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Abstract
There are several approaches for improving neural machine translation for low-
resource languages: monolingual data can be exploited via pretraining or data 
augmentation; parallel corpora on related language pairs can be used via parame-
ter sharing or transfer learning in multilingual models; subword segmentation and 
regularization techniques can be applied to ensure high coverage of the vocabu-
lary. We review these approaches in the context of an asymmetric-resource one-to-
many translation task, in which the pair of target languages are related, with one 
being a very low-resource and the other a higher-resource language. We test vari-
ous methods on three artificially restricted translation tasks—English to Estonian 
(low-resource) and Finnish (high-resource), English to Slovak and Czech, English 
to Danish and Swedish—and one real-world task, Norwegian to North Sámi and 
Finnish. The experiments show positive effects especially for scheduled multi-task 
learning, denoising autoencoder, and subword sampling.
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1  Introduction

Machine translation (MT) has become an important application for natural language 
processing (NLP), enabling increased access to the wealth of digital information 
collected on-line, and new business opportunities in multilingual markets. MT has 
made rapid advances following the adoption of deep neural networks in the last dec-
ade, with variants of the sequence-to-sequence (seq2seq, (Kalchbrenner and Blun-
som 2013; Sutskever et al. 2014)) architecture currently holding the state of the art 
in neural machine translation (NMT). However, the recent success has not applied to 
all languages equally. Current state-of-the-art methods require very large amounts 
of data: Seq2seq methods have been shown to work well in large data scenarios, but 
are less effective for low-resource languages. The rapid digitalization of society has 
increased the availability of suitable parallel training corpora, but the growth has not 
distributed evenly across languages.

The amount of data needed to reach acceptable quality can also vary based on 
language characteristics. Rich, productive morphology leads to a combinatorial 
explosion in the number of word forms. Therefore, a larger corpus is required to 
reach the same coverage of word forms. Often the two challenges coincide, with 
morphologically complex languages that are also relatively low on resources.

Three distinct types of resources may be available for MT training: parallel data, 
monolingual data, and data in related languages. In the low-resource translation set-
ting, it is primarily the parallel data that is scarce. Monolingual data is easier to 
acquire and typically more abundant. In addition, there may be related languages 
with much more abundant resources.

In this work, we consider machine translation into a low-resource morphologi-
cally rich language by means of transfer learning from a related high-resource target 
language, by exploiting available monolingual corpora, and by exploring the meth-
ods and parameters for vocabulary construction. Figure 1 illustrates an overview of 
the known techniques for low-resource multilingual NMT; most of them are consid-
ered in our experiments.

Our task is a one-to-many setting in multilingual neural machine translation 
(MNMT), as opposed to many-to-one and many-to-many settings (Luong 2016). 
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Fig. 1   Overview of techniques for improving low-resource multilingual NMT. Techniques highlighted 
with blue are used in this work (color figure online)
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As we consider target languages that have different amounts of training resources 
available, we call this an asymmetric-resource one-to-many translation task. It 
has three major challenges:

Sparsity Translating into a low-resource is challenging, especially in the case 
of a morphologically rich language, due to a combination of small data and a 
large target vocabulary. The resulting data sparsity makes it difficult to estimate 
statistics for all but the most frequent items. Even though continuous-space rep-
resentations allow neural methods to generalize well, they learn poorly from low-
count events. Methods like subword segmentation (Virpioja et al. 2007; Sennrich 
et  al. 2015) can reshape the frequency distribution of the basic units to reduce 
sparsity, and yield a more balanced class distribution in the generator. Suitable 
subwords are also beneficial for exploiting transfer from related high-resource 
languages (Grönroos et al. 2018), and from monolingual data.

Data imbalance In multilingual machine translation, it is very common to have 
an imbalance between the languages in the training data. The data can vary in 
quantity, quality and appropriateness of domain. Typically all three challenges 
affect the low-resource languages: when data is hard to come by, even noisy and 
out-of-domain data must be used. The data imbalance is typically addressed by 
oversampling the low-resource data. One way to choose the oversampling weights 
is using a temperature-based approach to interpolate between sampling from the 
true distribution and sampling uniformly (Arivazhagan et al. 2019). An alterna-
tive to oversampling the data is to adapt the gradient scale or learning rate indi-
vidually for each task (Chen et al. 2018).

Task imbalance An NMT system is a conditional language model. The train-
ing signal for the language model is much stronger than for conditioning on the 
source. The conditioning requires training the natural language understanding 
encoder and the cross-lingually aligning attention mechanism, which are both dif-
ficult tasks. High fluency is a known property of NMT (Toral and Sánchez-Carta-
gena 2017; Koponen et al. 2019). When a vanilla NMT system is trained in a low-
resource setting, the learning signal may be sufficient to train the language model, 
but insufficient for the conditioning (Östling and Tiedemann 2017). In this case, 
the MT system degenerates into a fancy language model, with the output resem-
bling generated nonsense, with possibly high fluency but little relation to the 
source text. As an example, Table 1 shows an output from an Estonian–English 
translation system trained from parallel data of only 18k sentence pairs. Mueller 
et al. (2020) observe this language model overfitting phenomenon in a massively 
multilingual but low-resource setting using Bible translations as the corpus.

Given these challenges, our research questions include: 

Table 1   Example from NMT 
system overfitted to the language 
modeling task

Estonian Source Laktoosi puhul see nii ju ongi!
English Overfit translation I’ve been thinking about it.
English Reference That’s the case with lactose!
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1.	 On cross-lingual transfer, is it better to use sequential (pretraining followed by 
fine-tuning) or parallel (all tasks at the same time) transfer, or something in 
between?

2.	 On exploiting monolingual data: 

(a)	 For which languages should one add monolingual auxiliary tasks? Is it use-
ful to have a target-language autoencoder in addition to the back-translation 
strategy, where synthetic training data is generated by a target-to-source 
translation model?

(b)	 What kind of noise models are most useful for the denoising sequence 
autoencoder task?

3.	 On vocabulary construction: 

(a)	 What is a suitable granularity of subword segmentation for the low-resource 
task?

(b)	 Does it matter what data-driven segmentation method is used?
(c)	 Does subword regularization (sampling different segmentations for the 

same word forms) help?

4.	 On available data and languages: 

(a)	 When data is very scarce, is it better to train a small model on the low-
resource data, or a larger model using also the auxiliary data?

(b)	 Is cross-lingual transfer more useful than transfer from monolingual tasks?
(c)	 How does the amount of the data available for the low-resource language 

affect the translation quality?
(d)	 How important is language relatedness for the cross-lingual transfer?

As methodological contributions for NMT, we formulate a scheduled multi-task learn-
ing technique for asymmetric-resource cross-lingual transfer, propose our recently 
introduced Morfessor EM+Prune method (Grönroos et al. 2020) for learning the sub-
word vocabulary, and introduce a taboo sampling task for improving the modeling of 
segmentation ambiguity. We include experiments using three diverse language fami-
lies, with Estonian, Slovak and Danish as simulated low-resource target languages. We 
also contribute a Norwegian bokmål to North Sámi translation system, the first NMT 
system for this target language, to the best of our knowledge.

In the next three sections, we will discuss the different techniques for cross-lingual 
transfer, exploiting monolingual data, and vocabulary construction. Then we will 
describe our experimental setup and discuss the results for four different groups of lan-
guages, and finally summarize our findings.
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2 � Cross‑lingual transfer

Multilingual training allows exploiting cross-lingual transfer between related lan-
guages by training a single model to translate between multiple language pairs. This 
is a form of multi-task learning (Caruana 1998), in which each language pair in the 
training data can be seen as a separate learning task (Luong et al. 2015). The low-
resource language is the main task, and at least one related high-resource language 
is used as an auxiliary task. The cardinality of the multilingual translation has an 
effect: cross-lingual transfer is easier in the many-to-one setting compared to one-
to-many (Arivazhagan et al. 2019). For a general survey on multilingual translation, 
see Dabre et al. (2020).

2.1 � Sequential and parallel transfer

In transfer learning, knowledge gained while learning one task is transferred to 
another. The tasks can either be trained sequentially or in parallel. Transfer is essen-
tial in asymmetric-resource settings, in which the amount of training examples for 
the target task very small, requiring the learner to rapidly generalize. Sequential 
transfer is a form of adaptation. In sequential transfer learning, the pretraining on a 
high-resource parent task is used to initialize and constrain the fine-tuning training 
on the low-resource child task. Zoph et  al. (2016) apply sequential transfer learn-
ing to low-resource neural machine translation. Sequential transfer carries the risk 
of catastrophic forgetting (McCloskey and Cohen 1989; Goodfellow et al. 2014), in 
which the knowledge gained from the first task fades away completely. Some param-
eters can be frozen between the two training phases. This reduces the number of 
parameters trained from the small data, which may delay overfitting.

When training tasks in parallel, called multi-task learning, catastrophic forget-
ting does not occur. If the amount of data for different tasks is highly asymmetrical, 
careful tuning of the task mixture weights is critical to avoid overfitting on the small 
task. Sequential transfer does not require the same tuning, as convergence can be 
determined for each task separately.

It is also possible to combine sequential and parallel transfer. Figure  2 shows 
some possible ways of achieving this by mixing the tasks. One strategy—mixed 
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Fig. 2   Task mixing strategies for transfer learning
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fine-tuning—involves first pretraining only on the large task, and then fine-tuning 
with a mixture of tasks. Chu et al. (2017) apply this strategy to domain adaptation. 
Kocmi (2019) try the inverse setting—mixed pretraining—pretraining on a mixture 
of tasks and fine-tuning only on the child task.

Kiperwasser and Ballesteros (2018) propose generalizing these strategies into 
scheduled multi-task learning, in which training examples from different tasks are 
selected according to a mixing distribution. The mixing distribution changes during 
training according to the task-mix schedule. They experiment with three schedules: 
constant, exponential and sigmoidal. We propose a new partwise constant task-mix 
schedule suitable for an asymmetric-resource setting with multiple auxiliary tasks. 
The task-mix schedule can have an arbitrary number of steps, any of which can be 
mixing multiple tasks. All the other strategies can be recovered by using particular 
schedules with scheduled multi-task learning.

2.2 � Parameter sharing

In neural networks, multilingual models are implemented through parameter shar-
ing. It is possible to share all neural network parameters, or select a subset for shar-
ing allowing the remaining ones to be language-specific. Parameter sharing can be 
either hard or soft. In hard parameter sharing the exact same parameter matrix is 
used for several languages. In soft parameter sharing, each language has its own 
parameter matrix, but a dependence is constructed between the corresponding 
parameters for different languages.

The target language token Johnson et al. (2017) and language embedding (Con-
neau and Lample 2019) approaches use hard sharing of all parameters. In the for-
mer, the model architecture is the same as in a language-pair-specific model. The 
target language is indicated by a preprocessing step that prepends to the input a spe-
cial target language token, e.g. ⟨to_fi⟩ to indicate that the target language is Finnish. 
The approach can be scaled to more languages by increasing the capacity of the 
model, primarily by increasing the depth in layers (Arivazhagan et al. 2019). The 
latter can be described as a factored representation, with the language embedding 
factor marking the language of each word on the target side.

In contrast to full parameter sharing, it is also possible to divide the model param-
eters into shared and language-specific subnetworks, e.g. sharing all parameters of 
the encoder, while letting each target language have its own decoder. Parameter shar-
ing can even be controlled on a more fine-grained level (Sachan and Neubig 2018). 
Shared attention  (Firat et  al. 2016) uses language-specific encoders and decoders 
with a shared attention, while language-specific attention  (Blackwood et al. 2018) 
does the opposite by sharing only the feedforward sublayers of the decoder, while 
using language-specific parameters for the attention mechanisms.

The contextual parameter generator  (Platanios et  al. 2018) meta-learns a soft 
dependency between parameters for different tasks. It does this by using one neural 
network (the parameter generator) to generate from some contextual variables the 
weights of another network (the model). Gu et al. (2018) apply meta-learning to find 
initializations that can very rapidly adapt to a new low-resource source language.
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3 � Exploiting monolingual data

While parallel data is the primary type of data used for training MT models, meth-
ods for effectively exploiting the more abundant monolingual data can greatly 
increase the number of available examples to learn from. Use of monolingual data 
can be viewed as semi-supervised learning: both labeled (parallel) and unlabeled 
(monolingual) data are used. There are two main approaches to exploiting monolin-
gual data in MT: transfer learning and dataset augmentation.

3.1 � Transfer learning: monolingual pretraining

In monolingual pretraining, some of the parameters of the final translation model are 
pretrained on a task using monolingual data, possibly using a different loss than the 
one used during NMT training. There are several ways to use pretraining: Pretrain 
word (or subword) embeddings for the encoder, decoder, or both. Pretrain a separate 
language model for the target language, and combine it with the predictions of the 
translation model. Or, finally, pretrain an entire subnetwork—encoder or decoder—
of the translation model.

3.1.1 � Embeddings

Source and target embeddings can be pretrained on monolingual data from the 
source and target languages, respectively  (Di Gangi and Federico 2017). Alterna-
tively, joint cross-lingual embeddings can be trained on both (Artetxe et al. 2018). 
As the embeddings are trained for e.g. a generic contextual prediction task, this is 
a form of transfer learning. The pretrained embeddings can either be frozen or fine-
tuned, by respectively omitting or including them as trainable parameters during 
NMT training. Thompson et  al. (2018) investigate the effects of freezing various 
subnetwork parameters—including embeddings—on domain adaptation. In addition 
to using monolingual data, pretrained embeddings can contribute to cross-lingual 
transfer in the case of a shared multilingual embedding space (Artetxe et al. 2018). 
The shared embedding spaces are typically on a word level.

3.1.2 � Language model fusion

The predictions of a strong language model can be combined with the predictions 
of the translation model, either using a separate rescoring step, or by combining the 
predictions during decoding, using model fusion. This approach is used in statisti-
cal machine translation, where one or more target language models are combined 
with a statistical translation model. The approach can also be applied in neural 
machine translation, through shallow fusion, deep fusion  (Gulcehre et  al. 2015), 
cold fusion (Sriram et al. 2017), or PostNorm (Stahlberg et al. 2018). As a neural 
machine translation system is already a conditional language model, it may be pref-
erable to find a way to train the parameters of the NMT system using the monolin-
gual data.
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3.1.3 � Subnetwork pretraining

In subnetwork pretraining, the intent is to pretrain entire network components—the 
encoder or the decoder—with knowledge about the structure of language. One way 
to achieve this using unlabeled data is to apply a language modeling loss during 
pretraining. The loss function can either be the traditional next token prediction, or a 
masked language model. Alternatively an autoencoder loss can be used.

Domhan and Hieber (2017) modify the NMT architecture by adding an auxiliary 
language model loss in the internal layers of the decoder, before attending to the 
source. This loss allows the first layers of the decoder to be trained on monolingual 
data. They find no benefit of adding the language model loss unless additional mono-
lingual data is used. Adding monolingual data gives a benefit, but does not outper-
form back-translation. Ramachandran et al. (2017) pretrain the encoder and decoder 
with source and target language modeling tasks, respectively. To prevent overfitting, 
they use task-mix fine-tuning: the translation and language modeling objectives are 
trained jointly (with equally weighted tasks). Skorokhodov et  al. (2018) use both 
pretraining (on both source and target side) and gated shallow fusion (on the target 
side) to transfer knowledge from pretrained language models. Some of the experi-
ments are performed on low-resource data going down to 10 k sentence pairs.

3.2 � Dataset augmentation

The easiest way to improve generalization is to train on more data. As natural train-
ing data is limited, a practical way to acquire more is to generate additional synthetic 
data for augmentation. The main benefit of dataset augmentation is as regularization 
to prevent overfitting to non-robust properties of small data.

Simple ways to generate synthetic data include using a single dummy token on 
the source side (Sennrich et al. 2016), and copying the target to source (Currey et al. 
2017). The latter can be interpreted as a target-side autoencoder task without noise. 
The largest factor in determining the effectiveness of using synthetic data is how 
much the synthetic data deviates from the true data distribution. To avoid confusing 
the encoder with synthetic data from a different distribution than the natural data, it 
may be beneficial to use a special tag to identify the synthetic data (Caswell et al. 
2019).

3.2.1 � Back‑translation

Synthetic data can be self-generated by the model being trained, or a related model. 
In machine translation, the best known example of synthetic data is back-translation 
(BT) (Sennrich et al. 2016). The process of back-translation begins with the training 
of a preliminary MT model in the reverse direction, from target to source. The tar-
get language monolingual data is translated using this model, producing a synthetic, 
pseudo-parallel data set with the potentially noisy MT output on the source side. 
Because the quality of the translation system used for the back-translation affects 
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the noisiness of the synthetic data, the procedure can be improved by iterating with 
alternating translation direction (Lample et al. 2018b). Edunov et al. (2018) propose 
adding noise to the back-translation output. The benefit of noisy back-translation is 
further analyzed by Graça et al. (2019), who recommend turning off label smoothing 
in the reverse model when combined with sampling decoding. As a related strategy, 
Karakanta et al. (2018) convert parallel data from a high-resource language pair into 
synthetic data for a related low-resource pair using transliteration. Zhang and Zong 
(2016) exploit monolingual data in two ways: through self-learning by “forward-
translating” the monolingual source data to create synthetic parallel data, and by 
applying a reordering auxiliary task: the input is the natural source text, while the 
output is the source text reordered using rules to match the target word order.

3.2.2 � Subword regularization

Subword regularization is a technique proposed by Kudo (2018) for applying a prob-
abilistic subword segmentation model to generate more variability in the input text. 
Each time a word token is used during training, a new segmentation is sampled for 
it. It can be seen as treating the subword segmentation as a latent variable. While 
marginalizing over the latent variable exactly is intractable, the subword regulariza-
tion procedure approximates it through sampling.

3.2.3 � Denoising sequence autoencoder

Back-translation is a slow method due to the additional training of the reverse trans-
lation model. A computationally cheaper way to turn monolingual data into syn-
thetic parallel data is to use a denoising autoencoder as an auxiliary task. Target lan-
guage text, corrupted by a noise model, is fed in as a pseudo-source. Different noise 
models can be used, e.g. applying reordering, deletions, or substitutions to the input 
tokens. The desired reconstruction output is the original noise-free target language 
text.

An autoencoder Bourlard and Kamp (1988) is a neural network that is trained to 
copy its input to its output. It applies an encoder mapping from input to a hidden 
representation, i.e. code h = f (x) , and decoder mapping from code to a reconstruc-
tion of the input x̂ = g(h) . To force the autoencoder to extract patterns in the data 
instead of finding the trivial identity function x̂ = 1 ( 1 (x)) , the capacity of the code 
must be restricted somehow. In the undercomplete autoencoder, the restriction is in 
the form of a bottleneck layer with small dimension. For example, in the original 
sequence autoencoder (Dai and Le 2015), the entire sequence is compressed into a 
single vector.

In a modern sequence-to-sequence architecture, the attention mechanism ensures 
a very large bandwidth between encoder and decoder. When used as an autoencoder, 
the network is thus highly overcomplete. In this case, the capacity of the code has 
to be controlled by regularization. Robustness to noise is used as the regularizer in 
the denoising autoencoder   (Vincent et  al. 2008). Instead of feeding in the clean 
example x , a corrupted copy of the input is sampled from a noise model C (x̃ | x) . 
The denoising autoencoder must then learn to reverse the corruption to reconstruct 
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the clean example. The use of noise as regularization is a successful technique used 
e.g. in Dropout (Srivastava et al. 2014), label smoothing (Szegedy et al. 2016), and 
SwitchOut  (Wang et  al. 2018). Also multi-task learning acts as regularization by 
claiming some of the capacity of the model. Belinkov and Bisk (2017) apply both 
natural and synthetic noises for NMT evaluation, finding that standard character-
based NMT models are not robust to these types of noise.

There are multiple ways of adding the autoencoder loss to the NMT training. The 
simplest one treats the autoencoder task as if it was another language pair for mul-
tilingual training, and involves no changes to the architecture. When using this type 
of autoencoder task on target language sentences, the task cardinality changes into a 
many-to-one problem: the model must simultaneously learn a mapping from source 
to target and from corrupted target to clean target. In both tasks the target language 
is the same. As the decoder is a conditional language model, this task strength-
ens the modeling of the target language. When using source language sentences, 
the model must simultaneously learn a one-to-many mapping from source to target 
and from corrupted source to clean source. Thus the decoder must learn to output 
both languages. The task may strengthen the encoder, by increasing its robustness 
to noise, and by preventing the encoding from becoming too specific to the target 
language. Luong et  al. (2015) and Luong (2016) experiment with various auxil-
iary tasks, including this type of autoencoder setup. They see a benefit of using the 
autoencoder task, as long as it has a low enough weight in the task mix. This setup is 
used also in our experiments.

There are also more complex NMT autoencoder setups. In dual learning, the 
autoencoder is built from source-to-target and target-to-source translation mod-
els. He et  al. (2016) combine source-to-target and target-to-source translations in 
a closed loop which can be trained jointly, using two additional language modeling 
tasks (for source and target respectively), and reinforcement learning with policy 
gradient. Cheng et al. (2016) use a dual learning setup to exploit monolingual cor-
pora in both source and target languages. Their loss consists of four parts: transla-
tion likelihoods in both directions, source autoencoder, and target autoencoder. Tu 
et al. (2017) simplify the dual learning setup into an encoder–decoder–reconstructor 
network. The reconstructor attends to the final hidden states of the decoder and thus 
does not need a separate encoder. Their aim is to improve adequacy by penalizing 
undertranslation: the reconstructor is not able to generate any parts of the sentence 
omitted by the decoder.

3.2.4 � Noise models for text

To apply a denoising autoencoder to text, a suitable noise model for text is needed. 
In domains such as image and speech, there are very intuitive noises, including 
rotating, scaling, and mirroring for images; and reverberation, time-scale stretching, 
and pitch shifting for speech. As text is a sequence of discrete symbols, where even 
a small change can have a drastic effect on meaning, suitable noise models are less 
intuitive. It is not feasible to guarantee the noise does not change the correct transla-
tion of the input.
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Local reordering. Lample et al. (2018a) perform a local reordering operation � 
that they call slightly shuffling the sentence. The reordering is achieved by adding to 
the index i of each token a random offset drawn from the uniform distribution from 
0 to a maximum distance k. The tokens are then sorted according to the offset indi-
ces. This maintains the condition ∀i ∈ {1, n}, |�(i) − i| ≤ k.

Token deletion Randomly dropping tokens is perhaps the most commonly used 
noise. It is the central idea in word dropout (Iyyer et al. 2015). In word dropout, each 
token is dropped according to a Bernoulli distribution parameterized by a tunable 
dropout probability.

Token insertion Randomly selected tokens can also be inserted into the sentence. 
The tokens can be sampled from the entire vocabulary, or from a particular class of 
tokens. E.g. Vaibhav et al. (2019) insert three classes of tokens: stop words, exple-
tives, and emoticons.

Token substitution SwitchOut  (Wang et  al. 2018) applies random substitutions 
to tokens both in the source and the target sentence. One benefit of SwitchOut is 
that it can easily and efficiently be applied late in the data processing pipeline, even 
to a numericalized and padded minibatch. Any noises that affect the length of the 
sequence are best applied before numericalization.

Token masking Masked language models  (Devlin et al. 2019; Song et al. 2019; 
Lewis et al. 2019; Joshi et al. 2020) apply a special case of token substitution, ran-
domly substituting tokens or spans of tokens with a mask symbol.

Word boundary noise In a special case of token substitution, the substituted token 
is selected deterministically as the token with a word boundary marker either added 
or removed. E.g. “kielinen” would be substituted by “␣kielinen” and vice versa. 
This might improve robustness to compounding mistakes such as “*suomen kiel-
inen” (Finnish speaker).

Taboo sampling In addition to training the translation model, the idea of subword 
regularization (Kudo 2018) can be used in the autoencoder. Here, we propose taboo 
sampling as a special form of subword regularization for monolingual data. The 
method takes a single word sequence as input, and outputs two different segmenta-
tions for it. The two segmentations consist of different subwords, whenever possible. 
Only single character morphs are allowed to be reused on the other side, to avoid 
failure if no alternative exists. e.g. “unreasonable” could be segmented into “un”
“reasonable” on the source side and “unreason” “able” on the target side. When 
converted into numerical indices into the lexicon, these two representations are 
completely different. The task aims to teach the model to associate with each other 
the multiple ambiguous ways to segment a word, by using a segmentation-invariant 
internal representation.

For each word, one segmentation is sampled in the usual way, after which another 
segmentation is sampled using taboo sampling. During taboo sampling, all multi-
character subwords used in the first segmentation have their emission probability 
temporarily set to zero. To avoid introducing a bias from having all the taboo sam-
pled segmentations on the same side, the sides are mixed by uniformly sampling a 
binary mask of the same length as the sentence from the set of masks with half the 
bits 1. All words for which the mask bit is set have the source and target segmenta-
tions swapped.
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Proposed noise model combinations Our proposed noise model combination is 
depicted in Fig. 3. It consists of three pipelines: The pipeline for parallel data (a) 
consists of only sampling segmentation. The primary pipeline for monolingual data 
(b) is a concatenation of multiple noise models: local reordering, segmentation, and 
token deletion. A secondary pipeline for monolingual data (c) uses taboo segmenta-
tion. In all cases the output consists of a pair of source and target sequences.

Observe that the transformations are applied in the data loader at training time, 
not as an off-line preprocessing stage. This allows the noise to be resampled for each 
parameter update, which is critical when training continues for multiple epochs of 
a small dataset. As a minor downside, the NMT software needs to be modified to 
accommodate the heavier data loader, while preprocessing generally requires no 
modifications to the software.

4 � Vocabulary construction

The vocabulary or lexicon of a translation model is the set of basic units or building 
blocks the text is decomposed into. In phrase-based machine translation, the stand-
ard approach is to use a word lexicon. Segmentation into subword units has been 
proposed mostly for morphologically rich languages, for which a word lexicon leads 
to very high out-of-vocabulary (OOV) rates (Lee 2004; Oflazer and El-Kahlout 
2007; Virpioja et al. 2007), and character segmentation for closely related languages 
(Tiedemann 2009). However, the change of paradigm to neural machine transla-
tion has changed also the practice in vocabulary construction: With the exception of 

Segment Segment Segment Segment

Drop

Target
language token

Length filter

Taboo Segment

Reorder

Target
language token

Length filter Length filter

Target
language token

MonolingualSource Target Monolingual

Source Target Source Target Source Target

(a) (b) (c)

Fig. 3   Transformations applied to data at training time. Steps with blue background are part of the sto-
chastic noise model. Steps with white background are the deterministic target language token prefixing 
and length filtering. Length filtering must be applied after segmentation, which may make the sequence 
longer (color figure online)
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unsupervised translation based on pretrained word embeddings (Artetxe et al. 2018; 
Yang et al. 2018), the standard approach for models is segmentation into subword 
units (Sennrich et  al. 2015). Some studies aim even to the other extreme, charac-
ters (Chung et al. 2016; Costa-jussà and Fonollosa 2016) or bytes (Costa-jussà et al. 
2017).

A specific task in subword segmentation is the morphological surface segmen-
tation. There the aim is to split words into morphs, the surface forms of meaning-
bearing sub-word units, morphemes. The concatenation of the morphs is the word, 
for example

Unsupervised morphological segmentation, dating back to Harris (1955), was an 
active research topic in 2000s and early 2010s (Goldsmith 2001; Creutz and Lagus 
2007; Hammarström and Borin 2011), and the methods have been evaluated in vari-
ous NLP applications (Kurimo et al. 2010; Virpioja et al. 2011). However, in appli-
cations based on neural network models, such as NMT, the correspondence of the 
subwords to linguistic morphemes is not of high importance, as the encoders are 
able to determine the meaning of the units in context. Therefore the subword seg-
mentation is typically tuned using other criteria, such as the size of subword lexicon 
or the frequency distribution of the units. Desirable characteristics for a vocabulary 
to be used in multilingual NMT include: 

1.	 high coverage of the training data, without imbalance between languages,
2.	 a tractable size for training, and
3.	 the right level of granularity for cross-lingual transfer.

Without a high coverage, some parts of the training data are impossible to repre-
sent using the vocabulary. The unrepresentable parts may be replaced with a special 
“unknown” token. If the proportion of unknown tokens increases, translation quality 
deteriorates. In a multilingual setting, a common approach is to use a shared sub-
word vocabulary between the multiple source or target languages. In this case, train-
ing the segmentation model with a balanced data distribution is important to provide 
high coverage also for the less resourced languages.

Vocabulary size affects both the memory complexity via the number of network 
parameters and the computational cost via the length of the sequences and the size 
of the softmax layer. When using large vocabularies, e.g. words, the sequences are 
short, but vocabularies may grow intractably large, particularly for morphologi-
cally complex languages. When using small vocabularies, e.g. characters, memory 
requirements are low, but long sequences make training slow, particularly for recur-
rent networks.

The granularity of the segmentation affects both coverage and size of the lexicon: 
finer granularity typically means better coverage and smaller lexicon size. How-
ever, within the reasonable limits set by the coverage and size, it is much harder 
to determine the best possible level of granularity. Recent research (Cherry et  al. 
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2018; Kreutzer and Sokolov 2018; Arivazhagan et al. 2019) indicates that smaller 
subwords are particularly useful for cross-lingual transfer to low-resource languages 
in supervised settings. Exploiting similarity of related languages by increasing the 
consistency of the segmentation between similar words of the source and target 
language can also be useful (Grönroos et al. 2018). In unsupervised NMT (Artetxe 
et  al. 2018), cross-lingual transfer requires basic units to be aligned between lan-
guages without use of parallel data. When starting with pretrained embeddings, 
longer units are typically used, as they carry more meaning than short units. It is 
therefore an open question how the optimal segmentation granularity varies with the 
amount of resources available.

Next, we consider different data-driven segmentation methods proposed for 
machine translation. This study focuses on segmentation methods applying a uni-
gram language model. In the unigram language model, it is assumed that the morphs 
in a word occur independently of each other. Given the parameters � of the segmen-
tation model, the probability of a sequence of morphs s decomposes into the product 
of the probabilities of the morphs m of which it consists:

4.1 � Byte pair encoding

The most popular method for subword segmentation in the field of NMT is currently 
the Byte Pair Encoding (BPE) compression algorithm (Gage 1994). The BPE algo-
rithm iteratively replaces the most frequent pair of bytes in the data with a single 
unused byte. In NMT, the algorithm is typically used on characters, and the merg-
ing of characters is stopped when the given vocabulary size is reached (Sennrich 
et al. 2015). While BPE is not a probabilistic model, the coding resembles unigram 
language models in that every subword mi is encoded individually. As a bottom-
up algorithm, BPE is reasonable to use in multilingual settings just by concatenat-
ing the corpora before training; this approach is called joint segmentation (Sennrich 
et al. 2015). If the data is balanced over the languages, the frequent words will be 
constructed in the early steps of the algorithm for all languages.

4.2 � SentencePiece

SentencePiece (Kudo 2018; Kudo and Richardson 2018) is another segmentation 
method proposed especially for NMT. In contrast to BPE, it defines a proper statisti-
cal model for the unigram model in Eq. 1, and tries to find the model parameters that 
maximize likelihood of the data given a constraint on the vocabulary size.

For training the model, SentencePiece applies the Expectation Maximiza-
tion (EM) algorithm  (Dempster et  al. 1977). The EM algorithm only updates the 
expected frequencies of the current units; it is not able to add or remove subwords 
from the vocabulary. Thus to use EM for the segmentation problem, two other things 

(1)P�(s) =

N∏

i=1

P�(mi)
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are needed: a seed lexicon and a pruning phase. The seed lexicon initializes the 
vocabulary with useful candidate units, and pruning phase removes the least prob-
able units from the model. Prior to SentencePiece, a similar approach has been pro-
posed by Varjokallio et al. (2013) for application in automatic speech recognition.

In SentencePiece, the seed lexicon is constructed from the most frequent sub-
strings in the training data. After initializing the seed lexicon, SentencePiece alter-
nates between the EM phase and the pruning phases until the desired vocabulary 
size is reached. In the pruning phase, the subwords are sorted by the reduction in the 
likelihood function if the subword was removed. A certain proportion (e.g. 25%) of 
the multi-character subwords are pruned at a time, followed by the next EM phase.

4.3 � Morfessor EM+Prune

Morfessor is a family of generative models for unsupervised morphology induction 
(Creutz and Lagus 2007). Here, consider the Morfessor Baseline method  (Creutz 
and Lagus 2002; Virpioja et al. 2013) and its recent Morfessor EM+Prune variant 
(Grönroos et al. 2020).

4.3.1 � Model and cost function

Morfessor Baseline is applies the unigram language model (Eq.  1). In contrast to 
SentencePiece, Morfessor finds a point estimate for the model parameters �̂ using 
Maximum a Posteriori (MAP) estimation. The MAP estimate yields a two-part cost 
function, consisting of a prior (the lexicon cost) and likelihood (the corpus cost). 
The Morfessor prior, inspired by the Minimum Description Length (MDL) principle 
(Rissanen 1989), favors lexicons containing fewer, shorter morphs.

For tuning the model, Kohonen et  al. (2010) propose weighting the likelihood 
with a hyper-parameter �:

This parameter controls the granularity of the segmentation. High values increase 
the weight of each emitted morph in the corpus (less segmentation), and low values 
give a relatively larger weight to a small lexicon (more segmentation).

Similar to SentencePiece, Morfessor can be used in subword regularization 
(Kudo 2018). Alternative segmentations can be sampled from the full data distri-
bution using the forward-filtering backward-sampling algorithm (Scott 2002) or 
approximatively from an n-best list.

4.3.2 � Training algorithm

The original training algorithm of the Morfessor Baseline method, described in 
more detail by Creutz and Lagus (2005) and Virpioja et al. (2013), is a local greedy 
search. The lexicon is initialized by whole words, and the segmentation proceeds 

(2)
�̂ = argmin

�
{− log

prior

���
P(�) −𝛼 log

likelihood

���
P(D |�)}
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recursively top-down, finding an optimal segmentation into two parts for the cur-
rent word or subword unit. Our preliminary studies have indicated that this algo-
rithm does not find as good local optima as the EM algorithm especially for the 
small lexicons useful in NMT. As a solution, we have developed a new variant of 
the method called Morfessor EM+Prune (Grönroos et  al. 2020).1 It supports the 
MAP estimation and MDL-based prior of the Baseline model, but implements a 
new training algorithm based on the EM algorithm and lexicon pruning inspired by 
SentencePiece.

The training algorithm starts with a seed lexicon and alternates the EM and lex-
icon pruning steps similarly to SentencePiece. The prior of the Morfessor model 
must be slightly modified for use with the EM algorithm, but the standard prior is 
used during pruning. While SentencePiece aims for a predetermined lexicon size, in 
Morfessor, the final lexicon size is controlled by the hyper-parameter � (Eq. 2). To 
reach a subword lexicon of a predetermined size while using the prior, Morfessor 
EM+Prune implements an automatic tuning procedure. When the estimated change 
in prior and likelihood are computed separately for each subword, the value of � that 
gives exactly the desired size of lexicon after the pruning can be calculated.

In earlier work (Grönroos et al. 2020), we have shown that the EM+Prune algo-
rithm reduces search error during training, resulting in models with lower costs for 
the optimization criterion. Moreover, lower costs lead to improved accuracy when 
segmentation output is compared to linguistic morphological segmentation. In the 
present study, we test it for the first time in NMT.

5 � Experiments

In the experiments, we study how to best exploit the additional monolingual and 
cross-lingual resources for improving machine translation into low-resource mor-
phologically rich languages. We compare various methods for three major aspects 
affecting the translation quality: using cross-lingual transfer, exploiting monolin-
gual data and applying subword segmentation. The main focus lies on a noise model 
incorporating the subword segmentation.

We target a one-to-many multilingual setting with related, morphologically rich 
languages on the target side. The related languages include both high- and low-
resource languages. This setting provides a good opportunity for cross-lingual learn-
ing, as the amount of data is highly asymmetric. Our aim is not to achieve an inter-
lingual representation, so allowing the encoder to specialize for target languages is 
acceptable if it improves performance.

1  Software available at https​://githu​b.com/Waino​/morfe​ssor-empru​ne.

https://github.com/Waino/morfessor-emprune
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5.1 � Data sets

We perform experiments on four translation tasks, each consisting of a language tri-
ple: source language (SRC), high-resource target language (HRL) and low-resource 
target language (LRL). We only show SRC-LRL translation results, as the goal is to 
improve this particular translation direction.

The four tasks (LRL in boldface) are: 

1.	 English (eng) to Finnish (fin) and Estonian (est),
2.	 English to Czech (cze) and Slovak (slo),
3.	 English to Swedish (swe) and Danish (dan),
4.	 Norwegian bokmål (nob) to Finnish (fin) and North Sámi (sme).

In each task the two target languages are related. The target languages belong to 
three different language families: Germanic, Balto-Slavic and Uralic. All target lan-
guages are morphologically complex.

We use as parallel corpora Europarl (Koehn 2005), and OpenSubtitles 
v2018  (Lison and Tiedemann 2016), when available. In addition, we use the eu, 
news, and subtitle domains of CzEng v1.7 (Bojar et al. 2016), and the UiT freecor-
pus.2 The corpora used for each language pair are shown in Table 2. The domains 
for the training data are parliamentary debate, movie subtitles, news and web, with 
the exception of North Sámi which contains a mix of many domains.

Our main source of monolingual data is WMT news text.3 In addition, we use 
the following monolingual corpora: skTenTen4 and Categorized News Corpus5 for 
Slovak, Riksdagens protokoll6 for Swedish, News 20127 for Danish, Aviskorpus8 for 
Norwegian, and Wikipedia9 for North Sámi.

Table 2   Parallel corpora Europarl OpenSubtitles Other parallel

eng cze CzEng
eng slo ✓ ✓

eng fin ✓ ✓ Rapid2016, Paracrawl
eng est ✓ ✓

eng swe ✓ ✓

eng dan ✓ ✓

nob fin ✓

nob sme UiT freecorpus

2  https​://victo​rio.uit.no/freec​orpus​/.
3  http://www.statm​t.org/wmt18​/trans​latio​n-task.html.
4  http://hdl.handl​e.net/11858​/00-097C-0000-0001-CCDB-0.
5  Technical University of Kosice, 2014
6  https​://spraa​kbank​en.gu.se/eng/resou​rce/rd-prot.
7  http://hdl.handl​e.net/11022​/0000-0000-2238-B.
8  https​://www.nb.no/sprak​banke​n/show?seria​l=oai%3Anb.no%3Asbr​-4&lang=en.
9  sewiki-20191201 dump.

https://victorio.uit.no/freecorpus/
http://www.statmt.org/wmt18/translation-task.html
http://hdl.handle.net/11858/00-097C-0000-0001-CCDB-0
https://spraakbanken.gu.se/eng/resource/rd-prot
http://hdl.handle.net/11022/0000-0000-2238-B
https://www.nb.no/sprakbanken/show?serial=oai%3Anb.no%3Asbr-4&lang=en
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For each of the low-resource languages, we select a subset of 18k sentence pairs. 
For eng-est, we also perform an experiment where the low-resource subset is repeat-
edly subsampled down to 3k sentence pairs. To avoid introducing a domain imbal-
ance in the sampled subset, the pairs are sampled such that an equal number of sen-
tences are selected uniformly at random from each cleaned corpus. The training data 
sizes after cleaning and subsampling are shown in Table 3.

As test sets we use the WMT newstest2018 (Bojar et al. 2018) for eng-est, the 
WMT test2011 extended to Slovak by Galuščáková and Bojar (2012) for eng-slo. 
For eng-dan we use 2k sentence pairs sampled from the JRC-Acquis corpus (Stein-
berger et al. 2006). For nob-sme we use the Apertium story “Where is James?”, a 
48-sentence text with simple language, used as an initial development set for Aper-
tium rule based MT systems (Forcada et al. 2011).

5.2 � Evaluation measures

When selecting the evaluation measures, the morphologically rich target languages 
must be taken into account. Therefore, we use Character-F1 (Popović 2015) in addi-
tion to BLEU10 (Papineni et al. 2002). To evaluate the performance of systems on 
rare words, we use word unigram F1 score computed over words occurring less than 
5 times in the parallel training data (Sennrich et al. 2015).

Table 3   Data set sizes after cleaning

SRC HRL LRL Parallel Monolingual

SRC-HRL 
(M)

SRC-LRL BT SRC HRL LRL

eng cze slo 24.7 (18k) 1M 44.3M 13.6M 27.8M
eng fin est 19.4 (18k) 1M 44.3M 6.3M 3.6M
eng swe dan 11.5 (18k) 750k 44.3M 10.7M 950k
nob fin sme 4.9 152k 150k 40.1M 6.3M 181k

Table 4   Specifications for the NMT system

Encoder 8 Transformer layers Label smoothing 0.1
Decoder 8 Transformer layers Precision 16-bit floating point
Hidden size 1024 Minibatch size 9200 subword tokens
Filter size 4096 Gradient accumulation 4 minibatches
Attention heads 16 Effective minibatch size 36800 subword tokens
Adam beta2 0.997 Training time 100k steps
Warmup Noam, 16k steps Beam size 8
Dropout weight 0.1 Heuristic penalties None

10  mteval-v13a.pl
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5.3 � Training details

We use the Transformer NMT architecture  (Vaswani et  al. 2017). Model hyper-
parameters are shown in Table 4. Training takes approximatively 96 h on a single 
V100 GPU, with the data loader in a separate process. When using scheduled multi-
task learning, the mixing distribution is changed after 40k steps. In all experiments, 
we apply full parameter sharing using a target language token. We tune our models 
towards the best product of the three evaluation measures ( charF1 , BLEU, rare word 
F1 ) on a development set.

Back-translation was performed with essentially the same system, but with 
sources and targets swapped to achieve a many-to-one configuration. We mark the 
back-translation data as synthetic using a special token.

When using subword regularization or denoising autoencoder, the training data is 
not simply loaded from disk, but new random segmentations and noises are sampled 
each time a training example is used. To alleviate slowdown, we moved the data-
loader and preprocessing pipeline into a separate process, which communicates the 
numericalized and padded minibatches to the training process via a multiprocess-
ing queue. Our data loader is implemented as a fork of OpenNMT-py11 (Klein et al. 
2017).

With multilingual training, autoencoders and back-translation, our setting 
involves a large number of different tasks. The tasks can be divided by language 
(HRL, LRL) and by type (translation, autoencoder). Nearly all runs, with the excep-
tion of our vanilla baseline, use a mix of tasks in some or all phases.

5.4 � Results

In this section, we present the results of ten experiments, each exploring a sepa-
rate aspect of asymmetric-resource one-to-many NMT. We have detailed results for 
English–Estonian, and verify the central findings on two additional language triples. 
Finally, we present some results on the actual low-resource pair Norwegian–North 
Sámi.

Unless otherwise stated, the compared models are trained using joint Morfessor 
EM+Prune segmentation with 16k subword vocabulary, cross-lingual scheduled 
multi-task learning, autoencoder with full noise model, and subword regulariza-
tion for the translation task. Our initial results are using autoencoder tasks for all 
three languages (SRC + HRL + LRL). Later some of the results were rerun with 
the better SRC + LRL configuration, which omits the high-resource target language 
autoencoder.

11  Software available at https​://githu​b.com/Waino​/OpenN​MT-py/tree/dynam​icdat​a. Later, the dataloader 
of OpenNMT-py version 2.0 was redesigned to incorporate our proposals.

https://github.com/Waino/OpenNMT-py/tree/dynamicdata
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5.4.1 � Subword segmentation

For subword segmentation, we compare Morfessor EM+Prune to SentencePiece on 
various vocabulary sizes. The results are shown in Fig. 4. There is no clear optimal 
vocabulary size: in particular for the Character F 1 measure the performance remains 
nearly constant. On the test set, Morfessor EM+Prune is +0.6 BLEU better than 
SentencePiece. The difference is smaller than the +1.48 BLEU difference on the 
development set, but consistent. The difference between Morfessor EM+Prune and 
SentencePiece is similar for the eng-dan and eng-slo translation directions. In pre-
liminary experiments BPE gave 0.65 BLEU worse results than EM+Prune already 
without subword regularization. We decided against further experiments using BPE, 
as it is incompatible with subword regularization.

5.4.2 � Cross‑lingual transfer

Table 5 shows the effect of multilingual training, with and without the autoencoder 
task. The cross-lingual transfer from the high-resource language yields the largest 
single improvement in our experiments. The multilingual model without autoen-
coder performs between + 10.26 and + 12.7 BLEU better than the vanilla model 
using only LRL parallel data. Adding an autoencoder loss results in a smaller gain, 
between + 4.97 and + 5.55 BLEU. The gains are partly cumulative for an additional 
gain of +0.05 to +1.14 BLEU.

The results for the vanilla model use a smaller configuration, with 4 encoder and 
4 decoder layers, and batch size reduced to 2048. For the vanilla model the small 
network performed better than the large one, but when adding either multilingual 
training or autoencoder, the large network is superior.

Fig. 4   Varying the subword vocabulary. Multilingual models, with SRC + HRL + LRL autoencoder and 
full noise model, except for BPE which are multilingual models without autoencoder or noise. Results on 
English → Estonian newsdev2018
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5.4.3 � Scheduled multi‑task learning

Figure 5 shows the learning curves on the development set and Table 6 the evalua-
tions on the test set for different configurations of transfer learning.

Multi-task without schedule is trained with a constant task mixing distribution. 
The result marked HRL pretraining, LRL fine-tuning uses a mix of HRL translation 
and autoencoder tasks for pretraining, and only a single task—LRL translation—for 
fine-tuning, and is thus fully sequential in terms of languages. It quickly overfits in 
the fine-tuning phase.

The models using scheduled multi-task learning combine sequential and parallel 
transfer. In 2-phase scheduled multi-task, LRL tasks are not used in the pretraining 
phase, but a mix of tasks is used for fine-tuning. It gives a benefit of + 2.4 BLEU 
compared to the model fine-tuning on only LRL tasks, and +1.77 BLEU compared 
to training with a constant mixing distribution. The 3-phase scheduled multi-task 
adds a third phase training mostly on LRL tasks. A small proportion of HRL trans-
lation is included to delay overfitting. The model again overfits in the final phase, 
but does reach a higher score before doing so. The 3-phase task mixing schedule is 
shown in Fig. 6.

Torrey and Shavlik (2009) describe three ways in which transfer learning can 
benefit training: (1) higher performance at the very beginning of learning, (2) 
steeper learning curve, and (3) higher asymptotic performance. When pretraining 
the encoder and decoder on source and target autoencoder tasks respectively, we see 
the first of these, but not the other two: for eng–est NMT training at first improves 
faster than with random initialization, but converges to a worse final model. As the 

Fig. 5   Learning curves on LRL 
English → Estonian develop-
ment set. Multilingual models, 
with SRC + HRL + LRL 
autoencoder and full noise 
model. Note that up to 40 k 
training steps, the model using 
scheduled multi-task learning 
has not seen any LRL data

SRC–HRL
SRC–LRL
SRC AE
HRL AE
LRL AE

3-phase scheduled multi-task, SRC+HRL+LRL AE
92

0

5

3

0

Pretraining

67

22

0

0

11

Phase 2

20

70

0

0

10

Phase 3
time

Fig. 6   The task mix schedule used in the 3-phase scheduled multi-task learning experiment. The 2-phase 
schedule is the same, except it omits the third phase, continuing the second phase until the end of training
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approach was clearly inferior, we did not use it for the other language pairs. How-
ever, we have not tested pretraining on a next token prediction or masked language 
modeling task.

5.4.4 � Dataset augmentation: subword regularization

Table 7 shows an improvement between + 0.08 and + 0.55 BLEU from using sub-
word regularization as the only noise model, without the use of an autoencoder.

5.4.5 � Dataset augmentation: autoencoder

Table 8 shows an ablation experiment for the noise model. When compared against 
only using the subword regularization, the additional noises give between + 0.2 and 
+ 0.5 BLEU. All parts of the noise model are individually ablated: the most impor-
tant is local reordering, which when omitted causes a decrease of −  0.36 BLEU. 
The full noise model includes subword regularization. When subword regulariza-
tion is ablated, we turn it entirely off, both for the parallel data and the autoencoder. 
Word boundary noise, taboo sampling, and insertions are not included in our full 

Table 8   Ablation results for noise model

Ordered by decreasing BLEU

Method ML BT Autoencoder eng–est

SRC HRL LRL chrF-1.0 BLEU Rare

+ Word boundary noise ✓ ✓ ✓ ✓ 51.56 13.95 33.20
+ Taboo sampling ✓ ✓ ✓ ✓ 51.23 13.84 33.81
No drop ✓ ✓ ✓ ✓ 51.48 13.79 33.89
Full noise ✓ ✓ ✓ ✓ 51.42 13.75 33.83
+ Insertion ✓ ✓ ✓ ✓ 50.88 13.74 33.51
Only switchout ✓ ✓ ✓ ✓ 50.78 13.49 32.21
No SWR ✓ ✓ ✓ ✓ 50.71 13.46 32.18
Only SWR ✓ ✓ ✓ ✓ 50.96 13.43 32.85
No reorder ✓ ✓ ✓ ✓ 50.90 13.39 33.03

Table 9   Autoencoder language tasks

Method ML BT Autoencoder eng–est

SRC HRL LRL chrF-1.0 BLEU Rare

SRC+LRL AE ✓ ✓ ✓ 51.71 14.04 34.79
LRL AE ✓ ✓ 51.41 13.93 33.57
SRC+HRL+LRL AE ✓ ✓ ✓ ✓ 51.42 13.75 33.83
No AE ✓ 50.09 12.90 33.20
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noise model, as they did not show a benefit on the development set. However, word 
boundary noise gives + 0.2 BLEU and taboo sampling + 0.09 BLEU on the test set.

We also consider for which languages an autoencoder task should be added. 
Table  9 shows variants starting from no autoencoder, adding autoencoders one 
by one first for the low-resource target language, then for the source language and 
finally for the high-resource target language. The best combination uses source and 
LRL, with the SRC autoencoder giving a gain of + 0.11 BLEU over only using the 
LRL. The HRL autoencoder is detrimental, and leaving it out gives + 0.29 BLEU.

5.4.6 � Dataset augmentation: back‑translation

Table 10 shows the improvements gained using back-translated synthetic data. We 
weight the natural and synthetic LRL data equally. Back-translation is generally 
effective, giving a benefit between +  1.31 and +  4.46 BLEU. When using back-
translated data, the autoencoder task is less effective, with small improvements to 
Character F1 but inconsistent results for the other measures. Note that back-transla-
tion is not a silver bullet. The Vanilla BT system uses only back-translation, but not 
multilingual training or autoencoder: the back-translation is performed with a weak 
model trained only on the low-resource parallel data, and then a forward model is 
trained augmented only by this low-quality back-translation. The performance when 
using only back-translation is very low: only +2.87 BLEU better than the vanilla 
model without back-translation. The high-quality back-translation together with mul-
tilingual training gives an + 12.7 BLEU increase over the vanilla back-translation.

5.4.7 � Amount of low‑resource language data

Figure  7 shows how the performance degrades when the low-resource par-
allel data is reduced. Each set is subsampled from the previous larger set. All 
models use multilingual training with scheduled multi-task learning, and 
SRC + HRL + LRL autoencoders. Down to 10 k parallel sentences the perfor-
mance stays reasonable, after which it rapidly deteriorates.

Fig. 7   Varying the amount 
of low-resource data. Mul-
tilingual models, with 
SRC + HRL + LRL autoen-
coder and full noise model. 
Results on English → Estonian 
newstest2018
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Also plotted is a 10  k sentence pair baseline by Kocmi and Bojar (2018), 
reaching 12.46 BLEU in a similar setting on the same test set. Our result at 10 k 
is 13.04 BLEU, or + 0.68.

5.4.8 � Relatedness of the target languages

Table  11 shows the results of using an unrelated but larger HRL (Czech). The 
results favor transfer from the related HRL (Finnish), by +0.92 BLEU. The differ-
ence in favor of the related HRL is largest for the rare words.

Previously, Zoph et  al. (2016) and Dabre et  al. (2017) find that related par-
ent languages result in better transfer. However, Kocmi and Bojar (2018) find in 
the case of Estonian that a bigger parent (Czech) gave better results than a more 
related parent (Finnish). Our results contradict Kocmi and Bojar (2018) and agree 
with the prior literature.

5.4.9 � Norwegian bokmål → Finnish + North Sámi

We apply the findings of the previous experiments to the low-resource pair Nor-
wegian bokmål to North Sámi. We use a larger task mix weight for the LRL task 
(40 SRC-HRL/30 SRC-LRL/30 BT) to account for the larger LRL parallel data. 
Table 12 shows the results to be similar to the results of the other languages, with 
benefit from multilingual training, autoencoder task and back-translation.

Table 11   HRL language relatedness

Method ML BT Autoencoder eng–est

SRC HRL LRL chrF-1.0 BLEU Rare

Within family fin ✓ ✓ 51.71 14.04 34.79
Cross family cze ✓ ✓ 50.20 13.12 30.69

Table 12   Results on Norwegian Bokmål–North Sámi Apertium story

Method ML BT Autoencoder nob–sme

SRC HRL LRL chrF-1.0 BLEU Rare

ML, AE, BT ✓ ✓ ✓ ✓ 57.27 24.40 35.62
ML, AE ✓ ✓ ✓ 54.86 21.07 21.54
Vanilla 45.97 15.64 21.05
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5.5 � Discussion

In our experiments for four asymmetric-resource one-to-many translation tasks, 
we find that the largest gains come from cross-lingual transfer (up to +  12.7 
BLEU), back-translation (up to + 4.46 BLEU), and scheduled multi-task learning 
(up to + 2.4 BLEU). To sum up our findings related to the questions asked in the 
introduction:

On cross-lingual transfer, we find that applying scheduled multi-task learning is 
superior to both fully sequential and fully parallel transfer. In scheduled multi-task 
learning, the model is first pretrained on a mix of only high-resource tasks and then 
fine-tuned using a mix of both high- and low-resource tasks. A second fine-tuning 
phase only on the low-resource tasks is prone to overfitting.

On exploiting monolingual data, a low-resource target-language autoencoder is 
beneficial, even when using multilingual training, but inconclusive together with 
back-translation. A source-language autoencoder is also helpful, to a lesser degree, 
but a high-resource target autoencoder is not. A noise model including subword reg-
ularization, reordering, and deletion is beneficial. The results for substitutions and 
the proposed taboo sampling method are inconclusive.

On vocabulary construction, Morfessor EM+Prune is superior to SentencePiece 
in this translation setting, for a gain of + 0.6 BLEU. As the methods use the same 
training algorithm, it indicates that the prior used in Morfessor is beneficial in find-
ing efficient subword lexicons. The vocabulary size has less effect (up to 0.5 BLEU 
for sizes between 8 k and 20 k) on the results. Subword lexicon size has been con-
sidered an important parameter to tune  (Sennrich and Zhang 2019; Salesky et  al. 
2020). Also our preliminary experiments of low-resource NMT without subword 
regularization suggested a more substantial effect for the lexicon size. It seems that 
the subword sampling procedure (and perhaps the autoencoder task) lessens the 
impact of the subword vocabulary size.

Regarding available data and languages, larger low-resource parallel data give 
better results, but diminishing returns are already reached after 10 k sentences. We 
find language relatedness to be more important than parent language size in highly 
asymmetrical transfer. Sennrich and Zhang (2019) find that smaller models and 
batch sizes work better in low-resource settings. We find that large models are better 
whenever auxiliary multilingual or monolingual data is used. While in the vanilla 
setting, the smaller model is better, it still falls far behind the models using addi-
tional data.

Among the translation tasks, we get the lowest scores in the English–Danish 
translation. While Danish has the smallest LRL monolingual corpus, as the same 
order is observed also for the models not using monolingual data, the reason must 
lie elsewhere, possibly in the difficulty of the JRC-Acquis corpus. The autoencoder 
task has the largest benefit for English–Estonian. In the Norwegian–North Sámi 
experiment the size of the low-resource parallel data is an order of magnitude larger 
than in the other experiments, but the results remain similar. Due to the small size of 
the test set, we include the entire translation output in Online Resource 1.

The three evaluation measures—BLEU, Character F1 , and rare words F1—gen-
erally agree. Some exceptions include ablation of the subword regularization and 
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using SwitchOut as the sole noise model, which hurt in particular the rare words 
more than BLEU. Turning off the autoencoder has the least effect on rare words, 
even giving a slight improvement for eng–dan when using back-translation.

Our results again underscore the need to gather parallel data for low-resource lan-
guage pairs. This may be possible to accomplish at reasonable cost, as 10 k sentence 
pairs already goes a long way. Monolingual corpora of high quality and quantity are 
also of great importance as auxiliary data for MT.

6 � Conclusion

When training a neural translation model for low-resource languages with limited 
parallel training data, it is important to make use of efficient methods for cross-
lingual learning, data augmentation, and subword segmentation. Our experiments 
in asymmetric-resourced one-to-many translation show that the largest individual 
improvements come from any cross-lingual transfer learning and augmenting the 
training data with back-translation. However, considerable benefits are gained also 
by less common approaches: scheduled multi-task learning, subword regulari-
zation, and a denoising autoencoder with multiple noise models. For this reason, 
we strongly recommend that NMT frameworks should include a dataloader with 
the ability to (a) sample noisy minibatches for training and (b) use a schedule for 
controlling the mixing of different tasks. Subword sampling requires a probabilis-
tic segmentation model such as SentencePiece or Morfessor, making them prefer-
able to the more common BPE method. Both our data loader implementation for 
the OpenNMT-py system and the Morfessor EM+Prune software are available with 
non-restrictive licenses.

Supplementary Information  The online version containssupplementary material available at https​://doi.
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