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Abstract Conservation genetic studies often employ

DNA extracts from museum specimens for compari-

sons with extant populations to monitor temporal

changes in genetic diversity. Here, we report on artifact

base changes in mitochondrial DNA sequences

amplified from relatively recent (£ 35 years) museum

specimens of indigobirds (Vidua spp.). Single base

errors were confirmed by replicate sequencing and in-

cluded both double peaks and artifact substitutions at

rates of ~3 · 10–4 and ~1 · 10–4 per base-pair, respec-

tively, resulting in one or more errors or ambiguities in

an 1100 base pair sequence in 21% of 219 samples.

Most errors involved C fi T changes on the L-strand,

presumably due to deamination of cytosine in the

template. The error rates encountered here bias com-

parisons of haplotype number between historical and

extant populations, such that the ‘loss’ of artifact

haplotypes present in a historical sample could be

incorrectly attributed to a population decline or bot-

tleneck. Sequencing errors due to miscoding lesions in

template DNA have so far been reported only from

ancient and formalin-fixed tissue, but they may also

affect relatively recent museum samples, as shown

here, and perhaps also non-invasive samples that typ-

ically yield low-quality DNA.

Keywords PCR artifact � Sequence error � Museum

samples � Indigobirds � Population decline

Introduction

Museum specimens are valuable sources of DNA

whenever sampling of fresh tissue is not possible (e.g.,

Culver et al. 2000; Payne and Sorenson 2002) and for

comparisons of current and historical genetic variation

(Vallianatos et al. 2002; Godoy et al. 2004; Johnson

et al. 2004; Muñoz-Fuentes et al. 2005). Low concen-

tration and quality of DNA, however, can make the

genotyping of such samples difficult (Glenn et al. 1999;

Sefc et al. 2003). Numerous notes of caution and sug-

gestions for detecting and avoiding errors in micro-

satellite genotyping have been published (e.g. Taberlet

et al. 1996; Gagneux et al. 1997; Mills et al. 2000;

Miller et al. 2002; Bonin et al. 2004; Kalinowski et al.

2006). In contrast, population studies based on DNA

sequences from museum specimens of recent vintage

and non-invasive samples have rarely investigated the

issue of errors, despite a significant literature on

sequence accuracy associated with the analysis of

‘‘ancient DNA’’ (e.g., Cooper and Poinar 2000; Hansen

et al. 2001; Hofreiter et al. 2001; Pääbo et al. 2004).

Although mitochondrial DNA is more easily amplified

from suboptimal DNA extracts than are nuclear genes

(Cooper 1994), damaged template may cause incorrect

bases to be incorporated in the PCR product. Such

artifact substitutions have been observed in PCR
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amplifications of DNA from ancient samples (Pääbo

et al. 2004) and formalin-fixed tissues (Williams et al.

1999; Quach et al. 2004; Akbari et al. 2005). The most

frequent result is apparent C fi T substitutions fol-

lowing deamination of cytosine (Hofreiter et al. 2001).

Here, we report on the frequency of PCR errors

encountered in sequencing mtDNA from relatively

recent avian museum specimens, and the resulting

overestimation of genetic diversity in the historical

sample. The sequencing artifacts were discovered when

a population genetic study of brood parasitic indigo-

birds (Vidua spp., Viduidae) was supplemented with

DNA extracts from feathers of 28–35 year old bird

skins (Sefc et al. 2005). Although our study investi-

gated indigobird speciation, our findings are relevant to

conservation genetic studies employing historical

samples for monitoring temporal changes in genetic

diversity and demography.

Material and methods

As part of a population genetic study of indigobirds

(Vidua spp.), we amplified and sequenced mitochon-

drial DNA from 28–35 year old museum specimens

(specimens collected from 1966 to 1980; DNA ex-

tracted in 2001; n = 219). Birds were collected by

shotgun (1966–1968) or were netted and then sacrificed

using cardiopulmonary compression (1972–1973).

Skins were prepared as museum specimens the same

day and left to dry at ambient temperature and

humidity. The specimens were stored in steel cabinets

at the University of Michigan, Museum of Zoology,

except for short periods when skins were handled once

or twice a year. Apart from being heated to 18�C in

winter, temperature and humidity in the museum var-

ied with ambient conditions, ranging from cool and dry

in winter to warm and humid in summer. DNA was

extracted from the calamus of feathers plucked from

the inner wing, so this tissue had no contact with other

specimens and little or no exposure to UV light.

For museum samples, all pre-amplification steps

were carried out in a separate room with dedicated

equipment that has never been used for fresh tissue

samples or PCR products. DNA was extracted from

the calamus of one or two feathers (98 and 121 sam-

ples, respectively) with a QIAamp Tissue Kit (Qiagen,

Valencia, California) supplemented with 3 mg dith-

iothreitol (DTT) for digestion of feather keratin, and

eluted in a final volume of 200 ll. PCR amplification of

1,100 base pairs (most of the NADH dehydrogenase

subunit 6 (ND6) gene, tRNA glutamine and the 5¢ half

of the control region) was achieved in three

overlapping fragments of 448, 321, and 534 bp (see

Sorenson and Payne 2001 for primer sequences). For-

ty-five PCR cycles were carried out in volumes of 50 ll

using 1.25 U AmpliTaq Gold DNA Polymerase (Per-

kin Elmer, Boston, Massachusetts). Negative PCR

controls were run with each batch of reactions. PCR

was successful on the first attempt in > 92% of samples,

but up to four PCR reactions were attempted before

products were obtained for some of the samples.

PCR products were excised from agarose gels and

purified with a Gel Extraction Kit (Qiagen). DNA

sequences were obtained using a BigDye Terminator

Cycle Sequencing Kit (Applied Biosystems) and an

Applied Biosystems 377 DNA sequencer. Sequences

were checked and assembled in Sequence Navigator

(Applied Biosystems), and analysed in PAUP*

(Swofford 2002). Both DNA strands were sequenced;

the double-peaks and artifact substitutions described

below were always observed in both strands of a given

PCR product. Sequence data in GenBank (AF090341;

AY322613-AY322833; AY865372-AY865554) have

been updated with corrections based on the results

reported here.

We also obtained sequences from 297 recently col-

lected tissue samples, amplifying the same mtDNA

region in two overlapping fragments (Sorenson and

Payne 2001; Sorenson et al. 2003). The geographic

distribution of museum specimens and fresh tissue

samples was similar and comprised the same sets of

indigobird species (see Sorenson et al. 2003; Sefc et al.

2005 for details). Separate analyses were completed for

West Africa and southern Africa, respectively,

reflecting a geographic split in mtDNA haplotypes and

limited genetic differentiation among the species

within each region (Sorenson et al. 2003; Sefc et al.

2005). ‘‘Southern indigobirds’’ from South Africa,

Zimbabwe, Zambia, Malawi, and Botswana includes

museum samples collected in 1966/67 (n = 123), and

1973 (n = 6), and fresh tissue samples (n = 103). ‘‘West

African indigobirds’’ from Cameroon, Nigeria, Ghana,

Gambia, Mali, and Senegal includes museum speci-

mens collected in 1904 (n = 1), 1968 (n = 39), 1975

(n = 23), 1979/80 (n = 27), and fresh tissue samples

(n = 194). Haplotype and nucleotide diversity within

individual populations is generally high

(He = 0.88±0.12; p = 0.0032±0.0014; Sefc et al. 2005).

Indices of genetic diversity were calculated in

DnaSP version 4.00 (Rozas et al. 2003). Effective

population sizes of historical and modern samples were

estimated in a Bayesian framework employing a model

of exponential growth or decline during the sampling

interval, as implemented in TMVP2P (Beaumont

2003) with the following settings: 500,000 MCMC
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updates; maximum population size = 20,000; sampling

interval = 20 generations; size of importance sam-

ple = 200; thinning interval = 20; size of the proposal

distribution of parameter updates = 0.4. Convergence

was checked by two replicate runs for each dataset.

Results and discussion

Three kinds of evidence led to the conclusion that PCR

errors affected the sequences we obtained from

museum specimens. First, a total of 64 double peaks

were observed in the sequence electropherograms for

34 of 219 museum specimens (Table 1). In contrast, no

double peaks were observed in sequences obtained

from fresh tissue samples. In all cases, double-peaks

comprised overlaid signals of either the two pyrimi-

dines or the two purines; and most (53 of 64) occurred

at positions that were otherwise invariant among > 500

indigobirds (including both museum specimens and

recent samples). Fifty-one C + T double peaks

occurred at positions with conserved C’s in the mito-

chondrial light strand, whereas two A + G double

peaks occurred at positions with a conserved A and G,

respectively, in other indigobirds. The remaining cases

included nine additional C + T double peaks and two

A + G double-peaks at positions that were polymor-

phic among other indigobirds. Replicate PCR and

sequencing reactions for a subset of the affected sam-

ples (n = 23 double peaks in 14 samples; including all

11 cases of double peaks at polymorphic positions)

resolved 21 previously ambiguous C + T double peaks

in favor of C and two A + G double peaks in favor of

A. We therefore scored C + T double peaks in the

remaining samples as C, provided that C was present in

all other samples at the respective position.

Second, the above results led us to scrutinize our

data for PCR errors that were not evident as double

peaks, but resulted in unambiguous, albeit erroneous,

base substitutions. In a haplotype network for 233

southern African indigobirds (130 museum specimens

and 103 fresh tissue samples), autapomorphic substi-

tutions leading to unique tip haplotypes were more

frequent in sequences from museum specimens and the

majority of these were C fi T (n = 22 of 34) or G fi A

transitions (5), whereas only 3 were T fi C (2) or

A fi G (1). In contrast, autapomorphic transitions in

sequences from fresh tissue samples were fewer and if

anything biased in the opposite direction (0 C fi T; 3

T fi C; 2 G fi A; 5 A fi G). Likewise, no substitution

bias was found on internal branches radiating out from

two common and presumably ancestral haplotypes

(6 C fi T; 3 T fi C; 4 G fi A; 6 A fi G). We re-

peated PCR and sequencing for all museum samples

that displayed autapomorphic substitutions (n = 54

substitutions in 40 samples), and found that 21 of 31

C fi T, 2 of 9 G fi A, 2 of 2 G fi T, and 1 of 2 C fi A

substitutions in the original light strand sequences were

not reproducible. One sample with a C fi T transition

had a C + T double peak at the same position in the

replicate sequence. In addition, two novel and appar-

ently erroneous C fi T transitions appeared at other

positions in the replicate sequences. As one would

expect, genuine autapomorphies occurred mainly at

third codon positions of the 477 bp within the ND6

gene (n = 5, 4, and 29 autapomorphies at codon posi-

tions 1, 2, and 3, respectively), whereas artifacts ap-

peared to be randomly distributed (n = 4, 4, and 2

autapomorphies at codon positions 1, 2, and 3,

respectively; Gadj = 9.81, df = 2, P < 0.01 using

William’s correction for small sample size).

Third, the frequencies of both double-peaks and

erroneous substitutions increased with length of the

region amplified and were higher in sequences derived

from one-feather extracts as compared to two-feather

extracts (Table 1), suggesting a higher error rate when

longer fragments are amplified from lower concentra-

tion extracts. A correlation between DNA template

Table 1 Summary of apparent PCR errors in relation to (a)
substitution type, (b) fragment length, and (c) extract concen-
tration

Sample
size

# double
peaks /
# affected
samples a

# confirmed
artifact
substitutions
/ # affected
samples a

(a) Type of substitution
C to T 219 60/34 24/17
G to A 219 1/1 2/2
A to G 219 3/2 –
G to T 219 – 2/2
C to A 219 – 1/1
(b) Length of amplified region
321 bp (28.7% C, 24.8% T) b 219 3/3 2/2
448 bp (39.4% C, 11.9% T) 219 22/15 10/8
534 bp (30.4% C, 26.1% T) 219 39/21 17/12
(c) Source of extract
1 feather 98 57/31 24/14
2 feathers 121 7/3 5/3

a The number of samples with an artifact present in one or more
of three overlapping PCR products is indicated in (a) and (c); in
(b), the three fragments are considered separately. Some samples
are included in more than one category, such that the total
number of affected samples may be less than the sums of rows or
columns
b Average proportion of C and T across 527 indigobird se-
quences. Mean base frequencies in the entire data set are 30.3%
A, 33.8% C, 15.6% G, and 20.2% T
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concentration and PCR error rate was also observed in

microsatellite genotyping of these same DNA samples

(Sefc et al. 2003) and in sequencing of formalin-fixed

tissue extracts in other studies (Williams et al. 1999;

Akbari et al. 2005).

The distribution of irreproducible transitions and

transversions in our data differs significantly

(v2 = 134.3, df = 3, P < 0.001) from the reported

distribution of Taq polymerase errors (Hansen et al.

2001), suggesting that lesions in the template DNA are

the source of most of the observed sequencing artifacts

we observed. Both erroneous substitutions and double

peaks likely result from the same types of DNA dam-

age, the former being observed when amplification is

initiated from a single damaged template strand, and

the latter when amplification begins with one damaged

and one or more undamaged strands. Artifact C fi T

changes in the L strand amplicon comprised ~90% of

the PCR errors observed in our data, and were most

likely caused by deamination of cytosine to uracil or

of 5-methyl-cytosine to thymine on the L strand

(Hofreiter et al. 2001). Likewise, G fi A changes in

the L strand amplicon result from deamination on the

H strand, but were much less frequent in our dataset

(~3%). This may reflect preferential amplification from

the L strand template (Gilbert et al. 2003). Three

G + A double peaks at positions with A in the L strand

are ascribable to deamination of A to the guanine-

analogue hypoxanthine, which occurs at 2–3% of the

rate of cytosine deamination (Lindahl 1993). Finally,

one C fi A and two G fi T transversions are perhaps

explained by oxidation of guanine to 8-hydroxyguanine

leading to the incorporation of A rather than C in the

complementary strand (Lindahl 1993).

Overall error rates in our study were relatively low,

involving ~1 · 10–4 erroneous substitutions and

~3 · 10–4 double-peaks per base-pair prior to replicate

sequencing (total of 241 K base pairs from museum

samples), but affected 45 of 219 individual samples

(21%) with a mean of 2.1 ± 1.1 artifacts per affected

sample. Without the replicate sequencing described

above, these errors would appreciably increase the

number of unique haplotypes (by 20% in our total

sample of southern and West African museum speci-

mens) but have less effect on other measures of genetic

diversity (e.g., < 1% overestimation of haplotype and

nucleotide diversity) due to the low frequency of the

artifact haplotypes. Reanalysis of our data after

removal of artifact transitions slightly increased popu-

lation differentiation values (by < 5%; southern in-

digobirds: mean of species-pairwise FST values from

uncorrected data, 0.049; from corrected data, mean

FST = 0.051; West African indigobirds: uncorrected,

mean FST = 0.0235; corrected, mean FST = 0.0236) but

had no effect on the statistical significance of results

reported by Sefc et al. (2005); if anything, the low rate

of errors reduced our power to detect population dif-

ferentiation and was therefore conservative in the

context of our earlier study.

Overestimates of genetic diversity in historical

samples might be of greater consequence in compari-

sons with contemporary populations, where the loss of

rare alleles and reduced gene diversity provide evi-

dence of population bottlenecks or declines (Luikart

et al. 1998; Johnson et al. 2004), suggesting the need

for replicate sequencing in such studies (e.g., MacHugh

et al. 1999; Paxinos et al. 2002). In our experiments,

most of the sequence artifacts occurred in the museum

specimens of southern indigobirds (24 substitutions in

14 samples, and 56 double peaks in 28 samples), which

may be due to the generally older collection dates of

the southern museum samples. In the following, we

investigate the effects of the observed artifact substi-

tutions on estimates of population diversity and

demography in the southern indigobird dataset (129

museum and 103 recent samples). The total number of

historical haplotypes as well as the number of haplo-

types unique to the historical population dropped

considerably when sequencing errors were corrected.

In contrast, haplotype and nucleotide diversity differed

only slightly between the uncorrected and corrected

museum sequences (Table 2). Clark and Whittam

(1992) showed that sequencing errors affect diversity

estimates most severely when the true level of diversity

is low, which is often the case with taxa of conservation

concern (e.g., Johnson and Dunn 2006; Lage and

Kornfield 2006). Thus, while the effect of sequence

errors on estimates of genetic diversity and differenti-

ation were minimal for indigobirds, a similar error rate

may produce greater discrepancies in analyses of

populations with low genetic diversity. Even with our

dataset, however, artifact substitutions in the museum

samples led to misleading estimates of population size

change, suggesting a 56% decline in effective popula-

tion size between the museum sample and the fresh

tissue sample. After correction of artifacts, the esti-

mate of current population size increased almost

threefold compared to the result obtained from the

flawed dataset, and the decline between the museum

and fresh samples was only by 20% (Table 2).

Recently, considerable attention has been paid to

the error-proneness of microsatellite genotypes from

hair and fecal samples, whereas concerns about the

accuracy of DNA sequencing have been raised mainly

in relation to ancient or formalin-fixed tissues. Our

data demonstrate that sequencing artifacts are not
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confined to ancient and highly degraded DNA sources.

The quality and concentration of the DNA extracts

investigated here was sufficient for microsatellite

genotyping with manageable error rates (Sefc et al.

2003), which were comparable to those encountered

with noninvasive samples (e.g. Buchan et al. 2005).

Sequence data from noninvasive samples may there-

fore suffer from similar error rates as reported here for

museum specimens.

We advocate heightened awareness of the potential

for sequencing errors and greater efforts to verify se-

quence data in studies utilizing potentially problematic

material, especially in population genetic studies in

which inferences may depend on the presence and

frequency distribution of rare haplotypes. Precautions

that are applied prior to and during data collection and

key criteria for authenticating ancient DNA data (e.g.,

Cooper and Poinar 2000) should be understood and

followed where possible, although full implementation

of these standards is probably overly demanding (and

unnecessarily costly) for analyses of relatively recent

DNA. Here we show that the accuracy of a large

sequence dataset can be evaluated a posteriori by

carefully examining sequence traces for double peaks

and assessing the distribution of autapomorphies in

relation to specimen age, substitution type, and af-

fected codon position. Replicate PCR and sequencing

can then be directed specifically to suspect individuals

and data partitions or, if no suspicious data are de-

tected, a random subset of sequences could be repli-

cated to verify consistent results. As the frequency of

single base errors is also related to extract concentra-

tion, the potential tradeoff between damage to the

specimen and quality of the resulting sequence data

should be considered in deciding the number and size

of feathers or amount of skin tissue sampled from a

museum specimen.
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