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Abstract Major histocompatibility complex (MHC)

genes are the most polymorphic in vertebrates and

code for molecules playing a central role in pathogen

resistance. We studied levels of MHC DRB class II

diversity in a long-term study population of mountain

goats (Oreamnos americanus) at Caw Ridge, Alberta,

and two other populations from British Columbia,

Canada. Only two alleles were found among the three

populations sampled. The Caw Ridge population was

fixed for one of the two MHC DRB alleles, but this

lack of variation did not appear to have affected it

negatively because the population doubled over two

decades and had no history of any apparent infectious

diseases. Past population bottlenecks during Pleisto-

cene glaciations are thought to have been the main

factor contributing to the low levels of MHC diversity

in mountain goats, a hypothesis supported by our

previous work reporting low polymorphism at neutral

loci. Additionally, the limited MHC variability in

mountain goats may be related to its northern distri-

bution as we found that allelic diversity at MHC DRB

class II in wild ungulates decreases with increasing

latitude, possibly as a result of low parasite diversity at

high latitudes. The low MHC variation in mountain

goats and other northern ungulates such as muskoxen

(Ovibos moschatus) may expose these species to pop-

ulation outbreaks that could be generated by intro-

duced pathogens or northward shifts in the distribution

of pathogens with global climate warming.
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Introduction

In vertebrates, the major histocompatibility complex

(MHC) plays a central role in foreign antigen recog-

nition and immune response to pathogens and para-

sites (Klein 1986; Hedrick 1994; Bernatchez and

Landry 2003; Piertney and Oliver 2006). High levels of

allelic diversity have been found in this group of clo-

sely-linked genes with >350 alleles observed at a single

MHC locus (Robinson et al. 2003). This variation is

thought to be maintained through parasite-mediated

balancing selection (Edwards and Hedrick 1998) and

an increasing number of studies support this evolu-

tionary force as a promoter of MHC diversity in ver-

tebrates in both captive (Arkush et al. 2002) and wild

species (Harf and Sommer 2005). Thus, MHC poly-

morphism is expected to confer higher individual

resistance to infectious diseases, such that populations

showing low levels of MHC variation are expected to

be more susceptible to detrimental pathogens and

parasites (O’Brien and Evermann 1988) and demo-

graphic decline (Lochmiller 1996). Hence, some pop-

ulations known to have decreased in numbers due to
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infectious diseases have been investigated for poten-

tially low MHC diversity under these expectations

(Gutierrez-Espeleta et al. 2001).

Past population bottlenecks, according to their

incidence and level, can lead to limited MHC diversity

and increase species vulnerability such as was reported

in the cheetah (Acynonyx jubatus, O’Brien et al. 1985).

Many other endangered species exhibit low MHC

polymorphism and are known to have gone through

severe population bottlenecks (Hedrick et al. 1999,

2000a, b; Blankenburg et al. 2003). However, some

species persist and do well despite low MHC poly-

morphism or even monomorphism caused by past

population bottlenecks (Mikko and Andersson 1995;

Mikko et al. 1999), including some of anthropic origin

(Ellegren et al. 1993; Weber et al. 2004). On the other

hand, other species have maintained moderate to high

variability at the MHC despite severe population bot-

tlenecks, likely through balancing selection (Wenink

et al. 1998; Aguilar et al. 2004). A species demographic

history (Yuhki and O’Brien 1990) and parasite-based

balancing selection (Edwards and Hedrick 1998) may

therefore play major roles in shaping MHC variation

(Bernatchez and Landry 2003; Piertney and Oliver

2006).

It has been proposed that restricted MHC variability

can also originate from factors related to species’ social

organisation such as solitary lifestyle (Ellegren et al.

1996) or monogamous mating system (Sommer et al.

2002) where few intraspecific contacts and therefore

low possibilities of infectious diseases transmission

would favour low MHC polymorphism. In marine

mammals, a decreased exposure to pathogens and

parasites due to the environment in which they occur

has also been suggested as a potential cause of the low

MHC variation reported in these species when com-

pared to terrestrial mammals (Trowsdale et al. 1989;

Slade 1992; Murray et al. 1995; but see Hoelzel et al.

1999; Lehman et al. 2004). Similarly, in terrestrial

mammals Van Den Bussche et al. (1999, 2002) pro-

posed that Arctic ungulate species may be exposed to

fewer pathogens and parasites than those living close

to the equator and thus, MHC diversity would be lower

in northern ungulates compared to those at lower

latitudes.

Here, we investigated MHC DRB exon 2 variability

in a long-term study population of mountain goats

(Oreamnos americanus) and two other wild popula-

tions. In the long-term study population, we examined

the relationship between MHC DRB allelic diversity

and demographic growth and how it influenced the

prevalence of apparent infectious diseases. In addition,

we tested Van Den Bussche et al.’s hypothesis (1999,

2002) and assessed whether MHC DRB exon 2 diver-

sity in mountain goats could be linked to their latitu-

dinal distribution by comparing it to the MHC diversity

of other wild ungulates distributed between the equa-

tor and the North Pole. Mountain goats are distributed

mainly in the Rocky Mountains of Canada and north-

ern USA as well as the western coastal ranges of

British Columbia and southern Alaska (Côté and

Festa-Bianchet 2003). They are thought to have come

from Asia, crossing the Bering Land Bridge between

Siberia and Alaska during the Pleistocene and colon-

ising the mountains during the glaciations (Côté and

Festa-Bianchet 2003). Because of a likely history of

past population bottlenecks during Pleistocene glacia-

tions, we hypothesised that mountain goats could ex-

hibit low levels of MHC variation. This hypothesis was

supported partly by our previous work reporting

monomorphism at many (57%) neutral genetic mark-

ers (n = 68) in the long-term study population (Main-

guy et al. 2005), including the locus OMHC1 located

within the MHC DRB class I region in domestic sheep

(Ovis aries, Crawford et al. 1995).

Methods

Studied population

The Caw Ridge mountain goat population, Alberta,

Canada (54�N, 119�W), has been intensively monitored

since 1990. Individuals are captured in remotely-

controlled box traps baited with salt, chemically

immobilised and marked with plastic ear tags and

canvas collars (Côté et al. 1998). A disc of ear skin has

been collected from every goat captured since 1994 for

genetic analyses. Signs of apparent diseases or ecto-

parasites were noted during captures. Nearly all indi-

viduals within the population are marked (98% of

goats aged ‡1 year old since 1993) and observed daily

from May to September each year, providing accurate

counts of population size (Hamel et al. 2006).

Genetic analyses

We randomly selected 14 individuals from the Caw

Ridge population to sequence a 249-bp fragment of the

MHC DRB exon 2, the most polymorphic class II gene

in cattle (Andersson et al. 1991) and one of the most

polymorphic in humans (Robinson et al. 2003). Tissues

were also obtained from two populations in British

Columbia: Glacier National Park (51�N, 117�W;

n = 5), and near Fort St. John (56�N, 121�W; n = 6) to

investigate allelic diversity at the species level although
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the populations sampled did not cover the entire spe-

cies’ range. Total genomic DNA from muscle or skin

tissues was extracted using a QIAGEN DNeasy� kit

according to the manufacturer’s protocol.

Major histocompatibility complex DRB exon 2 was

amplified using LA31-K and LA32-K primers previ-

ously designed to optimise amplification in thinhorn

sheep (Ovis dalli, Worley et al. 2006). These primers

are a shortened version of those of Sigurdardóttir et al.

(1991) designed for cattle and that have been used

successfully in many ungulates (Mikko et al. 1999).

Each 10 ll polymerase chain reaction (PCR) contained

PCR buffer, 2 ll of DNA template, 1.5 mM MgCl2,

0.16 mM of each dNTP, 40 lM of each primer and

0.5 U of BioTaq DNA polymerase (Bioline). Ampli-

fications were performed with the following tempera-

ture profiles: 94�C for 3 min, 35 cycles at 94�C for 30 s,

55�C for 30 s, and 72�C for 45 s, followed by a 5-min

extension at 72�C. PCR products were purified on a

1.5% agarose gel and the band corresponding to the

amplified product isolated with QIAGEN QIAquick

Gel Extraction� kit according to the manufacturer’s

protocol. Sequences of the purified PCR products were

run on an ABI 3730 automatic sequencer using BigDye

Terminator Cycle Sequencing Ready Reaction kit

(Applied Biosystems).

MHC variability and latitude in wild ungulates

We tested for a relationship between the total number

of MHC DRB exon 2 alleles reported in the literature

in wild ungulates of the Northern Hemisphere and

their latitudinal distribution using a generalised linear

model with Poisson error structure and the backwise

procedure for model selection. For each species, the

number of individuals sequenced and the number of

populations sampled were included as covariates to

control for unequal sample sizes. Populations were

assigned to the nearest latitudinal degree according to

the literature and the Oxford Atlas of the World

(2001). The latitude assigned to a species was the mean

of the locations reported for that species weighted by

the number of individuals sampled at each location and

therefore rarely covered the entire species’ range.

When information on the samples’ origin was limited

(for six species), we either used the mid-point between

the northern and southern limits of the locations re-

ported or of the species’ range according to Feldhamer

et al. (2003, North America) or Mitchell-Jones et al.

(1999, Europe). Therefore, as the latitude assigned to a

species represents either a part of their range (e.g., for

bighorn sheep Ovis canadensis, Gutierrez-Espeleta

et al. 2001) or an approximated location (e.g., for

muskox Ovibos moschatus, Mikko et al. 1999) which

could potentially introduce a bias, the relation we

examined can only be regarded as a broad exploration

of a pattern based on all available information.

Results

MHC diversity in mountain goats

Only two alleles were found in the three populations

investigated. A unique allele was found in the Caw

Ridge population (Oram-DRB*01, GenBank accession

number: DQ648492). We estimate that the probability

of failing to detect a rare allele at frequency of 0.05

in our sample of 28 sequenced alleles was

(1–0.05)28 = 0.238, which corresponds to a power of

76.2%. Individuals from Glacier National Park had the

same fixed genotype, whilst those from the Fort St.

John region had two alleles, of which one was identical

to Caw Ridge and Glacier National Park. The second

allele (Oram-DRB*02, GenBank accession number:

DQ648493) differed only by a single nucleotide poly-

morphism in codon 78 that was not synonymous,

changing the amino acid glycine (Oram-DRB*01) for

valine. Oram-DRB allelic frequencies per population

are shown in Table 1.

Population growth and infectious diseases

The Caw Ridge mountain goat population expanded

from 81 individuals in 1990 to 156 in 2006 (k = 1.60;

Fig. 1). Three hundred and seventy-six individuals

have been captured one to eight times at our study site

for a total of 665 captures. Despite this large number of

captures, no signs of apparent debilitating infectious

diseases have ever been observed, although very few

individuals (<1%) were found to be infected with

Rocky Mountain wood ticks (Dermacentor andersoni).

Eight individuals found dead in our study area have

also been necropsied by a veterinarian and were free of

diseases.

Table 1 Frequency of Oram-DRB alleles of the MHC DRB
class II occurring in three populations of mountain goats

Alleles Caw Ridge
(Alberta)

Glacier
National Park
(British Columbia)

Fort St. John
(British
Columbia)

Oram-DRB*01 1.000 1.000 0.750
Oram-DRB*02 0.000 0.000 0.250
n 28 10 12

n = number of chromosomes examined per population
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MHC variability and latitude in wild ungulates

Information on MHC DRB exon 2 diversity has been

reported for 13 wild ungulate species distributed in the

Northern Hemisphere. Number of individuals se-

quenced per species did not influence the number of

alleles found (F1,9 = 0.14, P = 0.71), but the number of

populations documented did (F1,10 = 11.7, P = 0.006).

After accounting for the effect of the number of pop-

ulations sampled, MHC DRB exon 2 allelic diversity

decreased with increasing latitude (F1,10 = 6.54,

P = 0.03; Fig. 2). However, to take into consideration

the possibility that one species might have dispropor-

tionately influenced the relationship, we reran the

analyses 13 times by excluding a different species each

time. In 9 out of 13 analyses (69%), the relationship

remained significant (0.001 < P’s < 0.05), whereas in

the 4 others, the relationship was near significance level

(0.07 < P’s < 0.08).

Discussion

The number of MHC DRB class II alleles in the three

populations of mountain goats studied is low and

comparable to those reported amongst species

known to have gone through population bottlenecks

(Hedrick et al. 1999, 2000a, b; Sommer et al. 2002;

Blankenburg et al. 2003; Drake et al. 2004; Babik et al.

2005; Wan et al. 2006). The low genetic diversity in

mountain goats could be largely attributable to Pleis-

tocene glaciations as has been suggested in other

ungulates (Mikko et al. 1999; Loehr et al. 2006), where

depletion of the gene pool would have occurred via the

combined actions of inbreeding and genetic drift.

Furthermore, mountain goats tend to exist in islands of

habitat with limited gene flow between populations

(Côté and Festa-Bianchet 2003). As such, the eroding

effects of inbreeding and drift on genetic variability are

expected to persist due to strong population structure,

a specific aspect of the demography and life-history of

mountain ungulates (e.g., Amills et al. 2004; Worley

et al. 2006). Different alleles, however, could be fixed

or lost in different populations (Babik et al. 2005).

Interestingly, the same allele was found among the

three populations sampled which were 250–575 km

apart. Thus, the allele Oram-DRB*01 may represent

an optimum haplotype in this species (Visscher et al.

2001). Altogether, our previous findings on neutral

markers (Mainguy et al. 2005) combined with the low

MHC variability found in this study suggest that

mountain goats exhibit low levels of genetic variability.

Despite apparent monomorphism at one of the most

variable MHC locus reported in mammals, the Caw

Ridge mountain goat population has continued to

increase and has shown no signs of severe infectious

diseases. This is in line with previous studies reporting

that muskox, northern elephant seal (Mirounga

angustirostris) and Eurasian beaver (Castor fiber)

populations, for instance, have expanded in the last
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Fig. 1 Total number of mountain goats in June in the Caw Ridge
population, Alberta, Canada, 1990–2006
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Fig. 2 Relationship between MHC DRB exon 2 allelic diversity
corrected for the number of populations sampled (i.e., the
residuals of the relation between number of alleles and number
of populations sampled) and latitudinal distribution in wild
ungulates of the Northern Hemisphere. (1) Bighorn sheep Ovis
canadensis, Gutierrez-Espeleta et al. (2001); (2) White-tailed
deer Odocoileus virginianus, Van Den Bussche et al. (2002); (3)
Spanish ibex Capra pyrenaica, Amills et al. (2004); (4) Pyrea-
nean chamois Rupicapra pyrenaica, Schaschl et al. (2005); (5)
American bison Bison bison, Mikko et al. (1997); (6) Alpine
chamois R. rupicapra, Schaschl et al. (2004); (7) Fallow deer
Dama dama, (8) Roe deer Capreolus capreolus, (Mikko et al.
1999); (9) Mountain goat Oreamnos americanus, this study; (10)
Moose Alces alces, Mikko and Andersson (1995), Mikko et al.
(1999); (11) Thinhorn sheep Ovis dalli, Worley et al. (2006); (12)
Reindeer Rangifer tarandus, (13) Muskox Ovibos moschatus,
Mikko et al. (1999)
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century despite being monomorphic at the same MHC

DRB exon 2 gene (Mikko et al. 1999; Weber et al.

2004; Babik et al. 2005). The demographic doubling of

the Caw Ridge population in the last 15 years may

partly be attributable to the possible absence of severe

debilitating pathogens and parasistes or, alternatively,

to weak selection on MHC loci (Klein et al. 1993) as

was suggested in other northern ungulates (Mikko

et al. 1999). However, because we used only one locus,

we cannot rule out the possibility that other MHC loci

might have been polymorphic in the Caw Ridge pop-

ulation, or that we have missed some rare alleles (i.e.,

present at <5% in the population) at the studied locus.

On the other hand, the low genetic variation we found

at the DRB locus should be correlated with genetic

variation at other class II genes since these loci are in

strong linkage disequilibrium, at least in humans

(Marsh et al. 2000).

Interspecific data suggest that latitude may influ-

ence MHC DRB variability in wild ungulates

through a plausible relation between MHC and

pathogen diversity. Recently, the richness of human

parasitic and infectious diseases has been reported to

decrease from equator to poles (Guernier et al.

2004), whilst levels of MHC polymorphism has been

found to increase with pathogen diversity in humans

(Prugnolle et al. 2005) and wild fish species (Wegner

et al. 2003; Šimková et al. 2006). It is therefore

possible that an indirect relationship exists between

MHC diversity and latitude in ungulates. This find-

ing, however, should be viewed with caution due to

several limitations. For one, the species compared in

Fig. 2 have experienced different demographic his-

tories (e.g., American bison Bison bison that expe-

rienced a sharp decline, Mikko et al. 1997) and

average effective population sizes. Phylogenetic dis-

tances within the order Artiodactyla could also rea-

sonably be expected to influence allelic diversity.

However, we found that MHC DRB allelic diversity

was lower in northern than in southern ungulates,

supporting the hypothesis of Van Den Bussche et al.

(1999, 2002). This trend could be the result of a low

selection pressure of pathogens and parasites on

MHC polymorphism at high latitudes. The presence

of a high number of alleles in reindeer (Rangifer

tarandus), despite its northerly latitudinal distribu-

tion (see Fig. 2), suggests, however, that other

mechanisms are also shaping MHC variability in

ungulates, although Rangifer is known to generally

exhibit more genetic variability than other cervids

(Côté et al. 2002). In other mammalian species such

as pinnipeds, high levels of MHC variability have

also been reported at extreme latitudes (Hoelzel

et al. 1999; Lehman et al. 2004), suggesting once

again that parasite-based balancing selection and

population bottlenecks are not the sole factors

influencing MHC polymorphism.

There may be other explanations for the relationship

between latitude and MHC allelic diversity. For

instance, harsh climate at high latitudes could reduce

genetic variability by negatively affecting individual

survival and thus reducing both effective population size

and the species’ potential to maintain high genetic

diversity or to restore it when it is lost. Alternatively,

and not mutually exclusive of the previous hypothesis,

post-Pleistocene expansion could yield a similar pattern

of decreasing MHC variation, as genetic diversity often

decreases with increasing latitude within a species fol-

lowing recolonisation (Galbreath and Cook 2004; Pru-

gnolle et al. 2005). Genetic drift could therefore

outweigh balancing selection in shaping MHC variation

(Miller and Lambert 2004; Campos et al. 2006),

although Prugnolle et al. (2005) recently shown that

local pathogen richness amongst human populations

distributed worldwide explained a significant part of the

variance in human leukocyte antigen (HLA; known as

MHC in other vertebrates) class I diversity when

accounting for colonisation history. A more appropriate

approach to test the effect of latitude on MHC diversity

would thus be to control for genetic drift. This could not

be done in our study as no standard set of markers was

available to compare MHC and neutral loci to disen-

tangle the potential effects of parasite-based selection

from those of genetic drift amongst species. A more

rigorous test of the relationship between latitude and

MHC diversity could be conducted within a species with

a broad latitudinal distribution. One could then account

for neutral evolutionary forces (e.g., in simultaneously

genotyping individuals at microsatellite loci) and elimi-

nate this potential confounding factor as well as differ-

ent demographic and phylogeographic histories between

species. For instance, white-tailed deer (Odocoileus

virginianus), whose range covers >50� of latitude

(Feldhamer et al. 2003) and for which MHC DRB

alleles have been identified in relation to pathogen

resistance (Ditchkoff et al. 2005), would be an interest-

ing model species in which to further elucidate the fac-

tors shaping mammalian MHC diversity and its

influence on disease susceptibility and population

dynamics.

Overall, we showed that mountain goats exhibit low

levels of genetic variability, possibly stemming from

bottlenecks experienced during the Pleistocene glaci-

ations. The lack of severe epidemics in mountain goats

(Côté and Festa-Bianchet 2003) may result from its

northern and high altitude distribution where few
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pathogens and parasites may prevail. In addition, the

low MHC variability in mountain goats does not seem

to negatively affect its demography based on the Caw

Ridge population. However, mountain goats, and other

northern ungulates exhibiting limited MHC polymor-

phism, may remain vulnerable to introduced pathogens

and parasites, or infectious agents expending north-

wards with climate warming, that could potentially

have significant impacts on their demography.
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Guernier V, Hochberg ME, Guégan J-F (2004) Ecology drives
the worldwide distribution of human diseases. Publ Lib Sci
Biol 2:740–746

Gutierrez-Espeleta GA, Hedrick PW, Kalinowski ST, Garrigan
D, Boyce WM (2001) Is the decline of desert bighorn sheep
from infectious disease the result of low MHC variation?
Heredity 86:439–450
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