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Abstract Population structure, connectivity, and disper-

sal success of individuals can be challenging to demon-

strate for solitary carnivores with low population densities.

Though the cougar (Puma concolor) is widely distributed

throughout North America and is capable of dispersing

long distances, populations can be geographically struc-

tured and genetic isolation has been documented in some

small populations. We described genetic structure and

explored the relationship between landscape resistance and

genetic variation in cougars in Washington and southern

British Columbia using allele frequencies of 17

microsatellite loci for felids. We evaluated population

structure of cougars using the Geneland clustering algo-

rithm and spatial principal components analysis. We then

used Circuitscape to estimate the landscape resistance

between pairs of individuals based on rescaled GIS layers

for forest canopy cover, elevation, human population

density and highways. We quantified the effect of land-

scape resistance on genetic distance using multiple

regression on distance matrices and boosted regression tree

analysis. Cluster analysis identified four populations in the

study area. Multiple regression on distance matrices and

boosted regression tree models indicated that only forest

canopy cover and geographic distance between individuals

had an effect on genetic distance. The boundaries between

genetic clusters largely corresponded with breaks in forest

cover, showing agreement between population structure

and genetic gradient analyses. Our data indicate that forest

cover promotes gene flow for cougars in the Pacific

Northwest, which provides insight managers can use to

preserve or enhance genetic connectivity.

Keywords Landscape genetics � Puma concolor �
Multiple regression on distance matrices � Boosted
regression trees � Spatial PCA � Gene flow � Genetic
structure

Introduction

The emerging field of landscape genetics explores the

relationship between landscape features and gene flow

(Manel et al. 2003; McRae 2006). Genetic data can be used

to indirectly evaluate dispersal, which is essential for

effective wildlife conservation and management due to the

role of dispersal in recruitment and maintaining metapop-

ulations in fragmented landscapes (Seidensticker et al.

1973; Sweanor et al. 2000). Genetic analysis is particularly

useful for reclusive and solitary predators, such as the

cougar, which can be challenging to locate and directly

observe in the wild. The genetic structure of a population

integrates the results of successful dispersal events—those

that have resulted in survival and reproduction over the

past few generations (Cushman et al. 2006). Genetic gra-

dients among individuals can be quantified by calculating

genetic distances between pairs of individuals, and can
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serve as a proxy for dispersal (Jombart et al. 2008). Where

population structure is present, the degree of connectivity

between populations may be assessed using genetic clus-

tering analyses (Guillot et al. 2005).

The cougar’s reclusive nature and low density make it

difficult to evaluate the influence of natural and anthro-

pogenic landscape features on dispersal success. The

primary mechanism for gene flow in cougars is the dis-

persal of subadults, especially males, away from natal

areas following independence between one and two years

of age (Logan and Sweanor 2010). Much of what is

known about habitat use during dispersal comes from

small, short-term studies of radio-tagged individuals

(Beier 1995; Sweanor et al. 2000; Robinson et al. 2008;

Hornocker and Negri 2010). Dispersing subadults in the

Rocky Mountains used habitat types similar to those used

locally by resident adults (Newby 2011). Factors shown to

influence cougar movement include elevation, forest

cover, paved roads, and human development (Beier 1995;

Dickson and Beier 2002; Dickson et al. 2005; Kertson

et al. 2011; Newby 2011). Cougars selected low elevation

areas or canyon bottoms in western Washington (Kertson

et al. 2011), the Rocky Mountains (Newby 2011), and

southern California (Dickson and Beier 2007). Although

cougars may cross open areas, they spend the majority of

their time in forests with a developed understory, which

provides stalking cover and concealment of food caches

(Logan and Irwin 1985; Beier 1995; Kertson et al. 2011;

Newby 2011). Cougars may make use of unimproved

roads while traveling, however roads with high traffic

volume may pose a mortality risk (Taylor et al. 2002;

Dickson et al. 2005) and reduce gene flow in cougars and

other large mammals (McRae et al. 2005; Riley et al.

2006; Balkenhol and Waits 2009; Shirk et al. 2010; Parks

et al. 2015). Cougar space use has also been negatively

correlated with residential density in western Washington

(Kertson et al. 2011).

Gene flow and genetic structure in cougar populations

ranges from high gene flow and panmixia to geographically

structured populations. Sinclair et al. (2001, n = 50) and

Anderson et al. (2004, n = 257) explored differences in

genetic structure within Utah and the Wyoming Basin,

respectively, but reported those populations exhibited high

gene flow and low genetic structure and each suggested a

single megapopulation. Similarly, Castilho et al. (2011,

n = 37) and Miotto et al. (2011, n = 111) found no evi-

dence of genetic structure in Brazilian cougars. However,

several studies have reported on genetic structure. Walker

et al. (2000, n = 25) and Holbrook et al. (2012, n = 245)

found genetically distinct cougar populations in Texas,

which Holbrook et al. (2012) ascribed primarily to isolation

by distance. Ernest et al. (2003, n = 431) analyzed samples

throughout occupied habitats in California and found

variable levels of genetic structure and identified areas

where gene flow may be at risk. McRae et al. (2005,

n = 540) evaluated samples from several regions in the

Rocky Mountain range and reported genetic structuring at

2 levels; a north–south differentiation, and genetic isolation

by distance within regions. Andreasen et al. (2012,

n = 739) sampled cougars across Nevada and eastern

California, finding five genetically distinct subpopulations

that were separated by desert basins. Balkenhol et al.

(2014, n = 371) detected spatial genetic differentiation in

Idaho cougars, which they attributed to urban development,

forest cover and geographic distance. Naidu (2015,

n = 401) found evidence for several subpopulations in the

southwestern U.S. and northern Mexico; the boundaries

between these subpopulations largely corresponded with

interstate highways. Though widely distributed throughout

the Pacific Northwest, the genetic structure of cougars is

not well documented in Washington and British Columbia.

Juvenile cougars have been documented dispersing

between 190 and 250 km from their natal site in Wash-

ington (R. Beausoleil, unpublished data), and this capacity

for long-distance dispersal suggests that inbreeding due to

limitations on gene flow should be limited at the regional

scale. However, one of only three previously identified

genetic bottlenecks in North American cougars comes from

the Olympic Peninsula (Culver et al. 2000). The low level

of heterozygosity observed in Olympic cougars led Beier

(2010) to suggest that reintroductions may be needed to

ward off inbreeding depression. Evidence of genetic iso-

lation and inbreeding depression has been reported in

Florida panthers (Puma concolor coryi), a subspecies of the

cougar, prompting the U.S. Fish and Wildlife Service to

translocate cougars from the closest population, in Texas,

in an effort to reverse decades of inbreeding (Pimm et al.

2006). Connectivity between individuals on the Olympic

Peninsula and the nearby Cascade Mountains—a distance

of about 100 km—remains unresolved.

In this study, we described the genetic structure of

cougars across Washington and south-central British

Columbia in order to evaluate the natural and anthro-

pogenic features that influence population connectivity in

this region. We used genetic cluster analysis to test for

population structure and spatial principal components

(sPCA) analysis to identify patterns in individuals’ allele

frequencies within the study area. We hypothesized that the

observed structure was due to one or a combination of

several landscape resistance factors which have been

shown to influence cougar movement: elevation, forest

cover, human population density and highways. We

determined the relative influence of each factor on gene

flow by relating genetic distance to landscape resistance
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using multiple regression on distance matrices and boosted

regression tree analysis.

Materials and methods

Study area

The study area comprised all of Washington as well as

south-central British Columbia (Fig. 1). It included the

mostly forested Cascade, Olympic and Blue Mountain

Ranges, in addition to the shrub-steppe expanses of the

Okanogan Valley and Columbia Plateau (Fig. 1). Elevation

ranged from 0 to 4392 m above sea level. Human popu-

lation density varied considerably across the study area,

ranging from zero in roadless wilderness to densely pop-

ulated urban centers such as Seattle.

Sample collection and genotyping

Washington Department of Fish and Wildlife (WDFW)

(2011) collected 612 blood and tissue samples from cou-

gars across the state of Washington between 2003 and

2010. Additionally, during the same timeframe the British

Columbia Ministry of Forests, Lands and Natural Resource

Operations obtained 55 samples for a total of 667 samples.

In Washington, samples were taken from all known mor-

talities (those harvested by hunters and roadkills) and from

live animals sampled during research. Locations of each

animal were based on reported kill or capture site and were

Fig. 1 Locations of samples collected from cougars for genetic analysis in Washington and British Columbia, 2003–2010, Washington

Department of Fish and Wildlife
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accurate to within 10 km (Fig. 1). All genotyping was

performed by the WDFW Molecular Genetics Laboratory

in Olympia, Washington. DNA was extracted from blood

and tissue samples using DNeasy 96 Blood and Tissue Kits

(Qiagen, Los Angeles, CA), or NucleoSpin Tissue Kit

(Macherey–Nagel, Bethlehem, PA), following the manu-

facturers’ protocols. Polymerase chain reaction (PCR) was

used to amplify 18 previously characterized microsatellite

markers (Menotti-Raymond and O’Brien 1995; Culver

1999; Menotti-Raymond et al. 1999) in six multiplexes

(Table 1). The thermal profile for all multiplexes, except

Fco F, was (1) initial denature at 94 �C for 2 min; (2) three

cycles of 94 �C for 30 s (denature), 60 �C for 30 s (an-

nealing), 72 �C for 60 s (extending); (3) 36 cycles of 94 �C
for 30 s, 50 �C for 30 s, 72 �C for 60 s, and (4) 72 �C for

10 min. Multiplex Fco F differed at step 2 with a 62 �C
annealing temperature and step 3 with a 52 �C annealing

temperature. The PCR products were visualized with an

ABI3730 capillary sequencer (Applied Biosystems) and

sized using the Gene-Scan 500-Liz standard (Applied

Biosystems, Foster City, CA).

We checked for amplification and allele scoring errors

using Microchecker version 2.2.3 (van Oosterhout et al.

2004). We tested for deviations from Hardy–Weinberg and

linkage equilibria using Genepop version 4.1 (Rousset

2008); alpha was adjusted using a simple Bonferroni cor-

rection to accommodate multiple tests (Rice 1989).

Cluster analysis

We explored the pattern of population structure within the

study area by clustering samples based on their allele fre-

quencies using Geneland (version 3.3.0; Guillot et al.

2005). The program estimates the number of clusters, or

subpopulations within a sample of individuals and assigns

individuals to clusters by minimizing Hardy–Weinberg and

linkage disequilibria within groups. Geneland also uses the

geographic coordinates of each individual as part of the

clustering process (Guillot et al. 2005). We used the spatial

model with null alleles and uncorrelated allele frequencies.

The uncertainty attached to the coordinates for each indi-

vidual was specified as 10 km, 106 iterations were per-

formed, of which every 100th observation was retained,

and a maximum of 10 clusters was assumed.

Spatial principal components analysis (sPCA)

Genetic clustering algorithms, such as Geneland, are designed

to identify discrete groupsof individuals, thereforewealso used

sPCAtodetect clinal population structure. Principal component

analysis of allele frequencies can capture the variation con-

tained in many allele frequencies and distill this down to a few

synthetic variables. Spatial PCA is a modified version of PCA

on allele frequencies where the principal component score for

each individual is multiplied byMoran’s I, a measure of spatial

autocorrelation for that individual (Jombart et al. 2008). Indi-

viduals with allele frequencies similar to their neighbors will

have apositive Ivalue,while individualswith allele frequencies

quite different from their neighborswill have a negative Ivalue.

Spatial PCAbreaks spatial autocorrelation into global structure,

where neighbors are positively autocorrelated, and local

structure, where neighbors are negatively autocorrelated. Glo-

bal structure arises when individuals are more genetically

similar to their immediate neighbors than expected if the spatial

distribution were random, such as a genetic cline or spatially

distinct genetic groups. Conversely, local structure indicates

that individuals are genetically different from their immediate

neighbors, as happens when genetically similar individuals

avoid mating with each other, and instead select mates with

whom they share fewer alleles (Jombart et al. 2008). Spatial

autocorrelation was calculated between neighboring points as

defined by a Gabriel graph connection network (Gabriel and

Sokal 1969).We tested for significant global and local structure

using aMonte Carlo randomization test with 999 permutations,

as described in Jombart et al. (2008).

Descriptive statistics

We calculated total number of alleles, expected heterozy-

gosity (Nei 1987), and observed heterozygosity for each

population cluster identified by the Geneland analysis

Table 1 Allelic diversity for 18 microsatellite loci from 667 cougars

sampled in Washington and British Columbia, 2003–2010, showing

PCR multiplex, the number of alleles, expected heterozygosity (HE)

and observed heterozygosity (HO)

Locus Multiplex No. of alleles He Ho

FCA090 FcoA 6 0.702 0.615

FCA026 FcoA 5 0.483 0.417

FCA132 FcoA 9 0.462 0.413

FCA008 FcoB 2 0.403 0.357

FCA096 FcoB 4 0.638 0.61

FCA043 FcoB 3 0.658 0.582

FCA166 FcoC 5 0.558 0.485

FCA035 FcoC 3 0.505 0.446

FCA254 FcoC 6 0.623 0.56

FCA275 FcoD 5 0.691 0.648

FCA082 FcoD 7 0.717 0.671

FCA091 FcoD 7 0.691 0.649

FCA293 FcoE Locus dropped

FCA205 FcoE 7 0.709 0.647

FCA126 FcoE 4 0.354 0.348

FCA262 FcoF 3 0.262 0.239

FCA057 FcoF 8 0.713 0.673

FCA176 FcoF 7 0.482 0.438
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using Microsatellite Toolkit version 3.1.1 (Park 2001). We

calculated the average number of alleles and private alleles

per locus for each population cluster using rarefaction to

account for unequal sample sizes with the program HP-

Rare v. 1.1 (Kalinowski 2004, 2005). To compare genetic

differentiation between clusters we calculated pairwise

estimates of FST (Weir and Cockerham 1984) using Gen-

epop version 4.1. We also used GENALEX v. 6.4 to esti-

mate inbreeding coefficients (FIS) for each cluster (Peakall

and Smouse 2006).

Landscape resistance analysis

We generated landscape resistance surfaces using GIS data

layers for elevation, forest canopy cover, human population

density and highways. Elevation data for the U.S. was

taken from the National Elevation Dataset at a resolution of

30 m (USGS 2012), and for Canada from Terrain Resource

Information Management Digital Elevation Model at a

resolution of 25 m (Crown Registry and Geographic Base

2012). Percent canopy cover data was derived from

Landsat imagery at a resolution of 100 m (WHCWG

2010). Human population density was based on census data

from 2000 in the U.S. and 2001 in Canada, and ranged from

\10 to [80 acres per dwelling unit at a resolution of

100 m (WHCWG 2010). Highways were classified as

freeways, major highways and secondary highways

(WHCWG 2010), where resistance was equal to the annual

average daily traffic volume (28,000, 10,000, and 4000

vehicles per day, respectively) at a resolution of 100 m

(WSDOT 2012). The untransformed raw values of each

layer were rescaled to range between values of 1 and 2 in

order to standardize resistance estimates and allow for

evaluation of the relative importance of each factor. The

resolution of each layer was reduced to 300 m by 300 m by

aggregating cells based on the average cell value to

maintain practical computation times. All sample points

were at least 70 km from the map boundary, except where

boundaries coincided with actual barriers to dispersal, such

as Puget Sound; this buffer was used to minimize the risk

of overestimating resistance near map edges (Koen et al.

2010).

We calculated pairwise resistance estimates for each

landscape variable between every pair of individuals using

Circuitscape version 3.5.8 (McRae et al. 2008) as it more

realistically accounts for the presence of multiple dispersal

pathways and the effect of the width of dispersal pathways

than least cost path analysis (McRae 2006). Samples from

the Blue Mountains of southeastern Washington were

excluded from the landscape resistance analysis due to

their geographic isolation and the artificial barriers

imposed by the boundaries of the study area. Specifically,

when calculating landscape conductance due to forest

canopy cover with Circuitscape, current would be forced

across the unforested Columbia basin, when it seems more

likely that cougars would follow forested corridors outside

of the study area in Idaho to reach the Blue Mountains.

After these samples were removed a total of 633 (95 %)

individual samples remained. Elevation, human population

density and highway traffic volume were run as resistance

surfaces, while forest canopy cover was run as a conduc-

tance surface, where conductance is simply the reciprocal

of resistance (McRae and Shah 2011). We used an eight

neighbor, average resistance/conductance cell connection

scheme for each grid.

We used multiple regression on distance matrices (Le-

gendre et al. 1994) to evaluate relationships between genetic

distance and resistance estimates for each landscape vari-

able. Multiple regression on distance matrices has proven

more accurate than Mantel tests in evaluating alternative

hypotheses of landscape resistance in simulation studies

(Balkenhol et al. 2009) and, unlike the Mantel test, the

scaling of the relationship between landscape features and

genetic distance does not need to be defined a priori. A linear

relationship between resistance variables and genetic dis-

tance is still assumed under multiple regression on distance

matrices, and resistance variables must be screened for

multicollinearity. We used PCA of allele frequencies to

calculate genetic distances between individuals; we created a

distance matrix in R derived from the first principal com-

ponent scores for each individual (Patterson et al. 2006;

Shirk et al. 2010). While multiple regression on distance

matrices produces coefficients and R2 values identical to

those produced with ordinary multiple regression, signifi-

cance must be determined using permutation tests because

the individual elements of a distance matrix are not inde-

pendent from one another (Legendre et al. 1994). In order to

evaluate the contribution of geographic distance alone, we

also included a pairwise distance matrix based on the

Euclidean distance between the coordinates for each geno-

typed individual, generated using the Ecodist package in R

(Goslee and Urban 2007). Each resistance distance matrix

was included as a term in a linear model, where genetic

distance was the response variable:

G�RE þ CF þ RP þ RH þ RG

where G is the Genetic distance, RE the resistance due to

elevation, RF the conductance due to forest canopy cover,

RP the resistance due to human population density, RH the

resistance due to highways, and RG the resistance due to

geographic (Euclidean) distance. Resistance estimates were

z-transformed to standardize partial regression coefficients.

P values were derived from 1000 random permutations of

the response (genetic distance) matrix. All regression

modeling was performed using the Ecodist package in R

(Goslee and Urban 2007).
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Geographic distance is a component of all resistance

estimates, therefore some correlation was expected

between resistance estimates for each landscape variable.

Like other forms of linear regression, uncorrelated inde-

pendent variables are an assumption of multiple regression

on distance matrices. We calculated pairwise correlations

between all resistance distance matrices using Mantel tests

with the Ecodist package in R (Goslee and Urban 2007);

we used the Pearson correlation method and significance

was based on 1000 permutations. As a complement to

correlation analysis, we calculated the variance inflation

factor for each resistance estimate using the Companion to

Applied Regression (car) package in R (Fox and Weisberg

2011); a variance inflation factor greater than 10 generally

indicates that the terms are too highly correlated to be

included in the same model (Marquardt 1970).

An alternative to linear regression, boosted regression

tree analysis is a recently developed machine learning

technique that can evaluate the relative influence of inde-

pendent variables on a response variable, and is appropriate

for nonlinear data (Elith et al. 2008; Balkenhol 2009). The

response data is repeatedly split into two groups based on a

single variable, while keeping the groups as homogeneous

as possible. Boosted regression trees minimize deviance by

adding, at each step, a new tree that best reduces prediction

error. The relative influence of each predictor variable is

measured by the number of splits it accounts for weighted

by the squared improvement to the model, averaged over

all trees (Elith et al. 2008). The regression tree model with

the lowest deviance based on cross-validation consisted of

1100 regression trees and a learning rate of 0.05. Given that

geographic distance is a component of every resistance

estimate we chose not to model interactions between pre-

dictor variables. Our analysis constrained conductance/re-

sistance due to forest canopy cover, human population

density and highways to result in a monotonic increase in

genetic distance. Resistance due to elevation was not

similarly constrained, allowing for a nonmonotonic or

Gaussian response. We used the packages gbm (Ridgeway

2013) and gbm.step (Elith et al. 2008) for boosted regres-

sion tree analysis.

Results

Population genetics

We detected significant homozygote excess at 16 of 18 loci

when all individuals were pooled into a single population.

This could have resulted from the presence of null alleles

or the Wahlund effect resulting from genetic structure

within a hypothesized single population. Estimated fre-

quencies of null alleles were B5.1 % for all but one locus

(FCA293, 13.5 %). Geneland clustering revealed multiple

populations in the study area (described below). After

separating individuals into the four clusters indicated by

Geneland, the estimated frequency of null alleles at locus

FCA293 was still greater than 10 % in two of four clusters,

therefore this locus was dropped and all subsequent anal-

yses were based on the remaining 17 loci (Table 1).

Eight loci were out of Hardy–Weinburg equilibrium

(HWE) after Bonferroni correction for multiple tests.

Concurrent with HWE testing, we detected significant

departures from linkage equilibrium in 83 of 136 (61 %)

pairwise comparisons between loci after Bonferroni cor-

rection. Seven of 17 (41 %) loci occur on separate chro-

mosomes or linkage groups and should be considered

independent (Menotti-Raymond et al. 1999), while one

locus, FCA166, has yet to be mapped. After separating

individuals into clusters identified by Geneland, no con-

sistent patterns of linkage or Hardy–Weinberg disequilibria

between clusters remained. All 17 retained loci were

polymorphic, with between 2 and 9 alleles per locus and 91

total alleles globally.

Cluster analysis

Support was highest for four populations in the study area

from Geneland simulations. These populations corre-

sponded with the Blue Mountains in southeastern Wash-

ington, northeastern Washington, western Washington

following the Cascade Mountains, and the Olympic

Peninsula (Fig. 2).

The total and mean number of alleles was highest in the

northeast and Cascades clusters, even after correcting for

unequal sample sizes (Table 2). Although the mean alleles

per locus was lower for the Blue Mountains than the Cas-

cades cluster, the number of private alleles per locus was

nearly equivalent (Table 2). Both expected and observed

heterozygosity were lower in the Olympic cluster than in all

other clusters, indicating lower genetic diversity, and pos-

sibly greater isolation of this cluster (Table 2). Population

differentiation (FST) increased with distance between clus-

ters; differentiation was lowest between the northeast and

Cascades clusters, and highest between the Olympic and

Blue Mountain clusters (Table 3). The geographically

adjacent Olympic and Cascades clusters showed a consid-

erable degree of differentiation (FST = 0.145), nearly equal

to that observed between the Cascades and Blue Mountains

clusters (FST = 0.151), which are separated by more than

200 km of unforested shrub-steppe.

sPCA

The first two global sPCA axes explained most of the spatial

genetic variation; as can be seen in Fig. 3, they had the highest
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eigenvalues and were well differentiated from the other axes.

Therefore, only these two axes were retained. Additionally, the

Monte Carlo randomization test for global structure was highly

significant [max(t) = 0.016, P = 0.001]. Local sPCA axes

(axes with negative eigenvalues in Fig. 3) explained little

spatial genetic variation and were poorly differentiated from

each other; no evidence of local structure was found

[max(t) = 0.0028, P = 0.74].

The first global sPCA axis displayed strong east–west

genetic differentiation across the study area; the strongest

Fig. 2 Posterior probability of membership in Geneland clusters (1–4 shown) for cougars in Washington and British Columbia, 2003–2010

Table 2 Genetic diversity for cougar population clusters identified using Geneland

Population n Total

alleles

Mean

alleles/locus

Private

alleles/locus

Mean HE (SD) Mean HO (SD) FIS

Blue Mtns 32 63 3.65 0.20 0.568 (0.04) 0.534 (0.02) 0.033

Northeast 321 85 3.97 0.14 0.565 (0.03) 0.549 (0.01) 0.027

Cascades 288 86 4.07 0.21 0.535 (0.04) 0.498 (0.01) 0.066

Olympic 26 57 3.30 0.07 0.354 (0.06) 0.325 (0.02) 0.078

n sample size, total alleles, average number of alleles calculated using rarefaction, expected (HE) and observed heterozygosity (HO), and

inbreeding coefficient (FIS)
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separation between neighboring samples was found along

the Okanogan Valley and edge of the Columbia River

Basin (Fig. 4). The second global sPCA axis clearly sep-

arated out individuals on the Olympic Peninsula and in the

Blue Mountains from the rest of the state, as well as

showing a weak east–west gradient in genetic similarity in

northeastern Washington, coinciding approximately with

the Columbia River (Fig. 5).

Landscape resistance analysis

While we found significant correlations between landscape

resistance variables, all Mantel r values were \0.75

(Table 4). The most highly correlated resistance/conduc-

tance surfaces were human population density and forest

canopy cover (Mantel r = 0.74, P = 0.001). In contrast to

the Mantel test results, all variance inflation factor coeffi-

cients were\4, suggesting that multicollinearity was not an

issue.

Only conductance due to forest canopy cover and

resistance due to geographic distance were significant

predictors of genetic distance, and the final model

explained 14.9 % of the variation in genetic distance

(Table 4). The null hypothesis that there was no

relationship between any explanatory variable and genetic

distance was rejected (F = 7003.1, P = 0.001; Table 5).

The boosted regression tree model explained 19.2 % of

the deviance in genetic distance. Of the explained

deviance, conductance due to forest canopy cover had the

highest relative influence on the model (53.6 %), followed

by resistance due to geographic distance (31.8 %), human

population density (8.9 %), elevation (3.0 %), and high-

ways (2.8 %; Fig. 6).

Discussion

Our results suggest that cougar populations in Washington

and south-central British Columbia are structured as a

metapopulation, not a single, panmictic population. The

results of Geneland clustering largely agreed with those of

spatial PCA, showing four clusters in the study area. State-

wide analyses in Nevada (Andreasen et al. 2012), Oregon

(Musial 2009) and California (Ernest et al. 2003) revealed

spatially-structured cougar populations, however similar

analyses in Wyoming (Anderson et al. 2004) and Utah

(Sinclair et al. 2001) did not. Anderson et al. (2004) found

less genetic differentiation between cougars in Wyoming

than we observed in Washington, yet found a stronger

relationship between genetic and geographic distance

(r = 0.61, P = 0.011). This suggests that although there

was an isolation by distance effect, the sparsely-developed

Wyoming landscape may be more permeable to movement

than that of Washington. In Utah, Sinclair et al. (2001)

found little evidence of population structure, however this

may have been due to sampling design and low sample

size. Genetic structure was evaluated using F-statistics

where populations were a priori defined by management

units, which may not have held any biological relevance,

and each unit consisted of only 5 individual samples.

Table 3 Genetic differentiation (FST) between cougar population

clusters

Blue Mtns Northeast Cascades

Northeast 0.094 – –

Cascades 0.151 0.036 –

Olympic 0.310 0.205 0.145

Fig. 3 Spatial principal component analysis eigenvalues for cougars

in Washington and British Columbia, 2003–2010; the first two global

axes (darker shading) were retained while no local axes (negative

values) were retained

Table 4 Correlations among landscape resistance features in Wash-

ington and British Columbia

Forest Population Highways Elevation
Geo. 
distance

Forest 0.740 0.310 −0.089 0.619

Population 0.001 0.387 −0.240 0.312

Highways 0.001 0.001 −0.165 0.150

Elevation 0.999 0.999 0.999 0.094

Geo. distance 0.001 0.001 0.001 0.001

For each landscape feature, matrices of resistance between each pair of

cougar sample locations were calculated using Circuitscape. Upper off-

diagonal table values represent Mantel’s r correlations among land-

scape features. Lower off-diagonal values are significance based on

1000 random permutations of one of the two matrices being compared
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While cougars on the Olympic Peninsula were geneti-

cally differentiated from others in the study area, they do

not appear to be as isolated as previously thought. The

Olympic cluster had the lowest mean observed heterozy-

gosity, 0.33, of the four clusters (Table 2); this value was

similar to that found by Culver et al. (2000), 0.31, for

Olympic cougars. The percentage of polymorphic loci for

this cluster, however, was much higher in the present study,

94 %, than was previously found (50 %; Culver et al.

2000). This difference may be attributable to our larger

sample size (26 vs 4 samples). The Olympic cluster also

had the highest inbreeding coefficient (FIS) of any cluster,

at 0.078 (Table 2), yet this value was relatively low com-

pared with those reported for small or isolated populations

in California (0.03–0.20; Ernest et al. 2003) and the

Intermountain West (0.036–0.227; Loxterman 2010). This

evidence suggests that although the Olympic cougar

population is small and somewhat isolated, translocations

do not appear to be necessary at this time.

The boundaries between population clusters were not

sharply defined, as evinced by mixed membership in the

clustering results, and variation in spatial PCA scores of

adjacent individuals. This implies that limited gene flow

has occurred between clusters. Musial (2009) detected a

genetic cline in Oregon cougars where the eastern foothills

of the Cascades meet the high desert, separating the state

into eastern and western clusters. This closely resembles

the pattern of differentiation we observed in the first sPCA

axis, and between the Cascades and northeastern clusters in

Geneland clustering, aligning approximately with the

Okanogan Valley. Musial (2009) attributed this isolation to

unsuitable habitat, characterized by low slope and the lack

of vegetative cover, between the eastern and western

clusters. Habitat in the Okanogan Valley is similar to that

Fig. 4 Map of spatial principal component analysis scores from axis

1 for each individual. Genetic similarity is represented by color and

size of squares; squares of different color are strongly differentiated,

while squares of similar color but different size are weakly

differentiated. Data were collected from cougars sampled in Wash-

ington and British Columbia during 2003–2010
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of the clinal region in Oregon, however the width of this

unforested corridor in Washington is far narrower, ranging

from 17 to 36 km. Similarly, Loxterman (2010) and

Balkenhol et al. (2014) identified the largely agricultural

and urban Snake River Plain as a barrier to gene flow for

cougars in Idaho. The Okanogan Valley has also been

shown to be a partial barrier to gene flow in mountain goats

(Parks et al. 2015). Furthermore, the separation between

the Cascades and the Olympic cluster aligns with the

sparsely forested and heavily developed I-5 corridor

between Seattle and Portland.

While we found a significant correlation between

genetic and geographic distance, geographic distance alone

cannot explain the genetic structure observed. If distance

were the only factor influencing allele frequencies, then

both north–south and east–west genetic clines should be

apparent. North–south clines were notably absent, even in

the Cascades cluster which covers over 480 km from the

northern to southern tip, more than twice the average male

dispersal distance in Washington.

The results of multiple regression on distance matrices

and boosted regression tree analysis both suggest that forest

canopy cover has the strongest influence on gene flow,

followed by geographic distance. Balkenhol et al. (2014)

also found a negative effect of geographic distance and

positive effect of forest cover on genetic distance between

cougars. Within individual home ranges, Elbroch and

Wittmer (2012) found that cougars used forested habitats

more than expected if space use were random. These fac-

tors explain the genetic differentiation observed between

the Cascades and northeastern clusters, which were sepa-

rated by the unforested Okanogan Valley. Though the Blue

Mountains cluster was not included in landscape resistance

modeling, forest cover and geographic distance could both

Fig. 5 Map of spatial principal component analysis scores from axis

2 for each individual. Genetic similarity is represented by color and

size of squares; squares of different color are strongly differentiated,

while squares of similar color but different size are weakly

differentiated. Data were collected from cougars sampled in Wash-

ington and British Columbia during 2003–2010
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logically have contributed to the differentiation of this

cluster from the others, as it is separated from them by the

wide shrub-steppe expanse of the Columbia River Basin.

We found congruence in variable selection among the

multiple regression on distance matrices final model and

the boosted regression trees model. While multiple

regression on distance matrices assumes a linear relation-

ship between variables, we reached the same conclusion

using boosted regression trees, which makes no such

assumptions. This suggests that any nonlinear relationships

in the data did not have a strong effect on the results.

However, this may not be the case for all datasets, high-

lighting the need for exploratory analysis and inference

based on multiple methods.

Potential sources of error in this analysis included the

imprecision associated with cougar sample coordinates, as

well as non-uniform sample coverage across the study area.

Coordinates for most genetic samples were based on hunter

descriptions, and were estimated to be accurate within

10 km. Therefore, error could have been introduced into

pairwise resistances at short distances if kill sites were

incorrectly placed. This was a random source of error,

however, and should not have resulted in a systemic bias

for any variable. Furthermore, Graves et al. (2012) found

only a small reduction in the strength of landscape genetic

relationships under a scenario of simulated spatial uncer-

tainty. Hunters are required to report the Game Manage-

ment Unit (GMU) in which they harvested a cougar, and

since GMU boundaries are delineated on the basis of roads,

all sample locations were on a known side of a highway.

Cougar samples were obtained opportunistically; this

irregular sampling design provides a wide range of dis-

tances for pairwise comparisons, but can undersample or

oversample some areas (Storfer et al. 2007). Indeed, sam-

ple coverage is very poor in wilderness areas and national

parks (Fig. 1), due to lack of access or prohibitions against

hunting. The one variable this could have affected mean-

ingfully was highways, as most cougar samples were

obtained in proximity to paved roads. Maletzke (2010)

reported mean cougar home range sizes from 199 to

753 km2 in Washington, depending on sex, age class and

hunting pressure, which suggests that the majority of

cougars have at least some exposure to highways in their

daily movements. A bias toward proximity to highways in

sample collection may not necessarily translate to a mis-

representative sample, then, if the home ranges of most

cougars overlap one or more highways.

Multiple regression on distance matrices and boosted

regression trees both highlighted the importance of forest

canopy cover and geographic distance, however each

model explained only 15 and 19 % of the variation in

genetic distance, respectively. Models based on pairwise

dissimilarities between points, as in distance matrices,

Table 5 Multiple regression on distance matrices test statistics with

genetic distance among cougar samples as the response variable and

elevation, forest canopy cover, human population density, highways

and geographic distance as potential predictor variables

b P

Intercept 1.696 0.001

Forest cover 0.346 0.001*

Geographic distance 0.220 0.001*

Population density -0.014 0.767

Elevation 0.017 0.561

Highways -0.029 0.329

P values are based on 1000 random permutations of the genetic

distance matrix. This relationship was significant at P = 0.001

(F = 7003.1, R2 = 0.149). b standardized regression coefficient

* Significant at P = 0.05

Fig. 6 Partial dependence plots from boosted regression tree mod-

eling, in order of decreasing relative influence, for cougars in

Washington and British Columbia, 2003–2010. The Y-axes shows the

marginal effect of resistance on genetic distance. Negative marginal

effects correspond to a decrease in genetic distance between

individuals, and vice versa. The X-axis for the geographic distance

plot is shown in units of km, while all other X-axes are shown in

terms of Circuitscape resistance (unitless). In order to model

landscape resistance, the reciprocal of forest cover was used, where

resistance was greatest for unforested areas and least for densely

forested areas. The relative influence of each variable on the

explained deviance is shown in parentheses; total deviance explained

by the model = 19.2 %
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generally have less explanatory power than those based on

variables measured at the points themselves (Legendre and

Fortin 2010). Model fit in this study was similar to that

reported by other researchers working with vagile predators

(Balkenhol 2009; Garroway et al. 2011), and was likely

limited by the cougar’s ecological niche as a habitat gen-

eralist. Clearly, however, other factors are influencing gene

flow in northwestern cougars, factors that could include

prey distribution and density, sport hunting, and intras-

pecies territoriality and social interactions. The influence of

sport hunting on cougar gene flow is difficult to quantify,

because it can both restrict dispersal, through direct mor-

tality of immigrants, and encourage dispersal, when resi-

dent males are killed and dispersing subadults from other

areas move into take their place (Robinson et al. 2008;

Cooley et al. 2009).

Management implications

Cougars are typically managed independently by state

agencies, however our research showed that populations

overlap political boundaries. Therefore, managers may

wish to explore a larger, landscape-scale approach when

constructing management zones or data analysis units.

Toward that end, we encourage future genetic research in

Washington to include other jurisdictions such as British

Columbia, Idaho, and Oregon to establish a consistent

sampling procedure and series of genetic markers. Since

almost all agencies in North America have mandatory

sealing requirements (Beausoleil et al. 2008), we recom-

mend managers include tissue collection in their data

gathering protocols. Even with a limited budget, sample

collection is inexpensive and may be archived for decades

when stored properly (Beausoleil and Warheit 2015).

Forested corridors appear to be essential for facilitating

cougar movements, maintaining landscape connectivity,

and preserving gene flow in the study area. With four

distinct genetic clusters identified, regional population

stability and gene flow may depend on the ability of sub-

adult cougars to disperse; losing this connectivity could

potentially result in genetic isolation. Therefore, we rec-

ommend that agencies develop and implement strategies to

identify and preserve these connections. As fragmentation

of forested lands continues, forested corridors will become

increasingly important in maintaining genetic connectivity

and population stability for cougars in the northwest.
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