 Ph); 129.1 (C-2,6 Ph); 138.4 (C-1 Ph); 145.9; 151.4; 157.9; 158.2; 159.7; 160.4 (C-8); 165.1 (C-10). Found, %: C 58.40; H 4.96; N 10.84; S 12.58; Cl 6.83. C₂₅H₂₅ClN₄O₂S₂. Calculated, %: C 58.52; H 4.91; N 10.92; S 12.50; Cl 6.91.

8-Chloro-10-methylsulfanyl-5-(pyrrolidin-1-yl)-1,2,3,4tetrahydropyrimido[4',5':4,5]thieno[2,3-c]isoquinoline (6d). Yield 1.51 g (77%), yellow crystals, mp 216–217°C. ¹H NMR spectrum, δ, ppm (*J*, Hz): 1.71–1.79 (2H, m, 2-CH₂); 1.86–1.94 (2H, m, 3-CH₂); 1.95–2.01 (4H, m, 3,4-CH₂ pyrrolidine); 2.61 (3H, s, SCH₃); 2.77 (2H, br. t, *J* = 5.9, 4-CH₂); 3.48 (2H, br. t, *J* = 6.4, 1-CH₂); 3.65–3.72 (4H, m, N(CH₂)₂ pyrrolidine). ¹³C NMR spectrum, δ, ppm: 13.9 (SCH₃); 21.1 (2-CH₂); 22.2 (3-CH₂); 25.1 (3,4-CH₂ pyrrolidine); 27.1 (4-CH₂); 27.4 (1-CH₂); 50.0 (2,5-CH₂ pyrrolidine); 115.1; 117.6; 121.1; 145.9; 151.4; 158.9; 160.3; 160.7 (C-8); 167.0 (C-10). Found, %: C 55.38; H 4.96; N 14.22; S 16.52; Cl 9.16. $C_{18}H_{19}CIN_4S_2$. Calculated, %: C 55.30; H 4.90; N 14.33; S 16.40; Cl 9.07.

10-Benzylsulfanyl-8-chloro-5-(morpholin-4-yl)-1,2,3,4tetrahydropyrimido[4',5':4,5]thieno[2,3-c]isoquinoline (6e). Yield 1.79 g (74%), light-yellow crystals, mp 246-248°C. ¹H NMR spectrum, δ , ppm (J, Hz): 1.72–1.78 (2H, m, 2-CH₂); 1.87–1.96 (2H, m, 3-CH₂); 2.74 (2H, t, J = 5.8, 4-CH₂); 3.25-3.34 (4H, m, N(CH₂)₂ morpholine); 3.51 $(2H, t, J = 6.3, 1-CH_2); 3.77-3.85 (4H, m, O(CH_2)_2)$ morpholine); 4.52 (2H, s, SCH₂); 7.13–7.22 (3H, m, H Ph); 7.43-7.51 (2H, m, H Ph). ¹³C NMR spectrum.: 21.2 (2-CH₂); 22.1 (3-CH₂); 26.9 (4-CH₂); 27.2 (1-CH₂); 34.0 (SCH₂); 47.9 (3,5-CH₂ morpholine); 66.7 (2,6-CH₂ morpholine); 121.6; 121.8; 126.8 (C-4 Ph); 128.5 (C-3,5 Ph); 128.8 (C-2,6 Ph); 138.2 (C-1 Ph); 145.6; 151.8; 158.0; 158.4; 159.5; 160.1 (C-8); 164.7 (C-10). Found, %: C 59.78; H 4.84; N 11.71; S 13.17; Cl 7.25. C₂₄H₂₃ClN₄OS₂. Calculated, %: C 59.67; H 4.80; N 11.60; S 13.28; Cl 7.34.

7-Chloro-9-methylsulfanyl-4-(morpholin-4-yl)-2,3-dihydro-1*H***-cyclopenta[4',5']pyrido[3',2':4,5]thieno[3,2-***d***]pyrimidine (6f). Yield 1.63 g (83%), white crystals, mp 250– 251°C. ¹H NMR spectrum, δ, ppm (***J***, Hz): 2.16–2.26 (2H, m, 2-CH₂); 2.62 (3H, s, SCH₃); 3.03 (2H, t,** *J* **= 7.3, 3-CH₂); 3.43 (2H, t,** *J* **= 7.6, 1-CH₂); 3.63–3.70 (4H, m, N(CH₂)₂ morpholine); 3.73–3.80 (4H, m, O(CH₂)₂ morpholine). ¹³C NMR spectrum, δ, ppm: 13.9 (SCH₃); 24.6 (2-CH₂); 27.8 (3-CH₂); 28.9 (1-CH₂); 47.8 (3,5-CH₂ morpholine); 66.4 (2,6-CH₂ morpholine); 114.6; 117.8; 125.3; 146.4; 151.6; 159.2; 160.5; 160.8 (C-7); 166.7 (C-9). Found, %: C 52.03; H 4.40; N 14.34; S 16.21; Cl 9.13. C₁₇H₁₇ClN₄OS₂. Calculated, %: C 51.96; H 4.36; N 14.26; S 16.32; Cl 9.02.**

Preparation of compounds 7a–k (General method). Compound **6a–f** (3 mmol) in *n*-BuOH (40 ml) was treated with the appropriate amine (12 mmol). The mixture was refluxed for 8 h. The crystals that formed after cooling were filtered off, washed with water, ethanol, and recrystallized from a 1:1 mixture of CHCl₃ and EtOH.

2,2-Dimethyl-10-methylsulfanyl-N-(pyridin-3-ylmethyl)-5-(pyrrolidin-1-yl)-1,4-dihydro-2H-pyrano[4",3":4',5']pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-8-amine (7a). Yield 1.20 g (81%), light-yellow crystals, mp 211–212°C. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.34 (6H, s, 2CH₃); 1.93-2.01 (4H, m, 3,4-CH₂ pyrrolidine); 2.49 (3H, s, SCH₃); 3.45 (2H, s, 1-CH₂); 3.59–3.65 (4H, m, N(CH₂)₂) pyrrolidine); 4.73 (2H, d, J=.9, NHCH2); 4.77 (2H, s, 4-CH₂); 7.25 (1H, dd, J = 7.7, J = 4.8, H-5 Py); 7.77 (1H, ddd, J = 7.7, J = 1.9, J = 1.6, H-4 Py); 7.87 (1H, br. t, J = 5.9, NH); 8.40 (1H, dd, J = 4.8, J = 1.6, H-6 Py); 8.58 (1H, d, J = 1.9, H-2 Py). ¹³C NMR spectrum, δ , ppm: 13.4 (SCH₃); 25.0 (3,4-CH₂ pyrrolidine); 26.3 (2CH₃); 37.3 (1-CH₂); 41.1 (NHCH₂); 49.5 (2,5-CH₂ pyrrolidine); 60.1 (4-CH₂); 68.5 (C-2); 105.9; 113.9; 116.2; 122.8 (C-4(5) Py); 135.2 (C-3 Py); 135.6 (C-5(4) Py); 141.6; 146.7 and 148.3 (C-2,6 Py); 155.4; 155.5; 156.3; 159.3 (C-8), 166.1 (C-10). Found, %: C60.83; H 5.79; N 17.19; S 13.10. C₂₅H₂₈N₆OS₂. Calculated, %: C 60.95; H 5.73; N 17.06; S 13.02.

2,2-Dimethyl-10-methylsulfanyl-8-(morpholin-4-yl)-5-(pyrrolidin-1-yl)-1,4-dihydro-2*H*-pyrano[4'',3'':4',5']- pyrido[3',2':4,5]thieno[3,2-*d*]pyrimidine (7b). Yield 1.10 g (78%), light-yellow crystals, mp 215–216°C. ¹H NMR spectrum, δ , ppm: 1.34 (6H, s, 2CH₃); 1.91–2.03 (4H, m, 3,4-CH₂ pyrrolidine); 2.53 (3H, s, SCH₃); 3.46 (2H, s, 1-CH₂); 3.59–3.64 (4H, m, N(CH₂)₂ pyrrolidine); 3.74–3.80 (4H, m, N(CH₂)₂ morpholine); 3.84–3.90 (4H, m, O(CH₂)₂ morpholine); 4.79 (2H, s, 4-CH₂). ¹³C NMR spectrum, δ , ppm: 13.5 (SCH₃); 25.1 (3,4-CH₂ pyrrolidine); 26.5 (2CH₃); 37.0 (1-CH₂); 48.6 (3,5-CH₂ morpholine); 49.7 (2,5-CH₂ pyrrolidine); 59.8 (4-CH₂); 66.5 (2,6-CH₂ morpholine); 68.9 (C-2); 107.8; 115.6; 118.4; 142.1; 154.7; 156.5; 157.2; 158.4 (C-8), 165.8 (C-10). Found, %: C 58.64; H 6.25; N 14.78; S 13.49. C₂₃H₂₉N₅O₂S₂. Calculated, %: C 58.57; H 6.20; N 14.85; S 13.60.

2,2-Dimethyl-10-methylsulfanyl-5-(morpholin-4-yl)-N-(2-phenylethyl)-1,4-dihydro-2H-pyrano[4",3":4',5']pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-8-amine (7c). Yield 1.30 g (83 %), white crystals, mp 189–190°C. ¹H NMR spectrum, δ, ppm (J, Hz): 1.35 (6H, s, 2CH₃); 2.56 (3H, s, SCH₃); 2.99 (2H, t, J = 7.5, NHCH₂CH₂); 3.17–3.24 (4H, m, N(CH₂)₂ morpholine); 3.53 (2H, s, 1-CH₂); 3.70–3.76 (2H, m, NHCH₂); 3.76–3.82 (4H, m, O(CH₂)₂ morpholine); 4.68 (2H, s, 4-CH₂); 7.11-7.20 (1H, m, H Ph); 7.21-7.28 (4H, m, H Ph); 7.47 (1H, br. t, J = 5.5, NH). ¹³C NMR spectrum, δ, ppm: 13.5 (SCH₃); 26.6 (2CH₃); 34.9 (NHCH₂); 37.0 (1-CH₂); 41.9 (CH₂Ph); 50.0 (3,5-CH₂) morpholine); 59.1 (4-CH₂); 66.0 (2,6-CH₂ morpholine); 69.1 (C-2); 107.8; 118.5; 120.0; 125.4 (C-4 Ph); 127.7 (C-3,5 Ph); 128.3 (C-2,6 Ph); 139.2 (C-1 Ph); 142.8; 154.6; 155.7; 158.5; 158.6 (C-8); 166.6 (C-10). Found, %: C 62.25; H 6.05; N 13.54; S 12.37. C₂₇H₃₁N₅O₂S₂. Calculated, %: C 62.16: H 5.99: N 13.42: S 12.29.

N-Hexyl-2,2-dimethyl-10-methylsulfanyl-5-(morpholin-4-yl)-1,4-dihydro-2H-pyrano[4",3":4',5']pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-8-amine (7d). Yield 1.20 g (80%), white crystals, mp 231–232°C. ¹H NMR spectrum, δ , ppm $(J, Hz): 0.91 (3H, t, J = 6.6, CH_2CH_3); 1.28-1.45 (6H, m, m)$ CH₃(CH₂)₃); 1.34 (6H, s, 2CH₃); 1.61–1.71 (2H, m, NHCH₂CH₂); 2.52 (3H, s, SCH₃); 3.15-3.25 (4H, m, N(CH₂)₂ morpholine); 3.46-3.56 (4H, m, NHCH₂, 1-CH₂); 3.74-3.84 (4H, m, O(CH₂)₂ morpholine); 4.68 (2H, s, 4-CH₂); 7.30 (1H, br. t, J = 5.4, NH). ¹³C NMR spectrum, δ , ppm: 13.4 (CH₂CH₃); 13.6 (SCH₃); 22.0 (CH₂CH₃); 26.1 (CH₂); 28.7 (CH₂); 31.0 (CH₂); 26.6 (2CH₃); 37.0 (1-CH₂); 40.1 (NHCH₂); 50.0 (3,5-CH₂ morpholine); 59.1 (4-CH₂); 66.0 (2,6-CH₂ morpholine); 69.0 (C-2); 107.7; 118.5; 120.0; 142.8; 154.4; 155.8; 158.5 (C Ar, C-8); 166.5 (C-10). Found, %: C 59.93; H 6.98; N 13.81; S 12.67. C₂₅H₃₅N₅O₂S₂. Calculated, %: C 59.85; H 7.03; N 13.96; S 12.78.

10-Benzylsulfanyl-2,2-dimethyl-8-(4-methylpiperazin-1-yl)-5-(morpholin-4-yl)-1,4-dihydro-2*H***-pyrano-[4'',3'':4',5']pyrido[3',2':4,5]thieno[3,2-***d***]pyrimidine (7e). Yield 1.40 g (81%), white crystals, mp 206–207°C. ¹H NMR spectrum, δ, ppm: 1.21 (6H, s, 2CH₃); 2.30 (3H, s, NCH₃); 2.46–2.55 (4H, m, N(CH₂)₂ piperazine); 3.16– 3.22 (4H, m, N(CH₂)₂ morpholine); 3.41 (2H, s, 1-CH₂); 3.75–3.80 (4H, m, O(CH₂)₂ morpholine); 3.89–3.96 (4H, m, N(CH₂)₂ piperazine); 4.44 (2H, s, SCH₂); 4.64 (2H, s,** 4-CH₂); 7.15–7.29 (3H, m, H Ph); 7.37–7.43 (2H, m, H Ph). ¹³C NMR spectrum, δ , ppm: 26.4 (2CH₃); 34.3 (SCH₂); 37.1 (1-CH₂); 45.2 (NCH₃, 3,5-CH₂ piperazine); 49.8 (3,5-CH₂ morpholine); 54.1 (2,6-CH₂ piperazine); 59.0 (4-CH₂); 65.9 (2,6-CH₂ morpholine); 68.9 (C-2); 107.1; 118.7; 118.8; 126.2 (C-4 Ph); 127.7 (C-3,5 Ph); 127.8 (C-2,6 Ph); 137.8 (C-1 Ph); 143.1; 156.4 (C-10); 156.6; 156.9; 158.3; 159.1 (C-8). Found, %: C 62.36; H 6.25; N 14.69; S 11.03. C₃₀H₃₆N₆O₂S₂. Calculated, %: C 62.47; H 6.29; N 14.57; S 11.12.

N-Benzyl-10-benzylsulfanyl-2,2-dimethyl-5-(morpholin-4-yl)-1,4-dihydro-2H-pyrano[4",3":4',5']pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-8-amine (7f). Yield 1.45 g (83%), white crystals, mp 195–196°C. ¹H NMR spectrum, δ , ppm (J, Hz): 1.23 (6H, s, 2CH₃); 3.17–3.22 (4H, m, N(CH₂)₂ morpholine); 3.42 (2H, s, 1-CH₂); 3.75-3.81 (4H, m, O(CH₂)₂ morpholine); 4.40 (2H, s, SCH₂); 4.66 (2H, s, 4-CH₂); 4.76 (2H, d, J = 5.7, NHCH₂); 7.14–7.31 (6H, m, H Ph); 7.33– 7.40 (4H, m, H Ph); 8.09 (1H, br. t, J = 5.7, NH). ¹³C NMR spectrum, δ, ppm: 26.4 (2CH₃), 34.2 (SCH₂); 36.9 (1-CH₂); 43.5 (NHCH₂); 49.9 (3,5-CH₂ morpholine); 59.0 (4-CH₂); 65.9 (2,6-CH₂ morpholine); 68.9 (C-2); 118.5; 119.8; 126.0; 127.6 (4CH Ph); 127.8 (2CH Ph); 127.9 (4CH Ph); 138.2 (C Ph); 139.2 (C); 142.8; 154.7; 155.8; 156.8; 158.6 (C-8); 158.7(C-10). Found, %: C 65.77; H 5.76; N 11.91; S 10.86. C₃₂H₃₃N₅O₂S₂. Calculated, %: C 65.84; H 5.70; N 12.00; S 10.99.

N-Butyl-N-ethyl-10-methylsulfanyl-5-(pyrrolidin-1-yl)-1,2,3,4-tetrahydropyrimido[4',5':4,5]thieno[2,3-c]isoquinolin-8-amine (7g). Yield 1.00 g (73%), light-yellow crystals, mp 119–120°C. ¹H NMR spectrum, δ , ppm (J, Hz): 1.01 $(3H, t, J = 7.3, CH_2CH_3); 1.30 (3H, t, J = 7.0, NCH_2CH_3);$ 1.38–1.51 (2H, m, CH₂CH₃); 1.66–1.78 (4H, m, 2,3-CH₂); 1.84-1.91 (2H, m, 4-CH₂); 1.91-1.99 (4H, m, 3,4-CH₂) pyrrolidine); 2.51 (3H, s, SCH₃); 2.71 (2H, t, J = 5.9, 3.52-3.62 (6H, m, NCH₂CH₂, N(CH₂)₂ 1-CH₂); pyrrolidine); 3.64-3.71 (2H, m, NCH2CH2); 3.76 (2H, q, J = 7.0, NCH₂CH₃). ¹³C NMR spectrum, δ , ppm: 13.4 (NCH₂<u>C</u>H₃); 13.5 (SCH₃); 19.5 (CH₂<u>C</u>H₃); 21.6 (2-CH₂); 22.3 (3-CH₂); 25.1 (3,4-CH₂ pyrrolidine); 27.2 (4-CH₂); 27.4 (1-CH₂); 30.7 (CH₂); 40.1 (CH₂); 43.2 (CH₂); 48.0 (CH₂); 49.7 (2,5-CH₂ pyrrolidine); 104.0; 116.5; 117.3; 145.3; 155.7; 157.4; 158.0; 159.8 (C-8); 165.1 (C-10). Found, %: C 63.37; H 7.26; N 15.24; S 14.17. C₂₄H₃₃N₅S₂. Calculated, %: C 63.26; H 7.30; N 15.37; S 14.07.

N-(2-Furylmethyl)-10-methylsulfanyl-5-(pyrrolidin-1-yl)-1,2,3,4-tetrahydropyrimido[4',5':4,5]thieno[2,3-*c*]isoquinolin-8-amine (7h). Yield 1.00 g (74%), light-yellow crystals, mp 159–160°C. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.70–1.79 (2H, m, 2-CH₂); 1.84–1.92 (2H, m, 3-CH₂); 1.92– 1.99 (4H, m, 3,4-CH₂ pyrrolidine); 2.53 (3H, s, SCH₃); 2.71 (2H, t, *J* = 5.7, 4-CH₂); 3.49–3.65 (6H, m, N(CH₂)₂ pyrrolidine, 1-CH₂); 4.70 (2H, d, *J* = 5.6, NHC<u>H₂</u>); 6.25–6.32 (2H, m, H-3,4 Fur); 7.39 (1H, dd, *J* = 1.7, *J* = 0.7, H-5 Fur); 7.66 (1H, br. t, *J* = 5.6, NH). ¹³C NMR spectrum, δ , ppm: 13.5 (SCH₃); 21.5 (2-CH₂); 22.4 (3-CH₂); 25.1 (3,4-CH₂ pyrrolidine); 27.1 (4-CH₂); 7.2 (1-CH₂); 36.7 (NHCH₂); 49.8 (2,5-CH₂ pyrrolidine); 106.2; 106.6 (CH Fur); 109.8 (CH Fur); 117.2 (2C); 140.7 (CH Fur); 145.2; 152.5; 155.4; 155.8; 158.4; 159.6 (C-8); 165.7 (C-10). Found, %: C 61.25; H 5.64; N 15.42; S 14.34. $C_{23}H_{25}N_5OS_2$. Calculated, %: C 61.17; H 5.58; N 15.51; S 14.20.

10-Benzylsulfanyl-5-(morpholin-4-yl)-8-(pyrrolidin-1-yl)-1,2,3,4-tetrahydropyrimido[4',5':4,5]thieno[2,3-c]isoquinoline (7i). Yield 1.29 g (83%), white crystals, mp 198-200°C. ¹H NMR spectrum, δ, ppm (*J*, Hz): 1.69–1.79 (2H, m, 2-CH₂); 1.81–1.91 (2H, m, 3-CH₂); 2.01–2.10 (4H, m, 3,4-CH₂ pyrrolidine); 2.70 (2H, t, J = 5.2, 4-CH₂); 3.17-3.24 (4H, m, N(CH₂)₂ morpholine); 3.53 (2H, t, J = 6.5, 1-CH₂); 3.74–3.80 (4H, m, O(CH₂)₂ morpholine); 3.83– 3.91 (4H, m, N(CH₂)₂ pyrrolidine); 4.41 (2H, s, SCH₂); 7.14-7.28 (3H, m, HPh); 7.37-7.42 (2H, m, H Ph). ¹³C NMR spectrum, δ, ppm: 21.8 (2-CH₂); 22.3 (3-CH₂); 24.6 (4-CH₂); 25.1 (3,4-CH₂ pyrrolidine); 26.8 (1-CH₂); 34.5 (SCH₂); 47.5 (2,5-CH₂ pyrrolidine); 49.8 (3,5-CH₂) morpholine); 66.0 (2,6-CH₂ morpholine); 108.9; 117.8; 118.6; 126.7 (C-4 Ph); 127.5 (C-3,5 Ph); 127.9 (C-2,6 Ph); 137.8 (C-1 Ph); 143.6; 157.4; 158.3; 158.7; 159.2 (C-8); 166.1 (C-10). Found, %: C 65.08; H 5.99; N 13.67; S 12.28. C₂₈H₃₁N₅OS₂. Calculated, %: C 64.96; H 6.04; N 13.53; S 12.39.

9-Methylsulfanyl-4-(morpholin-4-yl)-7-(pyrrolidin-1-yl)-2,3-dihydro-1H-cyclopenta[4',5']pyrido[3',2':4,5]thieno[3,2-d]pyrimidine (7j). Yield 1.03 g (80%), cream-colored crystals, mp 241–242°C. ¹H NMR spectrum, δ , ppm (*J*, Hz): 2.00-2.10 (4H, m, 3,4-CH₂ pyrrolidine); 2.12-2.24 (2H, m, 2-CH₂); 2.52 (3H, s, SCH₃); 2.95 (2H, t, J = 7.2, 3-CH₂); 3.47 (2H, t, J = 7.5, 1-CH₂); 3.47–3.52 (4H, m, N(CH₂)₂) morpholine); 3.73-3.78 (4H, m, O(CH₂)₂ morpholine); 3.82–3.89 (4H, m, N(CH₂)₂ pyrrolidine). ¹³C NMR spectrum, δ, ppm: 13.5 (SCH₃); 25.1 (2-CH₂); 25.2 (3,4-CH₂ pyrrolidine), 31.4 (3-CH₂); 31.7 (1-CH₂); 49.4 (2,5-CH₂ pyrrolidine); 49.8 (3,5-CH₂ morpholine); 65.9 (2,6-CH₂ morpholine); 106.8; 117.5; 123.6; 152.1; 156.4; 156.9; 157.3; 158.4 (C-7); 165.8 (C-9). Found, %: C 59.08; H 5.83; N 16.49; S 14.88. C₂₁H₂₅N₅OS₂. Calculated, %: C 58.99; H 5.89; N 16.38; S 15.00.

9-Methylsulfanyl-4,7-bis(morpholin-4-yl)-2,3-dihydro-*1H*-cyclopenta[4',5']pyrido[3',2':4,5]thieno[3,2-d]pyrimidine (7k). Yield 1.11 g (83%), light-pink crystals, mp 240– 241°C. ¹H NMR spectrum, δ , ppm: 2.14–2.25 (2H, m, 2-CH₂); 2.55 (3H, s, SCH₃); 2.98 (2H, t, *J* = 7.2, 3-CH₂); 3.48 (2H, t, *J* = 7.4, 1-CH₂); 3.49–3.55 (4H, m, 4-N(CH₂)₂ morpholine); 3.73–3.81 (8H, m, 7-N(CH₂)₂ morpholine, 4-morpholine). ¹³C NMR spectrum, δ , ppm: 13.5 (SCH₃); 25.1 (2-CH₂); 31.5 (3-CH₂); 31.9 (1-CH₂); 45.5 (3,5-CH₂ 4-(morpholin-4-yl)); 47.4 (3,5-CH₂ 7-(morpholin-4-yl)); 65.8 (2,6-CH₂ 4-(morpholin-4-yl)); 65.9 (2,6-CH₂ 7-(morpholin-4-yl)); 106.3; 117.0; 123.8; 152.6; 156.6; 156.7; 157.9; 158.6 (C-7); 166.1 (C-9). Found, %: C 56.98; H 5.72; N 15.88; S 14.32. C₂₁H₂₅N₅O₂S₂. Calculated, %: C 56.86; H 5.68; N 15.79; S 14.46.

Preparation of compounds 8a–f (General method). Compound **6a–e** (2 mmol) was added to sodium ethoxide solution obtained from sodium metal (46 mg, 2 mmol) and anhydrous ethanol (15 ml). The mixture was refluxed for 10 h. The crystals that formed after cooling were filtered off and washed with water, then recrystallized from a 1:2 mixture of CHCl₃ and EtOH. 8-Ethoxy-2,2-dimethyl-10-methylsulfanyl-5-(pyrrolidin-1-yl)-1,4-dihydro-2*H*-pyrano[4'',3'':4',5']pyrido[3',2':4,5]thieno[3,2-*d*]pyrimidine (8a). Yield 0.66 g (77%), light-yellow crystals, mp 188–189°C. ¹H NMR spectrum, δ, ppm (*J*, Hz): 1.35 (6H, s, 2CH₃); 1.49 (3H, t, *J* = 7.1, OCH₂C<u>H₃</u>); 1.95–2.00 (4H, m, 3,4-CH₂ pyrrolidine); 2.58 (3H, s, SCH₃); 3.43 (2H, s, 1-CH₂); 3.62–3.67 (4H, m, N(CH₂)₂ pyrrolidine); 4.61 (2H, q, *J*=.1, OC<u>H₂CH₃</u>); 4.80 (2H, s, 4-CH₂). ¹³C NMR spectrum, δ, ppm: 13.5 (SCH₃); 14.1 (CH₂C<u>H₃</u>); 25.0 (3,4-CH₂ pyrrolidine); 26.5 (2CH₃); 37.1 (1-CH₂); 49.8 (2,5-CH₂ pyrrolidine); 59.2 (4-CH₂); 62.7 (CH₂CH₃); 68.8 (C-2); 108.7; 115.9; 116.1; 142.8; 156.6; 156.8; 158.5; 161.2 (C-8), 166.3 (C-10). Found, %: C 58.49; H 6.15; N.15; S 14.78. C₂₁H₂₆N₄O₂S₂. Calculated, %: C 58.58; H 6.09; N 13.01; S 14.89.

8-Methoxy-2,2-dimethyl-10-methylsulfanyl-5-(morpholin-4-yl)-1,4-dihydro-2*H*-pyrano[4'',3'':4',5']pyrido[3',2':4,5]thieno[3,2-*d*]pyrimidine (8b). Yield 0.68 g (79%), white crystals, mp 209–210°C. ¹H NMR spectrum, δ, ppm: 1.35 (6H, s, 2CH₃); 2.61 (3H, s, SCH₃); 3.22–3.28 (4H, m, N(CH₂)₂ morpholine); 3.49 (2H, s, 1-CH₂); 3.76–3.81 (4H, m, O(CH₂)₂ morpholine); 4.16 (3H, s, OCH₃); 4.70 (2H, s, 4-CH₂). ¹³C NMR spectrum, δ, ppm: 13.7 (SCH₃); 26.1 (2CH₃); 37.0 (1-CH₂); 49.7 (3,5-CH₂ morpholine); 54.2 (OCH₃); 59.4 (4-CH₂); 66.1 (2,6-CH₂ morpholine); 68.9 (C-2); 108.6; 119.5; 120.3; 143.7; 155.6; 156.4; 157.5; 158.8 (C-8); 166.1 (C-10). Found, %: C 55.60; H 5.64; N 12.83; S 14.97. C₂₀H₂₄N₄O₃S₂. Calculated, %: C 55.53; H 5.59; N 12.95; S 14.83.

8-Isopropoxy-2,2-dimethyl-10-methylsulfanyl-5-(morpholin-4-yl)-1,4-dihydro-2*H***-pyrano[4'',3'':4',5']pyrido[3',2':4,5]thieno[3,2-***d***]pyrimidine (8c). Yield 0.71 g (77%), white crystals, mp 219–220°C. ¹H NMR spectrum, \delta, ppm (***J***, Hz): 1.35 (6H, s, 2CH₃); 1.49 (6H, d,** *J* **= 6.2, CH(C<u>H₃)₂); 2.59 (3H, s, SCH₃); 3.22–3.28 (4H, m, N(CH₂)₂ morpho-line); 3.49 (2H, s, 1-CH₂); 3.76–3.82 (4H, m, O(CH₂)₂ morpholine); 4.68 (2H, s, 4-CH₂); 5.61 (1H, sept,** *J* **= 6.2, OCH). ¹³C NMR spectrum, \delta, ppm: 13.5 (SCH₃); 25.1 (CH(<u>CH₃)₂); 26.7 (2CH₃); 37.1 (1-CH₂); 49.8 (3,5-CH₂ morpholine); 59.3 (4-CH₂); 66.0 (2,6-CH₂ morpholine); 65.7 (OCH); 69.0 (C-2); 108.4; 118.7; 121.4; 141.6; 153.8; 156.6; 158.2; 158.7 (C-8); 166.4 (C-10). Found, \%: C 57.45; H 6.19; N 12.27; S 13.84. C₂₂H₂₈N₄O₃S₂. Calculated, \%: C 57.37; H 6.13; N 12.16; S 13.92.**</u></u>

10-Benzylsulfanyl-8-ethoxy-2,2-dimethyl-5-(morpholin-4-yl)-1,4-dihydro-2H-pyrano[4",3":4',5']pyrido[3',2':4,5]thieno [3,2-d] pyrimidine (8d). Yield 0.84 g (80%), white crystals, mp 178–179°C. ¹H NMR spectrum, δ, ppm (J, Hz): 1.25 (6H, s, 2CH₃); 1.50 (3H, t, J = 7.0, OCH₂CH₃); 3.21–3.26 (4H, m, N(CH₂)₂ morpholine); 3.38 (2H, s, 1-CH₂); 3.75–3.80 (4H, m, O(CH₂)₂ morpholine); 4.48 (2H, s, SCH₂); 4.63 (2H, q, *J* = 7.0, OCH₂CH₃); 4.65 (2H, s, 4-CH₂). 7.17-7.30 (3H, m, H Ph); 7.39-7.45 (2H, m, H Ph). ¹³C NMR spectrum, δ , ppm: 14.0 (CH₂CH₃); 26.4 (2CH₃); 34.5 (SCH₂); 37.0 (1-CH₂); 49.8 (3,5-CH₂) morpholine); 59.1 (4-CH₂); 62.5 (CH₂CH₃); 65.9 (2,6-CH₂) morpholine); 68.9 (C-2); 109.9; 118.6; 118.8; 126.3 (C-4 Ph); 127.8 (C-3,5 Ph); 127.9 (C-2,6 Ph); 137.3 (C-1 Ph); 142.9; 157.3; 159.1; 159.8; 162.4 (C-8); 166.1 (C-10). Found, %: C 62.13; H 5.72; N 10.63; S 12.35. C₂₇H₃₀N₄O₃S₂. Calculated, %: C 62.04; H 5.79; N 10.72; S 12.27.

8-Ethoxy-10-methylsulfanyl-5-(pyrrolidin-1-yl)-1,2,3,4tetrahydropyrimido[4',5':4,5]thieno[2,3-c]isoquinoline (8e). Yield 0.71 g (88%), yellow crystals, mp 206–207°C. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.49 (3H, t, *J* = 7.0, OCH₂C<u>H</u>₃); 1.71–1.80 (2H, m, 2-CH₂); 1.86–1.93 (2H, m, 3-CH₂); 1.93–2.00 (4H, m, 3,4-CH₂ pyrrolidine); 2.59 (3H, s, SCH₃); 2.74 (2H, t, *J* = 5.9, 4-CH₂); 3.54 (2H, t, *J* = 6.3, 1-CH₂); 3.60–3.66 (4H, m, N(CH₂)₂ pyrrolidine); 4.60 (2H, q, *J* = 7.0, OC<u>H₂CH₃). ¹³C NMR spectrum, δ , ppm: 13.6 (SCH₃); 14.0 (CH₂<u>C</u>H₃); 21.3 (2-CH₂); 22.4 (3-CH₂); 25.0 (3,4-CH₂ pyrrolidine); 26.8 (4-CH₂); 27.1 (1-CH₂); 49.7 (2,5-CH₂ pyrrolidine); 62.4 (<u>C</u>H₂CH₃); 113.7; 115.8; 119.4; 143.6; 152.8; 157.5; 159.4; 160.5 (C-8), 166.1 (C-10). Found, %: C 59.90; H 6.10; N 14.08; S 16.14. C₂₀H₂₄N₄OS₂. Calculated, %: C 59.97; H 6.04; N 13.99; S 16.01.</u>

10-Benzylsulfanyl-8-ethoxy-5-(morpholin-4-yl)-1,2,3,4tetrahydropyrimido[4',5':4,5]thieno[2,3-c]isoquinoline (8f). Yield 0.78 g (79%), white crystals, mp 236–237°C. ¹H NMR spectrum, δ , ppm (*J*, Hz): 1.50 (3H, t, *J* = 7.1, OCH₂CH₃); 1.71–1.81 (2H, m, 2-CH₂); 1.84–1.95 (2H, m, 3-CH₂); 2.66–2.74 (2H, m, 4-CH₂); 3.22–3.30 (4H, m, N(CH₂)₂) morpholine); 3.45-3.54 (2H, m, 1-CH₂); 3.74-3.83 (4H, m, O(CH₂)₂ morpholine); 4.47 (2H, s, SCH₂); 4.62 (2H, q, J = 7.1, OCH₂CH₃); 7.17–7.32 (3H, m, H Ph); 7.38–7.46 (2H, m, H Ph). ¹³C NMR spectrum, δ , ppm: 14.0 (CH₂CH₃); 22.1 (2-CH₂); 22.4 (3-CH₂); 26.8 (4-CH₂); 27.1 (1-CH₂); 34.4 (SCH₂); 49.7 (3,5-CH₂ morpholine); 62.4 (<u>CH</u>₂CH₃); 65.8 (2,6-CH₂ morpholine); 108.7; 118.5; 118.8; 126.4 (C-4 Ph); 127.7 (C-3,5 Ph); 127.8 (C-2,6 Ph); 137.4 (C-1 Ph); 142.7; 157.1; 159.4; 160.2; 162.8 (C-8); 166.5 (C-10). Found, %: C 63.46; H 5.78; N 11.46; S 13.14. C₂₆H₂₈N₄O₂S₂. Calculated, %: C 63.39; H 5.73; N 11.37; S 13.02.

Part of this study was performed with financial support from the State Committee of Science at the Ministry of Education and Science of the Republic of Armenia and Russian Foundation for Basic Research within the framework of joint scientific programs 15RF-027 and 15-53-05064/15, respectively.

References

- Sondhi, M. S.; Jain, S.; Dinodia, M.; Shukla, R.; Raghubir, R. Bioorg. Med. Chem. 2007, 15, 3334.
- El-Gazzar, A.-R. B. A.; Hussein, H. A. R.; Hafez, H. N. Acta Pharm. 2007, 57, 395.
- Alagarsamy, V.; Meena, S.; Ramseshu, K, V.; Solomon, V. R.; Thirumuragan, K.; Dhanabal, K. *Eur. J. Med. Chem.* 2006, *41*, 1293.
- Mohamed, M. S.; Kamel, R.; Fatahala, S. S. Eur. J. Med. Chem. 2010, 45, 2994.
- Kanq, M. A.; Kim, M.-S.; Kim, J. Y.; Shin, Y.-J.; Song, J.-Y.; Jeong, J.-H. *Int. J. Oncol.* 2015, 46, 342.
- El-Essawy, F. A. Nucleosides, Nucleotides Nucleic Acids 2005, 24, 1265.
- Bakhite, E. A.; Abdel-Rahman, A. E.; Al-Taifi, E. A. Phosphorus, Sulfur Silicon Relat. Elem. 2004, 179, 513.
- Rateb, N. M.; Abdelaziz, Sh. H.; Zohdi H. F. Int. J. Adv. Res. 2014, 2, 446.
- Yassin, F. A. Chem. Heterocycl. Compd. 2009, 45, 35. [Khim. Geterotsikl. Soedin. 2009, 43.]

- Loidreau, Y.; Marchand, P.; Dubouilh-Benard, C.; Nourrisson, M.-R.; Duflos, M.; Lozach, O.; Loaëc, N.; Meijer, L.; Besson, T. *Eur. J. Med. Chem.* **2012**, *58*, 171.
- 11. Bakhite, E. A.; Al-Sehemi, A. G.; Yamada, Y. J. Heterocycl. *Chem.* **2005**, *42*, 1069.
- Riyadh, S. N.; Abdallah, M. A.; Abbas, I. M.; Gomha, S. N. Int. J. Pure Appl. Chem. 2006, 1(1), 57.
- Paronikyan, E. G.; Akopyan, Sh. F.; Noravyan, A. S.; Panosyan, G. A.; Stepanyan, G. M.; Garibdzhanyan, B. T.; Dzhagatspanyan, I. A.; Nazaryan, I. M.; Akopyan, A. G. *Pharm. Chem. J.* **2009**, *43*, 139. [*Khim.-Farm. Zh.* **2009**, *43*(3), 17.]
- Paronikyan, E. G.; Akopyan, Sh. F.; Noravyan, A. S. Chem. Heterocycl. Compd. 2008, 44, 1003. [Khim. Geterotsikl. Soedin. 2008, 1245.]

- Paronikyan, E. G.; Akopyan, Sh. F.; Noravyan, A. S.; Mamyan, S. S.; Paronikyan, R. G.; Dzhagatspanyan, I. A. *Pharm. Chem. J.* 2013, 47, 92. [*Khim.-Farm. Zh.* 2013, 47(2), 24.]
- 16. Pozharskii, A. F. *Theoretical Foundations of Heterocyclic Chemistry* [in Russian]; Khimiya: Moscow, 1985, p. 159.
- Karataeva, F. N.; Klochkov, V. V. NMR Spectroscopy in Organic Chemistry; Izd-vo Kazan. fed. un-ta: Kazan, 2012, Vol. 1, p. 49.
- 18. Akopyan, Sh. F. Diss. Cand. Chem. Sci., Yerevan, 2009.
- 19. Manual on Conducting Preclinical Studies of Drugs [in Russian]; Mironov, A. N., Ed.; Grif and K: Moscow, 2012, Vol. 1, p. 509.
- Drugs [in Russian]; Mashkovskii, M. D., Ed.; 16th ed., corrected, reworked, and supplemented; Novaya Volna: Moscow, 2010, p. 851.