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Abstract In this paper we use mitochondrial and micro-

satellite DNA variation to investigate the mechanisms that

underlie the evolution of population structure in a highly

mobile marine mammal, the white-beaked dolphin. We

found moderate genetic diversity (h) at mtDNA, but low

nucleotide diversity (p) (0.7320 ± 0.0031 and 0.0056 ±

0.0004, respectively), consistent with expectations for a

recent expansion. Analyses based on mismatch distributions

further suggested a demographic expansion in the Norwe-

gian-Barents Sea population and a spatial expansion in the

British isles-North Sea population, implying distinct

demographic histories. FST values showed clear differenti-

ation among these two populations, but no difference was

found between putative populations separated by the Eng-

lish Channel. Our data suggest a stepwise pattern of

expansion, dependent on available coastal habitat. The

conservation implications are a need to protect local popu-

lations isolated by an expanse of deep water, and in partic-

ular, a population along the British coasts and in the North

Sea as separate from the North Norway-Barents Sea

population. It is also evident that overall diversity was

reduced, probably during the last glacial epoch.

Keywords Phylogeography � White-beaked dolphins �
Lagenorhynchus � Population structure � North Atlantic �
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Introduction

While logistical problems limit our ability to assess pop-

ulation structure in cetacean species (e.g. Milinkovitch

et al. 2002), these data are never-the-less essential to the

identification and conservation of diversity, and various

factors have been shown to be relevant to the evolution of

structure in these species. For example, historical pro-

cesses, in particular the Pleistocene glaciations in the

Northern Hemisphere, have been proposed as an important

factor leading to genetic differentiation among marine

species and populations, promoting speciation and influ-

encing the distribution of lineages in coastal areas (e.g.,

Reeb and Avise 1990; Hewitt 2000; Hayano et al. 2004;

Rosa et al. 2005; Adams et al. 2006; Haney et al. 2007). It

has been hypothesized that during these climatic changes

the distribution ranges of many marine species were

restricted due to the creation of physical barriers (e.g.,

changes in sea level and sea temperatures) that reduced

gene flow, even among proximate populations, and

increased the effect of evolutionary forces such as genetic

drift and selection (Avise et al. 1998; Hewitt 1996, 2000;

Haney et al. 2007). After the end of the ice age, populations

that were previously limited in small and specific areas

probably expanded following a stepping stone model

(dispersal occurring between neighbouring demes), or

experienced a sudden demographic expansion, which could
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explain the different patterns of genetic diversity found in

contemporary northern populations (Slatkin and Hudson

1991; Rogers and Harpending 1992; Austerlitz et al. 1997;

Ray et al. 2003; Excoffier 2004; Wegmann et al. 2006).

Another factor apparently shaping population structure

in some dolphin species, especially those found primarily

in coastal habitats is local habitat dependence. For exam-

ple, Natoli et al. (2005) described population structure for

the bottlenose dolphin (Tursiops truncatus) across a dis-

tribution from the Black Sea to Scotland, and found evi-

dence for boundaries to gene flow at oceanographic borders

(between the Black Sea, eastern Mediterranean, western

Mediterranean, eastern North Atlantic and Scottish coastal

waters). Various other marine species also show population

genetic differentiation at these boundaries within the

Mediterranean Sea (Bahri-Sfar et al. 2000; Guarniero et al.

2002; Perez-Losada et al. 2002). A common differential of

habitat use in dolphin species, sometimes concomitant with

high levels of genetic differentiation (e.g. Hoelzel et al.

1998a), is the use of nearshore versus offshore habitat (see

review in Hoelzel 2009).

Here we provide a case study for the Atlantic white-

beaked dolphin (Lagenorhynchus albirostris Gray 1846).

This is the most northerly member of the genus Lagen-

orhynchus and is restricted to temperate and sub-polar seas

in the North Atlantic (Leatherwood et al. 1976). White-

beaked dolphins are considered a typical coastal species

(Evans 1992; Mikkelsen and Lund 1994), and their spatial

distribution and relative abundance along the Continental

Shelf and coastal areas have been highly correlated with

physical factors such as the presence of high marine pro-

ductivity, sea temperatures (\12�C) and water depths

(\120 m) as well as with ecological factors such as prey

abundance, competition with other species and seasonal

migration (Simard et al. 2006; MacLeod et al. 2007; Weir

et al. 2007). Their distribution extends from southern New

England, to Greenland, Iceland, Ireland, Scotland, Norway

and south into the North Sea (Leatherwood et al. 1976;

Evans 1992; Reeves et al. 1999).

Published estimates summarised by Hammond et al.

(2008) indicate at least several thousand white-beaked

dolphins in the western Atlantic, a few thousand around

Iceland and up to a hundred thousand in Norwegian waters

of the northeast Atlantic including the North Sea north of

65�N and particularly the Barents Sea. Hammond et al.

(2002) using boat surveys estimated the population size of

L. albirostris in the North Sea and Channel at 7856 indi-

viduals (CV = 0.30). Although these numbers sound fairly

substantial for some regions, there are ongoing threats and

local impact.

It is well known that bycatch in fisheries, over-fishing of

prey, degradation or loss of coastal habitats and pollution,

among others, are the principal causes leading to

vulnerability or extinction of coastal species (Rosel et al.

1999; Cassens et al. 2005,). For L. albirostris in particular

there has been a long tradition of small scale hunting in

several countries including Faroe Island, Greenland, Ice-

land and Norway, mainly for food. Hunting may still

continue in some areas, e.g. at the southwest coast of

Greenland, in Labrador and the Faroe Islands (Jefferson

et al. 1993; Reeves et al. 1999; Lien et al. 2001). Alling and

Whitehead (1987) have claimed that approximately 366

individuals of L. albirostris were killed for subsistence in

northern and southern Labrador each year. Moreover,

individuals of this species are frequently taken in a variety

of fishing gear throughout their range (IUCN 2007). Per-

sistent impact could translate into a reduction of effective

population size, and the resulting loss in diversity that

could affect their capacity to respond to environmental

changes (Castello 1996; Rosel et al. 1999; Pichler and

Baker 2000; Cassens et al. 2005).

At the same time, little is known about the population

structure of L. albirostris in the North Atlantic and North

Sea. Suggestions about population stocks in this species

have been mainly drawn from short-term, localized sight-

ings surveys (e.g., Northridge et al. 1995; Hammond et al.

2002; Evans and Hammond 2004). Based on these surveys,

Northridge et al. (1995, 1997) suggested a possible stock

separation in the eastern North Atlantic, with individuals in

the North Sea and around the British Isles being a distinct

population from those found in the northwest of these

regions. In contrast, Mikkelsen and Lund (1994), using

Principal Component Analysis (PC) and Partial Least

Square analysis (PLS) on the skull features of 179 speci-

mens of L. albirostris, together with 20 non-metrical

characters, found no significant differentiation among

individuals from the eastern North Atlantic. However,

these analyses showed non-overlapping distributions

among samples from the western North Atlantic (United

States coasts) and European animals (mainly for the North

Sea and English channel), suggesting at least two sub-

populations (P \ 0.2%).

In order to facilitate the conservation of L. albirostris

populations, it is important to build on these existing data

to provide a better understanding of the pattern of popu-

lation genetic structure, and the mechanisms that lead to its

evolution in this species. Here we evaluate two main

hypotheses using data from the analysis of mtDNA and

microsatellite DNA loci. First, as for a number of species in

the North Atlantic (e.g., Wares and Cunningham 2001;

Wares 2002; Carr and Marshall 2008; Domingues et al.

2008) we expect to find signals for refugial bottlenecks and

subsequent expansions. Second, the habitat dependence of

this species on coastal regions may affect both the pattern

of expansion and the pattern of contemporary gene flow

among populations, with coastal regions acting like habitat
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islands where local populations could become isolated. In

particular, we test the hypothesis that gene flow and spatial

expansion will mostly follow contiguous or proximate

regions along coastal habitats.

Materials and methods

Sampling collection and extraction

DNA from 116 white-beaked dolphins (L. albirostris),

including tissue, bones and teeth, was extracted from sam-

ples collected in the eastern and western North Atlantic

(Fig. 1). Bone and teeth samples were collected from the

Museum of Natural History of Rotterdam, the Museum of

Natural History in Leiden, and the Smithsonian Institute in

the United States. Samples from living and stranded dol-

phins were obtained from stranding network collections in

Scotland and England, and through the Institute of Marine

Research, Norway. Four putative populations were repre-

sented––the western North Atlantic (WNA), UK waters

(UK), The Netherlands, and Norwegian-Barents Sea (Nor-

way). Total genomic DNA was extracted from tissue fol-

lowing the procedure recommended by Hoelzel and Green

(1998). The teeth or bones were ground using a pestle and

mortar (autoclaved between extractions), and digested in

2 ml lysis solution for 48 h at 37�C (0.5 M EDTA, pH 8.0,

0.1 M Tris–HCl and 0.5% SDS). After digestion the DNA

was extracted using a Qiagen PCR purification kit.

Mitochondrial control region (mtDNA) amplification

and sequencing

Two fragments of the maternally inherited mtDNA control

region were amplified under the following conditions: 20–

50 ng of DNA, 10 9 PCR buffer, 1.5 mM MgCl2, 50–

100 ng of primers, 2.5 mM dNTP and 1 U of Taq poly-

merase (except for bone samples, where 2 U was used).

Amplifications were conducted with the following cycle

conditions: 94�C 2 min followed by 35 cycles of 94�C 30 s

(46 cycles in teeth and bone samples), 54�C 30 s and 72�C

30 s. A 601 bp fragment was amplified using universal

primers MTCRF (50-TTC CCC GGT CTT GTA AAC C-30)
and MTCR-R (50-ATT TTC AGT GTC TTG CTT T-30)
from Hoelzel and Green (1998). This 601 bp fragment did

not amplify in bone and teeth samples; thus internal

primers (flanking internal regions in the 601 bp fragment)

were used to amplify a smaller fragment (323 bp) (AcuF:

Fig. 1 Distribution of haplotypes for 323 bp mtDNA control regions (c.f. Fig. 3 for haplotype frequencies; color version available online)
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50-TGT ACA TGC TAT GTA TTA T-30 AcuR: GCT TTA

ACT TAT CGT ATG G-30). After amplification the sam-

ples were purified using Qiagen columns (Qiagen, Inc.) and

directly sequenced in an ABI 377 automated sequencer.

The sequences were aligned using the Clustal X pro-

gramme (1.83) from Thompson et al. (1997) and edited

using the programme Chromas Pro (www.technelysium.

co.au). After sequencing, samples were divided into three

regions in the eastern North Atlantic (ENA): The Nether-

lands (N = 38), Norway (N = 33) and the United King-

dom (UK; N = 38), and one region in the western North

Atlantic (WNA; N = 13). The WNA sample includes seven

from Canada collected for this study and six from Gen-

Bank (accession No: EF092928, EF092930, EF092929,

AJ554061, EF092931 and EF092932).

The extent of genetic variation in the control region was

assessed by examining both haplotype (h) and nucleotide

diversity (p), using Arlequin v 3.11 (Excoffier et al. 2007)

and DNAsp v 4.0 (Rozas et al. 2003). The variance com-

ponents of gene frequencies were partitioned between

geographic regions (groups), and differentiation was

quantified using the fixation index, FST (Wright 1951;

Excoffier et al. 1992). The statistical significance of the

variance components and fixation statistics were tested

using a non-parametric permutation approach with 10,000

permutations. The WNA sample size was too small to be

usefully included in these analyses.

Phylogenetic relationships among haplotypes were

examined by generating a neighbour-joining tree for the

complete set of mtDNA haplotypes using the Tamura and

Nei substitution model (chosen to control for rate variation

across the sequence; Tamura and Nei 1993). These anal-

yses were conducted using MEGA version 4.0 (Tamura

et al. 2007) and PAUP* v. 4.0b10 (Swofford 2002). In

addition, a median-joining network tree was built to infer

the ancestral relationships among haplotypes using the

programme Network, version 4.5.0.0 (Bandelt et al. 1999).

Demographic history was assessed using the mismatch

distribution (Rogers and Harpending 1992). Fit to the model

was evaluated using the sum of square deviations (SSD)

between the observed and the expected mismatch, and the

raggedness index (r) of the observed distribution (Har-

pending 1994; Schneider and Excoffier 1999). Given that

coalescent methods are generally more robust for small

sample sizes, the WNA sample was included in these anal-

yses. Expectations based on neutrality were assessed using

Fu’s Fs (Fu 1997) and Tajima’s D (Tajima 1989) in the

program Arlequin v 3.11 (Excoffier et al. 2007). The sig-

nificance of Tajima’s D was determined by generating 1,000

random samples under the assumption of selective neutrality

with a coalescent simulation algorithm (Hudson 1990).

A model of spatial expansion was also evaluated. The

programme Arlequin 3.11 (Excoffier et al. 2007) was used

to derive the expected mismatch distribution under the

continent-island model (equivalent to an infinite island

model; see Excoffier 2004), which assumes that genes were

sampled from a single deme, and belong to a population

subdivided into an infinite number of demes of size N that

exchange m migrants with other demes. Three parameters

of spatial expansion were estimated: s, h = h0 = h1

assuming N = No and M = Nm using a least-square

method. The fit to the model was tested by coalescent

simulations, assuming an instantaneous expansion under

the continent-island model as describe by Excoffier (2004).

The coalescence time of expansion in years (t) was cal-

culated using the relationship s = 2tt, where s represents

the mode of the mismatch distribution (in units of evolu-

tionary time) and t is the mutation rate for the sequence

used. The t value was calculated as suggested by Rogers and

Harpending (1992), using the formula t = lk, where l is the

mutation rate per nucleotide per year and k is the number of

nucleotides evaluated. Demographic parameters were esti-

mated using two different evolutionary rates: (i) The esti-

mate by Harlin et al. (2003) (l = 7.0 9 10-8) based on

comparisons between Phocoena phocoena and L. obscurus

(ii) A recent estimate of mutation rate for the control region

of l = 5 9 10-7 by Ho et al. (2007) based on data incor-

porated from ancient DNA.

A Bayesian sampling coalescent approach implemented

in the Mdiv program (Nielsen and Wakeley 2001) was used

to evaluate whether or not the observed genetic pattern in

the populations of L. albirostris studied fit an isolation-

with-migration model under the finite site mutation model

(HKY) (Hasegawa et al. 1985). The Mdiv programme was

run twice using 5 9 106 and 10 9 106 chains and a burn-in

of 10% (500000 and 1000000, respectively) as recom-

mended by the authors.

Microsatellite loci

Six novel microsatellite DNA loci were developed for this

study using the protocol developed by Carleton et al. (2002).

A blue-white screening was used to select positive colonies,

and the insert size was tested by PCR using two universal

primers (M13 reverse and forward) and one microsatellite-

specific primer (50-TGT GGC GGC CGC (TG)8-30). The

positive colonies were grown in overnight cultures of 6–8 ml

at 37�C; the culture was miniprepped using a GeneEluteTM

Plasmid Mini-prep Kit (Sigma). Each clone was cut with

ECORI and 26 positive clones with fragment above 400 bp

were sequenced in one direction in an ABI 377. Six clones

showed associated microsatellites of 15, 20, 54, 68, 80 and

128 di-nucleotide repeats (CA) and were used to design

microsatellite-specific primers using the Oligo programme.

Six sets of primers were designed, but only four

microsatellites were successfully standardized (Lalb6a,

1826 Conserv Genet (2010) 11:1823–1836
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Lalb3a, Lalb15a and Lalb32a) and an additional 11 ceta-

cean-specific loci were included as follows: D22 (Shino-

hara et al. 1997), EV37 and EV94 (Valsecchi and Amos

1996), FCB4 (Buchanan et al. 1996) GT136 (Andersen

et al. 2001), KWM2a (Hoelzel et al. 1998b), Textvet7

(Rooney et al. 1999), Lobs Di9, LobsDi19, LobsDi24,

LobsDi47 (Cassens et al. 2005). The PCR reactions were

performed in the presence of 20–50 ng of DNA for tissue

samples (10 ll of the DNA solution for teeth samples) for a

final volume of 20 ll. The reaction mix contained 200 nM

of each primer (the forward primer was labelled using

fluorescence to allow detection by the program sequencer),

0.5–0.75 mM MgCl2, 0.1–0.36 mM dNTPs and 0.2 U Taq

polymerase (Bioline).

The PCR conditions for primers D22, GT136, FCB4 and

Kwm2a were: Denaturation at 95�C for 5 min, 35 cycles at

94�C for 45 s, 1 min 30 s at locus-specific annealing

temperature, extension at 72�C for 1 min 30 s. PCR con-

ditions for Textvet 7: Denaturation at 95�C for 5 min 35

cycles at 94�C for 40 s, 1 min 30 s at locus-specific

annealing temperature and 1 min 40 s at 72�C. Loci Di19,

Di 24, Di 9 and Di 47 were amplified using the PCR

conditions described by Cassens et al. (2005) and for PCR

conditions for Ev37 and Ev94 see Valsecchi and Amos

(1996).

The PCR conditions for the specific primers for L. al-

birostris (Lalb6a, Lalb3a, Lalb15a and Lalb32a) were as

follows: Primer denaturation at 95�C for 5 min, 35 cycles

at 94�C for 45 s, 1 min 30 s at locus-specific annealing

temperature, and extension at 72�C for 1 min 30 s followed

by 5 min final extension. Given the small number of

samples available for the WNA, differentiation at micro-

satellite loci was evaluated only among the eastern North

Atlantic populations (Norway, UK and The Netherlands).

To identify and correct genotyping errors (i.e. to check

evidence for scoring error due to stuttering, large allele

dropout or evidence for null alleles), the program Micro-

checker (Van Oosterhout et al. 2004) was used. Microsatel-

lite variation was examined by estimating the number of

alleles per locus, gene diversity and allelic richness using the

programme Fstat vers. 2.9.3 (Goudet 2001). Regional dif-

ferences in frequencies and deviation from the Hardy–

Weinberg equilibrium were tested using the GENEPOP 1.2

programme (Raymond and Rousset 1995) and Arlequin v

3.11 (Excoffier et al. 2007). To test the null hypothesis of

independence between genotypes, evidence for linkage dis-

equilibrium was tested using Fstat vers. 2.9.3 (Goudet 2001).

The heterozygote deficiency test and the heterozygote

excess test (Rousset and Raymond 1995) were calculated

and subjected to sequential Bonferroni correction (Rice

1989). A Markov chain estimate of Fisher’s exact test was

also used in order to test the null hypothesis that allelic

distribution was identical across populations (Guo and

Thompson 1992). Population differentiation was assessed

between the Norwegian and UK populations comparing 14

microsatellites (excluding Lalb3a, see results) and between

Norwegian and The Netherlands and UK and The Neth-

erlands using five microsatellites performing the fixation

index (FST) approach of Weir and Cockerham (1984) and

RST (Slatkin 1995).

To test the hypothesis that the populations are in muta-

tion-drift equilibrium, the Wilcoxon signed-rank test in the

Bottleneck programme (Cornuet and Luikart 1996) was

used. This programme evaluates the differences between

observed and expected heterozygosities across all loci in a

population sample. In a population that underwent a bot-

tleneck, a transient excess of heterozygosity is expected;

thus a higher-than-expected observed heterozygosity would

be found (Cornuet and Luikart 1996). The analyses were

performed using 12 microsatellite loci, excluding loci that

presented deviation of HW equilibrium (Ev94 and Ev37).

The three mutation models proposed for microsatellite data

and implemented by the program BOTTLENECK were

evaluated using 1000 interactions: the Infinite Allele Model

(IAM, Kimura and Crow 1964) the Stepwise Mutation

Model (SMM, Kimura and Ohta 1978) and the Two Phase

Model (TPM, Di Rienzo et al. 1994). The TPM model was

run using a proportion of SMM equal to 70%. The reduction

in population size was also tested with the statistic M, pro-

posed by Garza and Williamson (2001) and implemented in

the programme Arlequin.

Results

Genetic variation

One hundred and 22 samples (including six samples from

the NCBI GenBank data base-see above) were analyzed

using two fragments of the mtDNA control region.

Sequences from tooth samples from The Netherlands and

the WNA were restricted in length (323 bp) while the UK

and Norway populations could be compared using both the

323 bp and 601 bp fragments. Table 1 shows the details of

haplotypic and nucleotide diversity for the various samples.

Both measures were relatively low compared to other

cetacean species (see review in Hoelzel et al. 2002), with

the effect more pronounced for nucleotide diversity. The

overall genetic diversity for the 601 bp fragment (UK plus

Norway) was relatively high (0.868 ± 0.003) although

these values dropped when the smaller fragment was ana-

lyzed (0.722 ± 0.043). The distribution of haplotypes

among putative populations is shown in Figs. 1 and 2. The

UK and Norway populations shared four haplotypes, with

12 private haplotypes in Norway (Fig. 2). Eighteen hap-

lotypes were found among western and eastern North
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Atlantic populations, defined by 21 polymorphic sites,

using 323 bp. Only two haplotypes were shared between

all four putative populations (Fig. 1; accession numbers:

HM047744–HM047761).

No linkage disequilibrium was found among micro-

satellite locus pairs. Two loci, EV37 and EV94, showed

evidence for null alleles and one locus showed evidence

for errors due to stuttering, based on analysis using the

program Microchecker (Van Oosterhout et al. 2004). The

locus with the stutter errors (Lalb3a) was deleted from

further analyses. After Bonferroni correction, loci Ev37

and Ev94 showed deviation from HW in the UK and

Norwegian populations and Di24 in The Netherlands

population. Excluding these did not change the results

(data not shown), and so they were retained for all

analyses except the tests using the program BOTTLE-

NECK. Microsatellites diversity statistics are shown in

Table 2.

Table 1 Genetic diversity at the mtDNA control region in L. albirostris

Population N Number of

haplotypes

Number of

polymorphic sites

Haplotype diversity (H) Nucleotide diversity (p)

323 bp fragment

UK 38 5 5 0.7084 ± 0.0321 0.0041 ± 0.0031

Norway 33 10 11 0.6630 ± 0.0900 0.0055 ± 0.0036

The Netherlands 38 5 5 0.6572 ± 0.0476 0.0043 ± 0.0029

WNA 13 8 12 0.9103 ± 0.0559 0.0096 ± 0.0060

601 bp fragment

UK 29 7 8 0.8128 ± 0.0385 0.0044 ± 0.0027

Norway 33 19 19 0.8788 ± 0.0480 0.0062 ± 0.0036

Overall

ENA 323 bp 109 13 13 0.6970 ± 0.0320 0.0050 ± 0.0003

ENA (UK–Norway) 601 bp 62 19 21 0.8680 ± 0.0033 0.0059 ± 0.0004

WNA and ENA 122 18 21 0.7320 ± 0.0031 0.0056 ± 0.0004
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Fig. 2 Polymorphic sites and haplotypes in UK and Norway populations (601 bp mtDNA control region)
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Differentiation among populations and phylogenetic

relationships

FST and uST values for the mtDNA control region and

microsatellite DNA loci are shown in Table 3. The UK and

The Netherlands were not differentiated, but Norway was

from both of the other two. Although the sample size for

the WNA population was small, the pattern of haplotype

frequencies was clearly distinct (Fig. 1).

Both the neighbour joining phylogenies (using either

length sequence) and median-joining network show a cer-

tain degree of association between haplotypes from each

region, especially those from Norway, but with relatively

low bootstrap support in the Neighbour joining tree

(Fig. 3). One haplotype at the centre of a star phylogeny

structure (haplotype 5) is relatively abundant in all putative

populations, while another (haplotype 1) is most common

in the UK and Netherlands. The strongest expansion signal

Table 2 Genetic diversity at microsatellite loci in L. albirostris

Locus Population N K R Ho He Fis Allelic range G–W statistics

Di9 UK 23 4 4.0000 0.4783 0.4918 0.0280 8 0.4444

Norway 37 4 3.5980 0.2703 0.2477 -0.0930 10 0.3636

The Netherlands 25 4 4.0000 0.5385 0.5784 0.0700 15 0.3125

Di47 UK 26 3 2.9890 0.2308 0.2745 0.1620 6 0.4286

Norway 42 6 5.5870 0.5238 0.5562 0.0590 16 0.3529

The Netherlands 21 6 6.0000 0.5717 0.5700 0.3300 10 0.3636

Di24 UK 26 7 6.8720 0.6539 0.7768 0.1610 20 0.3333

Norway 43 8 7.3950 0.7674 0.8142 0.0580 16 0.4706

The Netherlands 23 8 7.9170 0.7500 0.8174** 0.0840 14 0.4667

Di19 UK 26 3 3.0000 0.6923 0.5935 -0.1700 13 0.2143

Norway 44 5 4.4460 0.4318 0.5180 0.1680 25 0.1923

Texvet7 UK 26 5 4.9990 1.0000 0.7436 -0.3540* 14 0.3333

Norway 44 4 3.8950 0.7727 0.6685 -0.1580 10 0.3636

The Netherlands 26 5 4.8730 0.5769 0.7006 0.1790 20 0.2857

Gt136 UK 26 4 3.9990 0.6923 0.6267 -0.1070 18 0.2105

Norway 44 5 4.5490 0.6818 0.6136 -0.1130 10 0.4545

D22 UK 23 7 7.0000 0.7391 0.6976 -0.061* 20 0.3333

Norway 42 5 3.6430 0.6905 0.5204 -0.3320 10 0.4545

The Netherlands 25 5 4.9950 0.8000 0.6996 -0.1470 8 0.5556

Lalb6a UK 26 8 7.7570 0.6154 0.7481 0.1800 32 0.2424

Norway 44 10 8.5240 0.6818 0.7537 0.0960 22 0.4348

Lalb32a UK 26 7 6.7570 0.7308 0.6659 -0.1000 33 0.2059

Norway 43 8 6.5520 0.5349 0.6227 0.1420 33 0.2353

FCB4 UK 25 4 3.9200 0.7200 0.5845 -0.2380 6 0.5714

Norway 41 6 5.3570 0.6829 0.6555 -0.0420 12 0.4615

EV37 UK 24 4 3.9990 0.3750 0.6277** 0.4080 28 0.1379

Norway 44 10 8.9860 0.6591 0.6904 0.0460 32 0.3030

KWM2a UK 26 6 5.7580 0.6154 0.6772 0.0930 14 0.4000

Norway 41 4 3.5610 0.6098 0.5959 -0.0240 14 0.2667

EV94 UK 24 6 5.8740 0.2500 0.4220** 0.4130 14 0.4000

Norway 43 7 6.1350 0.4186 0.4208 0.0050 14 0.4667

Lalb15a UK 24 10 9.8320 0.7917 0.7642 -0.0370 22 0.4348

Norway 31 6 5.8090 1.0000 0.6563 -0.537* 12 0.4615

Overall microsatellites (14) UK 5.57 5.4830 0.6132 0.6210 0.0130 17.71 0.3350

Norway 6.29 5.5740 0.6233 0.5453 -0.0480 16.85 0.3772

Overall microsatellites (5) The Netherlands 5.40 5.2600 0.6374 0.6732 0.2180 13.4 0.3968

Fis: Degree of random mating as in Weir and Cockerham (1984). N: number of samples; K: number of alleles; R: Allelic Richness; G–W: Garza–

Williamson statistics; Ho: Observed heterozygosity; He: Expected Heterozigosity. Samples with deviation from H–W equilibrium are denoted

with two asterisks (**) and significant values of Fis are shown with one asterisk (*)
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based on the phylogenies is seen in the Norwegian sample

where haplotype 5 is found at a frequency of 58%, and no

other haplotype exceeds 9%. In most cases the mismatch

distributions from individual population samples were not

clearly unimodal, (Fig. 4); however, the values of the

variance (SSD) and the raggedness index (r) were small

and non-significant in all populations (for both models),

suggesting that the distributions did not differ significantly

from those expected under a model of sudden demographic

or spatial expansion (see Roger and Harpending 1992;

Schneider and Excoffier 1999; Table 4) Tajima’s D and the

Fu’s Fs statistics (based on the longer sequences) were all

positive and non-significant (Tajima’s D: UK: 0.85,

P = 0.82; The Netherlands: 0.38, P = 0.69; Fu’s Fs: UK:

0.33, P = 0.60; The Netherlands: 0.48, P = 0.64), except

for the Norwegian population (Fu’s Fs = -5.7633,

P = 0.0095; Tajima’s D: 0.85, P = 0.82).

Given that there is no evidence to reject the hypothesis

of demographic expansion or spatial expansion in L. albi-

rostris, s values were used to calculate expansion times

using two different evolutionary rates (see above; Table 4).

Note that in every case the length of the sequence affected

the estimate of tau, and therefore on the assumption that the

longer sequence provided better resolution, further inter-

pretation was based on expansion times derived from the

longer sequence.

Three population pairs were compared using the isola-

tion-with-migration model in the program MDIV (UK

versus Norway, WNA versus Norway and WNA versus

UK). All parameters had the same distribution when using

different chains and burn-in steps (data not shown). The

isolation with migration analysis suggested that the

ancestral migration between Norway and WNA popula-

tions (*4 females every five generations) was lower than

ancestral migration between UK versus WNA (*2 females

per generation), however given the small sample sizes for

the WNA population and the absence of samples from

contiguous regions, this results should be interpreted with

caution. Splitting times could not be resolved for any

of the population pairs analyzed. However, the time to the

most recent common ancestor (TMRCA) was estimated

(using MDIV), and the following values were obtained

using l1 = 5 9 10-7 (Ho et al. 2007) and l2 = 7 9 10-8

(Harlin et al. 2003) (UK–WNA: TMRCAl1 = 10,433

TMRCAl2 = 74,524; Norway–WNA: TMRCAl1 =

14,012 TMRCAl2 = 100,088; UK–Norway: TMRCAl1 =

6,140 TMRCAl2 = 43,855).

In order to address whether the populations of L. albi-

rostris have experienced further reduction in population

sizes due to a recent bottleneck, the program BOTTLE-

NECK and the M value proposed by Garza and Williamson

(2001) were analyzed. For the British Isles-North Sea

population the Wilcoxon test gave a significant results for

excess gene diversity under the assumption of the IAM

model (P = 0.03418) and under the SMM model

(P = 0.006), but results were not significant under the

TPM model (P = 0.677). For the Norwegian population

the test gave significant result only under the SMM model

(P = 0.001). Values from Garza’s M were low (B0.4) and

consistent with expectations for populations that have

undergone a bottleneck.

Discussion

Genetic diversity and demographic expansions

Diversity at the nuclear level in L. albirostris was moderate,

and similar to values reported for other delphinids popula-

tions (e.g., Buchanan et al. 1996; Hayano et al. 2004). The

mitochondrial haplotypic diversity was also within the range

described for other cetacean species (e.g., Pichler and Baker

2000; Harlin et al. 2003; Cassens et al. 2003; Hayano et al.

2004; Natoli et al. 2006; Querouil et al. 2007). In contrast,

the nucleotide diversity was very low (ranging from 0.0043

in The Netherlands to 0.0096 in the WNA population) and

similar to values reported for cetacean populations with

historically small population sizes or that have been strongly

affected by human activities (e.g. Bérubé et al. 1998; Natoli

et al. 2006). This pattern is expected when diversity is lost

(for example through a bottleneck event), and then regained

after a population expansion.

Given this species’ limited distribution, an impact on

population size during Pleistocene glaciations, as proposed

for other temperate species, is a credible scenario (see

Wares 2002; Hewitt 2000, 2004). This hypothesis was

supported by the mismatch distribution analyses to some

extent, and by the M-ratio data suggesting an older bot-

tleneck. However, most of the mismatch distributions were

not strongly unimodal, limiting the strength of this inter-

pretation (a non-significant deviation from the model

Table 3 uST and FST values for L. albirostris using the mtDNA

control region (below diagonal) and RST and FST values based on

microsatellite DNA loci (above diagonal)

Region UK The Netherlands Norway

UK 0.0106 0.0227 (14 loci)

0.0041 0.0185

The Netherlands -0.00149 0.0139 (5 loci)

-0.0092 0.0285

Norway 0.1360 0.0605

0.0918 0.0498

Bottom value in each cell is the FST value. Values in italics were

calculated using 601 bp, values in bold are significant at the 0.05 level

(after Bonferroni correction)
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distribution does not necessarily mean that the mismatch

distribution is unimodal). A more recent expansion in

Norway is supported by the phylogenetic reconstructions,

the relatively clear unimodal shape of the mismatch dis-

tribution, and the negative and significant Fu’s Fs statistic.

Some results from the program Bottleneck also suggested a

population contraction and expansion in both the UK and

Norway (significant evidence of gene diversity excess

based on the relatively conservative SMM for both

populations).

The fact that the same haplotypes are common among

distant populations and the star-like shape of the network

around two dominant haplotypes are consistent with the

interpretation of an earlier expansion (see Fig. 3), predat-

ing population subdivision in this species. Only the fastest

mutation rate estimates would suggest a post-glacial

expansion (see Table 4), but these fast rates for this locus

have provided credible time points for demographic

expansions in a variety of species, such as bison responding

first to changing climate, and then to the arrival of human

Fig. 3 Neighbour joining and Network tree showing the relationships among haplotypes using 323 bp. Shades in the NJ tree represent private

haplotypes for each region. Line lengths in the network tree are proportional to the number of mutations among haplotypes
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hunters (Shapiro et al. 2004; Drummond et al. 2005), and

elephant seals responding to the gain and loss of breeding

habitat with changing ice cover on the Antarctic mainland

(DeBruyn et al. 2009). Spatial expansions may have

occurred several thousands of years after the demographic

expansion, though the distributions for the spatial expan-

sion analyses were broad and poorly defined.

There are limitations to these interpretations (e.g. both

selection and stochastic processes can affect the mismatch

distributions), however a sudden demographic expansion,

together with a spatial expansion as suggested here for L.

albirostris, has also been proposed for a number of other

marine species (e.g., Wares 2002; Gysels et al. 2004;

Adams et al. 2006; Costedoat et al. 2006; Haney et al.

2007). This has been attributed to climatic changes that

took place during the Pleistocene Epoch, which may have

generated several episodes of range expansions and con-

tractions, with subsequent fluctuations in population sizes

in various species (Taberlet et al. 1998; Hewitt 2000).

During glaciated epochs changes in the sea level,

Fig. 4 Mismatch distribution under a model of demographic expan-

sion (upper graph) and under a model of spatial expansion (lower
graph). The x axis shows the number of pairwise differences, the y

axis shows the frequency of the pairwise comparisons. a Norway

population (601 bp) b UK population (601 bp) c The Netherlands

(323 bp). d WNA population (323 bp)
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temperatures, upwelling patterns and prey distribution may

have played an important role in the connection and iso-

lation of populations (c.f., Costedoat et al. 2006; Harlin-

Cognato et al. 2007). Therefore, it is possible that this led

to a dynamic pattern of population colonisation and

expansion, and a complex genetic signal of population

founding and recovery in L. albirostris. A later expansion

north along the Norwegian coast to the Barents Sea could

have been a consequence of the spatial expansion further

south, followed by a founder event across the North Sea,

given the propensity for this species to occupy coastal

habitat (though sometimes found some distance from

shore, see Evans and Hammond 2004). The idea that the

Norwegian-Barents Sea population could have been foun-

ded from the British Isle-North Sea population is supported

by the more recent TMRCA calculated for this pair of

putative populations, and the pattern of haplotype fre-

quencies seen in the network (Fig. 3). However, interme-

diate populations across the North Atlantic and parts of the

European distributional range were not included in this

study, so a clear picture of the route of dispersion for this

species could not be fully addressed.

Population structure

We found evidence for three L. albirostris populations in

the North Atlantic: one in the NW Atlantic (though the

sample size was too small to fully characterise this popu-

lation’s relationship to the others), one continuous popu-

lation around the British Isle and in the North Sea and one

population in the coastal and shelf waters of North Norway

and the Barents Sea. The distinction between the latter two

populations was confirmed by both mtDNA and micro-

satellite DNA markers.

These results are in agreement with previous cranio-

metrical analyses published by Mikkelsen and Lund

(1994), who found evidence for a least two separate pop-

ulations of L. albirostris in the North Atlantic, one in the

western North Atlantic (samples mainly from USA coast)

and the other in the eastern North Atlantic (samples mainly

from the North Sea). Levels of differentiation found

between the samples from UK and Norway at microsatel-

lite loci were similar to that found between different

coastal populations of L. obscurus (i.e. South Africa versus

Argentina; Cassens et al. 2005) and populations of Pho-

coena spinipinnis within Peruvian waters (Rosa et al.

2005). At the mtDNA locus levels were similar to that seen

among populations of bottlenose whales (Hyperoodon

ampullatus) between the eastern (Iceland) and western

North Atlantic (Dalebout et al. 2006).

Conclusions

These analyses have provided some important implications

for effective management. The phylogenetic data suggest

the recovery of shallow variation after some variation was

lost, possibly during a population contraction in refugial

habitat during the last glacial epoch. The population

genetic data suggest that comparatively short expanses of

open water (across the English Channel) are crossed (either

during the expansion phase, or continuously via ongoing

migration), which may mean that contiguous coastline

habitat could be managed as a single population, though

Table 4 Demographic and Spatial expansion statistics, and expansion times (t = s/2l) calculate from mtDNA control region

Sample s SSD SSD P-value r R P-value T (l1) T (l2) CI 95% T (l1) 95% CI T (l2) 95% CI

Demographic expansion

Norway (601 bp) 1.7 0.013 0.476 0.035 0.528 19708 2759 0.17 –10.77 2068–127953 290–17913

Norway (323 bp) 0.0 – 0.000 0.052 1.000 – – – – –

UK (601 bp) 5.2 0.046 0.145 0.114 0.234 62277 8719 0.078–9.88 929–117457 130–16444

UK (323 bp) 2.5 0.014 0.338 0.067 0.662 54622 7647 0.070–4.28 1555–94719 218–13260

The Netherlands 2.6 0.041 0.177 0.154 0.237 58138 8139 0–4.45 0–98386 0–13774

WNA 3.1 0.007 0.764 0.029 0.880 67552 9457 1.43–5.87 31617–129748 4426–18164

Spatial expansion

Norway (601 bp) 1.3 0.013 0.436 0.035 0.545 15450 2163 0.47–8.58 5597–101930 783–14270

Norway (323 bp) 2.5 0.006 0.816 0.052 0.890 55285 7740 0.54–5.54 11935–122667 1671–17173

UK (601 bp) 3.3 0.050 0.085 0.114 0.518 39220 5491 0.74–8.97 8829–106578 1236–14921

UK (323 bp) 2.2 0.008 0.469 0.067 0.703 48651 6811 0.50–4.14 11145–91543 1560–12816

The Netherlands 2.3 0.025 0.252 0.154 0.449 50862 7121 0.50–4.82 11077–106625 1551–14927

WNA 2.5 0.007 0.784 0.029 0.893 55285 7740 1.15–5.12 25471–113346 3566–15868

l1 = 7.0 9 10-8, Harlin et al. (2003); l2 = 5.0 9 10-7, Ho et al. (2007); SSD, Sum of square deviations; r, Raggedness index
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more inclusive sampling would be required to verify this.

These data also showed that a more substantial distance

across open water (between the British Isles-North Sea and

northern Norway-Barents Sea) was apparently not crossed

during the initial expansion phase (though it is not clear

why contiguous populations along the southern Norwegian

coast were not established). Instead, there is a signal for a

later expansion along the Norwegian coast following a

founder event. Though the data are few, it is also apparent

that the WNA population is isolated from the ENA popu-

lations. Together these data emphasize the importance of

coastal habitat to this species, and identify at least three

separate populations that should be managed separately.
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