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Abstract
Non-autoregressive machine translation aims to speed up the decoding procedure 
by discarding the autoregressive model and generating the target words indepen-
dently. Because non-autoregressive machine translation fails to exploit target-side 
information, the ability to accurately model source representations is critical. In this 
paper, we propose an approach to enhance the encoder’s modeling ability by using a 
pre-trained BERT model as an extra encoder. With a different tokenization method, 
the BERT encoder and the Raw encoder can model the source input from different 
aspects. Furthermore, having a gate mechanism, the decoder can dynamically deter-
mine which representations contribute to the decoding process. Experimental results 
on three translation tasks show that our method can significantly improve the perfor-
mance of non-autoregressive MT, and surpass the baseline non-autoregressive mod-
els. On the WMT14 EN→ DE translation task, our method achieves 27.87 BLEU 
with a single decoding step. This is a comparable result with the baseline autore-
gressive Transformer model which obtains a score of 27.8 BLEU.
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1  Introduction

Neural machine translation (NMT) has achieved great improvements over the past 
few years  (Bahdanau et al. 2014; Gehring et al. 2017; Vaswani et al. 2017). NMT 
models are generally based on the encoder-decoder framework. The encoder maps 
the input sentences to distributed representations, and the decoder generates the 
output sentences from these representations in a word-by-word manner. That is, 
when predicting the next word, the decoder feeds the previous output as input. This 
word-by-word generation manner of NMT models limits the application of parallel 
computing methods during the inference phase and leads to high translation latency 
which restricts the application scenarios of NMT.

With the introduction of parallel computing methods in the NMT training phase, 
the question of how to perform parallel decoding has attracted researchers’ atten-
tion. To avoid the autoregressive property and produce the outputs in parallel,  Gu 
et al. (2017) proposed a non-autoregressive translation (NAT) model. Drawing on 
the parallel computing power of Transformer (Vaswani et al. 2017), although a NAT 
model still uses the encoder-decoder architecture, the NAT model does not use the 
previously generated words as input which avoids the problems inherent in autore-
gressive models. The NAT model takes other signals (transferred from the source 
inputs (Gu et al. 2017; Guo et al. 2019), translation results from other systems (Lee 
et  al. 2018; Guo et  al. 2019), or latent variables  (Kaiser et  al. 2018)) as decoder 
inputs, which enables the independent and simultaneous generation of the target 
words and reduces translation latency.

In recent years, research on NAT has mainly focused on improving the 
decoder (Ghazvininejad et al. 2019; Gu et al. 2019; Shu et al. 2019; Sun et al. 2019; 
Shao et al. 2020). While those methods improve the performances of NAT model by 
modifying the inputs of the decoder or the training objective, the information that 
the decoder can rely on still comes from the encoder. The question, then, is whether 
the performance of the NAT model can continue to improve with a strong encoder. 
The effectiveness of an enhanced encoder has been demonstrated in NMT  (Bast-
ings et al. 2017; Imamura and Sumita 2019; Wei et al. 2019; Xiao et al. 2019), but 
the encoder used in NAT models is still the vanilla encoder from Transformer. To 
address this question, in this paper, we explored the effect of enhanced encoders in 
NAT models.

Given developments in pre-training methods  (Devlin et al. 2018; Radford et al. 
2019; Yang et  al. 2019b), there has been some work on enhancing encoders in 
NMT (Clinchant et al. 2019; Yang et al. 2019a; Zhu et al. 2020), but those methods 
have not been investigated yet in NAT models. Drawing on the success of pre-train-
ing in NMT, in this paper, we exploited a straightforward method to enhance the 
encoder in NAT models with pre-training methods.

In this paper, based on pre-training, we proposed a BERT-based method to 
enhance the encoder in NAT models. Since the generation of target words is inde-
pendent of the previously generated words, the decoder cannot acquire information 
from the previous target words, so all information including dependencies or word 
order comes from the encoder. Accordingly, we proposed a BERT-based encoder for 
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NAT models to enhance its modeling capability. Considering the performance deg-
radation (Zhu et al. 2020) of directly using BERT to initialize the encoder of NMT 
models, we learned from a BERT-fused model(Zhu et al. 2020) and designed our 
enhanced encoder for NAT models, where the BERT representations are combined 
with the representations of the vanilla encoder. When the input sentences are fed into 
our model, the raw encoder and the BERT encoder simultaneously map the input 
sentences as distributed representations. As different sequence lengths are derived 
from different word segmentation rules, the representations from the raw encoder 
and the BERT encoder cannot be directly concatenated or added together. There-
fore, we used an extra attention module in the decoder to fuse the BERT encoder 
representations with those from the raw encoder. In addition, a gate module is used 
to dynamically select information from the BERT and Raw encoder representations. 
Our enhanced encoder has the following advantages over other methods:

–	 It does not assume a NAT-specific model architecture and is suitable for any 
NAT model architecture with recent technology.

–	 It strengthens the ability to model the input sentence.
–	 It provides rich information to the decoder.

To evaluate the performance of our model, we compare it with previous work  (Gu 
et al. 2017; Lee et al. 2018; Libovickỳ and Helcl 2018; Ghazvininejad et al. 2019; 
Gu et al. 2019) and conduct experiments on three benchmark tasks: WMT17 EN→
ZH, WMT14 EN↔ DE and WMT16 EN↔RO. In addition, we conduct further analy-
sis on IWSLT16 EN→DE. Experimental results and analysis show that our enhanced 
encoder surpasses the baseline NAT system by a significant margin in terms of 
translation quality without decelerating decoding speed. Furthermore, with distilled 
knowledge, our model can achieve comparable performance with an autoregressive 
MT baseline.

The main contributions of this paper include:

–	 We are first to exploit the influence of the encoder in NAT models.
–	 We use the BERT-based model to enhance the encoder of NAT models.
–	 We achieve a new state-of-the-art 27.87 BLEU on WMT’14 En→ De for single-

step non-autoregressive MT.

2 � Related work

Gu et al. (2017) introduced a non-autoregressive Transformer model to reduce the 
translation latency of NMT, but this comes at the cost of translation quality. Instead 
of feeding the previous target tokens into the decoder, NAT models use other sig-
nals such as latent variables (Gu et  al. 2017; Shu et  al. 2019) as the input to the 
decoder. However, there is still a gap between the autoregressive and non-autore-
gressive models. In recent years, there has been some significant previous work on 
non-autoregressive models to improve the performance of NAT models. Lee et al. 
(2018) introduced an iterative decoding method for NAT models, which significantly 
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improved the performance of NAT models. Inspired by the mask language model, 
Devlin et al. (2018), Ghazvininejad et al. (2019) and Gu et al. (2019) utilized the 
mask-based method to improve the decoder in NAT models. until now, research has 
mainly focused on the decoder in NAT models such as Shao et al. (2020). Recently, 
some research has started to migrate the successful experience on autoregressive 
NMT into non-autoregressive NMT such as Shao et al. (2019), Shao et al. (2020) 
and Zhou and Keung (2020). Following this idea and considering the absence of 
research on enhancing the encoder in NAT models, we utilize a BERT model as an 
extra encoder to enhance the modeling ability of the encoder.

There is some work on how to incorporate BERT into autoregressive NMT. 
Imamura and Sumita (2019) directly used a BERT model as an extra encoder to 
strengthen the representations generated by the encoder. Because of the limited 
improvement using BERT directly as encoder, Yang et  al. (2019a) and Zhu et  al. 
(2020) utilized the BERT model as an extra encoder to strengthen the encoding pro-
cess. In this paper, we also use a BERT model as an extra encoder. Note too that dif-
ferent tokenizations have different effects on the performance of NMT models (Bah-
danau et al. 2014; Sennrich et al. 2015). In this work, with the different tokenization 
methods, the BERT encoder and the raw encoder may model the different aspects of 
the input sentence.

3 � Background

3.1 � Autoregressive neural machine translation

At present, both autoregressive and non-autoregressive MT adapt the encoder-
decoder framework. This framework has achieved great success in NMT (Bah-
danau et al. 2014; Gehring et al. 2017; Vaswani et al. 2017). Compared with RNN-
based models, CNN- and self attention-based models have a highly parallelized 
architecture and solve parallelization problems during training. However, during 
inference, as is the way in autoregressive models, the translation is still generated 
word-by-word.

Given an input sentence X = {x1, x2,… , xn} and the target sequence 
Y = {y1, y2,… , yn} , an autoregressive translation model models the conditional 
probability as in (1):

where � are the parameters of the autoregressive translation models and y
<t denote 

the previously generated words. During inference, with � and the previously gener-
ated words y

<t , the autoregressive model generates the current word. During train-
ing, � are learned by maximizing the log-likelihood of the training data, as in (2) and 
(3):

(1)P(Y|X, 𝜃) =
T∏

t−1

p(yt|y<t,X, 𝜃),
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where N denotes the pairs of sentences in the training set.
According to these formulae, the unique characteristic of autoregressive models 

is that it requires the the previously generated words in the decoding procedure. Due 
to this unique characteristic, parallelization is not possible and the decoding is lim-
ited, which restricts the application of the autoregressive model.

However, at present, the performance of non-autoregressive models falls far 
behind autoregressive models. In this work, we attempt to improve the performance 
of non-autoregressive models using pre-trained models.

3.2 � Pre‑training for autoregressive NMT

Pre-training has been used in natural language processing (NLP)  (Mikolov et  al. 
2013; Dai and Le 2015) for years. At the beginning, because improvements were 
not comparable with pre-training in computer vision, the scope of pre-training in 
NLP was still relatively small. Recently, with increases in both computing resources 
and available data, pre-training techniques have received increasing attention from 
NLP researchers. The pre-training approach has refreshed state-of-the-art results 
on some tasks (Devlin et al. 2018; Yang et al. 2019b). Pre-training in MT has seen 
some research (Yang et  al. 2019a; Zhu et  al. 2020), but .this work has been con-
ducted only for autoregressive MT. However, in this work, we use the pre-training 
language model as an extra encoder to model the sentence in the source language for 
non-autoregressive MT.

3.3 � Non‑autoregressive NMT

The aim of non-autoregressive NMT proposed by  Gu et al. (2017) is to accelerate 
the decoding speed. Compared to autoregressive models, non-autoregressive NMT 
can simultaneously and independently generate the words in the translation. Com-
pared to conditional probability in autoregressive MT, the translation the probability 
from X to Y in non-autoregressive MT is modeled as in (4):

Given a training set D = {XN , YN} with N sentence pairs, the training objective of 
non-autoregressive MT is to maximize the log-likelihood of the training data, as in 
(5):

(2)� = argmax
�

(L(�))

(3)L(𝜃) =

N∑

n=1

T∑

t=1

log(p(yn
t
|yn

<t
,Xn, 𝜃)),

(4)P(Y|X) =
T∏

t=1

p(yt|X, �)

(5)� = argmax
�
(L(�))
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in which L(�) is computed as in (6):

Eq. (1) shows that when non-autoregressive MT generates the target words, it does 
not need access to the previously generated words. During inference, the target 
words can be generated by taking the word with the maximum probability in each 
time step, as in (7):

No longer needing the previous target words at each time step, non-autoregressive 
MT can be computed in parallel both in the training and in the decoding phases. 
However, there are some weaknesses in non-autoregressive MT. For example, non-
autoregressive MT still has a great gap in translation quality compared to autore-
gressive MT and tends to generate repetitive words or wrong words. In this work, 
we introduce a stronger encoder for the NAT model to improve its performance. 
Inspired by previous work using pre-training methods in NMT, in this work, we 
demonstrate how pre-training can be incorporated into NAT models.

4 � Approaches

In this section, we first define the necessary notation, and then introduce our pro-
posed enhanced encoder model.

Notation Let X and Y denote the input sentences and target sentences, respec-
tively. We denote the raw encoder and BERT encoder as EncR , EncB , respectively, 
and we let attn be the attention module.

Since our proposed model mainly focuses on the encoder of NAT models, and 
does not restrict the decoder, in this section, for ease of description, we use the 
architecture of  Ghazvininejad et al. (2019) to describe our model. An illustration of 
our model is shown in Figure 1.

Firstly, given an input x ∈ X , the BERT-encoder and Raw-encoder encode it into 
representations HB = EncB(x) and HR = EncR(x) , respectively. HB and HR are the 
output of the last layer in the BERT-encoder and Raw-encoder, respectively.

Then let Sl denotes the hidden state of l-th layer in the decoder, where we have 
(8)–(10):

(6)L(�) =

N∑

n=1

T∑

t=1

log(p(yn
t
|Xn, �))

(7)ŷt = argmaxyt (p(yt|X, 𝜃))

(8)Ŝl = attns(S
l−1, Sl−1, Sl−1)

(9)Sl
B
= attnB(Ŝ

l,HB,HB)

(10)Sl
R
= attnR(Ŝ

l,HR,HR)
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SB and SR denote the information learned from HB and HR , respectively. attns , attnB 
and attnR represent the self-attention module, BERT-encoder-decoder attention 
module and encoder-decoder module, respectively. We use a gate module to make 
the decoder dynamically combine the information from BERT and the Raw encoder, 
and control the information flowing to the next layer, as in (11).

Sl in (12) is the output of the l-th layer in the decoder. With a stack decoder, we can 
derive the final hidden state of the decoder S. Finally, with softmax, we can obtain 
the conditional probability in (13):

In our proposed model, BERT is used as an auxiliary encoder, and generates dif-
ferent representations of the input. With a different tokenization model, the BERT-
encoder and Raw-encoder can learn to express the input from different angles, and 
the decoder can dynamically utilize the representations from different angles via the 
gate module.

(11)g = �(W[HR ∶ HB])

(12)Sl = g × HR + (1 − g) × HB

(13)P(y|x) = softmax(WS)

Fig. 1   The overall enhanced NAT encoder. The BERT encoder is an extra encoder, and the Raw Encoder 
is the vanilla Transformer encoder. The decoder can dynamically control the information flowing from 
the BERT encoder and Raw Encoder. ”M” denotes ”MASK” in MASK-Predict
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5 � Experimental settings

5.1 � Datasets

We use several commonly adopted benchmark datasets to evaluate the performance 
of our proposed methods: WMT17 EN→ZH, WMT14 EN↔DE, and WMT16 EN↔
RO. We also add experiments and analysis on IWSLT16 EN→DE. These datasets 
consist of 20M, 4.5M, 610k, and 196k sentence pairs, respectively. For IWSLT16 
EN→DE, we use the test2013 dataset for validation purposes. For WMT14 EN↔
DE, we use newstest2013 for our validation set and newstest2014 for our test set. 
For WMT16 EN↔RO, we use newsdev2016 and newstest2014 as our development 
and test sets. For WMT17 EN→ZH, we use newsdev2017 and newstest2017 as our 
validation and test sets, respectively. For all tasks, we use the script from Moses 
(Koehn et al. 2007) as our tokenization tools, and we segment each word into sub-
word units with BPE (Sennrich et al. 2015). The vocabulary size for all tasks is 40k 
and is shared for source and target languages. We use BLEU (Papineni et al. 2002) 
as our evaluation metric.

5.2 � Baselines

We use the Transformer model (Vaswani et al. 2017) as our autoregressive baseline . 
We choose several recently proposed NAT methods as our NAT baselines:

•	 NAT (Gu et al. 2017) is the first non-autoregressive model.
•	 I-NAT  (Lee et  al. 2018) is the first model that utilizes iterative refinement to 

refine the translations.
•	 Mask-Predict (Ghazvininejad et al. 2019) introduce a masked language model 

to train the NAT model.
•	 LevT (Gu et  al. 2019) utilizes three decoders to determine which operation 

(Deletion, Insertion, or Filling) should be done.
•	 CTC​ (Libovickỳ and Helcl 2018) utilizes CTC model to learn the alignment 

between source and target sentences.
•	 SMART​ (Ghazvininejad et  al. 2020b) adapts semi-autoregressive training to 

improve the non-autoregressive model.
•	 NAT-REG (Wang et al. 2019) introduces explicit regularization to reduce repeti-

tive words in the NAT model.
•	 BoN-NAT (Shao et al. 2020) introduce bag-of-ngram loss to improve the perfor-

mance of the NAT model.
•	 Hint-NAT (Li et al. 2019) distil the output of the attention module by an autore-

gressive model to improve the performance of the NAT model.
•	 FlowSeq (Ma et al. 2019) models the generation flow as latent variables.
•	 CRF-NAT (Sun et al. 2019) introduce an approximate CRF model to model the 

structure of the target sentence.
•	 AXE-NAT (Ghazvininejad et al. 2020a) introduce a new loss function to align 

target words with source words.
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•	 KERMIT (Chan et al. 2019) is an insertion-based generative model.
•	 Imputer (Saharia et  al. 2020) model the alignments as latent variables to 

improve the performance of the NAT model.

5.3 � Model configurations

We follow the standard hyperparameters for Transformer in the base configura-
tions  (Vaswani et al. 2017): 6 layers stack, 8 attention heads per layer, 512 model 
dimensions, and 2048 hidden dimensions. To effectively learn the representation 
of the source language, for IWSLT16 EN→DE, WMT14 EN→DE, WNT17 EN→
ZH, and WMT16 EN→RO, we use bert-base-uncased1 to initialize our enhanced 
encoder. For WMT14 DE→EN, we use bert-base-german-cased2 as initialization. 
For WMT16 RO→ EN, we initialize our enhanced encoder with bert-base-multilin-
gual-uncased.3 For regularization, we use 0.3 dropout, 0.01 L2 weight decay, and 
smoothed cross validation loss with � = 0.1 . We follow Ghazvininejad et al. (2019) 
and train our model with batches of 128k tokens using Adam  (Kingma and Ba 
2014). We train all the models for 300k steps and average the 5 best checkpoints to 
create the final model.

5.4 � Sequence‑level distillation

According to previous work (Gu et al. 2017; Zhou et al. 2019), in non-autoregres-
sive MT, sequence-level knowledge distillation (Kim and Rush 2016) is critical for 
NAT models. In this work, we follow this previous work and train all our models 
based on the translations generated by an autoregressive model. We then discuss the 
influence of distillation on our model.

5.5 � Model architecture

Because our method is enhancing the encoder in NAT models, it does not restrict 
the architecture of the decoder, so it can simply be migrated to any recent method. 
In this paper, we implement our method on Levenshtein Transformer (LevT)  (Gu 
et al. 2019). That is, we use the BERT-encoder and Raw-encoder of Transformer as 
our encoder, and we use the decoder4 of Levenshtein Transformer as our decoder. To 
dynamically control the information flowing to the next layer, we add a gate module 
to the decoder.

1  https://​s3.​amazo​naws.​com/​models.​huggi​ngface.​co/​bert/​bert-​base-​uncas​ed.​tar.​gz
2  https://​int-​deeps​et-​models-​bert.​s3.​eu-​centr​al-1.​amazo​naws.​com/​pytor​ch/​bert-​base-​german-​cased.​tar.​gz
3  https://​s3.​amazo​naws.​com/​models.​huggi​ngface.​co/​bert/​bert-​base-​multi​lingu​al-​uncas​ed.​tar.​gz
4  Levenshtein Transformer consists of three decoders, and the parameters of those decoders are shared. 
During inference, the first decoder decides which word should be deleted in the input target sentence, and 
the second decoder predicts the number of tokens to be inserted at every consecutive position pair and 
inserts the placeholders at the corresponding positions. Finally, the third decoder fills the tokens replac-
ing the placeholders.

https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz
https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased.tar.gz
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz
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6 � Results and analysis

6.1 � Single step decoding

Firstly, we evaluate the performance of our method with single-step decoding, as 
shown in Table  1. We compare our method with other non-autoregressive single 
decoding models. Our enhanced encoder LevT achieves 27.87 BLEU for WMT14 
EN→DE. Our method achieves an almost 2.0 BLEU point improvement over 
Imputer which is the state-of-the-art model for single-step non-autoregressive MT. 
In addition, our method has also improved the performance of NAT to varying 
degrees for WMT14 DE→EN, WMT16 EN→ RO and WMT17 EN→ZH.

6.2 � Iterative decoding

We now analyze the performance of enhanced encoder LevT with more decod-
ing iterations. We compare the performance of enhanced encoder LevT with other 
non-autoregressive models ranging from models requiring logarithmic to a con-
stant number of decoding iterations. The results of our method are summarized in 
Table 2.

Table 1   Performance of various single-step decoding models. Our enhanced encoder LevT is able to out-
perform all prior single decoding models

The results are obtained from the original papers

Methods Iters WMT14 WMT16 WMT17

EN→DE DE→EN EN→RO RO→EN EN→ZH

Autoregressive transformer
Base transformer N 27.8 31.2 34.3 34.0 34.74
Non-Autoregressive
I-NAT 1 13.9 16.7 24.5 25.7 –
NAT 1 17.7 21.5 27.3 29.1 –
CTC​ 1 17.7 19.8 19.9 24.7 –
SMART​ 1 18.6 23.8 – – 24.15
NAT-REG 1 20.7 24.8 – – –
BoN-NAT 1 20.9 24.6 28.3 29.3 –
Hint-NAT 1 21.1 25.2 – – –
FlowSeq 1 21.5 26.2 29.3 30.4 –
CRF-NAT 1 23.4 27.2 - – –
AXE-NAT 1 23.5 27.9 30.8 31.5 30.88
Imputer 1 25.8 28.4 32.3 31.7 –
Mask-Predict 1 18.0 19.3 27.3 28.2 24.23
Our work
Enhanced encoder LevT 1 27.87 29.57 32.96 32.65 32.56
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Our enhanced encoder LevT achieves 27.95 BLEU on WMT14 EN→ DE with 
only 2 iterative decoding steps, which is comparable with the autoregressive model 
Transformer. With 4 iterative decoding steps, our method achieves 28.35 BLEU, 
slightly outperforming the autoregressive Transformer score of 27.8 BLEU. On 
WMT14 DE→EN, we achieve 31.1 BLEU, which is on a par with the autoregressive 
Transformer. On WMT16 RO→EN, with 2 iterative decoding steps, our method also 
outperforms the standard LevT and achieves similar results as autoregressive Trans-
former in 4 iterative decoding steps. On WMT17 EN→ZH, our model and SMART 
achieve similar levels of performance. We think that the sequence-level distillation 
by the autoregressive model limits the improvement in performance.

6.3 � Impact of decoding speed

Because of the introduction of the BERT encoder and the gate module, decoding 
speed may be adversely affected. In this section, we compare the decoding speed 
of our method with the standard LevT. For both models, we decode batches of 10 
sentences on 1 Nvidia 1080Ti GPU. We measure the wall time from when the model 
and data have been loaded until the last example has been translated, and calculate 
the decoding speed to assess the average speed performance trade-off.

The speeds of our method are shown in Table  3. We can observe that there is a 
decline in speed of our enhanced encoder LevT. However, compared with Trans-
former, our method can still obtain a 3.12× speedup.

Table 2   Performance of various autoregressive and non-autoregressive models

Our enhanced encoder LevT can achieve comparable results with the autoregressive Transformer base-
line with just 4 decoding steps. The results are obtained from the original papers

Methods Iters WMT14 WMT16 WMT17

EN→DE DE→EN EN→RO RO→EN EN→ZH

Autoregressive transformer
Base transformer N 27.8 31.2 34.3 34.0 34.31
Non-autoregressive
KERMIT ≈ log2n 27.8 30.7 – – –
I-NAT 10 21.6 25.5 29.3 30.2 –
SMART​ 4 27.0 30.9 – – 33.37

10 27.7 31.3 – – 34.06
Mask-Predict 4 25.9 29.9 32.5 33.2 32.63

10 27.0 30.5 33.1 33.3 33.19
Imputer 2 27.5 30.2 33.7 33.4 –

4 28.0 31.0 34.3 34.0 –
Our work
LevT 2(avg) 27.27 – – 33.26 –
Enhanced encoder LevT 2 27.95 30.31 33.73 33.52 33.74

4 28.35 31.10 34.51 34.01 34.23
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6.4 � Impact of distillation

We analyze the impact of distillation on our method by comparing the performance 
on the original training data (original data) and training data generated by a base 
Transformer teacher (distilled data) on IWSLT16 EN→DE.

From Table  4, we can observe that in all cases, the model with distilled data 
outperforms the model with the original data. As the number of decoding steps 
increases, the gap between the model with original and distilled data decreases, 
which is identical to the observation of  citetzhou2019understanding. Similarly, on 
WMT14 with distilled data, our method obtains a comparable result to autoregres-
sive Transformer with 28.98 BLEU. Note that our model outperforms Transformer 
with only 2 decoding steps.

6.5 � Case study

We show an example from the IWSLT16 EN→ DE validation set in Table  5. For 
the words “shipping containers”, LevT generates a wrong word “Schiffcontainer”. 
In contrast, our model with different encoders generates the correct word “Schiffs-
container”. While LevT misunderstands the meaning of the word “cafes”, our model 
understands it correctly.

Table 3   Translation latency on 
WMT14 EN→DE

Methods Speedup Latency

Transformer 1.00× 607 ms
LevT 3.73× 162 ms
Enhance encoder LevT 3.12× 195 ms

Table 4   IWSLT16 EnDe BLEU 
comparison on the impact of 
distillation

Method Iterations Original Distillation

Transformer N 28.98 –
Enhanced encoder LevT 1 28.04 28.83

2 28.84 29.54
4 29.23 29.76

Table 5   An example of IWSLT16 EN→ DE translation

Source I want to take shipping containers and turn them into healthy cafes
Reference ich will Schiffscontainer nehmen und sie in gesunde Cafés verwandeln
LevT ich möchte Schiffcontainer nehmen und sie in gesunde Wasserés verwandeln
Ours ich möchte Schiffscontainer nehmen und sie in gesunde Cafés verwandeln
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6.6 � Ablation analysis

To evaluate the effect of different encoders, we conduct an ablation analysis on the 
IWSLT16 EN→ DE validation set, and give the results in Table 6. We can see that 
only using BERT as the encoder can decrease the performance of the NAT model, 
which is consistent with the conclusion of Zhu et al. (2020). In contrast, using BERT 
as an additional encoder in our model can significantly improve the performance of 
the NAT model.

7 � Conclusion

In this paper, we utilize a BERT model as an extra encoder to strengthen the abil-
ity of the encoder in non-autoregressive MT. Unlike most of the previous work 
which focused mainly on the decoder in NAT models, our method mainly focuses on 
enhancing the encoder. With the addition of a gate module, the decoder can dynami-
cally select representations of the input sentences from the Raw and BERT encod-
ers. Furthermore, with quite a simple architecture, our method can easily be incor-
porated seamlessly into recent work. Our enhanced encoder LevT achieves 27.87 
BLEU with a single generation step, which is comparable with the Transformer 
baseline on the WMT14 EN→ DE task.
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