
Abstract Habitat loss and fragmentation can influ-

ence the genetic structure of biological populations.

We studied the genetic consequences of habitat frag-

mentation in Florida black bear (Ursus americanus

floridanus) populations. Genetic samples were col-

lected from 339 bears, representing nine populations.

Bears were genotyped for 12 microsatellite loci to

estimate genetic variation and to characterize genetic

structure. None of the nine study populations deviated

from Hardy–Weinberg equilibrium. Genetic variation,

quantified by mean expected heterozygosity (HE),

ranged from 0.27 to 0.71 and was substantially lower in

smaller and less connected populations. High levels of

genetic differentiation among populations (global

FST = 0.224; global RST = 0.245) suggest that frag-

mentation of once contiguous habitat has resulted in

genetically distinct populations. There was no isola-

tion-by-distance relationship among Florida black bear

populations, likely because of barriers to gene flow

created by habitat fragmentation and other anthropo-

genic disturbances. These factors resulted in genetic

differentiation among populations, even those that

were geographically close. Population assignment tests

indicated that most individuals were genetically as-

signed to the population where they were sampled.

Habitat fragmentation and anthropogenic barriers to

movement appear to have limited the dispersal capa-

bilities of the Florida black bear, thereby reducing

gene flow among populations. Regional corridors or

translocation of bears may be needed to restore his-

torical levels of genetic variation. Our results suggest

that management actions to mitigate genetic conse-

quences of habitat fragmentation are needed to ensure

long-term persistence of the Florida black bear.
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Introduction

The fragmentation and loss of habitat is one of the

most serious problems facing the conservation of bio-

diversity worldwide (Harris 1984; Meffe and Carroll

1997). Habitat fragmentation can increase mortality

rates (Jules 1998), reduce abundance (Flather and

Bevers 2002), alter movement patterns (Brooker and

Brooker 2002), disrupt the social structure of popula-

tions (Ims and Andreassen 1999; Cale 2003), and may

reduce population viability (Harrison and Bruna 1999;
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Davies et al. 2001). Additionally, habitat fragmenta-

tion can lead to isolation of populations and reduction

in population size which may cause a decrease in ge-

netic variation (Frankham 1996). The loss of genetic

variation may reduce the ability of individuals to adapt

to a changing environment, cause inbreeding depres-

sion (Ebert et al. 2002), reduce survival and repro-

duction (Frankham 1995; Reed and Frankham 2003)

and increase the probability of extinction (Saccheri

et al. 1998; Westemeier et al. 1998).

Populations that occur within contiguous habitats are

expected to follow an isolation-by-distance model,

where the distance between populations is the overrid-

ing factor contributing to genetic differentiation (Slat-

kin 1993). However, the process of habitat

fragmentation can create dispersal barriers, which can

deter gene flow and lead to isolation of populations

(Hitchings and Beebee 1997; Gerlach and Musolf 2000).

Large mammalian carnivores are particularly vul-

nerable to habitat loss and fragmentation because of

their relatively low numbers, large home ranges, and

interactions with humans (Noss et al. 1996; Crooks

2002). The plight of the Florida panther (Puma

concolor coryi) and the giant panda (Ailuropoda

melanoleuca) are examples of large carnivores that

have been reduced to small numbers due largely to

the impacts of habitat fragmentation and loss. As a

result of the low fecundity and long generation times,

large carnivores tend to have reduced levels of ge-

netic variation (Roelke et al. 1993; Lu et al. 2001).

Another large carnivore that has been negatively

impacted by habitat fragmentation is the Florida

black bear (Ursus americanus floridanus) (Hellgren

and Maehr 1993).

The Florida black bear historically roamed

throughout the peninsula of Florida and southern

portions of Georgia, Alabama and Mississippi (Brady

and Maehr 1985). From the 1800s to the 1970s, num-

bers of Florida black bears were significantly reduced

due to loss and fragmentation of habitat and unregu-

lated hunting (Cory 1896; Hendry et al. 1982). Only an

estimated 300–500 bears remained in the state of

Florida in the 1970s (McDaniel 1974; Brady and Maehr

1985). Consequently, the Florida Game and Freshwa-

ter Fish Commission classified the Florida black bear

as a threatened species in most Florida counties in 1974

(Wooding 1993). Destruction and fragmentation of

once contiguous habitat has reduced the distribution of

Florida black bears to nine disjunct populations: Eglin

(EG), Apalachicola (AP), Aucilla (AU), Osceola

(OS), Ocala (OC), St. Johns (SJ), Chassahowitzka

(CH), Highlands/Glades (HG) and Big Cypress (BC)

(Fig. 1).

Fragmentation of populations can reduce genetic

variation (Sherwin and Moritz 2000), gene flow (Vos

et al. 2001) and increase the probability of extinction

(Saccheri et al. 1998; Westemeier et al. 1998), but the

genetic consequences of habitat fragmentation on

Florida black bear populations are unknown. Using

microsatellite analyses, our objectives were to estimate

within-population genetic variation, and to investigate

the level of genetic differentiation among populations.

Theory predicts a positive correlation between genetic

variation and population size (Frankham 1996), and

between genetic differentiation and geographic dis-

tance among populations (Slatkin 1993). Thus, we

tested these predictions by examining the relationship

between measures of genetic variation and recent
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Fig. 1 Geographic
distribution of the Florida
black bear populations in
Florida. Populations are:
Eglin (EG), Apalachicola
(AP), Aucilla (AU), Osceola
(OS), Ocala (OC), St. Johns
(SJ), Chassahowitzka (CH),
Highlands/Glades (HG), and
Big Cypress (BC). The
distribution map was
compiled by the Florida Fish
and Wildlife Conservation
Commission
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estimates of population size, and between measures of

genetic differentiation and geographic distances among

populations. Finally, we used population assignment

tests to identify potential dispersers among our study

populations.

Methods

Hair and tissue samples from individual bears were

collected from Florida black bear populations during

1989–2004. The majority of samples were collected

from field studies, some using non-invasive techniques

(Woods et al. 1999), but samples also were collected

from translocated animals and from bears killed on

roadways. Hair and tissue samples were sent to Wild-

life Genetics International (http://www.wildlifegenet-

ics.ca/) for microsatellite analysis. DNA was extracted

using QIAGEN’s DNeasy Tissue kits, as per QIA-

GEN’s instructions (http://www.qiagen.com/literature/

genomlit.asp), and microsatellite loci were amplified

using polymearse chain reaction (PCR). Each individ-

ual was genotyped for 12 microsatellite loci G1A,

G10B, G1D, G10L, G10C, G10M, G10P, G10X (Pae-

tkau et al. 1995) G10H, G10J (Paetkau et al. 1998)

MU50, and MU59 (Taberlet et al. 1997). Laboratory

methods used in this study are described in detail by

Paetkau and Strobeck (1994), Paetkau et al. (1998),

and Paetkau (2003). Individual genotypes were rean-

alyzed when genotypes matched at all but one or two

of the 12 markers. Error checking and quality control

were performed according to the methods described in

Paetkau (2003).

Departures from Hardy–Weinberg equilibrium

(HWE) were tested using the HWE probability test in

Genepop 3.4 (Raymond and Rousset 1995). Exact P-

values were computed using the complete enumeration

method for loci with fewer than four alleles (Louis and

Dempster 1987) and the Markov chain method (de-

memorization 1000; batches 100; iterations per batch

1000) for loci with more than four alleles (Guo and

Thompson 1992). Using this same program, linkage

disequilibrium tests were used to test for non-random

associations between alleles of different loci using the

Markov chain method. The P-values were adjusted

using a Bonferroni sequential correction for multiple

comparisons (Rice 1989).

Within each bear population, genetic variation was

measured as the observed average heterozygosity (HO),

expected average heterozygosity (HE), and the average

number of alleles per locus (A). Spearman’s rank cor-

relation was used to test for the correlation between

genetic variation and estimated population size.

Genetic differentiation was estimated using Gene-

pop 3.4 (Raymond and Rousset 1995) with global FST

(across all populations), pairwise FST (Weir and

Cockerham 1984) and pairwise RST (Michalakis and

Excoffier 1996). The significance of population differ-

entiation was tested using the genic differentiation test

in Genepop 3.4, and P-values were adjusted for mul-

tiple comparisons using a Bonferroni sequential cor-

rection (Rice 1989). The likelihood ratio genetic

distance, DLR (Paetkau et al. 1995) was estimated for

each pair of populations using the Doh assignment

calculator (http://www2.biology.ualberta.ca/jbrzusto/

Doh.php). This genetic distance is based on the ratio of

genotype likelihoods between pairs of populations.

The software program Phylip 3.5c (Felsenstein 1993)

and the subprogram FITCH (Fitch and Margolia 1967)

were used to generate an unrooted phylogenetic tree,

with branch lengths corresponding to DLR values.

Geographic distances among populations were esti-

mated as the shortest land distance between population

centroids using least cost path analysis in ArcGIS 8.1.2

(McCoy and Johnston 2000). Centroids were estimated

as the harmonic mean of the sample collection loca-

tions in each study site. The subprogram ISOLDE in

Genepop 3.4 (Raymond and Rousset 1995) was used to

test for a relationship between geographic distances,

and FST, RST, and DLR values. Statistical significance of

these relationships was tested using a Mantel test

(Mantel 1967) with 10,000 permutations.

We used the population assignment test imple-

mented in program STRUCTURE to assign bears to a

cluster or population based on their genotypes without

regard to where samples were collected (Pritchard

et al. 2000). Allele frequencies were assumed inde-

pendent and analyses were conducted with 100,000

iterations and 100,000 repetitions of Markov chain

Monte Carlo. We used the no admixture model, which

assumes that each individual comes purely from one of

K clusters. Analyses were conducted with the number

of clusters (K) set from 1 to 15 to determine the likely

number of clusters representative of the data

(Pritchard et al. 2000).

Results

A total of 339 bears from nine populations were

genotyped for 12 microsatellite loci (Table 1). When

all but one or two of the loci were the same, we

checked for genotyping errors by reexamining these

results. The outcomes were replicated and the results

were strong, clear, and consistent in every case.
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There were no significant departures from HWE for

any locus or population (P > 0.05). The linkage dis-

equilibrium test indicated that only 6% of loci pairings

had significant non-random associations (P < 0.05).

Loci used in this analysis have been found to be

independent (D. Paetkau, pers. comm.). Thus, any

significant linkage observed among loci pairs may be a

result of non-random mating, sampling bias, recent

admixture, or genetic drift (Frankham et al. 2002). We

speculate that the majority of these non-random asso-

ciations are primarily due to random genetic drift in

these highly subdivided populations.

The population with the highest level of genetic

variation was Osceola (mean ± 1SE; HE = 0.713 ±

0.027). Chassahowitzka had the lowest level of genetic

variation (HE = 0.271 ± 0.054) (Table 1). Estimated

population sizes ranged from 20 in Chassahowitzka

(note that sample size for genetic analysis is higher

than estimated population size because genetic sam-

ples were collected over several years) to 830 (includ-

ing the adjacent Okefenokee population) in Osceola

(Maehr et al. 2001; Dobey et al. 2005; Simek et al.

2005).

Although population size was positively related to

all measures of genetic variation, the relationship was

nonlinear (A: rs = 0.683, P = 0.042; HO: rs = 0.567,

P = 0.112; HE: rs = 0.633, P = 0.067 (Fig. 2). All mea-

sures of genetic variation increased initially as the

population size increased, but this relationship ap-

proached an asymptote when population size reached

about 200 bears (Fig. 2).

Global FST, the measure of population subdivision

across all populations, was 0.224 ( ± 0.037). Estimates

of FST ranged from 0.010 to 0.572 and RST ranged from

0.009 to 0.628 (Table 2). Pairwise FST indicated that

gene flow was highest between Ocala and St. Johns,

whereas Highlands/Glades and Chassahowitzka had

the lowest levels of gene flow (Table 2). All tests of

genic differentiation among populations were highly

significant (P < 0.001). An unrooted phylogenetic

tree based on DLR values suggested that the Ocala and

St. Johns populations were closely related, whereas

Chassahowitzka, Highlands/Glades, and Eglin were the

Table 1 Measures of genetic variationa at 12 microsatellite loci in nine Florida black bear populations

Populationb HO HE A

Apalachicola (40) 0.690 ± 0.036 0.708 ± 0.032 5.92 ± 0.358
Aucilla (40) 0.566 ± 0.046 0.590 ± 0.044 5.00 ± 0.369
Big Cypress (41) 0.642 ± 0.036 0.650 ± 0.026 5.50 ± 0.435
Chassahowitzka (29) 0.287 ± 0.058 0.271 ± 0.054 2.25 ± 0.179
Eglin (40) 0.613 ± 0.071 0.537 ± 0.062 4.08 ± 0.379
Highlands/Glades (28) 0.327 ± 0.049 0.384 ± 0.051 2.75 ± 0.250
Ocala (40) 0.579 ± 0.045 0.610 ± 0.045 4.75 ± 0.305
Osceola (41) 0.705 ± 0.030 0.713 ± 0.027 6.67 ± 0.225
St. Johns (40) 0.650 ± 0.048 0.663 ± 0.041 5.75 ± 0.494

aMeasures of genetic variation (mean ± 1SE) are: observed average heterozygosity (HO), expected average heterozygosity (HE), and
mean alleles per locus (A)
bSample sizes are in parentheses
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most divergent of all populations (Fig. 3). There was

no significant relationship between geographic distance

and FST (P = 0.253), RST (P = 0.089), or DLR

(P = 0.104).

Population assignment tests indicated that bears

sampled from the nine populations had the highest

probability of assignment into eight clusters according

to the estimated log probability of data [Ln P(D)]. At

K = 7, Ln P(D) was – 9852. At K = 8, Ln P(D)

plateaus at – 9481. At K = 9, Ln P(D) slightly

decreases to – 9410, clearly making K = 8 the choice

for the most logical distribution of populations

according to Pritchard et al. (2000). These results

suggest that Ocala and St. Johns populations are

genetically identical, and should be grouped into the

same population. The majority of individuals were

assigned to the population where they were sampled.

The Apalachicola, Aucilla, Big Cypress, Highlands/

Glades, and Osceola populations had immigrants

that had originated from neighboring populations

(Table 3). Two individuals sampled from Osceola did

not meet the minimum criteria to be assigned to a

single cluster, suggesting that these two individuals

may be offspring of parents from two different

populations (Dixon et al. 2006).

Discussion

Habitat fragmentation can reduce genetic variation,

which can adversely influence fitness [e.g. the Florida

panther (Roelke et al. 1993)], increase susceptibility to

disease [e.g. cheetah (Acinonyx jubatus) (O’Brien

1994)], and decrease population viability (Sherwin and

Moritz 2000). Habitat fragmentation and hunting are

thought to be responsible for the loss of genetic vari-

ation in wolverines (Gulo gulo) (Kyle and Strobeck

2001), lynx (Lynx lynx) (Spong and Hellborg 2002),

mountain lions (Puma concolor) (Ernest et al. 2003),

Ethiopian wolves (Canis simenesis) (Gottelli et al.

1994) and brown bears (Ursus arctos) (Miller and

Waits 2003). Large carnivores may be much more

susceptible than other taxa to losses in genetic varia-

tion due to habitat fragmentation because of their large

home ranges, low population densities, and long gen-

eration times (Paetkau and Strobeck 1994; Johnson

et al. 2001).

The genetic variation in most Florida black bear

populations was within the range reported for other

black bear populations in North America using > 5 of

the same microsatellite loci (Paetkau and Strobeck

1994; Warrillow et al. 2001; Marshall and Ritland 2002;

Boerson et al. 2003; Csiki et al. 2003). However,T
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genetic variation in Chassahowitzka was the lowest

reported for any black bear population. Chas-

sahowitzka was characterized by a small population

size, and accordingly, this population had the lowest

level of genetic diversity. Osceola was characterized by

a large population size because of its connection with

the Okefenokee population and had the highest levels

of genetic diversity.

The Chassahowitzka and Highlands/Glades popu-

lations are thought to have remained isolated from

other Florida black bear populations for a longer per-

iod than any other Florida black bear population. The

relatively low genetic variation in both the Chas-

sahowitzka and Highlands/Glades populations is

remarkable because these populations have supposedly

been isolated from other populations for fewer than

100 years. Given what is believed to be historically

small population sizes and our observation of low

levels of genetic variation, we hypothesize that

inbreeding depression might have reduced the fitness

and persistence of these populations (Reed and

Frankham 2003). Symptoms of inbreeding depression,

such as cryptorchidism, have been observed in other

Florida black bears found in the western panhandle of

Florida (Dunbar et al. 1996) and southern Alabama

(Kasbohm and Bentzien 1998).

Most contiguous populations of black bears have

high levels of genetic variation (Marshall and Ritland

2002). Thus, efforts should be made to restore historic

levels of genetic variation within Florida black bear

populations, using these figures as a baseline. This may

be achieved by translocation of bears among popula-

tions, and by increasing local abundance. It has been

suggested that a minimum of 50 effective breeders is

needed to prevent inbreeding depression and popula-

tion levels in the hundreds or thousands to maintain

evolutionary potential (Franklin 1980; Lande 1995).

Our results indicate that maintaining bear population

size at ‡ 200 individuals will preserve most of the

genetic variation. When population size falls below this

level and there is little connectivity among populations,

demographic and genetic stochastic events may lead to

8.49

16.62

Eglin

Aucilla

 Apalachicola

St. Johns 
  Ocala

 Highlands/Glades 
Chassahowitzka

Big Cypress

Osceola 

4.18

Fig. 3 An unrooted
phylogenetic tree depicting
the genetic relationships
among Florida black bear
populations. Branch lengths
correspond to the likelihood
ratio genetic distance, DLR.
DLR values from some
populations to the first node
are displayed

Table 3 Number of individuals assigned to eight clusters based on multilocus genotypes. Sample sizes are given in parentheses

Population Clusters

1 2 3 4 5 6 7 8

Apalachicola (40) 38 2
Aucilla (40) 3 36 1
Big Cypress (41) 40 1
Chassahowitzka (29) 29
Eglin (40) 40
Highlands/Glades (28) 1 27
Ocalaa (40) 40
Osceola (41)b 2 37
St. Johnsa (40) 40

aIndividuals from the Ocala and St. Johns populations were assigned to the same cluster
bTwo individuals sampled in the Osceola population did not meet the minimum values to be assigned to a single cluster
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further loss of genetic variation. In the Chassahowitzka

population and possibly the Highlands/Glades popu-

lation, local abundance may be area-limited and it is

unlikely that these populations could approach the

desired size of 200, thereby making genetic nourish-

ment by other means critical.

The measures of genetic differentiation indicated

that there was an extensive differentiation among

Florida black bear populations, with Chassahowitzka,

Highlands/Glades, and Eglin populations being most

divergent. RST values were generally higher than the

FST values suggesting that mutation rather than

migration and drift are responsible for the differenti-

ation among the populations (Frankham et al. 2002).

The level of genetic differentiation among Florida

black bear populations (FST = 0.01–0.57, RST = 0.01–

0.63) was substantially greater than those between

other large carnivore populations (e.g. mountain lions

(FST = 0.01–0.37, RST = 0.01–0.42): (Ernest et al. 2003)

wolverines (FST = 0.01–0.21; (Kyle and Strobeck 2001;

Walker et al. 2001) lynx (FST = 0.01–0.29; (Hellborg

et al. 2002; Schwartz et al. 2002).

The genetic differentiation among Florida black

bear populations was substantial, although the average

distance between nearest neighboring populations

(134 km) is within the dispersal capabilities of black

bears (Rogers 1987; Maehr et al. 1988). The global

estimate of FST, the measure of population subdivision

across all populations, was 0.224. This degree of sub-

division is expected if there are on average 0.87 suc-

cessful migrants entering each population per

generation (approximately 8 years for black bears)

assuming an island model of migration (Frankham

et al. 2002). Therefore, on average across all Florida

black bear populations, there is one successful migrant

every 10 years, a relatively low level of gene flow.

Dispersal of bears is sex-biased, and males typically

disperse farther than females. Females tend to estab-

lish home ranges near their mother’s home range

(Rogers 1987; Schwartz and Franzmann 1992; Moyer

et al. 2006). It has been suggested that dispersing black

bears may be able to maintain connectivity among

populations even when populations are fragmented

(Noss et al. 1996; Maehr et al. 2001; Hellgren et al.

2005). These travels may be limited when there are

significant barriers to movement preventing bears from

moving among populations. High-volume roads and

other anthropogenic barriers may have been respon-

sible for the lack of isolation-by-distance relationship,

which has been reported for other bear populations

occupying contiguous habitats (Paetkau et al. 1997).

Habitat fragmentation and other anthropogenic dis-

turbances can create barriers to gene flow even among

populations that are geographically close, and this can

lead to extensive genetic differentiation among popu-

lations as observed in our study.

Anthropogenic barriers such as roads or other hu-

man development, can limit species distribution and

gene flow (Mader 1984). Although bears are able to

cross some highways successfully (McCown et al.

2004), the impact of highways can be detrimental.

From 2000 to 2005, at least 711 bears were documented

as killed on roads in Florida. The majority of these

were young males that may have been attempting

dispersal or migration to distant populations (FWC,

unpublished data). Additionally, highways and devel-

opment can act as partial or complete barriers. Some

bears may avoid interstate highways (Brody and Pelton

1989; Proctor et al. 2002), and other forms of human

development may alter movement patterns (Maehr

et al. 2003), further decreasing the probability of

movement of bears among populations. Population

fragmentation by roads has been reported to reduce

the level of gene flow in several natural populations

(e.g., moor frog Rana arvalis, (Vos et al. 2001) ground

beetle Carabus violaceus, (Keller and Largiader 2003)

and bank vole Clethrionomys glareolus, (Gerlach and

Musolf 2000). Although large carnivores are thought to

be highly vagile (Paetkau et al. 1999; Schwartz et al.

2002), our results and those of some other studies

suggest that anthropogenic barriers can substantially

reduce the gene flow among bear populations (Kyle

and Strobeck 2001; Walker et al. 2001; Ernest et al.

2003).

Population assignment tests indicated that most bears

had originated from the populations where they were

sampled, and that the St. Johns and Ocala populations

could potentially be considered a single population. We

also found evidence of the presence of immigrants in five

populations. However, it is not known if these immi-

grants were translocated nuisance bears, or dispersers

from the source populations. Nonetheless, there exists

the strong possibility that some adjacent populations

(i.e., Apalachicola and Aucilla, and Ocala and Osceola)

may be connected via dispersal.

These dispersal events and the resulting gene flow

among bear populations is needed to restore and

maintain genetic variation (Waits 1999). A minimum

of one and a maximum of 10 successful migrants per

generation has been suggested as a rule of thumb to

maintain levels of genetic variation (Mills and Allen-

dorf 1996). We suggest that Florida black bear popu-

lations should be managed as a metapopulation so that

gene flow can occur among populations connected with

conservation corridors (Craighead and Vyse 1996;

Maehr et al. 2001; Larkin et al. 2004). However, the
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effectiveness of corridors in maintaining gene flow

among populations of carnivores is not well understood

(Beier and Noss 1998). A recent study has shown that

the corridor between the Ocala and Osceola popula-

tions is functional and facilitates gene flow between

these populations (Dixon et al. 2006); similar studies

are needed to evaluate the functionality of potential

corridors. Additionally, wildlife crossing structures

may be needed to allow safe passage for bears across

roadways that pose significant barriers to bear move-

ments (Foster and Humphrey 1995). In situations

where population connection via corridors is imprac-

tical, artificial translocation of animals should be con-

sidered (Griffith et al. 1989). Translocation of animals

has been successful in curbing some effects of

inbreeding depression and increasing levels of genetic

variation in some animal populations (Mansfield and

Land 2002). Conservation biologists should be cogni-

zant that the effects of translocated animals on popu-

lation structure and hierarchy have not been fully

understood.

We conclude that the loss and fragmentation of once

contiguous habitat has caused the loss of genetic vari-

ation in the Florida black bear, and that genetic vari-

ation in smaller populations is among the lowest

reported for all black bears. This substantial loss of

genetic variation has contributed to extensive genetic

differentiation among populations. Given that Florida

black bear populations have been reduced in size, gene

flow among bear populations is needed to restore and

maintain genetic variation (Waits 1999). Finally, fur-

ther reduction or fragmentation of habitat will likely

have a detrimental impact on the demographic and

genetic health of the Florida black bear populations,

and efforts to conserve remaining habitat cannot be

overemphasized.
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