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Abstract The effective population size (Ne) is a key

parameter in evolutionary and population genetics. Single-

sample Ne estimation provides an alternative to traditional

approaches requiring two or more samples. Single-sample

methods assume that the study population has no genetic

sub-structure, which is unlikely to be true in wild popula-

tions. Here we empirically investigated two single-sample

estimators (ONeSAMP and LDNE) in replicated and con-

trolled genetically structured populations of Drosophila

melanogaster. Using experimentally controlled population

parameters, we calculated the Wright–Fisher expected Ne

for the structured population (TotalNe) and demonstrated

that the loss of heterozygosity did not significantly differ

from Wright’s model. We found that disregarding the

population substructure resulted in TotalNe estimates with a

low coefficient of variation but these estimates were

systematically lower than the expected values, whereas

hierarchical estimates accounting for population structure

were closer to the expected values but had a higher coef-

ficient of variation. Analysis of simulated populations

demonstrated that incomplete sampling, initial allelic

diversity and balancing selection may have contributed to

deviations from the Wright–Fisher model. Overall the

approximate-Bayesian ONeSAMP method performed better

than LDNE (with appropriate priors). Both methods per-

formed best when dispersal rates were high and the pop-

ulation structure was approaching panmixia.

Keywords Effective population size � Population

structure � Ne � ONeSAMP � LDNE

Introduction

A fundamental property affecting the fate of any population

is the effective population size (Ne). Ne describes the oper-

ation of genetic drift, rates of inbreeding, and determines a

population’s sensitivity to natural selection (Lande 1988;

Wang and Caballero 1999). Due to its key role in population

processes, estimating Ne is of importance not only to theo-

reticians and evolutionary biologists but also to conservation

biologists and natural resource managers seeking to monitor

and forecast population viability. There is a wide a variety of

Ne estimators available, which until recently required pop-

ulations to be sampled repeatedly over time (Fisher 1930;

Wright 1931; Ewens 1979; Nei and Tajima 1981; Waples

1989; Beerli and Felsenstein 2001; Wang 2001; Kuhner

2006). New methods, referred to as ‘single-sample’ Ne

estimators, relax the requirement for temporal sampling and

are therefore of particular interest in the field of conservation

biology for monitoring populations and assessing population
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viability in real-time, rather than having to wait for several

generations to produce a single estimate of Ne (Waples and

Do 2010). Collecting temporally spaced samples from

endangered species is particularly challenging, due to the

inherent scarcity of individuals and the typically long gen-

eration times of vulnerable species. Additionally, threats to

species survival can often require immediate action. Thus the

application of single-sample Ne estimates can assist popu-

lation managers in making informed and timely

recommendations.

Whilst single-sample Ne estimation holds great promise

for field applications, there is a great need to rigorously

evaluate the robustness of these methods to application in

non-ideal field scenarios. Many field studies have com-

pared the performance of single-sample Ne estimators, and

demonstrated that their relative performance is highly sit-

uational. Several case studies have shown that ONeSAMP and

LDNE produce congruent Ne estimates (Hoehn et al. 2012;

Jansson et al. 2012; Skrbinsek et al. 2012). Other studies

provide contrasting evidence that ONeSAMP estimates are

more precise than LDNE (Beebee 2009; Barker 2011;

Phillipsen et al. 2011; Gomez-Uchida et al. 2013). Another

case study has criticised the accuracy of ONeSAMP because

Ne estimates were highly correlated with sample size

(Johnstone et al. 2013). This variable performance in wild

populations is not unexpected because simulations have

shown that at least one single-sample Ne estimator,

LDNE (Waples and Do 2008), is very sensitive to declines

in population size (Antao et al. 2011), persistent population

fragmentation (England et al. 2010) and dispersal (Waples

and England 2011). Without prior knowledge of the true Ne

and information about potentially confounding population

process, such as the pattern and rate of dispersal, it is not

possible to gain an accurate understanding of the perfor-

mance single-sample Ne estimators (Chikhi et al. 2010).

In this study we investigated the relative performance of

single-sample Ne estimators in genetically structured pop-

ulations, using simulations and also by creating replicated

populations of Drosophila melanogaster with controlled

dispersal that fulfil the assumptions of the Wright–Fisher

model. Our controlled Drosophila experiment allows us to

make predictions about the expected TotalNe and acts as an

intermediate scenario between wild populations with

unknown population parameters and simulated populations

that may not have full biological realism but conform to

most of the assumptions of analytical models used to

develop Ne estimators. Using real organisms in controlled

replicated experiments is an important next step after

analytical methods have been evaluated by computer

simulation (England et al. 2010; Antao et al. 2011; Waples

and England 2011). To our knowledge no studies of Ne

estimation methods have been conducted using replicated

controlled populations of live organisms.

Here we evaluate whether single-sample Ne estimates in

real and simulated populations are consistent with the

values predicted by the Wright–Fisher model when the

experimental populations have been maintained to closely

reflect ‘ideal’ Wright–Fisher conditions. We also evaluate

whether populations with different rates of dispersal (and

thus different levels of population structure) experience

altered effects of genetic drift and result in different esti-

mates of effective size. We restrict our evaluation to two

single-sample estimators: ONeSAMP (Tallmon et al. 2008)

and LDNE (Waples and Do 2008) and apply two statistical

approaches to estimate the single-sample effective popu-

lation size. Our work depicts what may be expected in a

study of wild populations when the sampling design is

limited and analyses are conducted with incomplete

knowledge of the underlying population structure.

Materials and methods

Construction of replicated, genetically structured

populations

The source population of D. melanogaster was a large wild

population, collected from Tyrell’s Winery, Hunter Valley,

New South Wales (Australia) in April 2000 (Gunn 2003).

Wild caught individuals were used to establish four labo-

ratory populations, each founded by 100 males and 100

non-virgin females. The four laboratory populations are

referred to as lines: 3, 4, 17 and 21. All lines were main-

tained on an instant potato-sugar artificial insect food

medium (Holleley et al. 2008).

Each population (line pair) consisted of two subpopu-

lations (s = 2) that were connected by low levels of

symmetrical dispersal (Fig. S1 of supplementary material).

All subpopulations had a census size (N) of 50 individuals

and an equal sex ratio. Each line pair was initialized at

generation zero from one of two contrasting scenarios:

from lineages that had previously been isolated for

approximately 60 generations and thus showed a variable

degree of initial differentiation (‘Isolation’ scenario, pairs

17_21 and 3_4) or from lineages that were split to make the

pair immediately prior to generation zero and thus showed

very low initial differentiation (‘Split’ scenario, pairs 3_3

and 17_17). Each pair was replicated three times. The size

and structure of the populations were constant throughout

the experiment and generations were discrete and non-

overlapping. Reciprocal exchange of individuals between

the two subpopulations was conducted at three fixed dis-

persal rates; low m = 0.0025 (1 fly exchanged per 8 gen-

erations), moderate m = 0.01 (1 fly exchanged per 2

generations), high m = 0.04 (2 flies exchanged per gen-

eration). See Fig. S1 for full details of Drosophila dispersal
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regimes. Dispersal was continued for 34, 26 and 12 gen-

erations, respectively (called T2 in Holleley et al. 2011),

defined as twice the number of generations expected to

reach 50 % of the drift–dispersal equilibrium prediction of

fixation index (FST) (Whitlock 1992). Microsatellite and

SNP analyses showed that this was adequate time for

convergence of the two starting scenarios to a common

mean trajectory (Dewar et al. 2011; Holleley et al. 2011)

and simulations confirmed that this design provides suffi-

cient time for populations to attain drift–dispersal equi-

librium (data not shown) (Maio 2008). As described fully

in Holleley et al. (2011), there was no evidence to suggest

that dispersing individuals had differential reproductive

fitness compared to resident individuals in the populations

comprising this study. At the conclusion of the experiment

we sampled 24 individuals from each subpopulation (thus

48 individuals for the total population). Sample sizes of

this order of magnitude are routinely used in studies of wild

populations. DNA was extracted from each D. melano-

gaster using a Gentra Puregene DNA extraction kit (Pro-

genz Ltd, Australia) modified for high-throughput

processing (Holleley 2007). We then genotyped the sam-

pled individuals at seven autosomal microsatellite loci

(Msat 2, Msat 3, Msat 6, Msat 7, Msat 8, Msat 9, Msat 11)

using multiplex PCR and a step-down thermal cycling

protocol (Holleley and Sherwin 2007; Holleley and Geerts

2009). DNA fragment size analysis was conducted on an

Applied Biosystems 48-Capillary 3730 DNA Analyser and

analysed using the software GENEMAPPER� Version 3.7

(Applied Biosystems 2004).

Expectations under the Wright–Fisher model

Throughout this manuscript, Ne refers to the effective size

of an idealised and closed Wright–Fisher population

(Wright 1931). The notation TotalNe refers to the effective

size of a genetically structured population consisting of (s)

subpopulations that are open to dispersal, whereas LocalNe

refers to the local effective size of the subpopulations that

make up the total structured population.

In our experiment all structured populations adhered to

the Wright–Fisher model, which allowed us to calculate the

expected effective size of the structured population from

our experimental population parameters. Specifically, the

eigenvalue effective population size (Ne) (Ewens 1979) of

isolated populations can be calculated from the change in

expected heterozygosity over time (DHe), following Eq. 1.

DHe ¼
Ht

H0

¼ 1� 1

2Ne

� �t

ð1Þ

where Ht/H0 is the proportion of the original expected het-

erozygosity (H0) remaining in a population after

t generations (Falconer and Mackay 1996). For closed D.

melanogaster populations from the same source, under the

same physical conditions and transfer protocols, Gilligan

(2001, 2005) used the decay in heterozygosity over time

(DHe), to estimate the ratio of census population size to

eigenvalue effective population size (Ewens 1979) to be Ne :

N = 0.286. This estimate was verified independently using

closed D. melanogaster populations collected from the same

wild Tyrrell’s source population by Gunn (2003) and we

have used the same stock lines for this investigation.

The estimation of Ne via the decay of heterozygosity

assumes populations to be closed to dispersal, thus for the

Eq. 1 to hold in our structured populations, we must adjust

the relationship to account for dispersal.

DHe ¼
Ht

H0

¼ 1� 1

2 TotalNeð Þ

� �t

ð2Þ

where TotalNe is the effective size of the structured population

and is defined in Eq. 3 by the number of subpopulations (s),

each of an idealised effective population size Ne except for

receiving a proportion of m dispersing individuals (Wright

1943; Wang and Caballero 1999).

TotalNe ¼ sNe 1þ s� 1ð Þ2

4Nems2

 !
ð3Þ

Eqs. 2 and 3 assume that the size and structure of the

population is constant, there is no local extinction of

subpopulations and drift–dispersal equilibrium has been

attained. Our experiment meets these assumptions and we

can calculate the expected TotalNe (Table 1). Thus under the

null hypothesis (Hnull) the initial heterozygosity (H0) is

expected to decline at the rate of DHe, over the defined

number of generations (t), such that;

Hnull : H0 � DHe ¼ Ht: ð4Þ
We tested this null hypothesis using a two-sample t test

with an expectation of a systematic difference (D). In this

paper D = DHe. The test statistic (tstat) was calculated as:

tstat ¼
DH0 � Htj j

Z
ð5Þ

where Z is:

Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n0
þ 1

nt

� �
n0 � 1ð ÞD2S2

0

� �
þ nt � 1ð ÞS2

t

� �	 
r

n0 þ nt � 2ð Þ ð6Þ

n0 and nt are the sample sizes used to calculate the mean

values of H0 and Ht respectively. In this paper both n0 and

nt are equal to the number of microsatellite loci. S2
0 and S2

t

are the variances of the means H0 and Ht. The degrees of

freedom of the FDR-corrected two-tailed t test are

calculated as
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d:f : ¼ n0 þ nt � 2ð Þ: ð7Þ

Expectations from simulated populations

The Wright–Fisher model predicts an effective size for

structured populations (E(TotalNe)) (Table 1), however

other factors such as non-neutral molecular evolution of

markers, incomplete sampling of populations or initial

levels of allelic diversity in the real populations may cause

a deviation from this mathematical expectation. To inves-

tigate this possibility, we developed an individual-based

model using R (www.r-project.org) that simulated the

sampling conditions of our Drosophila experiment (Source

code available upon request).

At the start of each simulation, the individuals forming the

initial generation were created by assigning them a sex and

then generating genotypes at each locus by randomly

drawing a pair of alleles for each locus from the initial allele

frequencies of the founding population (Drosophila lines 3,

4, 17, 21) (Holleley and Sherwin 2007). For subsequent

generations, 50-offspring from each subpopulation (100-

offspring total) were created by randomly assigning pairs of

male and female individuals from the preceding generation

of the same subpopulation to be the parents of an offspring

individual. The offspring’s genotype was determined by

randomly selecting, with equal probability, one allele from

each parent for each locus. The sex of offspring was assigned

randomly, with each sub-population having an equal sex

ratio. Dispersal events were conducted at the same rate and

after the same numbers of generations as the experimental

Drosophila populations (Fig. S1). In the simulations, we

increased the number of replicates from n = 3 in the Dro-

sophila populations to n = 100 replicates of each scenario in

order to more fully account for the variability of TotalNe

estimates. This model closely approximates the Drosophila

experiment, in that N is known and controlled, but Ne is not

controlled and varies stochastically because not all individ-

uals necessarily contribute to the next generation. Similarly

m is known and controlled, but effective dispersal is not

controlled and migrants do not necessarily contribute off-

spring to the next generation.

At the conclusion of the computer simulations 24 indi-

viduals were sampled from each subpopulation (48 for the

total population) and allele frequencies for all simulated

populations were used to estimate TotalNe in the programs

LDNE and ONeSAMP, using two statistical approaches

described below. These simulations are designed to return

the expectations of Ne estimators under neutrality for our

experimental conditions, which was calculated as the

median TotalNe of 100 replicates.

Single-sample methods to estimate Ne

In this paper we evaluate two single-sample methods to

estimate Ne (LDNE and ONeSAMP) that both use estimates of

linkage disequilibrium among unlinked loci as a means to

assess the strength of genetic drift in populations. The basic

premise of both methods is that small population size can

lead to non-random allele associations among unlinked

genetic loci, thus the higher the level of linkage disequi-

librium, the smaller the effective population size (and vice

versa). Whilst LDNE and ONeSAMP are based upon the same

genetic signal they implement different statistical approa-

ches. LDNE (Waples and Do 2008) estimates effective

population size using Burrows’ D, a linkage disequilibrium

method with bias correction for sample size (Weir 1979;

Waples 2006). For all LDNE estimates in this manuscript,

we assumed a random mating model. ONeSAMP is an

approximate Bayesian method that utilises eight summary

statistics and user-defined priors to calculate Ne (Tallmon

et al. 2008). Both programs assume that genotypic data is

obtained from closed populations with discrete generations

using genetic markers that are unlinked and selectively

neutral. We follow convention for this field by assuming

that microsatellite markers are selectively neutral for sta-

tistical purposes, although this assumption is discussed

Table 1 Experimentally controlled population parameters, the Wright–Fisher expected effective population size for genetically structured

populations and the expected change in expected heterozygosity for genetically structured populations

Known population parameters Predictions for structured populations

m TotalN LocalN LocalNe s t E(TotalNe) E(DHe)

High 0.04 100 50 14.3a 2 12 31.725 0.826

Mod 0.01 100 50 14.3a 2 26 41.100 0.727

Low 0.0025 100 50 14.3a 2 34 78.600 0.805

m dispersal rate expressed as the proportion of the population exchanged per generation, TotalN total census size of the structured population,
LocalN local census size of subpopulations, LocalNe local effective population size of subpopulations, s number of subpopulations, t number of

generations in the experiment, E(TotalNe) expected total effective population size of a structured population (Eq. 3), E(DHe) expected change in

expected heterozygosity (Eq. 2)
a Effective population size of the subpopulations calculated using the previously defined relationship between census size and effective size in

Wright–Fisher closed populations; Ne : N = 0.286 (Gilligan 2001; Gunn 2003)
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later. The experiment intentionally violates the assumption

of unstructured populations.

Statistical approach 1: Non-hierarchical estimation

of TotalNe disregarding genetic population structure

Approach 1 represents a scenario that may occur in many

field studies where there is no prior information about

genetic population structure or the pattern of dispersal. In

this case, Ne estimation is applied to a genetically struc-

tured population (incorrectly), as if it were a single pan-

mictic population with no genetic structure. Here we

estimated TotalNe in the programs LDNE and ONeSAMP

applying the non-hierarchical statistical approach. Sub-

populations were equally sampled (24 individuals from

each subpopulation of 50) but the data were analysed as if

the sample came from a single panmictic population (48

individuals from a population of 100). Our ONeSAMP priors

specified that all the microsatellites had dinucleotide repeat

motifs and that the upper and lower bounds for Ne were 2

and 200 respectively. These priors were appropriate, as 2 is

the lowest bound that ONeSAMP accepts and Tallmon et al.

(2008) states that for this method, a conservative estimate

of the upper bound of Ne is twice the census size. ONeSAMP

does not allow the input of monomorphic loci, thus any loci

that became fixed due to the loss of alleles through genetic

drift were excluded on a case-by-case basis.

Statistical approach 2: hierarchical estimation of TotalNe

accounting for genetic population structure

The hierarchical approach for estimating the effective size

differs from approach 1 by employing knowledge about the

structure of the population and patterns of dispersal in our

experiment. The hierarchical approach first uses LDNE or

ONeSAMP to estimate the LocalNe of each subpopulation.

ONeSAMP priors were the same as specified for approach 1

except that the upper bound for Ne was lowered to 100,

twice the census size of the subpopulations. To estimate
TotalNe, we summed the two subpopulation LocalNe esti-

mates and adjusted for the level of population structure

(FST), following Eq. 8 (Wright 1943).

TotalNe ¼
P

i
LocalNei

1� FST

ð8Þ

We estimated FST in the program GENEPOP (Raymond

and Rousset 1995) which implements Weir and

Cockerham’s (1984) estimator. The usual assumptions in

calculating FST apply to the hierarchical approach for

estimating TotalNe including: equal population sizes, equal

and symmetrical dispersal and that the population has

reached equilibrium between drift and dispersal.

Estimating systematic and stochastic deviations

We compared the TotalNe estimates calculated from the

empirical Drosophila dataset and the simulated dataset to two

expected values: E(TotalNe) under the Wright–Fisher model

(Table 1), and the simulation E(TotalNe) calculated as the

median of 100 population replicates (Fig. 1). This compari-

son was made for both the non-hierarchical and hierarchical

approach. We calculated the systematic deviation of mean
TotalNe estimates (Drosophila dataset and simulated dataset)

for each dispersal rate from their expected values (Wright–

Fisher or simulation medians) using an equation for bias

(Eq. 9). This four-way comparison is presented in Table 2.

Bias ¼
TotalNe

	 

� E TotalNe

	 
	 

E TotalNeð Þð Þ ð9Þ

Stochastic departures were expressed as the coefficient

of variation (CV) of estimates over replicates (Table 2). To

summarise the combined effects of systematic and sto-

chastic deviations, we used the equation for root mean

square error (RMSE) (Table 2), although we acknowledge

that our naming of it as RMSE may depart from the engi-

neering practice of its origins. Lastly, as predicted by the

Wright–Fisher model, we used Pearson’s correlation

coefficient (r) to determine whether empirical and simu-

lated estimates of TotalNe were correlated with the dispersal

rate. We also tested whether the level of genetic population

structure (FST) was correlated with dispersal rate.

Results

Validation of Wright’s expected TotalNe

To make predictions about the expected effective population

size in structured populations with ongoing dispersal, we

required an estimate of Ne in closed single populations under

the same environmental conditions and population density as

our experiments. This work was previously conducted by

Gunn (2003) in a 35-generation experiment, comprising ten

closed populations with a controlled census population size

of 50 non-virgin individuals. Gunn (2003) genotyped the

following autosomal microsatellites: DmAC1, DmAC3,

DmAC8 and DmAC9 (England et al. 1996).

Using the rate of decay in heterozygosity over time

(DHe) Gunn (2003) demonstrated that closed D. melano-

gaster populations (N = 50) are consistent with an eigen-

value Ne of 14.3 (95 % confidence interval = 8.74–19.8)

in our stock lines. We did not repeat the closed population

experiments, however we did confirm that the observed

change in expected heterozygosity in all 36 of our
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independent experimental populations was not significantly

different from the value expected under the Wright–Fisher

model for structured populations with the same subpopu-

lation Ne of 14.3 (See supplementary material: Table S2).

Results of population simulations

We used simulated populations to predict the behaviour of

Ne estimators in conditions closely approximating our

Drosophila experiment. Figure 1 shows the distribution of

ONeSAMP and LDNE estimates for 100 replicates using both

the non-hierarchical and hierarchical statistical approaches.

The median TotalNe of these 100 replicates was used as the

simulation E(TotalNe) in further analysis (Table 2).

The population simulations did not predict the same

values of TotalNe as the Wright–Fisher model (Fig. 1). For

the non-hierarchical approach, the simulated distribution of

LDNE estimates overlapped with Wright’s E(TotalNe) for

high and moderate dispersal rates but not for the low dis-

persal rate (Fig. 1a). The simulated distribution of non-

hierarchical ONeSAMP estimates was lower than and did not

overlap with Wright’s E(TotalNe) for all dispersal rates

(Fig. 1c). In comparison, the hierarchical approach showed

different trends. Specifically, the simulated distribution of

A

B

C

D

m = 0.04 m = 0.01 m = 0.0025 m = 0.01 m = 0.0025m = 0.04

ONeSAMPLDNE
N

on
-h

ie
ra

ch
ic

al
T
ot
al
N

e

0

20

40

60

80

100

120

140

Simulated populations (line pairs)

3_
4

17
_2

1

3_
3

17
_1

7

3_
4

17
_2

1

3_
3

17
_1

7

3_
4

17
_2

1

3_
3

17
_1

7

H
ie

ra
rc

hi
ca

l
T
ot
al
N

e

0

20

40

60

80

100

120

140

Simulated populations (line pairs)

3_
4

17
_2

1

3_
3

17
_1

7

3_
4

17
_2

1

3_
3

17
_1

7

3_
4

17
_2

1

3_
3

17
_1

7

A

B

C

D

m = 0.04 m = 0.01 m = 0.0025 m = 0.01 m = 0.0025m = 0.04

Fig. 1 Total effective population size of simulated genetically

structured populations (grey box plots) (n = 100 replicates for each

dispersal scenario) and empirical Drosophila populations (black

circles) (n = 3 replicates for each dispersal scenario) using two

single-sample Ne estimators: LDNE (a, b) and ONeSAMP (c, d). For each

of the two programs, effective size was calculated using the non-

hierarchical (a, c) and hierarchical statistical approaches (b, d).

Dispersal and sampling conditions are as described for the empirical

Drosophila experiment (Fig. S1). Simulations were conducted using

an individual-based model developed in R. The box plots show the

distribution of TotalNe estimates for each simulated scenario with the

box showing the 25th and 75th percentiles, the solid line in the middle

of each box showing the median, and error bars showing the 10th and

90th percentiles. Solid black circles show the empirical estimates of
TotalNe from the Drosophila experiments. Dashed horizontal lines

show the effective population size expected under the Wright–Fisher

model (E(TotalNe)) for each of the three dispersal rates. Dispersal rates

are expressed as the proportion of the subpopulation exchanged per

generation: High m = 0.04; Mod m = 0.01; Low m = 0.0025
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hierarchical LDNE estimates overlapped with Wright’s

E(TotalNe) for all dispersal rates (Fig. 1b). In contrast, the

simulated distribution of hierarchical ONeSAMP estimates

overlapped with Wright’s E(TotalNe) for high and moderate

dispersal rates but not for the low dispersal rate, where

simulated TotalNe estimates were lower than Wright’s

E(TotalNe) (Fig. 1d).

For the simulated populations there was a significant cor-

relation between dispersal and genetic structure (FST) (Pear-

son’s correlation co-efficient r = -0.775; P \ 0.0001)

(Table 3). Using the non-hierarchical approach, TotalNe was

significantly correlated with dispersal, but there was no cor-

relation with dispersal for the hierarchical approach (Table 2).

In the simulated populations, LDNE displayed much wider

distribution of TotalNe estimates than ONeSAMP for all scenarios

(Fig. 1). Related to this, we observed that a large proportion

of the LDNE estimates returned a negative result (non-hier-

archical = 2.8 %; hierarchical = 36.4 %). This resulted in

very high CV and RMSE estimates when calculating sto-

chastic deviation for LDNE simulation estimates (Table 2).

The occurrence of negative Ne estimates is a known phe-

nomenon with LDNE that occurs when there is no detectable

disequilibrium in the sampled individuals (Waples and Do

2007). This outcome is strongly influenced by sample size,

which determines the power to detect disequilibrium. Nega-

tive LDNE estimates were less common in the non-hierar-

chical approach, where n = 48 individuals, compared to the

hierarchical approach where n = 24 individuals. As recom-

mended by Waples and Do (2007), we did not bias the dis-

tribution of Ne estimates by excluding negative values.

Estimation of TotalNe via the non-hierarchical approach

in empirical Drosophila populations

We estimated TotalNe and the 95 % confidence interval for

each of the three replicates of each structured Drosophila

population using ONeSAMP and LDNE (Fig. 2a–c). ONeSAMP

produced estimates of TotalNe that were larger and closer to

the Wright–Fisher expected value than those obtained from

LDNE. The mean values estimated by LDNE ranged from

1.7 to 43.4. The mean values estimated by ONeSAMP ranged

from 10.9 to 34.2. The 95 % confidence interval of

LDNE tended to be larger, and in one instance the upper

bound exceeded the census population size (Fig. 2b). We

calculated the systematic deviation (bias) using the

E(TotalNe) (Wright–Fisher and simulation median), sto-

chastic deviation (CV) and RMSE (Table 2). When com-

paring the Drosophila data to the Wright–Fisher

expectation, TotalNe estimates obtained from ONeSAMP had a

lower bias, lower CV and a lower RMSE than

LDNE regardless of statistical approach (Table 2). When

comparing the Drosophila data to the simulation median,

non-hierarchical empirical estimates of TotalNe were largely

concordant with the distribution generated by the popula-

tion simulations, with the exception of the high dispersal

scenario, where empirical estimates were lower than the

simulation (Fig. 1a, c; Table 2).

The empirical data showed a trend contrary to the pre-

dictions of the Wright–Fisher model; neither ONeSAMP nor

LDNE displayed a significant correlation of TotalNe with

dispersal rate between subpopulations (Table 3). However,

there was a significant correlation between dispersal and

genetic structure (FST) (Pearson’s correlation co-efficient

r = -0.601; P = 0.0001) (Table 3).

Estimation of TotalNe via the hierarchical approach

in empirical Drosophila populations

In the hierarchical approach, we estimated the LocalNe of

each subpopulation (Table S4) and used these estimates in

combination with the observed population genetic structure

(Table S4) to estimate the TotalNe using ONeSAMP and

Table 3 The correlation of dispersal rate with single-sample methods to estimate total effective population size and the correlation of dispersal

rate with estimates of population structure in empirical Drosophila populations and simulated populations

Data set Analysis Correlation between r P-value

Empirical Drosophila LDNE Non-hierarchical TotalNe Dispersal (m) 0.156 0.362

Hierarchical TotalNe Dispersal (m) -0.103 0.548

ONeSAMP Non-hierarchical TotalNe Dispersal (m) 0.298 0.077

Hierarchical TotalNe Dispersal (m) -0.018 0.917

Population structure FST Dispersal (m) -0.601 0.0001a

Simulation LDNE Non-hierarchical TotalNe Dispersal (m) 0.980 \0.0001a

Hierarchical TotalNe Dispersal (m) 0.400 0.200

ONeSAMP Non-hierarchical TotalNe Dispersal (m) 0.830 \0.0001a

Hierarchical TotalNe Dispersal (m) 0.530 0.074

Population structure FST Dispersal (m) -0.775 \0.0001a

TotalNe total effective population size of a structured population, m dispersal rate, r Pearson’s correlation coefficient
a Significant Pearson’s correlation coefficient after correction for multiple tests
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LDNE following Eq. 8 (Fig. 2d–f). The trends observed in

the hierarchical approach were congruent with the non-

hierarchical approach. Specifically, when comparing the

Drosophila data to the Wright–Fisher expectation, ONeSAMP

produced mean estimates of TotalNe that were larger and

closer to the Wright–Fisher expected value, with smaller

confidence intervals than LDNE. Again neither method

displayed a correlation of TotalNe with dispersal rate

(Table 3). The mean TotalNe values estimated by

LDNE ranged from 5.1 to 273.2. The mean TotalNe values

estimated by ONeSAMP ranged from 25.6 to 39.3. The 95 %

confidence intervals of hierarchical LDNE estimates tended

to be large, with the upper bound often including infinity.

In 17 of 36 instances the upper bound exceeded the census

population size (Fig. 2d–f). The hierarchical TotalNe esti-

mates obtained from ONeSAMP had a lower bias, lower CV

and a lower RMSE than LDNE (Table 2). When comparing

the Drosophila data to the simulation median, we observed

that the hierarchical empirical estimates of TotalNe were

concordant with the distribution generated by the popula-

tion simulations, however all empirical estimates were

systematically lower than the simulation (Fig. 1; Table 2).

Discussion

Single-sample TotalNe estimates from simulated

and empirical Drosophila populations do not adhere

to Wright’s model

This study provides an example of how populations may

deviate systematically from the expectations of a popula-

tion genetic model even when most of the assumptions are

met, especially if there is undetected genetic structure.

Single-sample estimates of TotalNe in genetically structured

populations (simulated and real) were not consistent with

the values predicted by the Wright–Fisher model, even

though populations had been controlled to closely reflect

A B C

FED

Fig. 2 Empirical estimates of total effective population size in

controlled replicated genetically structured Drosophila melanogaster

populations using two single-sample Ne estimators: LDNE (circle) and

ONeSAMP (square). For each of the two programs, effective size was

calculated using the non-hierarchical (a–c) and hierarchical statistical

approaches (d–f). Bars indicate the 95 % confidence interval of the

mean. Upper confidence intervals that exceeded the known census

size of the total population were truncated, and the value labelled at

the top of the graph. The dashed horizontal line is the effective

population size expected under the Wright–Fisher model (E(TotalNe))

for each of the three dispersal rates. Grey-shading indicates the 95 %

confidence interval of the Wright–Fisher E(TotalNe)
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‘ideal’ Wright–Fisher conditions. We observed a general

trend for the empirical ONeSAMP and LDNE estimates of
TotalNe to be lower than the value expected under the

Wright–Fisher model for both statistical approaches. This

discrepancy is most likely because Wright’s expected
TotalNe (Table 1) is based on the rate of loss of heterozy-

gosity, whereas LDNE and ONeSAMP are based on linkage

disequilibrium. Comparing Ne estimators is difficult

because different Ne concepts may refer to different time

frames and spatial scales, see Luikart et al. (2010) for a

review. However other factors may also be at play, such as

dependency on a previous estimate of the eigenvalue

closed population Ne, initial levels of allelic diversity and/

or incomplete sampling.

The Wright–Fisher estimate of E(TotalNe) used in this

study is highly dependent on the eigenvalue closed popu-

lation Ne estimate from previous studies (Gilligan 2001;

Gunn 2003). We empirically confirmed that Eq. 3 predicts

the expected effective size of our structured populations

when using an eigenvalue closed population Ne of 14.3

(Gilligan 2001; Gunn 2003). This was achieved by dem-

onstrating that the rate of change in expected heterozy-

gosity over the 35-generation closed population experiment

did not significantly differ from the rate of change in

expected heterozygosity in our experiments using struc-

tured populations which were initialized from the same

stocks (Gunn 2003) (See supplementary material: Table

S2). This provides evidence that the parameters used to

estimate the expected value of Wright–Fisher E(TotalNe)

were appropriate. However, we must consider how varia-

tion in the estimation of the eigenvalue closed population

Ne affects E(TotalNe) and thus our conclusions. After taking

into account the 95 % confidence interval (see grey shad-

ing in Fig. 2) we note the conclusions for the non-hierar-

chical approach remain unchanged (empirical estimates

systematically below the Wright–Fisher expectations in all

cases) but for the hierarchical approach ONeSAMP estimates,

we observe that 12 of 12 high dispersal and 6 of 12

moderate dispersal populations fall within the 95 % con-

fidence interval. A similar trend is seen for hierarchical

LDNE estimates, where 5 of 12 high dispersal and 2 of 12

moderate dispersal populations fall within the 95 % con-

fidence interval of the Wright–Fisher expectations but at

low dispersal rates the empirical estimates are still sys-

tematically below the Wright–Fisher E(TotalNe). Consistent

with the predictions of the Wright–Fisher model, all

methods performed best when dispersal rates were high,

genetic population structure was low and the population

was therefore approaching panmixia.

It is also possible that sampling effects may have con-

tributed to the apparent downward bias of single-sample
TotalNe estimates in genetically structured populations

(simulated and real) compared to Wright’s expectation.

Low allelic variation could potentially inflate linkage dis-

equilibrium estimates and thus downwardly bias estimates

of TotalNe (Gulcher 2012). Both simulated and real popu-

lations had the same levels of initial allelic diversity, which

could explain why both were downwardly biased. Incom-

plete sampling of the populations could also underestimate

allelic variation and result in overestimation of linkage

disequilibrium and thus downwardly bias estimates of
TotalNe. The simulations and real populations had the same

sampling strategy where 48 % of the population was

sampled. It is not possible with the current experimental

design to disentangle which of the factors discussed here

was responsible for the deviation from Wright’s E(TotalNe).

Single-sample TotalNe estimates from simulated

populations approximate TotalNe estimates in empirical

Drosophila populations

Irrespective of the single-sample Ne estimation program

used (ONeSAMP or LDNE) or the statistical approach

implemented (non-hierarchical or hierarchical) we

observed that the simulated population data and the

empirical Drosophila population data were largely con-

cordant and in most cases (except those noted in the results

section) the empirical data occurred within the distribution

of the population simulations (Fig. 1; Table 2). Despite

having substantially less control over lab populations, the

rough concordance with computer-simulated populations

encourages us that there are few influences not accounted

for in this study. However there were some key differences

between the empirical Drosophila experiment and the

simulations. The empirical Drosophila TotalNe estimates

were much closer to simulated E(TotalNe) values than they

were to Wright’s E(TotalNe), but were still systematically

lower relative to both expectations (Fig. 1; Table 2). This

suggests there may be forces affecting the empirical pop-

ulations that are not included in the population simulation

parameters.

One possible reason for the discrepancy between the

simulations and the empirical results could be selection.

We did not include selection in the simulations, but it may

be acting in the live populations. Of course, the inevitable

simplification of simulations means that there are many

other differences, however if we assume that that the

simulations portray a selectively neutral version of the

Drosophila experiment, the discrepancies between the

simulated and real populations could be explained by the

presence of multilocus balancing selection favouring hap-

lotypes in the Drosophila genome. If a given selective

pressure favours particular combinations of alleles at more

than one locus in the genome, this will increase the

occurrence of these combinations above random expecta-

tions (i.e. linkage equilibrium), so that linkage
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disequilibrium between these loci is expected to increase

(Navarro and Barton 2002). Under this mode of selection

there is no requirement for loci to be physically linked for

apparent linkage disequilibrium to increase. We must stress

that this phenomenon is different from situations where

balancing selection operates independently on each of

several loci, which would not be expected to increase

linkage disequilibrium. Conditions where multilocus bal-

ancing selection could increase linkage disequilibrium

have been previously described in Drosophila. For exam-

ple, disassortative mating on the basis of pheromonal cues

can impose balancing selection on multiple pheromone loci

scattered throughout the D. melanogaster genome and

buffer the genome against the effects of drift (Averhoff and

Richardson 1974, 1975; Templeton 2006). Whilst we were

not expecting large effects of balancing selection in our

Drosophila populations, this phenomenon may help to

explain why the empirical data produced lower TotalNe

estimates than the simulated populations.

There are two other observations that indirectly support

our hypothesis that multilocus balancing selection favour-

ing haplotypes in the Drosophila genome has increased

linkage disquilibrium between physically unlinked loci.

Firstly, we can consider differences in the frequency of

negative LDNE estimates. In the simulations we observed a

high proportion of negative TotalNe estimates generated by

LDNE. Negative LDNE estimates are typically interpreted as

no evidence for any disequilibrium caused by genetic drift

(Waples and Do 2007). In contrast to the simulated popu-

lations, we did not observe a single negative LDNE esti-

mate in our empirical Drosophila populations. This

suggests that disequilibrium is more common in the Dro-

sophila populations than in the selectively neutral simu-

lated populations. Secondly, supporting evidence for low

levels of balancing selection operating in our populations

can be observed in the rate of decay in expected hetero-

zygosity. Whilst the decay in expected heterozygosity did

not significantly differ from the rate expected under the

Wright–Fisher model (See supplementary material: Table

S2), we note that despite the differences being individually

non-significant, heterozygosity did decay more slowly than

the predicted rate in 29 of the 36 structured populations and

in fact four line pairs showed no decline in expected het-

erozygosity at all (Table S2). This may be indicative of low

levels of balancing selection on loci linked to our markers,

maintaining polymorphism in our populations. Whilst the

action of balancing selection favouring multilocus haplo-

types is consistent with several aspects of our empirical

dataset we cannot necessarily assume that the presence and

absence of selection is the only variable that differs

between the simulated and real populations.

An alternative hypothesis to explain empirical TotalNe

estimates systematically lower than the simulation, could

be that dispersal between isolated populations has induced

temporary linkage disequilibrium among genetic loci

(Haliburton 2004). This means that the level of linkage

disequilibrium in our populations may have reflected recent

dispersal events rather than the amount of genetic drift.

Consequently an overestimation of linkage disequilibrium

would lead to an underestimation of TotalNe. For example,

Waples and England (2011) have shown that pulse dis-

persal of genetically divergent individuals can depress Ne

estimates. Our Drosophila experiment could have failed to

detect increasing TotalNe with increased dispersal because

the estimators are producing increasingly downward biased

estimates of TotalNe due to linkage disequilibrium from

admixture. For an admixture-related elevation of linkage

disequilibrium hypothesis to explain our results, the

effective dispersal rate would need to be higher in the

Drosophila populations than in the simulations, because

the simulations did show a significant correlation of m with
TotalNe in the hierarchical approach (Fig. 1a, c; Table 2).

Dispersal rate determines genetic population structure,

but is not correlated with estimated TotalNe in real

populations

As expected, different rates of dispersal among subpopu-

lations (simulated and real) resulted in different levels of

genetic population structure (Table S3 and S4) and dis-

persal was negatively correlated with population structure

(Drosophila populations, r = -0.601; P = 0.0001, simu-

lated populations r = -0.775; P \ 0.0001) (Table 3). We

demonstrated in simulated populations that single-sample

methods to estimate TotalNe are sensitive to the presence of

population structure. Both LDNE and ONeSAMP show a lower

estimated non-hierarchical TotalNe for simulations with

lower effective dispersal rate (Fig. 1a, c; Table 3). This

pattern is not reproduced with experimental populations

(Fig. 2; Table 3). This suggests that there could be some

other factor that affects effective dispersal rate in experi-

mental populations, even though dispersal is clearly

affecting the allele proportions in the live populations, as

demonstrated by the significant correlation of FST with

m. The lack of correlation of empirical TotalNe with dis-

persal among subpopulations (Table 3) suggests that other

forces (possibly multilocus balancing selection) are

affecting the empirical populations that are not included in

the population simulation parameters.

Recommendations for using single sample estimators

in structured populations

Our study has established that the single-sample Ne esti-

mator ONeSAMP generally gives better estimates of TotalNe

than LDNE (Figs. 1, 2). This is most likely because
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ONeSAMP’s approximate-Bayesian approach utilises prior

information about the populations when estimating Ne.

However, we note that the performance of ONeSAMP in other

studies will strongly depend upon appropriate choice of

priors. ONeSAMP may also be more accurate because it uti-

lises eight summary statistics whereas LDNE only uses

Burrows’ D. Lastly, it is important to acknowledge that the

information presented in this study refers to a very specific

set of experimental conditions, and it is possible that

altering the sampling design could overcome some of the

biases observed here. For example, we would expect that

sampling a larger proportion of the population and

increasing the number of loci genotyped would improve

the performance of both methods.

Both the non-hierarchical and hierarchical approaches

have limitations and should be interpreted with caveats. The

non-hierarchical approach resulted in TotalNe estimates with a

low CV but these estimates were systematically lower than

the expected values, whereas hierarchical estimates were

closer to the expected values (lower bias) but also had a

considerably higher CV (Table 2). Additionally the hierar-

chical method is extremely susceptible to downward biases

caused by incomplete sampling of subpopulations because

the method assumes that all subpopulations are represented

and summed (Eq. 8). This source of bias was not discussed in

our study because 100 % of subpopulations were sampled,

however this sampling issue is very likely to affect studies of

wild populations where the total number of subpopulations is

not known. Despite the possibility of biased estimates, it

would be informative for field studies to compare and con-

trast single-sample Ne estimates using both the non-hierar-

chical and the hierarchical approach. It is also worth stressing

that the methods evaluated in this manuscript assume that the

effective population size is stable over time. Here we have

evaluated scenarios where this is true, however it is unreal-

istic to assume that fragmented wild populations will have a

stable effective population size. Fluctuations in population

size and connectivity are likely increase the variance of Ne

estimates and may create unexpected biases (Waples 2010).

The sensitivity of single-sample Ne estimates when

population subdivision is disregarded, and the unpredicted

possible effects of selection in real organisms (as opposed

to neutral models) have practical implications since one of

the primary appealing features of single-sample Ne esti-

mators is their application to wild populations, where

temporal sampling is often not feasible. Wild populations

frequently have genetic structure for a variety of biological,

ecological and geographical reasons and the selective

landscape is generally unknown. Habitat fragmentation is

simultaneously a leading cause of population extinction, as

well as a major mechanism driving the development of

genetic population structure (Tilman et al. 1994; Henle

et al. 2004; Banks et al. 2005). This means that single-

sample Ne estimators are likely to be least accurate in the

situations where they are most needed. However this pitfall

can be strategically managed by defining genetic popula-

tion structure and identifying migrant or recently admixed

individuals. These analyses will identify which statistical

approach is appropriate (hierarchical vs non-hierarchical)

and provides the option of removing recent migrants from

the analysis. Practitioners should also consider factors such

as age structure, demographic fluctuations, and trade-offs

between sample size and the number of genetic loci, which

were not addressed by this study.
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