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Abstract
Technological advancements have allowed geneticists to exploit an increasing array of molecular markers, many of which 
have different properties and may provide contrasting insights into the evolutionary history and structure of populations. 
This has important consequences for conservation managers attempting to identify units at which to conserve intraspecific 
diversity. In this study we compared the inferences derived from nuclear microsatellites and restriction-site associated DNA 
(RADseq) data for a threatened freshwater fish, the bull trout Salvelinus confluentus. For both marker types we generated 
data for the same suite of individuals collected from 24 populations distributed across the species range. The RADseq data 
were low coverage (mean site coverage < 3X), so we implemented a probabilistic genotyping approach. We performed a 
comparable suite of analyses for both datasets. Both datasets revealed similar broad patterns of subdivision that reflected 
primary evolutionary lineages (Coastal and Interior clades). However, the RADseq more clearly and consistently identi-
fied the hierarchical phylogenetic structure. Some populations had varying assignments to these lineages depending on the 
dataset. RADseq data also suggested admixture has shaped the genomic character of several populations. Such a signal was 
not apparent with the microsatellites, suggesting that the datasets are revealing different aspects of population history. Our 
study provides a valuable case study in how advances in molecular technology can enhance our understanding of a relatively 
well-studied species. It also underscores the importance of framing findings generated with high-throughput sequencing 
technology within the context of past research to enhance conservation decision making.

Keywords  Salmonidae · Salvelinus confluentus · Restriction-site associated DNA sequencing · Conservation genomics · 
Intraspecific diversity

Introduction

Characterizing patterns of intraspecific diversity and popu-
lation history is one of the fundamental goals of popula-
tion and conservation genetics. Within a given species, a 
multitude of evolutionary events and processes can gener-
ate complex patterns of variation and differentiation. Many 
species display hierarchical structure in which populations 
are nested within metapopulations and broader phylogenetic 
lineages (Excoffier et al. 1992; Unger et al. 2013; Pisa et al. 
2015). Rarely are the relationships between these hierarchies 
simple, due to events such as secondary mixing between 
lineages, isolation by distance, and asymmetrical coloni-
zation (Excoffier et al. 2009; Martin et al. 2015; Gompert 
and Buerkle 2016). Assessing the distinctiveness of a popu-
lation or lineage can be subjective (Ramey II et al. 2007) 
and the patterns of diversity we observe sometimes deviate 
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from preconceived definitions of units we wish to conserve 
(McDevitt et al. 2009; Jensen et al. 2013; Wayne and Shaffer 
2016; Groves et al. 2017).

An under-appreciated issue that complicates assessing 
intraspecific diversity is that we as a research community 
discern evolutionary relationships using imperfect systems 
of measurement. Although a true population history exists 
for a species, we are restricted to interpreting relationships 
using data, theory, models, and analytical techniques that 
may incompletely represent its history (Waples and Gag-
giotti 2006). Until recently much of the knowledge in bio-
diversity genetics was built using a handful of loci for any 
given marker type, such as nuclear microsatellites, amplified 
fragment length polymorphism (AFLPs), restriction frag-
ment length polymorphism (RFLPs), and mitochondrial 
genes. Although these data sources have been workhorses 
for molecular ecology and conservation genetics (Sunnucks 
2000; DeYoung and Honeycutt 2008; Hodel et al. 2016), 
they have limitations (Putman and Carbone 2014). Now the 
proliferation of high-throughput sequencing technologies has 
made it possible to characterize significant portions of the 
genome for even non-model organisms. Genomic-level data 
will add to our knowledge of population structure, but may 
conflict with past findings and challenge existing notions 
of population relationships (Kohn et al. 2006; Twyford and 
Ennos 2012; Piccolo 2016). This is particularly important 
from a natural resource management perspective because 
decisions based on findings generated with traditional mark-
ers may require revisiting in light of new genomic data.

Within this context, we present a case study comparing 
the inferences of genetic structure derived from two different 
types of markers generated from the same dataset. Our target 
species was the bull trout Salvelinus confluentus, a freshwa-
ter salmonid native to the Pacific Northwest of the United 
States. Bull trout provide an interesting case study because 
there has been a large body of genetic and ecological 
research describing population relationships. This freshwater 
salmonid exhibits a variety of life history strategies includ-
ing both resident fish that spend their entire life in small 
headwater streams and migratory fish that may travel over 
100 km, even through saltwater, to feeding and maturing 
sites between spawning events (Northcote 1997; Rieman and 
Dunham 2000; Mogen and Kaeding 2005). However, two 
critical requirements of the species are access to cold-water 
spawning habitat and intact migration corridors (Rieman 
and McIntyre 1993; McPhail and Baxter 1996). Combined 
with strong fidelity to natal spawning location, this creates 
a patchwork of genetically discrete populations across the 
species’ range restricted to watersheds with suitable habitat. 
Previous genetic work involving nuclear microsatellite mark-
ers has emphasized this pattern (Spruell et al. 2003; Ardren 
et al. 2011; DeHaan et al. 2011). Additionally, nuclear and 
mitochondrial sequence markers suggested populations can 

be further aggregated into broad phylogenetic groups (Taylor 
et al. 1999; Spruell et al. 2003; Ardren et al. 2011). The main 
evolutionary division exists between populations west of the 
Cascade Mountain Crest (Coastal lineage) and those found 
east of the Cascade Mountain Crest in the interior Columbia 
River Basin (Interior lineage).

Even though the bull trout has previously been character-
ized with genetics, there are lingering evolutionary ques-
tions for specific populations and the species overall. For 
example, the Deschutes River basin in Central Oregon is east 
of the Cascade Mountain Crest (geographically consistent 
with the Interior lineage) but bull trout in this system cluster 
with other Coastal populations using microsatellites (Ardren 
et al. 2011). Further, bull trout in the Klamath River basin in 
southern Oregon cluster with those in the Willamette River 
in northern Oregon even though the distance between these 
basins’ respective entrance into the Pacific Ocean is several 
hundred kilometers. Most perplexing is the bull trout popu-
lation in the St. Mary River of northern Montana: it is the 
only population in the contiguous US east of the Continental 
Divide yet with microsatellite markers it clusters with the 
Coastal lineage instead of Interior populations located in 
adjacent watersheds (Spruell et al. 2003; Ardren et al. 2011). 
There are other broad questions, such as the level of simi-
larity among Coastal populations, despite being separated 
by saltwater, and the assignment of populations to lineages 
within the broader Interior group.

These questions are relevant in part because bull trout 
are listed as a threatened species under the Endangered Spe-
cies Act (ESA) across their range in the coterminous United 
States. Currently the species is listed as a single entity with 
six defined recovery units (U.S. Fish and Wildlife Service 
2015). All populations representing the Coastal lineage 
were combined into a single recovery unit (except for the 
Klamath, which was given its own recovery designation). 
Interior lineage populations were divided into three recov-
ery units and the St. Mary was classified as a sixth distinct 
recovery unit. Given some of the uncertainties described 
above, additional information to help clarify the delineation 
of recovery units may be warranted.

Genetic data, such as single-gene regions of the mito-
chondrial genome and a suite of nuclear microsatellite mark-
ers, were used in part to designate recovery units. However, 
in totality these markers covered a limited portion of the bull 
trout genome, potentially obscuring complex evolutionary 
patterns (Putman and Carbone 2014). Therefore, we gener-
ated a restriction site-associated DNA sequencing (RADseq) 
dataset for 24 bull trout populations from across the species 
range in the coterminous United States. We then compared 
these data to a 16 locus microsatellite dataset generated for 
the same exact individuals. The anticipation was that both 
datasets would highlight the same broad phylogenetic pat-
terns (e.g. coastal vs. interior) and the RADseq data would 
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provide enhanced clarity for previously uncertain evolu-
tionary relationships (e.g. Deschutes and Coastal lineage, 
Klamath and Willamette; St. Mary and Coastal lineage). Our 
study presents a valuable opportunity to evaluate the impli-
cations of new genomic sequencing technologies for char-
acterizing intraspecific diversity and evolutionary patterns.

Materials and methods

RADseq library preparation

Our laboratories (Washington Department of Fish and Wild-
life Molecular Genetics Laboratory [WDFW] and US Fish 
and Wildlife Service [USFWS] Abernathy Fish Technology 
Center) have repositories of bull trout samples collected as 
part of various research and management projects. Many of 
these samples were included in Ardren et al. (2011). The ini-
tial ascertainment library contained 380 individuals from 24 
bull trout populations (Table 1; Fig. 1). We selected popula-
tions that provided sufficient geographic coverage and rep-
resented the distribution of previously known phylogenetic 

groups. Our dataset included eight populations west of the 
Cascades Mountains (including the Klamath River) and 16 
populations east of the Cascades (including the St. Mary 
River). For much of the reporting we will reference popula-
tions according to relevant geographic groupings (Fig. 1). 
All samples were extracted for genomic DNA using Qiagen 
DNEasy ® kits (Qiagen Inc., Valencia, CA).

Restriction-site associated DNA (RAD) sequences were 
used (RADseq, Miller et al. 2007; Baird et al. 2008) to 
discover and genotype SNPs. DNA was quantitated using 
Quant-It™ BR assay kit (Life Technologies, Carlsbad, CA) 
and a QuantiFluor® ds DNA system (Promega, Madison, 
WI) to normalize DNA from all individuals at 1 µg/40 µL. 
Quantitated genomic DNA was digested using the enzyme 
Sbf I-HF® (New England Biolabs, Ipswich, MA) at 50 µL 
reaction volumes (400 U/mL SbfI-HF®, 1X Cutsmart™ 
buffer). Digests were conducted at 37 °C for 3 h followed 
by 65 °C for 20 min. The P1 adapters (Integrated DNA Tech-
nologies, San Diego, CA), which included a DNA barcode 
specific to each individual (96 unique barcodes in total), 
were ligated to digested DNA in 60 µL reaction volumes 
(8.3 nM P1 adapters, 0.17X NEBuffer 2 [New England 

Table 1   Bull trout populations 
included in the RADseq 
analysis

The number corresponds with the numbers on the map in Fig.  1. ‘Cascade Crest’ refers to whether the 
population and watershed are physically east or west of the Cascade Mountain Divide. ‘Grouping’ is the 
biogeographical units used for this study. ‘Individuals’ is the number of individuals retained for the RAD-
seq analysis

Number Population Cascade crest State Grouping Individuals

1 Elwha River West WA Puget sound 14
2 Illabot creek West WA Puget sound 13
3 Ruby creek West WA Puget sound 15
4 Upper Baker River West WA Puget sound 16
5 Klamath River West OR Klamath 15
6 Willamette River West OR Lower Columbia 16
7 Lewis River West WA Lower Columbia 16
8 Deschutes River East OR Deschutes 15
9 Mill creek East WA Snake River 14
10 Tucannon River East WA Snake River 16
11 Imnaha River East OR Snake River 9
12 Lochsa River East ID Snake River 11
13 Salmon River East ID Snake River 11
14 Jarbidge River East NV Snake River 16
15 Malhuer River East OR Snake River 16
16 Payette River East ID Snake River 16
17 Yakima River East WA Upper Columbia 16
18 Methow River East WA Upper Columbia 15
19 Kootenai River East MT Upper Columbia 14
20 St. Joe River East ID Upper Columbia 16
21 Lake pend oreille East ID Upper Columbia 14
22 Clark Fork River East MT Upper Columbia 16
23 Warm springs creek East MT Upper Columbia 16
24 St. Mary River East MT St. Mary 8
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Biolabs], 1 nM rATP [Promega], 16,666.7 U/mL T4 DNA 
Ligase [New England Bioloabs]). The reaction was incu-
bated at room temperature for 1 h followed by 65 °C for 
20 m, after which DNA from 95 individuals was pooled 
into a single reaction. A negative control was included in 
each library. Pooled DNA was sheared using a Bioruptor 
® (Diagenode, Denville, NJ) for four to nine cycles of 30 s 
of shearing and 59 s resting, depending on DNA quality. 
Sheared DNA was purified and size selected using Agen-
court® AMPure® XP PCR purification kits (Beckman 

Coulter Inc., Brea, CA), following manufacturers’ protocol. 
Genomic libraries were prepared, including the ligation of 
the P2 adapter (primer for the complimentary DNA strand), 
using the KAPA LTP Library Preparation Kit for Illumina® 
platforms (KAPA Biosystems, Cape Town, SA) following 
manufacturers’ protocol with the optional final PCR amplifi-
cation step, annealing at 68 °C. Library DNA concentrations 
were evaluated using qPCR with the KAPA Library Quan-
tification Kit for Illumina® platforms and an Applied Bio-
systems™ 7900 real-time PCR system (Life Technologies) 

Fig. 1   Map of the study area and the bull trout populations included 
in the RADseq libraries. Tributaries from which bull trout were col-
lected are indicated by points, which are color-coded according to 
major drainage basins. The Columbia River Basin is shaded gray and 

the Klamath River Basin in purple. The solid red line indicates the 
Continental Divide and the solid blue line the highlights the Cascade 
Crest. Black lines indicate state and national boundaries
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following manufacturers’ protocol. Libraries were normal-
ized to 10 nM and sent to University of Oregon’s Genomics 
and Cell Characterization Core Facility (UOGCF), where 
they were sequenced paired-end on an Illumina® HiSeq 
2500 sequencer.

After the first round of sequencing the data were pro-
cessed using the process_radtags module of Stacks 1.46 
(Catchen et al. 2013) to evaluate average read count per 
individual. To increase total yield per individual and limit 
disparities in coverage, individual libraries were normal-
ized again at the P1 ligation step based on read count; 
DNA was reduced for individuals with high read count and 
increased for those with low counts. RAD sequencing was 
then repeated. Library preparation proceeded as described 
above and the new libraries were submitted to the UOGCF 
for the second round of sequencing.

Bioinformatics

Amplification can introduce PCR clones into RADseq librar-
ies, causing underestimates of heterozygosity and overesti-
mates of coverage. Therefore, we applied the clone_filter 
module implemented by Stacks (Catchen et al. 2013) to our 
data. We performed a de novo assembly based on our RAD-
seq data using the bioinformatic pipeline implemented by 
Stacks.

Certain parameters in the Stacks pipeline control the 
number of reads and the distance between them required 
to form ‘stacks’, which are then used to build contigs. The 
choice of parameter values can influence the number of con-
tigs, number of SNPs, and genetic distance estimated with 
a RADseq dataset (Catchen et al. 2013; Mastretta-Yanes 
et al. 2015; Paris et al. 2017). We tested the impact of these 
parameters (m [stack depth], M [distance between stacks], 
n [mismatches between loci], and max_locus_stacks [stacks 
per locus]; see supplemental material) on contig discovery. 
Because we sequenced most of our samples twice in two 
separate HiSeq runs, we had independent replicate datasets 
to compare. For this experiment we selected sequencing data 
from ten individuals based on the smallest difference in the 
number of reads produced across the two sequencing runs, 
allowing at most only one individual from each population. 
Details on the parameters that were tested, the methodology, 
and results, are in the supplemental material.

Genotyping and population genetics

Based on the results of the Stacks pipeline experiment, 
we proceeded with the following parameter values for 
building loci for the entire bull trout dataset: m = 3, M = 2, 
max_locus_stacks = 3, and n = 1. Our sequence coverage 
was low (see “Results”) and selecting these parameters 
balanced the need of increasing mapping coverage while 

minimizing exclusion of reads from the dataset. To build 
our final catalog of contigs we incorporated the full suite 
of 344 individuals (see “Results”) that produced suffi-
cient numbers of forward reads, combining data from the 
two replicates. We again ran the clone_filter function and 
then each of the individual Stacks core modules (ustacks, 
cstacks, and sstacks). After creating our catalog of contigs 
we removed any duplicates.

Because we had a large number of individuals per popu-
lation and low sequencing coverage, we used the geno-
typing approach implemented in the program ANGSD 
(Korneliussen et al. 2014). Rather than directly calling 
genotypes at a particular genomic position for an indi-
vidual, ANGSD relies on genotype likelihoods estimated 
using sequencing reads aligned to a reference genome. 
This method is advantageous for low coverage data and 
results in unbiased allele frequency estimates (Nielsen 
et al. 2011, 2012; Korneliussen et al. 2014). In this case, 
our constructed contigs from Stacks served as our ‘ref-
erence genome’. We aligned reads with Bowtie2 (Lang-
mead and Salzberg 2012) using only the forward reads 
(i.e. reads originating from the restriction cut-site). The 
resulting sequence alignment/map (SAM) files produced 
by Bowtie were converted to binary alignment files (BAM) 
using SAMtools (Li et al. 2009). With ANGSD we meas-
ured per site coverage across our BAM files. To examine 
population structure we exploited several analyses inte-
grated in the ANGSD framework. First we estimated the 
posterior genotype probabilities using the GATK method 
(McKenna et al. 2010) with the allele frequency prior and 
then used ngsCovar (Fumagalli et al. 2014) to conduct 
a principal component analysis (PCA). We also took the 
genotype likelihoods and conducted an admixture analysis 
with NGSadmix (Skotte et al. 2013). We ran ten itera-
tions of every K value (i.e. number of genetic clusters) 
from one to 24. For both analyses we screened for base 
and mapping quality (see “Results”), identified variants 
across all individuals using a p-value threshold of 10− 6, 
only included sites for which reads were available from 
two or more individuals, removed tri-allelic sites, and set 
a minor allele frequency cut-off of 0.05.

We conducted an additional analysis with TreeMix 
(Pickrell and Pritchard 2012) to estimate a maximum-
likelihood tree of population relationships and migration 
events. We added 1–17 migration edges, which reflect 
admixture events that improve the fit of the model, esti-
mating the variance explained by the model with increas-
ing number of edges. For TreeMix we generated SNP gen-
otype calls for each individual based on the same ANGSD 
pipeline. We added RADseq data from brook trout Salveli-
nus fontinalis collected from Fishing Creek, Pennsylvania, 
USA to serve as an outgroup.
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Microsatellites

We generated genotypes at 16 microsatellite loci follow-
ing the protocol and procedures described in Ardren et al. 
(2011). All samples had been previously genotyped in 
Ardren et al. except for those from the Lewis and Clark Fork 
rivers, which were unique to this study. We constructed a 
PCA with these genotypes using the package adegenet 2.0 
(Jombart 2008) for R 3.2 (R Core Team 2015). We per-
formed a Bayesian clustering analysis of these genotypes 
using the program STRU​CTU​RE (Pritchard et al. 2000) with 
both the uncorrelated and correlated allele frequency models 
(Falush et al. 2003). K ranged from one to 24 with five rep-
licates per value and a 50,000 burn-in followed by 500,000 
MCMC replicates per iteration. STRU​CTU​RE runs were 
performed in parallel using the R package ParallelStruc-
ture (Besnier and Glover 2013). Along with the mean log-
likelihood for each K value, we estimated the ΔK statistic 
(Evanno et al. 2005) to identify the optimal grouping of our 
populations.

Results

Sequencing results and stacks parameter testing

On average our initial set of four libraries pro-
duced ~ 37.9 million forward reads (SD 10.3 million) that 
were retained following removal of low quality reads based 
on the default process_radtags filter (e.g. -c and -d options 
selected). The average number of retained forward reads 
per individual following filtering and PCR clone removal 
was 401,824 (SD 397,535) with a median value of 256,218. 
Seventeen individuals were excluded in the second set of 
libraries because they produced a sufficient number of 
reads in the first normalization (between 1.2 and 1.86 mil-
lion reads). Thirty-six individuals produced so few reads (all 
less than 30,000) that we excluded them from the analysis. 
The remaining individuals were re-sequenced. Our negative 
controls produced on average 6828 barcoded reads, with the 
highest value 7467 reads.

By far the parameter with the greatest impact on contig 
construction was stack depth (m): increasing this param-
eter value decreased the number of contigs in the catalog 
by nearly 20,000 for each incremental change (Fig. S1). 
Changing parameter values had little impact on contig error 
rates (i.e. proportion detected in one replicate but not in the 
other), although rates tended to decrease as m increased (Fig. 
S2). However, as m increased there were fewer contigs that 
were identical between the two replicates, suggesting dif-
ferent consensus contig sequences were produced between 
the replicates (Fig. S3). See the supplemental material for 
more detail.

Catalog construction

We then processed both sets of RADseq libraries together in 
the Stacks pipeline. Across the 344 individuals retained in 
the library, the average number of forward reads sequenced 
per individual was 602,924 (SD 343,403) and the median 
value 534,138. After removing PCR duplicates the average 
number of reads per individual was 513,240 (SD 272,329) 
and the median value 446,907. Our resulting Stacks catalog 
contained 165,847 de novo contigs: 37 were duplicates and 
were removed from the catalog. The remaining 165,810 con-
tigs served as our reference genome. Aligning the forward 
reads to these contigs, our average within individual per 
site depth was 2.9X. This was variable across individuals: 
the maximum observed average coverage was 10.3X and 
the lowest was 0.8X. Nineteen individuals had an average 
coverage < 1X and another 110 had an average coverage of 
1-2X. Our average per base quality score was 37.3 (out of 
maximum score of 40). There was a noticeable break in the 
distribution of base quality scores: 95.8% had a score of 
27 or higher and the remainder had a score of 16 or lower. 
Thus, for subsequent analyses we filtered the data to include 
only bases with a quality score ≥ 27. Our average mapping 
quality score per individual was 29.5 with a range from 13.9 
to 32.6. For subsequent analyses we removed reads with a 
mapping score below 10, which should remove reads aligned 
to multiple sequences (Urban 2014).

Population genetics

ANGSD identified 649,127 variable sites across individuals 
using the threshold parameters we selected. Of these 79,952 
had a minor allele frequency greater than 0.05 and were 
included in the subsequent analyses. The first axis of the 
PCA produced by ngsCovar explained 8.34% of the variation 
in allele frequencies and the second axis explained 5.25%. 
When plotted, the first axis cleanly divided bull trout popula-
tions along the coastal and interior lineages (Fig. 2a). Popu-
lations from the Snake River basin, Upper Columbia, and St. 
Mary River all clustered among the Interior grouping; the 
Coastal grouping included the Deschutes, Lower Columbia, 
Klamath, and Puget Sound populations. The second axis 
split the Interior lineage between an Upper Columbia group 
(which included the St. Mary population) and a Snake River 
basin group. The population from the Yakima River basin 
in central Washington was intermediate to these clusters.

The greatest increase in log likelihood estimates produced 
by NGSadmix occurred from K = 1 to K = 2 (Fig. S4, see 
Supplemental 2), which split the bull trout populations into 
groups corresponding to the Coastal and Interior lineages 
(Fig. 3). The Coastal cluster contained the Puget Sound, 
Klamath, and Willamette populations. The Interior cluster 
contained the Snake River, Upper Columbia, and St. Mary 



335Conservation Genetics (2019) 20:329–342	

1 3

-0.10

-0.05

0.00

0.05

-0.12 -0.08 -0.04 0.00 0.04
PC1 (8.34%)

PC
2
(5
.2
5%

)

Deschutes
Klamath
Lower Columbia
Puget Sound
Snake River
St. Mary
Upper Columbia

-5

0

5

-8 -4 0 4 8
PCA1 (3.2%)

PC
A2

(2
.7
%
)

(a) (b)

Fig. 2   a Principal component plot of 344 bull trout based on allele 
frequencies estimated by ANGSD for sites with a minor allele fre-
quency greater than 0.05. b Principal component plot of 322 bull 
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geographic region. Clustering patterns presented were observed in all 
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populations. Populations from the Lewis River (Lower 
Columbia) and Deschutes River had signatures of admixed 
ancestry (i.e. average q value for the two clusters both < 0.7) 
between the two lineages. The K = 3 split the Interior line-
age into a group containing Snake River populations and 
another containing the Upper Columbia and St Mary popu-
lations. Several Upper Columbia populations, most notably 
the Yakima River basin, appeared to have admixed ancestry 
between these two interior groups. The K = 4 saw a division 
between populations from the Puget Sound and the Lower 
Columbia/Klamath. This was observed in nine out of the ten 
iterations of NGSadmix. This pattern was also observed in 
the ngsCovar PCA: the third PC, which explained 2.6% of 
the variation, separated populations from the Puget Sound 
and Lower Columbia/Klamath. Increasing values of K pro-
duced small increases in log-likelihood and greater incon-
sistency across runs, complicating assessment of hierarchi-
cal relationships (Fig. S4).

With no migration edges the maximum-likelihood tree 
produced by TreeMix had three broad clades that corre-
sponded to the Coastal, Upper Columbia, and Snake River 
lineages (Fig. 4). The Willamette and Klamath populations 
grouped together and all populations from the Skagit River 

system (Upper Baker River, Illabot Creek, Ruby Creek) 
clustered together. The St. Mary population clustered with 
the Upper Columbia clade. Bull trout from the Yakima 
River were intermediate to the Upper Columbia and Snake 
River clades.

Adding migration edges altered the position of some 
populations in the TreeMix tree but did not fundamen-
tally change the primary clades (Fig. S9). The first added 
migration edge suggested admixture into the St. Mary 
population from the basal point of the entire Interior clade. 
Adding a second, third, and fourth migration edge sug-
gested introgression from the St. Joe River population into 
the Lewis River, from the Interior lineage to the Elwha 
population, and from the Snake River clade into the Des-
chutes population, respectively. With no migration edges 
the model explained 97.08% of the covariance. Adding 
13 (99.08%) and 15 migration edges (99.09%) resulted in 
models explaining the greatest proportion of covariance, 
but adding these edges began to alter tree topology. Also, 
few of these edges produced significant p-values with the 
Wald statistic, indicating that there was weak statistical 
support for their placement.

Fig. 4   Maximum-likelihood 
graph of population relation-
ships inferred using Tree-
Mix based on RADseq data. 
Population labels match those 
in Table 1 and are color-coded 
to match geographic groupings 
described in the text. Brook 
trout RADseq data were used 
as an outgroup. The horizon-
tal axis reflects the extent of 
genetic drift experienced by 
each branch in the graph, with 
longer branch lengths reflect-
ing higher drift. The scale bar 
shows ten times the average 
standard error of the sample 
covariance matrix. This model 
assumed no migration events
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Microsatellite data

Twenty-two of the 344 bull trout included in the RADseq 
libraries failed to produce microsatellite genotypes. The first 
two dimensions of the PCA incorporating the microsatellite 
genotypes explained less variation (3.2% and 2.7%) than the 
RADseq data. Coastal and Inland lineages formed a rough 
divide along the first axis (Fig. 2b). St. Mary and Deschutes 
populations clustered intermediate to the two primary lineages. 
The second axis slightly separated the Upper Columbia and 
Snake River populations, although there was some overlap. 
Also along this axis the Klamath River population was highly 
divergent from those in the Lower Columbia.

With STRU​CTU​RE the inference depended on the allele 
frequency model. Increasing K produced gradual increases in 
mean log-likelihood for the correlated model until K = 14: with 
higher values there were dramatic swings in log-likelihood 
scores (Fig. S5). This resulted in multiple values of K that had 
substantial support using the ΔK method (Fig. S6). The high-
est value was at K = 16, but there were other peaks at eight, 
ten, and 24. The K = 2 had the fifth highest ΔK score. At K = 2 
STRU​CTU​RE produced three different clustering patterns 
across our five replicates (Fig. S7). Three replicates produced 
a pattern that divided the Interior and Coastal lineages with 
the Deschutes and Klamath clustering with the Coastal and St. 
Mary with the Interior. One replicate clustered the Klamath 
with Interior populations and another clustered the Klamath 
and Willamette with the Interior and Warm Springs Creek 
with the Coastal. Regardless of the replicate, every popula-
tion was virtually homogenous in ancestry for the cluster it 
was assigned; no population showed a pattern of introgression 
between the two clusters. When increased to K = 3, there were 
four different clustering patterns among the five replicates 
(Fig. S8). Although some of these patterns corresponded to 
geographic groupings, they were inconsistent.

The uncorrelated model produced a different pattern. Log-
likelihood scores experienced the biggest leap from K = 2 
to K = 3 with a gradual increase and plateauing of scores, 
although there were some large swings beyond K = 14 (Fig. 
S5). This meant K = 2 was by the far the most supported value 
using ΔK (Fig. S6). It again divided the Interior and Coastal 
lineages: for four of the replicates the St. Mary and an Upper 
Columbia population (Warm Springs Creek) clustered with the 
Coastal lineage (Fig. S7). Increasing K to three resulted in four 
different clustering patterns across the five replicates (Fig. S8).

Discussion

RADseq/microsatellite comparison

As conservation genetics moves into the genomic era there 
is increasing need to compare findings generated with 

traditional markers to high-throughput sequencing data. 
Although newer techniques may be attractive, many ques-
tions can still be adequately answered using traditional 
markers such as single-gene sequences or polymorphic 
microsatellites (Zink and Barrowclough 2008; Elbers et al. 
2016; Hodel et al. 2016). Thus, it is important to weigh the 
benefits gained from using genomic data against the simplic-
ity, cost, and efficiency of traditional markers (McMahon 
et al. 2014; Elbers et al. 2016; Puckett 2017).

Although the datasets produced similar overall findings, 
there were striking differences. In general the RADseq data 
produced sharper, more consistent patterns of genetic struc-
ture at broad phylogenetic scales. Similar findings have been 
observed in other studies comparing these marker types, 
with RADseq data revealing complex, previously unknown 
phylogenetic patterns within other species of fish (Bradbury 
et al. 2015; Jeffries et al. 2016). Comparably, though, the 
microsatellite data provided less resolution in identifying 
phylogenetic groups and was inconsistent in patterns of 
clustering. We believe these findings reflect the nature of 
microsatellite loci themselves rather than limitations of our 
specific dataset. Many of the microsatellite markers in this 
dataset were developed specifically for bull trout (DeHaan 
and Ardren 2005) or closely related species from the same 
genus (Angers et al. 1995; Crane et al. 2004), limiting poten-
tial ascertainment bias. Low sample sizes may have also 
affected the clustering patterns, but the broad patterns we 
observed with the microsatellites mirror those of Ardren 
et al. (2011) who had larger sample sizes per population. 
For example, they also found the St. Mary’s and Deschutes 
populations clustered with Coastal populations and did not 
observe admixture within populations.

RADseq-derived SNPs and microsatellite loci have dif-
ferent properties and reflect different aspects of an organ-
ism’s genomic history. Microsatellites often contain multiple 
alleles per locus, which can result in low individual frequen-
cies of each allele. This makes microsatellites vulnerable 
to sudden shifts in allele frequencies due to genetic drift, 
especially bottlenecks (Luikart et al. 1998). Based on simu-
lations, Haasl and Payseur (2010) suggested that microsat-
ellites would detect recent divergence between populations 
more readily than SNPs.

Such properties likely explain the differing patterns of 
structure suggested by the markers used in this study. Bull 
trout populations are known for high genetic differentia-
tion, even among neighboring tributaries (Spruell et al. 
1999; Whiteley et al. 2006; Warnock et al. 2010; DeHaan 
et al. 2011). Ardren et al. (2011) found that although lower 
values of K discriminated the primary phylogenetic line-
ages, the highest supported K-value in their Bayesian clus-
tering analysis equaled the total number of populations in 
the dataset. Every pairwise FST comparison between popu-
lations in their study was statistically significant. Many 
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bull trout populations were founded after the retreat of 
the Pleistocene glaciers and/or are isolated by natural or 
anthropogenic barriers (Taylor et al. 1999; Costello et al. 
2003; Spruell et al. 2003; Ardren et al. 2011); such recent 
divergence is likely to be reflected in the microsatellite 
data. Genome-wide SNPs, on the other hand, such as those 
generated with RADseq, can include heavily conserved 
and/or adaptive regions of the genome that are more likely 
to reflect deep divergences (Liu et al. 2005; DeFaveri et al. 
2013). Thus, the RADseq was more likely to reveal phy-
logenetic divisions whereas the microsatellite data were 
obscured by more recent population processes.

Not only did we observe differences in clustering 
between the RADseq and microsatellite data, there were 
also inconsistencies in clustering patterns generated with 
the microsatellite data using STRU​CTU​RE. Based on 
initial testing we ran STRU​CTU​RE with both the uncor-
related and correlated allele frequency models. The cor-
related model accounts for the fact that closely related 
populations are likely to have non-independent allele fre-
quencies while the uncorrelated model assumes popula-
tions have independent allele frequencies (Falush et al. 
2003). It is difficult to predict which pattern fits any given 
biological system and selecting an ideal model is further 
complicated by hierarchical structure within the dataset. 
With the bull trout microsatellite data inferences of opti-
mal K and overall clustering patterns were strongly influ-
ence by allele frequency model. This underscores the vary-
ing evolutionary signals and population histories that can 
be revealed by microsatellite data. We suggest using both 
models when investigating systems with strong hierarchi-
cal genetic structure.

Another strength of the genome-wide SNPs compared to 
microsatellites was their ability to detect admixture. Ardren 
et al. (2011) suspected admixture in some bull trout popu-
lations based on mtDNA and microsatellite incongruence, 
but did not observe admixed populations based solely on the 
microsatellites. We did not observe evidence of admixture 
with the microsatellites either. However, the RADseq data 
provided evidence that some populations have a history of 
admixture. Historical admixture is the more likely expla-
nation for these patterns than contemporary hybridization 
based on the homogeneity of ancestry within populations 
and the overall lack of migrants detected in the dataset. Plus, 
many of the admixed populations are geographically located 
in potential contact zones between major phylogenetic lin-
eages, a pattern that has been observed in other Pacific 
salmonids as well (Narum et al. 2010; Blankenship et al. 
2011). Other studies have suggested that SNPs are superior 
to microsatellites for detecting admixture (Haasl and Payseur 
2010; Väli et al. 2010; Bradbury et al. 2015). This is due to 
high numbers of SNPs that are fixed (i.e. homozygous) for 
a particular allele in populations and/or lineages: admixed 

individuals or populations would then display a heterozy-
gous signal at these genomic regions.

Our study complements previous analyses that have com-
pared findings generated with RADseq and microsatellite 
data (e.g. Corander et al. 2013; Bradbury et al. 2015; Jeffries 
et al. 2016; Thrasher et al. 2018). Previous studies typically 
approached RADseq data similarly, generating genotype 
calls for SNPs that were heavily filtered based on variables 
such as coverage and missing data. Approaching RADseq 
data in this way facilitates the use of similar analyses and 
software that have traditionally been used for microsatellite 
data. However, high-throughput sequencing data is funda-
mentally different from microsatellite data and can be pro-
cessed in a variety of ways depending on the nature of the 
dataset and goals of the study.

Initial testing of our dataset suggested that the stand-
ard Stacks pipeline produced low genotyping rates due to 
our low coverage. Using the genotype likelihood approach 
implemented in ANGSD and ngsTools alleviated this issue 
and allowed us to identify a substantial number of potential 
SNPs. It also provided a way to avoid another issue: the high 
sample to cost ratio of RADseq compared to microsatellites. 
Low sample sizes (i.e. number of individuals per population) 
are often justified in RADseq analyses to balance the issue 
of sequencing coverage vs. cost of high-throughput sequenc-
ing (Elbers et al. 2016; Puckett 2017), resulting in lower 
sample sizes when compared to typical microsatellite data-
sets (Bradbury et al. 2015; Elbers et al. 2016; Jeffries et al. 
2016). However, using a bioinformatics pipeline designed 
for low coverage data allowed us to directly compare the 
same suite of 300 individuals for both marker sets. Even 
though we had substantial amounts of missing data in terms 
of individual coverage per contig, adding low coverage con-
tigs and/or variants may can also increase resolution by pro-
viding greater overall coverage of the genome (Hodel et al. 
2017). Strict filtering of loci and variants based on arbitrary 
cut-offs may remove valuable information embedded within 
high-throughput sequencing data. Although using large sam-
ples sizes may result in lower coverage, this study and oth-
ers demonstrate this approach can provide robust estimation 
of allele frequencies and subsequent assessment of genetic 
structure (Nielsen et al. 2012; Buerkle and Gompert 2013; 
Fumagalli et al. 2013).

Intra‑specific diversity of bull trout

The RADseq analysis provided several important insights 
into bull trout evolutionary history, resolving some of the 
discrepancies noted by previous studies. Perhaps the most 
obvious finding is that the St. Mary population aligns with 
other populations from the Upper Columbia River basin 
instead of the Coastal lineage. Ardren et al. (2011) found 
that St. Mary’s bull trout clustered with the Coastal lineage 
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with microsatellites but shared a mtDNA haplogroup with 
other Interior lineage populations. The congruence between 
mtDNA and RADseq data reflects biogeographic expecta-
tions, suggesting the microsatellite data provided misleading 
signals. This could have been due to random genetic drift 
producing similar allele frequencies as Coastal populations 
or homoplasy. Also, our results further corroborate previ-
ous studies documenting the similarity between the Klamath 
and Willamette populations. This is particularly interesting 
because the two watersheds are currently separated by the 
Umpqua and Rogue river basins in southern Oregon. In fact, 
the headwaters of the Deschutes basin are adjacent to those 
of the Klamath River basin, yet there was no evidence of 
recent shared ancestry between these populations. Further 
investigation involving additional species is needed to assess 
potential migration events between these two river basins. 
It also raises the question of whether bull trout were his-
torically present in other Oregon Coastal Rivers with cold 
headwater systems found in the Cascade Mountains (e.g., 
Rogue and Umpqua Rivers).

A novel finding from our study was the ubiquity of 
admixture across the bull trout range. At the geographic 
scale covered by our populations, contemporary migration 
and gene flow between bull trout populations is very rare 
(Spruell et al. 2003; Ardren et al. 2011). These signatures of 
admixed ancestry likely reflect historical secondary contact 
between the primary biogeographical lineages. Our samples 
from the Deschutes River in central Oregon and the Lewis 
River in southwest Washington displayed ancestry from the 
Coastal and Interior lineages. This was hypothesized by 
Ardren et al. (2011): both clustered with Coastal populations 
using microsatellites, but a few populations in these basins 
had mtDNA haplotypes found in Interior populations. Our 
results support this hypothesis and further suggest these two 
populations possess admixture from different Interior line-
ages. Lewis River bull trout appeared to have higher admix-
ture proportions from the Upper Columbia lineage whereas 
the Deschutes River bull trout had more from the Snake 
River. We also observed admixture within the Yakima River 
population, with ancestry from both of the Interior lineages 
(Upper Columbia and Snake River). Bull trout in this system 
also have mtDNA haplotypes from multiple lineages (Ardren 
et al. 2011).

The information from the RADseq analysis has implica-
tions for bull trout conservation. First, the assignment of 
populations to major lineages based on genetic data only 
partially aligns with their grouping into recovery units. The 
most obvious is the Mid-Columbia Bull Trout Recovery 
Unit, which encompasses populations such as the Yakima 
and Methow, and the Lower Snake River basin. This recov-
ery unit includes populations from two distinct evolution-
ary lineages, but does not cover either lineage in totality. 
Also, combining all populations from the Coastal lineage 

into a single Coastal Recovery Unit does not represent the 
divergence between Puget Sound/Coastal Washington popu-
lations and those in the Lower Columbia River basin. As a 
more general trend, based solely on genetic relationships, 
many populations do not fit cleanly into simple dichoto-
mies (e.g. coastal vs. interior). The Lewis River, Deschutes 
River, and Yakima River, for example, represent admixture 
between different lineages.

Our findings highlight a reoccurring theme in conserva-
tion genomics: the patterns of diversity being revealed with 
new genomic-level data do not always adhere to previous 
findings of population subdivision. Discrepancies inevita-
bly cause confusion among the conservation community. 
Within this context it important for geneticists to emphasize 
that individual datasets are necessarily “right” or “wrong”, 
but instead can provide different windows into the genetic 
background of a species or population. Genetic marker type 
plays an important role in interpreting population history 
and great care should be given to selecting a marker that will 
adequately answer a given question. Also, no single genetic 
dataset exists in vacuum and should be complemented with 
previous genetic research and other biological information 
to provide a holistic perspective of population relationships. 
In the case of bull trout and many other species, additional 
types of biological data such as life history data, habitat 
availability, and connectivity may also be important for 
shaping conservation units. Designating management units 
can be further complicated when different types of data such 
as social beliefs and political boundaries are factored into the 
decisions (Polfus et al. 2016; Marin et al. 2017).

It is important to note that results presented here do not 
represent a comprehensive range-wide analysis of bull trout 
evolutionary history, but rather a comparison of results gen-
erated from different marker sets. Currently there are 187 
subpopulations of bull trout distributed among 121 core 
habitat units identified by the US Fish and Wildlife Ser-
vice (USFWS 2015). As has been noted in previous stud-
ies, gene flow between subpopulations is rare, even at very 
fine geographic scales (Costello et al. 2003; Ardren et al. 
2011; DeHaan et al. 2011). Genetic similarities between 
populations that we observed likely reflect deep evolutionary 
divergence and past admixture, not contemporary gene flow. 
Differences in evolutionary patterns between this study and 
previous ones should be interpreted in light of the fact that 
this study contains a reduced number of populations relative 
to the range-wide distribution of bull trout.
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