
ORIGINAL PAPER

Patterns of genetic variation in anthropogenically impacted
populations

Joseph D. DiBattista

Received: 7 October 2006 / Accepted: 26 February 2007 / Published online: 12 April 2007

� Springer Science+Business Media B.V. 2007

Abstract Genetic variation is considered critical for

allowing natural populations to adapt to their changing

environment, and yet the effects of human disturbance on

genetic variation in the wild are poorly understood. Dif-

ferent types of human disturbances may genetically impact

natural populations in a predictable manner and so the aim

of this study was to provide an overview of these changes

using a quantitative literature review approach. I examined

both allozyme and microsatellite estimates of genetic var-

iation from peer-reviewed journals, using the mean number

of alleles per locus and expected heterozygosity as stan-

dardized metrics. Populations within each study were cat-

egorized according to the type of human disturbance

experienced (‘‘hunting/harvest’’, ‘‘habitat fragmentation’’,

or ‘‘pollution’’), and taxon-specific, as well as time- and

context-dependent disturbance effects were considered. I

found that human disturbances are associated with weak,

but consistent changes in neutral genetic variation within

natural populations. The direction of change was dependent

on the type of human disturbance experienced, with some

forms of anthropogenic challenges consistently decreasing

genetic variation from background patterns (e.g., habitat

fragmentation), whereas others had no effect (e.g., hunting/

harvest) or even slightly increased genetic variation (e.g.,

pollution). These same measures appeared sensitive to both

the time of origin and duration of the disturbance as well.

This suggests that the presence or absence, strength, type,

as well as the spatial and temporal scale of human distur-

bance experienced may warrant careful consideration when

conservation management plans are formulated for natural

populations, with particular attention paid to the effects of

habitat fragmentation.

Keywords Conservation genetics � Genetic variation �
Heterozygosity � Human disturbance � Mean number of

alleles per locus

Introduction

Genetic variation is the raw material on which selection

acts and thus critical for evolutionary change. Genetic

variation may be particularly important in the case of rapid

environmental change, where evolution must also be rapid

if a population is to persist (Burger and Lynch 1995; Lande

and Shannon 1996). However, as dramatic environmental

changes are often associated with human activities (e.g., De

Pippo et al. 2006), it is here that genetic variation may be

most important. Indeed, human impacts themselves are

thought to decrease genetic variation (Caizergues et al.

2003; Kang et al. 2005), thus compromising necessary

evolutionary change. The aim of this study is therefore to

examine how human activities influence genetic variation

in natural populations.

The ideal experiment to examine human impacts on

genetic variation in nature is to screen a population before

and after a disturbance. However, it is often not possible to

carry out such experiments, therefore, as an alternative I

have examined a large number of published studies to find

a consensus on the effects of different types of human

disturbance on genetic variation. This consideration is

motivated in part by the conflicting results from different

studies of genetic variation. In particular, some studies

report reductions in genetic variation as a result of human
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disturbance (Caizergues et al. 2003; Kang et al. 2005),

whereas others find no such effect (Berckmoes et al. 2005;

Goosens et al. 2005). Genetic variation will reflect a bal-

ance between selection, mutation, and drift, and so human

activities that differentially impact these forces may have

very different effects on genetic variation. Human impacts

that reduce population size and increasingly isolate popu-

lations may increase genetic drift and thereby reduce ge-

netic variation. Human impacts that change environmental

conditions may increase selection and thereby also reduce

genetic variation. Human impacts that increase mutation

rates (e.g., Chernoble; Ellegren et al. 1997) may increase

genetic variation. To examine these effects, I divide dif-

ferent types of human impacts in accordance with the

primary deterministic factors that contribute to modern

population extinction events (for review see Frankham

2003).

Hunting and harvesting reduce population size and at

least sometimes cause significant declines in neutral

genetic variation (Frankham 1996; Godt et al. 1996). In

these cases, genetic variation may be lost through random

genetic drift as the effective population size decreases

(Lacy 1997). Further, inbreeding may increase the pro-

portion of homozygous individuals within a population,

which ultimately leads to a reduction in fitness (Crnokrak

and Roff 1999). Trophy hunting in particular may also

exert strong directional selection by targeting animals with

the largest ornaments, which may then remove specific

alleles or genotypes from a population (Fitzsimmons et al.

1995; Coltman et al. 2003). The prediction here would

therefore be a decrease in genetic variation for hunted and

harvested populations.

Habitat fragmentation, due to human settlements,

fenced motorways, channels, and habitat clearing, results in

the subdivision of populations into smaller, more discrete

units, with limited dispersal among them. These changes

can, in at least some cases, erode genetic variation due to

increased inbreeding and genetic drift within fragments,

and to reduced gene flow among fragmented units (Young

et al. 1996; Frankham et al. 2002). The prediction here

would therefore also be a decrease in genetic variation for

fragmented populations.

Pollution may influence genetic variation, although the

outcome is much less certain here than for the factors

mentioned above (Bickham et al. 2000). On the one hand

pollution might decrease genetic variation owing to genetic

drift and inbreeding, particularly in cases of increased

mortality that decrease population size (Posthuma and Van

Straalen 1993; Belfiore and Anderson 2001). Genetic var-

iation may also decrease owing to selection for pollution-

tolerant genotypes (Keane et al. 2005). On the other hand,

populations chronically exposed to chemical pollutants

may experience an increase in genetic variation due to

increased mutation rates (Yauk and Quinn 1996; Baker

et al. 2001) or selection for heterozygotes (i.e., overdomi-

nant hypothesis; see Bickham et al. 2000). Because of this

complexity, it remains uncertain as to the type of effects

that pollution will have on average.

Given our interest in evolutionary potential, we would

most like to track changes in genetic variation at fitness

related traits. This information, however, is largely lacking

for natural populations. Instead, it is sometimes possible to

use neutral genetic variation as a surrogate (Frankham

et al. 2002). This can be tenuous when examining variation

among populations (McKay and Latta 2002), but it is often

defensible within populations (Gilligan et al. 2005). In-

deed, neutral genetic variation largely appears associated

with population fitness and extinction risk (Frankham

2003, 2005; Reed and Frankham 2003). I will therefore

analyze patterns of neutral genetic variation in hope that it

also informs the amount of variation for traits and genes

under selection.

In the present study, I specifically test the null hypoth-

esis that estimates of neutral genetic variation are not

significantly different between populations in habitats not

disturbed by humans versus those in habitat subject to the

above types of human disturbance. My analyses are based

on a compilation of studies examining allozyme and mi-

crosatellite variation across a wide range of species. Other

studies have performed similar analyses (see Garner et al.

2005), but mine differs in (1) explicitly examining different

types of human disturbance, (2) excluding cases of dis-

turbances not directly related to human activity (i.e., sto-

chastic factors) (3) including more studies (and from a

wider range of taxa), and (4) examining effects of the age

and duration of disturbance.

Methods

I searched the literature for allozyme and microsatellite

data on genetic variation in disturbed or undisturbed pop-

ulations in nature. This process took the form of keyword

searches (genetic variation, heterozygosity, allelic diver-

sity, natural population, and population size) in Pubmed,

Web of Science, BIOSIS Previews, and BioOne databases.

Note that no keyword suggestive of disturbance was in-

cluded, thus avoiding a bias toward studies specifically

examining this effect. Keyword searches were then sup-

plemented by examining the literature cited section of

papers thus revealed.

Studies were included in the database if they met spe-

cific criteria. First, at least one of two relevant measures of

genetic variation had to be reported: mean number of al-

leles per locus or heterozygosity. The mean number of

alleles per locus is representative of the potential genetic
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polymorphism, dictating the true limit of the response to

selection (Schoen and Brown 1993; Bataillon et al. 1996).

Heterozygosity is often thought of as a measure of actual

genetic diversity (Nei 1987). For each study, I averaged

population-specific values to obtain an overall value within

each study. Mean heterozygosities were arc-sine square

root transformed and number of alleles were log10-trans-

formed, which improved normality. Second, I avoided

pseudoreplication by using only a single study for a given

species, specifically the most recent study. Third, genetic

variation had to be reported for at least five microsatellite

or polymorphic allozyme loci. Fourth, at least ten indi-

viduals had to be sampled per population. Fifth, the pop-

ulations examined had to be natural, rather than domestic,

captive, or experimental.

Information recorded from each study included the

species, the number of populations sampled, the average

number of individuals per population, the type of marker

used, the number of loci, the mean number of alleles per

locus, and the mean observed and expected heterozygosity.

When loci deviated from Hardy–Weinberg equilibrium,

heterozygosity values were recalculated, where possible,

after eliminating those loci. This was done because the

causes of deviation from Hardy–Weinberg equilibrium

could be many (null alleles, admixture, selection), and the

specific cause is rarely known. Expected heterozygosities

were reported in most studies (87% of all papers collected),

and when they were not, I instead used observed hetero-

zygosities, which should be similar at equilibrium (Hedrick

2000).

Human disturbance within each study was categorized

as ‘‘hunting/harvest’’, ‘‘habitat fragmentation’’ (including

habitat loss), or ‘‘pollution’’. Studies of populations

experiencing natural disturbances, such as disease, preda-

tion, natural disasters, and fire, were excluded in an attempt

to restrict the focus to anthropogenic factors. If a popula-

tion suffered more than one type of disturbance (29% of

studies), it was included in the analysis for only the pri-

mary disturbance type mentioned in the publication (thus

preventing non-independent data points). Papers in which

the primary disturbance type was either not explicitly sta-

ted or unclear were excluded. When no disturbance was

noted in a study, the populations were considered

‘‘undisturbed’’. This was confirmed by reading relevant

references also cited within these papers. When studies

included both disturbed and undisturbed populations of the

same species, both were included in the analysis (see also

below). In the end, a total of 220 relevant publications were

identified (Appendix).

In order to consider the long-term effects of human

activity on genetic variation, disturbances were further

classified as to their time of origin and duration. A dis-

turbance was deemed ‘‘historic’’ if it had occurred and

ended prior to 1900. A disturbance was considered

‘‘recent’’ if it occurred after 1950. Few disturbances began

between 1900 and 1950 and were therefore not here con-

sidered. Further, a ‘‘short-term’’ disturbance is one that

occurred after 1950 and is still present, whereas a ‘‘long-

term’’ disturbance is one which began prior to 1950 and

persists to the present. These distinctions could not be

made for 26 studies, which were therefore excluded from

this part of the analysis.

Statistical analyses

Formal meta-analytic approaches require that studies report

measures of variability from which effect sizes can be

calculated (Arnqvist and Wooster 1995; Gurevitch and

Hedges 1999). This was not the case for many studies in

the database, and so I instead relied on conventional sta-

tistical tests. These tests may have lower power than formal

meta-analyses, but Type I error rates are at least similar

when the pattern of sampling-error variances is not sub-

stantially different among categories (Gurevitch and

Hedges 1999).

I first evaluated the relationship between the mean

number of individuals sampled in a study and the mean

number of alleles per locus (Von Segesser et al. 1999).

These variables were weakly, but significantly correlated

for microsatellites (r2 = 0.061, P < 0.0001) and not sig-

nificant for allozymes (r2 = 0.032, P = 0.10). Sample size

variation was therefore unlikely to affect interpretations

based on alleles per locus. I nevertheless repeated all

analyses (see below) after standardizing the number of

alleles by the number of sampled individuals. Standardized

and un-standardized estimates were significantly and pos-

itively correlated with each other (Pearson Product Mo-

ment: r = 0.58, P < 0.0001), and observed patterns were

similar in all cases. Analyses of numbers of alleles were

therefore based on unstandardized values.

Two types of analyses were performed. First, I com-

pared genetic variation among studies, which itself

involved several analyses. Second, I compared genetic

variation among populations within studies. All statistical

analyses were performed using SPSS v11.1 software, at the

a = 0.05 level of significance.

Genetic variation among studies was primarily analyzed

with MANOVAs. The dependent variables were numbers

of alleles and heterozygosity (referred to jointly as

‘‘genetic variation’’). The independent variables were

disturbance and molecular marker type (both fixed). These

analyses were supplemented by separate univariate ANO-

VAs for each marker type and genetic variance measure,

followed by Fisher’s LSD post hoc tests. This analysis was

repeated for only the two best-represented groups in the

database: mammals and plants, which ensured that
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observed patterns were not dependant on particular dis-

turbance types having a disproportionate number of data

points from a particular taxon. In all instances, a full model

was first run and non-significant interactions were then

removed. Overall inferences about changes in genetic

variation were based on the MANOVAs, whereas infer-

ences about specific response variables were based on the

ANOVAs. These analyses should be broadly similar given

that the two genetic variation measures were strongly

correlated with each other (Pearson Product Moment,

r = 0.905, P < 0.0001). The data were treated in a similar

manner when the temporal effects of human disturbance

were considered (with time of origin or duration of a dis-

turbance as fixed factors).

Opposing effects in different taxa, however, may cancel

each other out in a metaanalysis (e.g., disturbance may lead

to a decrease in genetic diversity in mammals, but an in-

crease in birds, and thus no effect overall), and so a com-

parison among individual taxa is important. To test for

taxonomic effects, species were grouped into mammals,

birds, fish, herp-fauna (i.e., amphibians and reptiles),

invertebrates, and plants. These analyses included only

taxa with at least two disturbed and undisturbed species

and pooled the various disturbance types (to ensure suffi-

cient sample size). Similar to above, MANOVAs were

employed, with the numbers of alleles and heterozygosity

as dependent variables. In this case, however, the inde-

pendent variables were disturbance, molecular marker

type, and taxon (all fixed factors). These analyses were also

supplemented by separate univariate ANOVAs for each

marker type and genetic variation measure.

Variation within studies was analyzed by considering

differences between disturbed and undisturbed populations

within a given study (N = 50 studies). This analysis thus

controls for differences in the methodology employed by

each individual study (e.g., marker loci used, study species,

and sample size). Further, 11 of these data sets actually

included the same populations before and after human

disturbance, thus controlling for site-specific differences. In

particular, I used Wilcoxon Signed Rank t tests to assess

the relationship between mean heterozygosity in disturbed

versus undisturbed reference populations within the same

study and species. Heterozygosity is measured on a scale

ranging from 0 to 1 and thus lends itself to this type of

analysis.

Results

In analyses of variation among studies, genetic variation

was much higher for microsatellites than for allozymes

(MANOVA: F2,270 = 290.98, P < 0.0001), and was also

influenced by disturbance type (MANOVA: F6,540 = 2.86,

P = 0.009); different types of human disturbance had dif-

ferent genetic effects. In general, genetic variation in

undisturbed populations was significantly higher than that

in fragmented populations, non-significantly higher than

that in hunted/harvested populations, and non-significantly

lower than that in polluted populations (Table 1). For

allozyme markers in particular, disturbance had a signifi-

cant effect on the mean number of alleles per locus

(F3,87 = 6.75, P < 0.0001) but not heterozygosity

(F3,96 = 2.33, P = 0.08); fragmented populations had fewer

allozyme alleles than did polluted (P = 0.001), hunted/

harvested (P = 0.041), or undisturbed (P < 0.0001) popu-

lations. The same was true for the number of alleles

(F3,192 = 3.23, P = 0.024) and heterozygosity

(F3,197 = 2.24, P = 0.085) estimated with microsatellite

markers; fragmented populations had fewer microsatellite

alleles than did polluted (P = 0.041) or undisturbed

(P = 0.011) populations, although in this case, not hunted/

harvested (P = 0.459) populations. Thus, habitat frag-

mentation clearly had the strongest effect, consistently

decreasing genetic variation from background patterns.

The above trends were maintained when accounting for

possible effects of taxon. First, when species were grouped

into distinct taxa, genetic variation was typically (but not

always) lower in disturbed versus undisturbed populations

(Fig. 1A,B,C,D). Although marker type (MANOVA:

F2,261 = 145.17, P < 0.0001) and taxon (MANOVA:

F10,522 = 3.47, P < 0.0001) had a significant effect on

genetic variation, surprisingly disturbance did not (MA-

NOVA: F2,261 = 1.88, P = 0.155). Disturbance effects

increased (and were significant), however, after removal

of pollution studies (MANOVA: marker type,

F2,245 = 131.71, P < 0.0001; taxon, F10,490 = 2.86,

P = 0.002; disturbed versus undisturbed, F2,245 = 3.33,

P = 0.043), reinforcing the idea that pollution had quali-

tatively different effects than other types of disturbance

here considered. Following this modification, the mean

number of alleles per locus (allozyme: F1,72 = 9.41,

P < 0.0001; microsatellite: F1,185 = 3.62, P = 0.029), but

not heterozygosity (allozyme: F1,81 = 1.98, P = 0.15;

microsatellite: F1,189 = 2.52, P = 0.084), was significantly

lower in disturbed populations across all taxa. Second,

trends in genetic variation among the disturbance types

were similar (pollution > undisturbed > hunting/

harvest > fragmented) and significant (MANOVA:

F6,354 = 2.12, P = 0.05), albeit marginally, when compar-

ing genetic variation estimates strictly within plants and

mammals (Table 2). Fragmented plant populations (dis-

turbance type: F3,43 = 4.042, P = 0.031) had significantly

fewer allozyme alleles per locus than undisturbed

(P = 0.015) or polluted (P = 0.027) populations, whereas

fragmented mammalian populations (disturbance type:

F1,4 = 14.59, P = 0.032) had significantly fewer allozyme
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alleles than undisturbed populations (P = 0.032). Thus, the

observed differences in genetic variation among distur-

bance categories did not appear to be dictated by a single

taxonomic group.

Possible long-term effects of human disturbance on

genetic variation were also assessed, but only for micro-

satellite markers (Fig. 2A,B) due to small sample sizes for

allozymes. A subtle trend for a decrease in genetic varia-

Table 1 Mean allozyme and microsatellite genetic variation esti-

mates in ‘‘undisturbed’’ and ‘‘disturbed’’ populations (disturbance

categories: Hunting/Harvest, Habitat Fragmentation, and Pollution),

characterized as the mean number of alleles per locus (A) and

expected heterozygosity (He)

Undisturbed Hunting/Harvest Fragmentation Pollution

Allozymeb,c A 2.13 ± 0.09a (46) 2.076 ± 0.34 (7) 1.56 ± 0.088* (30) 2.19 ± 0.17 (13)

He 0.19 ± 0.016 (48) 0.16 ± 0.028 (8) 0.14 ± 0.02* (33) 0.22 ± 0.036 (14)

Microsatelliteb,c A 8.84 ± 0.57 (80) 6.89 ± 0.46 (49) 6.83 ± 0.52** (60) 13.12 ± 4.03 (6)

He 0.65 ± 0.018 (82) 0.60 ± 0.02 (50) 0.59 ± 0.023 (62) 0.70 ± 0.088 (7)

a Values are means ± 1 SEM (N)
b MANOVA tests were carried out for both estimators of genetic diversity (A and He together), using disturbance and molecular marker type as

fixed factors. Univariate ANOVA tests were also conducted to identify case specific differences
c An asterisk ‘‘*’’ indicates a significant difference from all other disturbance types, P < 0.05, whereas a double asterisk ‘‘**’’ indicates a

significant difference from polluted (P = 0.041) and undisturbed populations (P = 0.011) only
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Fig. 1 Number of alleles per locus (A, B) and heterozygosity (C, D)

across a wide range of animal taxa as a function of human

disturbance, investigated using both allozyme (A, C) and microsat-

ellite markers (B, D). Numbers in parentheses represent sample sizes

(N). All values are means ± SEM
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tion with increasing time since disturbance was evident

(Fig. 2A) but non-significant (MANOVA: F4,376 = 2.22,

P = 0.066). It was significant, however, when the number

of alleles (F2,192 = 4.36, P = 0.014) and heterozygosity

(F2,197 = 3.45, P = 0.034) were considered separately;

undisturbed populations had significantly more alleles

(P = 0.007) and higher heterozygosity (P = 0.017) than

populations that had experienced disturbances prior to the

1900s, which was not the case for more recent disturbances

(mean number of alleles per locus, P = 0.07; heterozy-

gosity, P = 0.099). Human disturbances of increasing

duration (Fig. 2B) also decreased genetic variation overall

(F4,334 = 2.38, P = 0.045). It was only significant, how-

ever, for the mean number of alleles (F2,171 = 3.77,

P = 0.025) and not heterozygosity (F2,174 = 1.62, P = 0.2)

when considered separately. Populations experiencing

long-term disturbances had significantly fewer alleles than

undisturbed (P = 0.007) populations, and populations

subject to short-term disturbances (P = 0.046).

A more rigorous test of the effects of human disturbance

on genetic variation was performed by correlating hetero-

zygosity estimates from both disturbed and undisturbed

reference populations of the same species, reported within

the same study (Fig. 3). Variation within studies included

analyses for 8 mammals, 3 birds, 12 fishes, 3 herp-fauna,

10 invertebrates, and 14 plants. As might be expected,

genetic variation in disturbed and undisturbed populations

was strongly correlated across studies (Pearson Product

Moment: r = 0.93, P < 0.0001), but no consistent trend for

differences (i.e., disturbed versus undisturbed) was evident

when all disturbance types were considered together

(Wilcoxon Signed Rank t test: P = 0.31). However, nine of

the 12 studies showing qualitatively higher values in dis-

turbed populations were for instances of pollution, and so

polluted populations on their own had significantly higher

genetic variation than their undisturbed counterparts

(Wilcoxon Signed Rank t test: P = 0.045). When pollution

data were removed from the analysis, disturbed and

undisturbed heterozygosity estimates were significantly

different among the remaining categories (Wilcoxon

Signed Rank t test: P = 0.004), although, in this case,

indicating a consistent negative impact of human distur-

bance on genetic variation. I observed the same pattern

when the mean number of alleles per locus was analyzed in

this manner (data not shown).

Discussion

My goal was to evaluate the genetic impacts of different

types of human disturbance. I found that the direction of

responses, in terms of changes in neutral genetic variation

from undisturbed background patterns, were dependent on

the type of disturbance experienced. In general, fragmen-

tation reduced genetic variation, hunting/harvesting had no

appreciable effect, and pollution may actually increase

genetic variation, although this last effect was not signifi-

cant when tested directly. These results were largely con-

sistent across different taxa (Fig. 1, Table 2), and were

robust to differences in molecular marker types (allozymes

or microsatellites) and genetic variation estimators (num-

bers of alleles or heterozygosity). Interestingly, however,

the mean number of alleles per locus was more likely to

show significant differences than was heterozygosity. This

result fits with work showing that allelic diversity is af-

fected more by demographic disturbances than are other

estimates of neutral genetic variation (Hartl and Pucek

1994). Further, the observed patterns remained when the

number of alleles was expressed as a ratio of sample size,

indicating that my results were not driven simply by dif-

ferences in sampling effort.

Table 2 Mean allozyme and microsatellite genetic variation

estimates in ‘‘undisturbed’’ and ‘‘disturbed’’ populations of mam-

mals and plants (disturbance categories: Hunting/Harvest, Habitat

Fragmentation, and Pollution), characterized as the mean number of

alleles per locus (A) and expected heterozygosity (He)

Undisturbed Hunting/Harvest Fragmentation Pollution

Mammals: Allozymeb,c A 2.75 ± 0.46*,a (2) NA 1.43 ± 0.13 (3) NA

He 0.34 ± 0.16 (2) NA 0.11 ± 0.051 (3) NA

Mammals: Microsatelliteb,c A 8.18 ± 0.69 (49) 6.59 ± 0.55 (34) 6.17 ± 0.54 (38) NA

He 0.65 ± 0.026 (49) 0.60 ± 0.024 (35) 0.59 ± 0.029 (39) NA

Plants: Allozymeb,c A 1.99 ± 0.11* (20) 2.23 ± 0.49 (2) 1.68 ± 0.13 (18) 2.17 ± 0.21* (5)

He 0.21 ± 0.018 (22) 0.18 ± 0.03 (2) 0.16 ± 0.022 (20) 0.21 ± 0.035 (5)

Plants: Microsatelliteb,c A 8.31 ± 1.074 (8) 8.27 ± 2.24 (5) 5.53 ± 2.00 (3) NA

He 0.62 ± 0.031 (8) 0.57 ± 0.061 (5) 0.51 ± 0.18 (3) NA

a Values are means ± 1 SEM (N)
b MANOVA tests were carried out for both estimators of genetic variation (A and He together), using disturbance type, molecular marker type,

and taxon as fixed factors. Only categories represented by at least two samples were included in the analysis
c An asterisk ‘‘*’’ indicates a significant difference from the fragmented group, P < 0.05
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Could my findings be the result of a publication bias?

Such a bias could occur if studies reporting significant

results are more likely to be published (Arnqvist and

Wooster 1995; Gurevitch and Hedges 1999). This would be

a problem in my study if there was a bias toward publi-

cation of disturbed populations that show reductions in

genetic variation. Some such bias is possible but seems

unlikely to explain all the main trends. First, patterns of

genetic change were largely consistent across taxa,

molecular marker type, and genetic variation estimators.

Second, genetic changes owing to human disturbances are

likely underrepresented in this study, as species or popu-

lations driven to extinction by human activities were not

considered. Third, many of the studies included in the

database collected data for purposes mostly unrelated to

assessing the impacts of human disturbances on genetic

variation (e.g., social structure, breeding biology, or iso-

lation by distance). Fourth, the pollution data actually seem

to suggest an increase in genetic variation, indicating that

the decrease in fragmentation studies is unlikely to be just

the result of a bias.

Do my results reflect human effects? I specifically

examined disturbances attributable to humans, and so my

results clearly apply to that context. It is also possible,

however, that natural disturbances could have similar ef-

fects. Indeed, previous studies did not separate these effects

(Garner et al. 2005). My main goal, however, is to compare

different types of human disturbance, and so here infer-

ences do not depend on an understanding of the effects of

natural disturbances.
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Fig. 2 Genetic variation (± SEM) in populations subject to historical

or recent (A) in addition to short-term or long-term human

disturbances (B) relative to undisturbed populations, considering

microsatellite marker data only. MANOVA tests were carried out for

both estimators of genetic variation (mean number of alleles per locus

and heterozygosity together), using time of origin or duration of

disturbance as fixed factors. Univariate ANOVA tests were also

conducted to identify case specific differences. An asterisk ‘‘*’’

indicates a significant difference from the undisturbed group only

(P < 0.05), whereas a double asterisk ‘‘**’’ indicates a significant

difference from both the undisturbed and short-term disturbance

group (P < 0.05). Numbers in parentheses represent sample sizes (N)
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Fig. 3 The relationship between disturbed and undisturbed hetero-

zygosity estimates reported within the same study (Pearson Product

Moment Correlation: r = 0.93, P < 0.0001), considering all catego-

ries of disturbance (N = 50). The line in bold represents a line of

unity, which is the point at which heterozygosity estimates in

disturbed and undisturbed populations are equal. Data points below
the line of unity indicate a negative impact of disturbance, whereas

points falling above the line are positively impacted by human

disturbance
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Disturbance types

Fragmentation clearly decreases genetic variation. One

possible driver of this effect is reductions in population size

(Young et al. 1996). Another is reduced gene flow as a

result of habitat fragmentation (Frankham et al. 2002; Toro

and Caballero 2005). Habitat fragmentation may reduce

population size the most out of all disturbance types con-

sidered in this study, thus producing statistically significant

reductions in genetic variation. Unfortunately, few studies

provided estimates of census or effective population size,

preventing a proper test of the idea that population size is

heavily influencing the outcome. Alternatively, population

size may decrease substantially with all disturbance types,

and so the pronounced negative effect on genetic variation

in fragmented populations may be due to reduced dispersal.

Although previous work has shown a significant and po-

sitive relationship between population size and genetic

diversity (Frankham 1996), further studies, comparing

undisturbed and fragmented populations while controlling

for population size, would indicate whether factors above

and beyond population size are responsible for a lowering

of genetic variation. Nonetheless, habitat fragmentation

clearly has a significant impact on genetic variation in

natural populations, and so conservation case studies

involving fragmentation should be given priority.

Hunting/harvesting appeared to have little effect on

genetic variation. This is surprising given the rapid

reductions in population size generally associated with

hunting and harvesting practices. Thus, I would expect a

decrease in genetic variation owing to effects associated

with bottlenecks (i.e., genetic drift and inbreeding), and yet

I do not find this in my study. However, it should also be

noted that this relationship is not always as straightforward

as assumed, with past work identifying relatively abundant

species having limited variability and other endangered

populations maintaining high variability (for review see

Frankham 1995; Amos and Harwood 1998). Thus, other

factors may be involved, such as selection acting on spe-

cific genotypes, which are indirectly targeted by hunters

(Fitzsimmons et al. 1995; Coltman et al. 2003; Hartl et al.

2003). One possible explanation for our results, however, is

that hunting/harvest reduces population size to a lesser

extent than other types of disturbance (i.e., fragmentation),

and so the effects are weaker or more inconsistent (and thus

non-significant).

Pollution appeared as though it might have a positive

impact on genetic variation. I make this inference because

every genetic variation measure was qualitatively greater

for populations subject to pollution than for those in

undisturbed conditions, although only some of these were

significant owing to small sample sizes (Table 1). More-

over, comparisons within studies suggested a similar effect

(Fig. 3), and negative genetic impacts of human distur-

bance were only evident when pollution data were removed

from several analyses. Whether or not pollution increases

genetic variation, it clearly has a qualitatively different

effect than fragmentation, as evidenced by the significantly

greater number of alleles and higher heterozygosity in

polluted populations (Table 1). Thus, I suggest that pollu-

tion can have both positive and negative effects through

different mechanisms. On the one hand, pollution may

decrease population size (Posthuma and Van Straalen

1993) or increase selection for homozygous genotypes

(Keane et al. 2005), which would decrease genetic varia-

tion. Indeed, some studies have clearly found reductions in

genetic variation because of pollution (e.g., Ma et al. 2000;

Belfiore and Anderson 2001). On the other hand, pollution

could increase mutation rates at marker loci (Yauk and

Quinn 1996; Baker et al. 2001) or increase selection for

heterozygotes (Falconer and MacKay 1996). The net effect

of pollution on genetic variation should therefore reflect a

balance between these various forces.

That being said, conservation biologists may need to

consider genetic threats from pollution carefully, separat-

ing them from other forms of human disturbance. Given the

general belief that the maintenance of genetic variation is

healthy in natural populations, in the short term, polluted

populations may appear to be doing well genetically. Long-

term effects of pollution, however, which may include

adverse effects on the physiology of an organism and its

environment as well as a possible increase in mutational

load, are all detrimental to a population’s viability.

Time of origin and duration of disturbance

The level of genetic variation maintained within a popu-

lation may also be dependant on both the time of origin and

duration of a particular human disturbance (Frankham

2003, 2005). Although rare alleles are likely the first to be

lost, a long-term disturbance, acting over many genera-

tions, will cause the loss of more common alleles and a

steeper decline in genetic variation (Lande 1988). In fact, a

prolonged disturbance would likely leave a more distinct

genetic ‘‘footprint’’ within a population than a transient

challenge. My findings support this idea, with short-term

disturbances having a lesser effect on genetic variation than

long-term ones. Further, populations that had experienced

historic disturbances were associated with a lower level of

genetic variation than those disturbed only recently, sug-

gesting that within-population genetic variation may be

sensitive to the temporal scale of human-related activities.

Although, increased conservation efforts in recent years

could also explain the trend for higher genetic variation in

populations disturbed only within the last 50 years.
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Future considerations

The loss of genetic variation may not only affect organisms at

the population level but lead to the loss of entire species

given enough time, thus, the maintenance of genetic variation

is of critical importance. But why is it important to under-

stand genetic effects in natural populations specifically

attributable to human activity? First, in order to mitigate

against loss of genetic variation, it is essential we understand

the source or cause. Second, by identifying specific human

activities related to detrimental genetic effects we can either

eliminate the source of the impact altogether or seek viable,

less intrusive alternatives. Finally, a more comprehensive

knowledge of past or current genetic impacts on natural

populations may increase our predictive power and ability to

control future impacts. This information would be of par-

ticular use to incorporate into existing models and simulation

programs directed at threatened or endangered populations,

where direct sampling is limited or often impossible. Al-

though this issue merits further consideration, my study has

provided essential baseline information which will facilitate

future comparisons, and presents the most comprehensive

assessment of genetic variation in human impacted popula-

tions to date.

The weak patterns of neutral genetic change observed in

this study, despite large sample sizes in general, do raise

one concern. Genetic variation is overwhelmingly moni-

tored by neutral molecular variation in natural populations

(Frankham et al. 2002) and so it was used in this study.

However, there is a growing debate about whether

molecular measures of genetic variation reflect adaptive

differences among populations, or even the ability to re-

spond to future environmental changes (Reed and Frank-

ham 2001). Most environmental changes associated with

human activities will affect different morphological or life-

history traits of particular species, thus quantitative genetic

variation may serve as a more sensitive bioindicator. In

fact, a recent simulation study found that some human

impacts on genetic variation could not be detected with

neutral molecular markers, but only become apparent when

changes in quantitative genetic variation were assessed

(Carvajal-Rodrı́guez et al. 2005). Thus, although logisti-

cally difficult, a comprehensive assessment of quantitative

genetic variation in natural populations may be the only

means of estimating the ‘‘true’’ magnitude of human-re-

lated genetic effects.
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González-Astorga and Núñez-
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