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Abstract
Learning bilingual word embeddings can be much easier if the parallel corpora 
are available with their words well aligned explicitly. However, in most cases, the 
parallel corpora only provide a set of pairs that are semantically equivalent to each 
other at sentence level. While algorithms have been proposed to obtain word align-
ments, good alignments are still hard to achieve. In this study, we propose Bilingual 
word embeddings with soft alignment (BWESA) to learn bilingual word representa-
tions from the parallel corpora without explicit word-level alignment information. 
At the same time, this method learns to make ‘soft’ alignments between words by 
approximating a distribution for each word in a sentence to estimate how likely the 
word is aligned to the words in the parallel translation. Unlike previous methods 
that typically make use of a predetermined word alignment, our learning strategy 
makes similar words—properly chosen by the continuously improving word align-
ment—become closer in the shared vector space during the training process. This 
study is among the first to learn bilingual word alignments and embeddings in a 
joint manner. The proposed method was evaluated on two cross-lingual tasks (cross-
lingual document classification and word translation) and achieved state-of-the-art 
or comparable results on all the tasks considered.
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1 Introduction

Recently, learning word representations (also known as word embeddings) of nat-
ural languages has attracted much attention  (Mikolov et  al. 2013a; Pennington 
et  al. 2014; Zheng et  al. 2017; Feng and Zheng 2018). These distributed repre-
sentations have proven useful for many natural language processing tasks, such as 
language modelling (Bengio et al. 2003), sentiment analysis (Socher et al. 2013b) 
and syntactic parsing  (Socher et  al. 2013a). It is also possible to learn such 
word vector representations across different languages  (Klementiev et  al. 2012; 
Mikolov et al. 2013b; Hermann and Blunsom 2014; Gouws et al. 2015; Wei and 
Deng 2017; Søgaard et  al. 2018), where similar words from multiple languages 
are clustered in the shared vector space. Multilingual word embeddings have been 
considered as an important building block for many cross-lingual tasks, including 
machine translation (Zou et al. 2013), parsing (Guo et al. 2015), and information 
retrieval (Vulić and Moens 2015).

Word alignment is often considered as a necessary pre-processing step for 
learning bilingual word embeddings, in which the words from two languages 
are first aligned automatically or semi-automatically and then the bilingual word 
embeddings are learned from the dataset with their words aligned explicitly. How-
ever, automatic word alignment is still a challenging task and results are unreli-
able for the subsequent learning of bilingual word embeddings. Some researchers 
have chosen to use the results of word alignment produced by an external tool like 
GIZA++ (Och and Ney 2003) from parallel data, but such word alignments are 
usually not good enough, and the alignment errors will propagate to the following 
word-embedding learning process. Others drop the step of automatic word align-
ment for this reason, but it is then impossible to fully leverage the implicit word-
level information contained in a parallel corpus. In this study, we try to make bet-
ter use of parallel data at both (explicit) sentence level and (implicit) word level, 
but the word alignment is not considered as a separate and predetermined step.

We propose a novel method to learn bilingual word alignments and word 
embeddings jointly, in which both tasks are reinforced mutually and gradually 
and can benefit from each other. The learned word alignment can be viewed as a 
distribution learned for each word in a sentence from a (source) language over all 
the words of its aligned translational equivalent from another (target) language. 
Under- or over-alignment problems might occur if no constraints are imposed 
because some words may not be aligned at all or aligned to too many words. 
Therefore, two criteria are proposed and enforced during the word alignment to 
deal with these problems: coverage and sparsity. That is, each word in a sentence 
should have at least one semantic equivalent in the parallel translation, but the 
number of such corresponding words is limited (note that a word may be aligned 
to a phrase in other language). We carried out two sets of experiments to evaluate 
our BWESA method. The first is to evaluate the quality of the learned bilingual 
word embeddings on two tasks: cross-lingual document classification (CLDC) 
and word translation. The second one is to assess the results of the word align-
ment using alignment error rate (AER). Our proposed BWESA approach achieved 
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state-of-the-art or comparable results on all these tasks. The effect of word align-
ment information was also confirmed by the experiments.

The main contributions of this paper are: (i) we propose a novel method to learn 
bilingual word embeddings and alignments from parallel corpus in a joint fashion; 
(ii) we recommend applying the two criteria of “coverage” and “sparsity” during 
word alignment to deal with under- and over-alignment problems; and (iii) our 
model achieved state-of-the-art or comparable results on cross-lingual document 
classification and word translation tasks.

2  Related work

Bilingual word embedding learning methods aim to embed the words from different 
languages into a shared continuous vector space, where the learned word embed-
dings yield a useful characteristic that similar words from multiple languages are 
close to each other in the space. Those methods can be roughly divided into three 
categories with respect to their training objectives: mapping offline, mapping online, 
and joint training.

2.1  Mapping offline

Mapping Offline methods first learn to obtain two monolingual word embeddings 
separately, and then to compute the mapping between the two different vector spaces 
by using extra resources (such as a dictionary). Learning a mapping matrix is argu-
ably the most common way to obtain bilingual word embeddings by constructing a 
dictionary from Google Translate (Mikolov et al. 2013b), leveraging a seed diction-
ary (Artetxe et al. 2017) or employing the singular value decomposition (Smith et al. 
2017). Although word embeddings can be learned at less computational cost by 
these methods, they might be incapable of capturing the phenomena of homonymy 
and polysemy that widely exist within and across languages because these meth-
ods usually consider only one translation per word. Although not requiring a par-
allel corpus is an advantage, offline mapping methods rely on the assumption that 
underlying embeddings should have a similar structure, which is known as the isom-
etry assumption. However, this assumption can not be taken for granted and some 
researchers have shown that this assumption does not hold generally (Søgaard et al. 
2018; Nakashole and Flauger 2018), and can severely degrade the performance of 
these methods.

2.2  Mapping online

Mapping Online methods try to learn sentence-level representations (often derived 
from their word embeddings) for different languages by making the learned repre-
sentations of each pair of parallel sentences stay close to each other in a shared vec-
tor space. Those word embeddings are learned in an indirect way, and the word-level 
alignment is often not forced directly. Hermann and Blunsom (2014) proposed to 
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learn bilingual word embeddings by aligning the representations of parallel sen-
tences while keeping sufficient distances between those of dissimilar ones. Chandar 
et  al. (2014) used an autoencoder-based framework to produce the representation 
of a sentence, which can both reconstruct the bag-of-words for that sentence and 
those for the aligned translation. Kočiskỳ et al. (2014) proposed to learn both bilin-
gual word embeddings and alignments based on FASTALIGN (Dyer et al. 2013), a 
variation of IBM model 2 (Brown et al. 1993), but they do not leverage the same or 
similar semantics conveyed in the parallel sentences directly when learning word 
alignment. Wei and Deng (2017) presented a variational autoencoder-based method, 
where a continuous latent variable is used to model the underlying semantics of each 
pair of parallel sentences and guide the reconstruction of these sentence pairs. Bilin-
gual word embeddings are obtained indirectly in those methods by making the sen-
tence pair well-aligned, and these methods might fail to fully capture the intrinsic 
semantics and syntactic characteristics at the level of their words.

2.3  Joint training

Joint Training methods learn bilingual word representations by taking both monolin-
gual and bilingual objectives into account. The word embeddings for each language 
are first separately trained from the monolingual corpus, and the obtained embed-
dings are then further tuned to satisfy the bilingual constraints defined either from 
pre-computed word alignments (Zou et al. 2013), or via coarse alignments under a 
uniform distribution assumption (Gouws et al. 2015). Luong et al. (2015) proposed 
a variant of skip-gram to learn BWEs by improving on the prediction of contextual 
words from both the monolingual and cross-lingual sentences. These methods make 
it possible to leverage both relatively small but valuable amounts of parallel data as 
well as large unlabelled monolingual texts. However, the performance of the learned 
BWEs is strongly sensitive to the quality of the predetermined word alignments, and 
good word alignments have generally been hard to achieve up to now.

In this study, we follow the line of the joint training strategy, but our model is 
different from others in that it is capable of learning bilingual word embeddings and 
word alignments jointly. We show that these two tasks can benefit each other in such 
a joint learning manner. Word alignments do not need to be predetermined before 
the training starts and are given opportunities to be improved gradually as the learn-
ing progresses, which leads to better bilingual word embeddings.

3  Models

We here describe our BWESA (Bilingual Word Embeddingswith Soft Alignment) 
method that can learn bilingual word embeddings and alignments automatically and 
simultaneously. Our objective function can be factorized into three parts. The first 
is designed for monolingual purposes, the second is for bilingual use-cases, and the 
last one is for word alignments, respectively denoted as lossmono , lossbi , and lossalign . 
The loss function can be formalized as in (1):
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where � , � , and � govern the relative importance of the three different parts. The 
first term can be further decomposed into two components, each for one language. 
Considering that the under-alignment or over-alignment problems will be harmful 
to the results of word alignment, we advocate to fulfil the two criteria of “coverage” 
and “sparsity” on word alignments during the learning process. Specifically, each 
word of a sentence should be aligned to at least one equivalent in the parallel sen-
tence (i.e. fulfilling coverage) and at the same time, the cardinality of those semantic 
equivalences should be limited to a small number (i.e. fulfilling sparsity).

3.1  Monolingual objective

We chose to apply the skip-gram with negative sampling strategy (Mikolov et  al. 
2013a) to train the word embeddings from monolingual data since it has been widely 
used and can be performed at low computational cost. The philosophy behind skip-
gram is that a word tends to have similar meanings to its neighbouring ones, and 
thus its feature representation can be trained by using the current word to predict its 
context (or neighbouring) words.

Specifically, for each word w in a vocabulary, Con(w) consists of all contexts in 
which the word w occurs in a corpus. The loss function for the word w can be for-
malized as in (2):

where rw is the distributed vector representation of w, and � is denoted as the sig-
moid function. The negative sampling method has been widely used to learn word 
embeddings (Mikolov et al. 2013a; Zheng et al. 2017; Feng and Zheng 2018), where 
the word embeddings are trained by maximizing the conditional likelihood of the 
current words given their contexts by the gradient ascent algorithm, which can be 
factorized with respect to the current word (positive) and its negative samples using 
logistic regression as in Eq. (2). For each positive word, a set of k negative words, 
denoted as Neg(w), is randomly sampled from the vocabulary according to their 
frequencies. We need to train monolingual word embeddings twice, each for a lan-
guage, and thus the loss for monolingual purpose, denoted as lossmono , is defined as 
the sum of two parts, as in (3):

where we denotes a word in the vocabulary Ve , extracted from the corpus of a source 
language, and wf  a word in the vocabulary Vf  from a target language. The “source” 
and “target” are just used to name different languages, and can be used interchange-
ably without affecting the results.

(1)Lbwe = � ⋅ lossmono + � ⋅ lossbi + � ⋅ lossalign

(2)
loss(w) = −

∑
c∈Con(w)[log �(rw ⋅ rc)

−
∑

n∈Neg(w) log �(rw ⋅ rn)]

(3)lossmono =
∑

we∈Ve

loss(we) +
∑

wf∈Vf

loss(wf ),
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3.2  Bilingual objective

In a parallel corpus, two sentences in a pair convey the same meaning, and each 
word (as a smaller semantic unit) in a sentence should have its own correspond-
ence in the parallel sentence. We assume that there exists a soft alignment distri-
bution for each word in a source sentence over the words from the target equiva-
lent. Figure 1 illustrates a simple example of the soft alignment distribution for 
the German word “Traum”, where most of the weight of the distribution is given 
to the English word “dream” which carries a similar meaning to the German word 
“Traum.”

We take the result of the ReLU nonlinear transformation over the dot product 
of two words’ embeddings as their similarity score, and such scores are further 
normalized to approximate the aligned distribution. The similarity score, aij , can 
be computed and then normalized to âij , as in (4):

where we
i
 denotes the i-th word in a sentence from the source language e, and wf

j
 

denotes the j-th word in the parallel one from the target language f. The similarity 
score defined by the dot product gradually forces the two word vectors closer to one 
another during the training process, and finally causes all the words from the two 
different languages to be embedded in the same vector space. The ReLU function is 
used to produce the scores so that two dissimilar words can have a zero score, and 

(4)aij = ReLU(rwe
i
⋅ r

w
f

j

), âij =
aij∑
k aik

German: Unser Traum wird endlich  in Erfüllung  gehen

English:
(0.05)

Our
(0.75)

dream
(0.03)

will
(0.02)

finally
(0.08)

come
(0.07)

true

An example distribution

of soft alignment

Unser  Traum  wird   endlich   in  Erfüllung  gehen
Our
dream
will
finally
come
true

Fig. 1  The upper half shows an example distribution of soft alignment for the word “Traum” in a Ger-
man sentence over all the words in the parallel English sentence, where most of the weights are given to 
the word “dream” which carries a similar meaning as the German word “Traum.” The lower half illus-
trates a similarity matrix for a pair of sentences, in which the colour of each element shows the degree 
of similarity between the two corresponding words. The darker the colour is, the more similar they are 
semantically
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more importantly, the sparsity property can be guaranteed to some extent since 
many word pairs will receive a scored of zero or close to zero.

We define a distance we want to reduce in the vector space in Eq. (5) to reflect how 
well the meaning of a source word is represented in its parallel equivalent. Specifi-
cally, such distance is formalized as the Euclidean metric between the embedding of 
the i-th word in a sentence and the weighted average of those of all the words in the 
parallel sentence. The estimated distribution âij for the i-word from the source lan-
guage is used as the weights.

Likewise, dist(wf

j
) can also be calculated for the j-th target word in the same way. 

Therefore, the loss function for the bilingual purpose can be defined as in (6):

where D = {(se, sf )n}
N
n=1

 is a dataset consisting of parallel sentence pairs (se, sf ) , and 
N is the number of those pairs.

In our model, the ‘soft’ word alignment is derived from the similarity scores esti-
mated between the word embeddings by taking the semantic equivalences at their 
sentence level as a guide. The derived alignments are used to learn the bilingual 
word embeddings, and in turn, the learned embeddings are further used to improve 
the quality of the word alignments. In this way, the word alignments and embed-
dings can be learned jointly and reinforced mutually.

3.3  Coverage and sparsity

We introduce the two criteria of “coverage” and “sparsity” for the word alignment 
process, and the alignment loss lossalign has two parts designed to fulfill these two 
criteria: losscov (for coverage) and lossspa (for sparsity). The coverage criterion means 
that each word of a sentence should be aligned to at least one equivalent in the paral-
lel sentence, and this criterion is proposed to treat the under-alignment problem. The 
loss to enforce the coverage criterion for a source language is defined as in (7):

For a target language, the losscovf can be defined in a similar way, and we take the 
sum of the two losses as the training objective for the coverage criterion. To meet 
the “sparsity” criterion, the cardinality of semantic equivalences of each word in any 
sentence should be limited to a reasonably small number. As discussed above, this 
criterion is implicitly guaranteed via ReLU nonlinear transformation defined in Eq. 
(4). The loss function for the word alignment can be written as in (8):

(5)dist(we
i
) = ||rwe

i
−
∑

j

âijrwf

j

||2

(6)lossbi =
1

N

�

(Se,Sf )∈D

⎛
⎜
⎜
⎝

� Se��

i=1

dist
�
we
i

�
+

� Sf ��

j=1

dist
�
w
f

j

�⎞
⎟
⎟
⎠

(7)losscove =
1

N

∑

(se,sf )∈D

|sf |∑

j=1

(
1 −

|se|∑

i=1

âij

)2
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In summary, to jointly obtain better vector representations of words for the source 
and target languages, the word embeddings are first trained with the monolingual 
loss of Eq. (3) and then trained by using the bilingual loss of Eq. (6) as well as the 
word alignment loss of Eq. (8). A similar negative sampling strategy like skip-gram 
(Mikolov et al. 2013a) was used to fulfill the monolingual training objective, and a 
good (soft) word alignment distribution is learned by leveraging a sentence-level 
parallel corpus to meet the proposed two criteria of “coverage” and “sparsity” for 
the word-level alignment.

4  Experiments

We conducted three sets of experiments to evaluate our BWESA method by compar-
ing it to other representative methods: word translation and cross-lingual document 
classification for the learned bilingual word embeddings, and AER for the obtained 
word alignments.

4.1  Training details

4.1.1  Training datasets

English-German (en-de) and English-French (en-fr) branches of the Europarl v7 
corpus (Koehn 2005) were used to train the models for comparison, which contain 
1.9M en-de parallel sentences with 49.7M English and 52.0M German words, and 
2.0M en-fr parallel sentences with 55.7M English and 61.9M French words. The 
models were also evaluated on an English-Chinese (en-zh) dataset. Those two lan-
guages belong to different language families, and they are much more different from 
each other than en-de or en-fr pairs. The dataset for en-zh was extracted from LDC,1 
which consists of 2.5M parallel sentences with 80.8M English and 72.0M Chinese 
words.

4.1.2  Hyperparameters and initialization

We tuned the hyperparameters by trying only a few different settings on the valida-
tion set. In our experiments, we set the number of negative samples to 64, window 
size to 5, subsampling rate to 0.0001, and initialized learning rate to 0.1. The dimen-
sionality of word embeddings was set to 40 for both en-de and en-fr pairs, and 100 
for en-zh. We first let � + � = 1 , and tuned � within {0.5, 1.0, 2.0, 4.0, 8.0}. In this 
way, we can observe the model’s behaviour without the constraint on word align-
ment, and see how much we can improve performance by introducing this constraint 

(8)lossalign = losscove + losscovf

1 https:// www. ldc. upenn. edu/.

https://www.ldc.upenn.edu/
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later in an incremental manner. The experimental results show that the performance 
is relatively insensitive to the values of � , but we chose to set � = 0.5 as this yielded 
a slightly better performance than other values on the validation set.

Luong et al. (2015) and Gouws et al. (2015) found that for both en-de and en-fr, 
setting the dimensionality of word embeddings to 40 sufficed as these two languages 
are quite similar to each other. For a fair comparison, we followed their setting in 
our experiments. However, English and Chinese (en-zh) belong to different lan-
guage families, and they are much more different from each other than en-de or en-fr 
pairs. Accordingly, we chose to enlarge the model capacity by increasing the size of 
word embeddings to 100. Our preliminary experiments showed that the size of word 
embedding generally has a limited impact on the performance if it is large enough. 
We tuned the values of k within {8, 16, 32, 64, 128} and set the number of negative 
samples to 64, which yields the best performance on the validation set.

The problem of learning bilingual word embeddings is that it has a very large 
search space, which makes it extremely difficult to learn good word embeddings 
starting with a random initialization. Accordingly, we “warm-up” the model by 
using information from cross-lingual word co-occurrence statistics to speed up the 
training process. In the first several iterations, the similarity scores between words 
are calculated based on the word co-occurrence, as in (9):

where count(we
i
,w

f

j
) is the frequency of co-occurrence of we

i
 and wf

j
 word pairs in the 

training corpus, and count(we
i
) is the total occurrence of the i-th word for a source 

language. The scores of stop words or other high-frequency words need to be scaled 
properly, and the Inverse Document Frequency (IDF) that reflects how important a 
word is to a sentence in a corpus is combined to calculate such scores, as in (10):

where idf (wf

j
) is the calculated IDF of word wf

j
 . The score s′

ij
 will be normalized to 

obtain ŝij in the same way defined as Eq. (4). In the first few iterations, ŝij was used 
instead of âij defined in Eqs. (4) and (5).

4.2  Bilingual word embedding evaluation

To evaluate the learned bilingual word embeddings experimentally, BWESA was 
compared to the following representative models: 

 (1) DistribReps (Klementiev et al. 2012): They formulate the word embedding 
learning for a pair of languages as a multitask learning problem where each 
task corresponds to a single word, and task relatedness is derived from co-
occurrence statistics in bilingual parallel data.

(9)sij =
count(we

i
,w

f

j
)

count(we
i
)

,

(10)s�
ij
= sij ∗ idf (w

f

j
),
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 (2) BICVM (Hermann and Blunsom 2014): they leverage parallel data and learn 
to align the embeddings of semantically equivalent sentences, while maintain-
ing sufficient distance between those of dissimilar sentences. The idea behind 
their method is that, given enough parallel data, a shared representation of two 
parallel sentences would be forced to capture the common elements and words 
between these two sentences.

 (3) BAE (Chandar et al. 2014): they use autoencoder-based methods for cross-
language learning of vector word representations that are coherent between 
two languages by learning to reconstruct the bag-of-words representations of 
aligned sentences, within and between languages.

 (4) BilBOWA (Gouws et al. 2015): they train bilingual word embeddings on mono-
lingual data and extract a bilingual signal from a set of sentence-aligned data 
with a sampled bag-of-words cross-lingual objective, which is used to regular-
ize two noise-contrastive language models for cross-lingual feature learning.

 (5) BiSkip (Luong et al. 2015): they extended the skip-gram model to learn bilin-
gual representations by using the co-occurrence context information within a 
language and meaning-equivalent signals across languages.

 (6) CLSim (Shi et al. 2015): they proposed a matrix co-factorization framework 
for learning cross-lingual word embeddings, in which the monolingual train-
ing objective is defined in the form of matrix decomposition, and cross-lingual 
constraints are forced by information derived from parallel corpora.

 (7) BRAVE-S (Mogadala and Rettinger 2016): they proposed a model to learn 
bilingual word embeddings of words from sentence-aligned parallel corpora 
with the elastic net regularization proposed by Zou and Hastie (2005).

 (8) BiVAE (Wei and Deng 2017): they presented a variational autoencoding 
approach for training bilingual word embeddings where a continuous latent 
variable is introduced to explicitly model the underlying semantics of the paral-
lel sentence pairs and to guide the generation of the sentence pairs.

 (9) Adv-Refine-CSLS (Conneau et al. 2017): they explored building a bilingual dic-
tionary between two languages without using any parallel corpora by aligning 
monolingual word-embedding spaces in an unsupervised way with adversarial 
training and a refinement procedure.

 (10) DP (Li et al. 2019): they proposed a method to induce a word alignment by 
estimating the relevance between a pair of words (x, y) from a source language 
and a target one. The relevance score is estimated by removing a word x from a 
source sentence, and calculating the difference in the probabilities of generating 
a word y in the target (translated) sentence before and after the word x being 
removed with the help of a machine translation model.

 (11) E-SGNS (Ormazabal et al. 2020): The core idea of their method is to fix target 
language embeddings and learn from scratch a set of embeddings for a source 
language that is aligned with the target one. They use an extension of skip-gram 
(Mikolov et al. 2013a) that leverages translated context words as anchor points 
and apply self-learning and iterative restarts to reduce the dependency on the 
initial dictionary. They proposed three methods to build an initial dictionary, 
and we chose to compare the version with unsupervised mapping initialization 
because this version achieved the best result in word alignment on average.
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 (12) We also developed a new strong baseline, denoted as BWECLCO, which only 
uses the cross-lingual word co-occurrence to estimate the alignment distribu-
tion without the following word alignment learning step as BWESA.

4.2.1  Word translation

Word translation aims to select the most similar word from a target language for a 
given word from a source language (Mikolov et al. 2013b; Gouws et al. 2015). This 
task is often used to evaluate how well the similar words from different languages 
are aligned with each other in the learned vector space with the cosine distance. Fol-
lowing Upadhyay et al. (2016), the gold word pairs were extracted from the Open 
Multilingual WordNet (OMW) datasest released by Bond and Foster (2013), con-
sisting of 19,675 en-de, 20,449 en-fr and 42,300 en-zh word pairs.

We report the Top-1, top-5 and top-10 accuracy (denoted by P@1, P@5 and 
P@10) achieved by different models in Tables  1 and 2. As we can see, BWESA 
produced state-of-the-art results on the OMW dataset for all three language pairs. 
Although E-SGNS achieved the best averaged top-1 accuracy of 57.4% among the 
previous models, it was surpassed by BWESA by a fairly significant margin (about 
1% on average). The results reported in Table  2 also show that BiVAE outper-
formed the other competitors for the word translation task, even when the differ-
ence between the two languages is large. In addition, we note that the “fully fledged” 
BWESA model is superior to BWECLCO, with an average increment of 9.63% when 
word alignment learning is turned off, indicating that the joint solution for learning 
bilingual word embedding and alignment is preferable and both tasks can mutually 
benefit and reinforce each other during joint learning. The experimental results show 
that BWESA is capable of learning finer-grained (word-level) semantic equivalences 
from (sentence-level) parallel corpora, due to the fact that the alignment learning 

Table 1  The accuracy ( % ) for 
word translation task on the 
open multi-lingual WordNet 
datasest. P@1, P@5 and P@10 
denote top-1, top-5 and top-10 
accuracy, respectively

Models en-de en-fr

P@1 P@5 P@10 P@1 P@5 P@10

DistribReps 46.1 55.4 61.5 53.2 62.0 65.8
BICVM 47.1 60.3 69.0 52.3 64.1 67.8
BAE 66.4 78.6 81.9 54.5 63.0 69.0
BilBOWA 65.0 76.3 80.6 64.1 65.4 77.5
BiSkip 67.6 77.3 80.9 64.3 75.4 76.6
CLSim 66.6 77.0 78.0 64.5 76.1 78.2
BRAVE-S 53.9 75.0 77.3 64.1 75.9 80.2
BiVAE 68.1 77.9 81.0 62.1 75.2 80.3
Adv-Refine-CSLS 62.3 75.7 81.3 61.2 74.9 79.8
DP 66.9 77.4 81.6 61.4 75.2 78.5
E-SGNS 68.5 78.6 82.3 65.0 76.4 80.4
BWECLCO 58.1 64.5 71.2 55.2 65.8 76.5
BWESA 70.3 79.0 83.0 65.5 76.8 81.7
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strategy causes similar words, properly chosen by the continuously improving word 
alignment, to become closer in the shared vector space as training progresses.

4.2.2  Cross‑lingual document classification

Cross-lingual document classification (CLDC) can be used to assess the quality of 
the learned BWEs by training a classifier on one language and testing it on another. 
Following the settings of Klementiev et  al. (2012), English, German, French and 
Chinese subsections of Reuters RCV1/RCV2 multilingual corpora were used for 
evaluation, and the documents labeled with one of CCAT, ECAT, GCAT, or MCAT 
topics are considered for this task. In this experiment, 15,000 documents were 
extracted from RCV1/2, in which 5000 documents were randomly selected as the 
test set, and the rest was taken as the training set.

Following Klementiev et  al. (2012), three additional baseline systems (Major-
ity Class, Glossed, and MT systems) are also listed in Table 3 for comparison. The 
Majority Class simply labels all the documents to be classified with the category 
having the most samples in the training set. The glossed system works as follows: a 
classifier is first trained over the documents from a source language; for a document 
written in another language, every word in the document is replaced with its most 
frequently aligned word from the source language; finally, the document with its 
words replaced is labeled by the classifier trained in the first step. The MT system 
is different from the Glossed system in that the documents to be classified are trans-
lated into the source language not by using word-level replacement, but by applying 
a phrase-based statistical MT tool.

The results reported in Tables 2 and 3 show that BWESA achieved consistently 
higher performance over the competitors on almost all the CLDC datasets consid-
ered. Although CLSim Shi et al. (2015) achieved the best result on the en-de sub-
task, BWESA outperformed CLSim on the other six language pairs by a significant 

Table 2  The accuracy ( % ) 
of word translation on open 
multi-lingual WordNet datasest 
and the accuracy ( % ) of cross-
lingual document classification 
(CLDC) on Reuters RCV1/
RCV2 multilingual corpora for 
English-Chinese pair

P@1, P@5 and P@10 denote top-1, top-5 and top-10 accuracy, 
respectively

Models Word translation CLDC

P@1 P@5 P@10 en-zh zh-en

BICVM 36.4 38.5 49.0 83.1 66.6
BilBOWA 38.0 43.9 55.3 76.6 72.8
BiSkip 36.1 49.0 56.7 85.5 75.7
CLSim 32.8 47.2 53.6 71.1 72.6
BRAVE-S 37.8 44.7 51.3 78.1 73.3
BiVAE 37.9 48.3 55.7 78.3 72.5
DP 38.2 48.7 56.1 79.8 74.1
E-SGNS 38.7 49.8 57.3 84.7 76.5
BWECLCO 32.7 42.6 52.3 74.8 62.1
BWESA 39.1 51.3 58.4 86.8 78.4
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margin ( 4.93% on average), highlighting the potential of BWESA for practical 
CLDC, an important downstream task for BWEs. Another noteworthy result of these 
experiments is the success of the joint learning strategy, which boosts classification 
accuracy by about 8.18% on average.

4.3  Word alignment evaluation

Both the word translation and cross-lingual document classification tasks were 
used to evaluate the bilingual word embeddings learned by our model and by other 
approaches. In this experimental setting, we would like to see how well the words 
from different languages are aligned, and whether the word alignment has indeed 
been improved by BWESA.

4.3.1  Alignment error rate

AER is often used to measure how well words are aligned by comparing the mod-
el’s proposed alignments with the gold ones annotated by humans. We chose to use 
the inverse of alignment error rate (i.e. 1−AER) suggested by Koehn (2009) as the 
evaluation metric. The higher the inverse rate, the better the word alignment will be. 
Like Levy et al. (2017), we first leveraged the Edinburgh Bible Corpus and a subset 
of the Europarl corpus (180K sentences) to train cross-lingual word embeddings, 

Table 3  The accuracy ( % ) 
of cross-lingual document 
classification (CLDC) task 
on Reuters RCV1/RCV2 
multilingual corpora

The bold fonts are used to highlight the best results

Models Accuracy

en-de de-en en-fr fr-en

Majority class 46.8 46.8 22.5 25.0
Glossed system 65.1 68.6 74.2 70.2
MT system 68.1 67.4 76.3 71.1
DistribReps 77.6 71.1 74.5 61.9
BICVM 86.4 74.7 83.3 63.0
BAE 91.8 74.2 84.6 74.2
BilBOWA 86.5 75.0 88.5 79.8
BiSkip 90.7 80.3 90.2 77.7
CLSim 92.7 80.1 86.7 79.9
BRAVE-S 89.7 80.1 82.5 79.5
BiVAE 91.0 80.4 87.6 79.8
DP 90.5 77.9 88.6 80.3
E-SGNS 91.5 80.6 90.8 81.4
BWECLCO 85.3 78.0 86.7 76.7
BWESA 91.7 80.9 91.6 83.3
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and then sixteen manually annotated word alignment datasets were used to evaluate 
the word alignments produced by different models.

We evaluate the proposed BWESA and BWECLCO for the word alignment in 
the inverse of AER by comparing to BilBOWA (Gouws et al. 2015) and BiSkip 
(Luong et al. 2015) that have been tested on the word-alignment task. We also 
listed IBM-model1 and IBM-model3   (Brown et  al. 1993) as two strong base-
lines for comparison because they were particularly designed for word alignment 
by using the bilingual word co-occurrence statistics. In contrast, the Dice system 
(Och and Ney 2003) was selected for comparison, in which the Dice coefficient 
was introduced to measures the similarity between cross-lingual words based on 
the number of aligned (parallel) sentences in which they co-occur. Similar the 
“coverage” and “sparsity” criteria were applied in IBM-model3. In this study, 
we redefined those two criteria to fit the case where distributed representations 
are used.

As shown in Table 4, BWESA achieved the highest performance for ten dif-
ferent language pairs on GRACA, MIHALCEA, and HOLMQVIST datasets. 
Although BWESA did not outperform IBM-Model3 on the other three pairs, it 
still performs competitively. Note that IBM-Model3 was tailored for word align-
ment using many features based on linguistic knowledge. The experimental 

Table 4  The results of word alignment reported in the inverse of alignment error rate ( 1− AER)

The higher the inverse rate, the better the word alignment will be
The bold fonts are used to highlight the best results

Dataset Language Models

IBM-
model1

IBM-
model3

Dice BilBOWA BiSkip BWE-
CLCO

BWESA

GRACA en-fr 0.4192 0.5593 0.4357 0.4404 0.4333 0.4720 0.5632
fr-en 0.4381 0.5743 0.4275 0.4643 0.4642 0.4484 0.5852
en-es 0.4182 0.5668 0.4920 0.4803 0.4968 0.5178 0.5894
es-en 0.4572 0.5918 0.4683 0.5112 0.4376 0.5081 0.6171
en-pt 0.3795 0.4742 0.1763 0.4755 0.4752 0.4827 0.5149
pt-en 0.4060 0.5172 0.1776 0.4741 0.4307 0.4787 0.5733

HAN-
SARDS

en-fr 0.4836 0.6493 0.5285 0.3628 0.3520 0.3687 0.4774
fr-en 0.5190 0.6773 0.5214 0.3673 0.3701 0.3744 0.4802

LAMVERT en-es 0.3802 0.5273 0.3585 0.3422 0.3386 0.3439 0.4563
es-en 0.3561 0.5748 0.3544 0.3234 0.2902 0.3203 0.4301

MIHAL-
CEA

en-ro 0.0969 0.1375 0.0994 0.0978 0.0785 0.1105 0.1399
ro-en 0.0989 0.1420 0.0982 0.0910 0.0863 0.1012 0.1585

HOL-
MQVIST

en-sv 0.3341 0.5154 0.3579 0.3661 0.3939 0.2484 0.5287
sv-en 0.3223 0.4600 0.3571 0.3721 0.3625 0.2618 0.4764

CAKMAK en-tr 0.2998 0.3127 0.3027 0.1392 0.1495 0.1712 0.2751
tr-en 0.2998 0.3127 0.3081 0.1568 0.1140 0.1788 0.2829



565

1 3

Jointly learning bilingual word embeddings and alignments  

results show that our BWESA model can effectively learn high-quality bilingual 
word embeddings and relatively reliable word alignments in a joint manner.

5  Qualitative analysis

In this section, qualitative analyses were performed evaluating the effectiveness 
of BWESA on two aspects: neighbouring word discovery and word embedding 
visualization. The language pair English-German was used.

5.1  Nearest neighbour words

We randomly sampled five words from English and German to retrieve their 
top-5 nearest neighbour words within and across languages based on the Cosine 
similarity. The results listed in Table  5 demonstrate that the nearest neighbour 
words discovered by our model are generally semantically coherent. For exam-
ple, English and German words describing “time” concepts (such as “moment” 
and “Zeit”) are well clustered, indicating that the desired word clustering is well 
formed for these two languages.

5.2  Visualization

To illustrate how well the bilingual word representations were learned by 
BWESA, we plotted a two-dimensional projection of word representations pro-
duced by BWESA in Fig. 2. We used the t-SNE algorithm  (van der Maaten and 
Hinton 2008) to perform the projection for the illustration. English and German 
word pairs were randomly extracted from the Open Multilingual WordNet data 
(Bond and Foster 2013). The distances between any two words are calculated 
using the Cosine similarity. All English words are indicated using green, and for 
each English word, its associated German word is shown in blue if their similar-
ity score is greater than a given threshold (say 0.8). If not, the corresponding Ger-
man word is shown in yellow. We can see that there are many more blue words 
than yellow ones. This shows that BWESA can produce better word represen-
tations, which helps to improve the accuracy of word translation, cross-lingual 
document classification, and word alignment.

6  Conclusion

We have presented BWESA for learning bilingual word embeddings and alignments 
in a joint way, in which both tasks can mutually benefit and reinforce each other 
during the learning process. BWESA is able to learn bilingual word representations 
from parallel corpora without explicit word-level alignment information in a weakly 
supervised manner. Two criteria of “coverage” and “sparsity” were reintroduced for 
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learning better word alignments in the case of distributed representations to deal 
with the under- and over-alignment problems. Extensive experimental results show 
that BWESA achieved state-of-the-art or comparable results on various cross-lin-
gual tasks, including document classification, word translation, and word alignment.

For future work, it would be interesting to see whether bilingual word embed-
dings can be learned in a completely unsupervised way. Besides this avenue, 
we are aware that recently proposed mT5 (Xue et  al. 2021), XLM (Conneau 
and Lample 2019), mBART (Liu et al. 2020) and Unicoder (Huang et al. 2019) 
could benefit from the idea of soft word alignment, which helps to learn bilingual 
word representations from the parallel corpora without requiring explicit word-
level alignment. We leave this as future work because very large architectures are 
required to train such contextualized representations at the cost of great computa-
tional power, time, and resources.
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