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Abstract

This paper aims to shed light on the post-editing process of the recently-introduced
neural machine translation (NMT) paradigm. Using simple and more complex texts,
we first evaluate the output quality from English to Chinese phrase-based statistical
(PBSMT) and NMT systems. Nine raters assess the MT quality in terms of fluency
and accuracy and find that NMT produces higher-rated translations than PBSMT
for both texts. Then we analyze the effort expended by 68 student translators during
HT and when post-editing NMT and PBSMT output. Our measures of post-editing
effort are all positively correlated for both NMT and PBSMT post-editing. Our find-
ings suggest that although post-editing output from NMT is not always significantly
faster than post-editing PBSMT, it significantly reduces the technical and cognitive
effort. We also find that, in contrast to HT, post-editing effort is not necessarily cor-
related with source text complexity.
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1 Introduction

Neural machine translation (NMT) has recently gained great interest in both aca-
demia and industry. NMT outperforms phrase-based statistical systems (PBSMT)
for many language pairs, in terms of automatic evaluation metrics (Bahdanau et al.
2015; Bojar et al. 2016; Junczys-Dowmunt et al. 2016; Castilho et al. 2018) and
human evaluation scores (Castilho et al. 2018; Klubicka et al. 2017). However,
we still have little knowledge of how post-editors work with NMT, the differences
between post-editing NMT output and post-editing PBSMT, and the potential
advantages and challenges of post-editing NMT output. This paper aims to address
these issues by assessing the accuracy and fluency of NMT output, as compared to
PBSMT output based on human evaluation, and by investigating the temporal, tech-
nical, and cognitive effort exerted by the translators during NMT post-editing, as
compared to during PBSMT post-editing and human/from-scratch translation (HT).
As NMT is still far from perfect, studies on NMT post-editing are not only an effec-
tive method of assessing NMT quality, they will also increase our understanding of
the potential of NMT post-editing.

This paper thus focuses on the process of post-editing NMT output from English
to Chinese, a language pair posing great challenges for MT (Wu et al. 2006; Suo
et al. 2012). We first compare the quality of NMT and PBSMT output based on
human assessment. We then compare temporal effort and typing behaviors for NMT
and PBSMT post-editing and for HT.

2 Related research
2.1 Post-editing effort: SMT vs. from-scratch translation

In a seminal work studying post-editing processes, Krings (2001) defines the stand-
ard for measuring post-editing effort from three separate but inter-related dimen-
sions: temporal, technical, and cognitive effort. Temporal effort is the amount of
time spent post-editing the MT output. Technical effort involves purely mechanical
operations, including deletions, insertions and mouse movements. Cognitive effort
refers to the “type and extent of those cognitive processes that must be activated to
remedy a given deficiency in a machine translation™ (ibid, p. 179). Krings claims
that a combination of the three efforts determines the acceptability of post-editing
MT when compared to HT. With the help of keylogging tools, temporal and techni-
cal effort can be measured, while cognitive effort can only be indirectly investigated,
most usually through pause analysis or gaze data.

In the last decade, many studies have investigated the effort involved in post-
editing and compared it with HT. Post-editing domain-specific texts has often been
found to be faster than HT (O’Brien 2007; Guerberof 2009; Groves and Schmidtke
2009; Tatsumi 2009; Plitt and Masselot 2010). However, for more general text types,
post-editing is not always found to be superior in speed. For example, Daems et al.
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(2017) reported post-editing to be significantly faster, while Carl et al. (2011) found
no significant increase in speed. Screen (2017) reported that post-editing general
information text does not reduce the processing time from HT.

The idea behind measuring technical effort is that MT post-editing is expected to
reduce the labour caused by typing. Compared to studies on temporal effort, there
have not been many studies focusing on this aspect. Koglin (2015) found post-edit-
ing news text in English to Brazilian Portuguese requires both fewer insertions and
deletions than HT. Carl et al. (2011) showed that post-editing tasks necessitate more
deletions, navigation keystrokes and mouse clicks, but fewer insertions when com-
pared to HT. These studies concur that post-editing requires fewer insertions than
HT, but the results for deletions are inconsistent.

Regarding cognitive effort, in the early studies, Krings (2001) employed think-
aloud protocols (TAPs) to indicate the cognitive effort involved in post-editing.
The employment of eye-tracking and keylogging in translation process research
has greatly expanded our ability to understand reading and writing processes dur-
ing translation. The allocation of cognitive resources to the source text and target
text, which is indicated by the records of gaze data, is very different in post-editing
and HT (Carl et al. 2011; Balling and Carl 2014; Mesa-Lao 2014; Carl et al. 2015;
Daems et al. 2017; da Silva et al. 2017). These studies conclude that fixations during
post-editing occur more frequently on the target text, whereas fixations during HT
tend to be concentrated more on source text.

Pauses between keystrokes during typing are generally agreed to be an effective
indicator of cognitive effort in language production including translation (Butter-
worth 1980; Schilperoord 1996; Jakobsen 1998, 2002; Hansen 2002; Alves 2006).
Both Butterworth (1980) and Schilperoord (1996) contend that the number and
duration of pauses measured in language production can be connected to process-
ing effort. Pause duration and pause density have both been adopted by researchers
to indicate cognitive effort in translation process studies. Longer and more frequent
pauses signal higher cognitive effort. However, the results based on pause metrics
seem to be far from conclusive. Based on pause duration, some studies (e.g. Kog-
lin 2015) have demonstrated that post-editing triggers shorter total pause duration
than HT, while others (e.g. Screen 2017) have showed the opposite results. More
recently, Lacruz and Shreve (2014) have introduced the pause-to-word ratio (number
of pauses per word) (PWR) as a measurement of cognitive effort. A higher PWR
value signals more cognitive effort. Lacruz et al. (2014) have observed that PWR
correlates strongly with human-targeted translation edit rate (HTER) (Snover et al.
2006), a metric measuring technical post-editing effort based on the minimum num-
ber of edit steps between raw MT and its corresponding post-edited version. Schaef-
fer et al. (2016) have found that PWR also correlates highly with a gaze-based trans-
lation difficulty index (TDI) (Mishra et al. 2013), using the large scale multilingual
dataset in the TPR-DB (Carl et al. 2016). This study shows that the values of PWR
in post-editing tend to be significantly lower than for HT.

The quality of the MT output is—without doubt—one of the key elements deter-
mining how much effort the post-editing task requires temporally, technically and
cognitively. The above-mentioned studies are mainly based on SMT, which is also
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by far the most widely studied MT method in post-editing process research, whereas
NMT post-editing has been scarcely investigated prior to the current special issue.

2.2 Post-editing effort: NMT vs. SMT

The translation quality of NMT systems has been shown to be better than PBSMT
in several recent studies (Bojar et al. 2016; Castilho et al. 2018; Klubicka et al.
2017). Howeyver, it is not yet clear how post-editors benefit from the potential quality
improvement of NMT. To the best of our knowledge, only two studies so far have
compared the effort involved in post-editing NMT with that of PBSMT. Castilho
et al. (2018) discussed the temporal and technical effort involved in post-editing
SMT and NMT performed by three post-editors for English to German, Greek, and
Portuguese and by two for English to Russian. They found that the total number of
keystrokes were reduced for NMT post-editing in all the four language pairs, while
the temporal effort was only slightly reduced for English to German, Greek and Por-
tuguese with NMT, but not for English to Russian. Shterionov et al. (2018) com-
pared the productivity of HT with post-editing NMT and SMT from English to Ger-
man, Spanish, Japanese, Italian and Chinese performed by three translators. Their
results showed that (1) post-editing both NMT and SMT was faster than translating
from-scratch, and (2) post-editing NMT was faster for most of the translators for all
the language pairs except for English to Chinese. However, both studies involved
only three post-editors/translators and the authors have not investigated cognitive
effort in the post-editing process.

This article extends this work by investigating the temporal, technical and cogni-
tive effort in HT, and post-editing of NMT and PBSMT outputs produced by Google
Translate for English to Chinese. Sixty-eight Chinese first-year Master’s-level trans-
lation students participated in this study, post-editing and translating (from scratch)
two English source texts into Chinese. Detailed information on the participants’ pro-
files and research design will be introduced in the following sections.

3 Experimental texts and their MT quality
3.1 Experimental texts

Two British newspaper texts in the general domain (Jensen 2009, 2011; Carl et al.
2016), were selected for this research. Text 1 consists of 148 words and 11 seg-
ments. Text 2 contains 140 words and seven segments. Text 2 is of higher com-
plexity than Text 1 as indicated by human rating of text difficulty, readability level,
word frequency and the number of non-literal expressions (idiom, metonyms and
metaphors) (see Jensen 2011, pp. 88-93 for an elaborate account of how the com-
plexity of the two source texts was measured). Jensen (2009) investigates the impact
of source text complexity on HT. In this study, we check whether the text of higher
complexity also has an impact on MT quality and post-editing effort. Care was
taken that there were no corresponding Chinese translations of the English source
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Post-editing neural machine translation versus phrase-based... 13

Table 1 Rating scales and operational definitions used for quality evaluation

Category  Rating scales and operational definitions

Fluency 4. Flawless Chinese: refers to a perfectly flowing text with no errors

3. Good Chinese: refers to a smoothly flowing text even when a number of minor errors are
present

2. Disfluent Chinese: refers to a text that is poorly written and difficult to understand

1. Incomprehensible Chinese: refers to a very poorly written text that is impossible to
understand

Accuracy 4. Everything: all the meaning in the source is contained in the translation, no more, no less
3. Most: almost all the meaning in the source is contained in the translation
2. Little: fragments of the meaning in the source are contained in the translation

1. None: none of the meaning in the source is contained in the translation

texts online, as the participants were free to use any online resources to complete
their tasks. The two English source texts were pre-translated into Chinese by the
free online MT engine, Google Translate. The output of Google’s NMT system was
obtained in May of 2017 and the one for Google’s PBSMT output was obtained in
April of 2012 during a previous experiment carried out within TPR-DB.

3.2 MT quality: PBSMT vs. NMT
3.2.1 Quality evaluation criteria and procedure

The PBSMT and NMT output of the 18 segments from Text 1 and Text 2 were eval-
uated by nine first-year Master in Translation and Interpreting (MTI) students, who
were not part of the post-editing and HT experiments introduced below. They all had
no previous experience of MT quality evaluation. The adequacy and fluency criteria
developed within TAUS’s Dynamic Quality Evaluation Framework! were employed
to assess the translations. The nine raters were not informed of the origin of the
MT output. They were instructed to (1) assess the fluency of the PBSMT and NMT
output without the source texts provided, and (2) assess the adequacy of PBSMT
and NMT output with the source texts. Both fluency and accuracy were rated on a
4-point Likert-type scale as introduced in Table 1.

Before the quality evaluation process, the nine raters received an assessment
brief, including detailed explanation of the scales and operational definitions of the
two criteria with commented scoring examples. They then evaluated five test seg-
ments to familiarise with the evaluation criteria of fluency and accuracy. Finally,
the NMT and PBSMT output for the 18 segments were shown in two Excel spread-
sheets. The raters had to first give the fluency scores for the two versions of the

! https://taus.net/academy/best-practices/evaluate-best-practices/adequacy-fluency-guidelines  (accessed
May 2018).
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Table2 Average scores of the 9 raters for fluency and accuracy (**p < 0.01 ***p < 0.001)

MT Fluency Accuracy

Text 1 Text 2 Text 1 + Text2  Text 1 Text 2 Text 1 + Text 2

NMT 2.86 + 0.85%* 3.14 £ 0.61%* 298 £ 0.76%*%*% 2.9 +0.77%* 3.4 +0.52%* 3.06 + 0.69%**

k=0.19 k=0.159 k=0.158 k=0.115
PBSMT  1.97 + 0.66 2.06 +0.92 2.01 £0.75 2.08 +0.63 2.32+0.84 217+0.7
k =0.072 k=0.172 k= 0.034 k=0.141

—®— Average Score - Fluency
—®— Raterl - Fluency
Rater 2 - Fluency
Rater 3 - Fluency
—®—Rater 4 - Fluency
1 —®—Rater 5 - Fluency
—8—Rater 6 - Fluency
0 —8®—Rater 7 - Fluency
NMT PBSMT NMT PBSMT ——Rgater 8 - Fluency

—®—Rater 9 - Fluency

1 2

Fig. 1 The 9 raters’ scores for fluency for the Text 1 and Text 2

18 segments in the first spreadsheet, after which they provided accuracy scores for
these segments in the second spreadsheet.

3.2.2 Quality evaluation results

Table 2 contrasts the average scores of the nine raters for fluency and adequacy of
PBSMT and NMT output for the 18 segments across the two texts. To check inter-
annotator agreement for fluency and accuracy on the four scales, we computed
Fleiss’ kappa coefficient (Fleiss 1971) (also presented in Table 2 and denoted by «).
The results show that the nine raters had only slight agreement (0% <k <20%) for
both fluency and accuracy. Despite the low inter-rater agreement, most evaluators
(eight out of nine) marked NMT quality higher than PBSMT in both fluency and
accuracy and the differences in the average scores were all significant.

For fluency, the NMT segments scored about 3 (Good Chinese) (2.86 for Text
1, 3.14 for Text 2 and 2.98 for the 2 texts combined), while the raw PBSMT output
scored around 2 (Disfluent Chinese) (1.97 for Text 1, 2.06 for Text 2 and 2.01 for the
2 texts combined). The difference between NMT and PBSMT in fluency was sig-
nificant for Text 1 (p <0.01), Text 2 (p <0.01) and the 2 texts combined (p <0.001).
Figure 1 shows that eight out of nine raters ranked NMT as more fluent than PBSMT
for both texts. Only Rater 5’s average scores for the NMT and PBSMT segments
were about the same (1.7).

For accuracy, the NMT output also significantly outperformed the PBSMT output
for both texts. NMT scored around 3 (Most) (2.9 for Text 1, 3.4 for Text 2 and 3.08
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i —®— Average Score - Accuracy
3 —®— Raterl - Accuracy
Rater 2 - Accuracy
2 Rater 3 - Accuracy
—®—Rater4 - Accuracy
1 —®—Rater5 - Accuracy
0 —8—Rater 6 - Accuracy

_._ _
NMT PBSMT = NMT PBSMT o E:g; - ﬁ‘égﬁgg

1 2 —®—Rater9 - Accuracy

Fig.2 The 9 raters’ scores for accuracy for Text 1 and Text 2

for the 2 texts combined). PBSMT scored about 2 (Little) (2.08 for Text 1, 2.32 for
Text 2, and 2.17 for the 2 texts combined). Except for Rater 9, all the raters scored
NMT accuracy higher than PBSMT accuracy (Fig. 2). For Text 1, Rater 9’s average
score for PBSMT (3.18) was slightly higher than for NMT (3.0).

The following four segments show how NMT outperformed PBSMT in accuracy
and fluency (Table 3). The underline shows how the source text parts were trans-
lated in the corresponding PBSMT and NMT systems, respectively. Recent studies
have reported that NMT produces better reordering than PBSMT (Bentivogli et al.
2016; Toral and Sanchez-Cartagena 2017), producing translations that are more
natural and accurate. We also found this to be true in our segments, for example
in T1S4, where the translation of the modifier adverbial phrase following the trial
was reordered in the NMT output which was placed before the verb phrase “#|
B (was found guilty of)”, making it fit well within the Chinese syntactic structure.
The PBSMT translation just followed the source segment order, mistakenly translat-
ing it into a modifier-object structure (FKHA X% /5 H W R FE & /after a long trial’s
murder).

In addition, we found that the NMT output was more accurate in terms of tense
and voice. In T2S7, the present perfect tense of have increased was translated into
perfect Chinese by adding “ T after “¥8 fll(increase)”, and the passive voice could
be considered in T1S11 was also properly translated into “#{IAJ9 2” in Chinese
through “#”. However, its PBSMT counterpart did not generate the right tense and
voice markers, leading to completely inaccurate Chinese translations. We also notice
that the NMT system takes the broader context of the text into consideration and
selects the most relevant translation. In T2S7, bills was translated properly into i
& (bill), which perfectly matches the context where the suppliers have increased the
price, while the PBSMT translated it into “3%2&(act)” meaning a formal decision
made by the legislature, which is an incorrect lexical choice. Wu et al. (2016) also
reported that Google NMT reduced translation errors by about 60% compared to
it PBSMT output based on human evaluation results. We plan to analyse the error
types in detail as part of future research.

Furthermore, the human quality evaluation results also reveal that the MT output
of Text 2 (the more complex one) was more accurate and fluent than Text 1 (the less
complex one) for both PBSMT and NMT. The differences between Text 1 and Text
2 in fluency and accuracy were more obvious for NMT than PBSMT. The source
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texts complexity measures introduced by Jensen (2009) do not necessarily corre-
late with MT quality. Therefore, more complex text indicated by measures of source
text complexity, which are tailored for HT, do not necessarily also imply worse MT
quality.

4 Post-editing and HT process
4.1 Participants’ profile

In total, 68 first-year MTI students participated in this study. They were all native
Chinese speakers with English as their second language, aged 22 to 26 years old.
The participants had very similar English proficiency. They all had minimal profes-
sional translation experience. None of them had prior experience of post-editing.
They had all passed the test for English Majors Band 8 (TEMS)? or its equivalent
before the experiment. All students were undertaking an advanced translation course
at the time of the tasks, established for the first-year MTI students, taught by the
authors (the first and third authors) during the spring semester (February to June)
every year at a Chinese University. Thirty of them were from the course in the
semester 2017, and the other 38 were from this course in the semester 2018. This
study was approved by the Ethics Committee of the College of Foreign languages at
Hunan University. The participants all signed the informed consent form before the
experiment. The participants’ profile is summarized in Table 4.

4.2 Post-editing and HT procedures

The data from the post-editing tasks were collected from the 38 MTTI students of
the advanced translation course in May 2018. The whole class was divided into two
homogenous groups based on their English proficiency (measured in TEMS scores).
There were 19 students in each of Groupl (G1) and Group 2 (G2). G1 post-edited
the NMT output of Text 1 and the PBSMT output of Text 2. G2 post-edited the
NMT output of Text 2 and the PBSMT output of Text 1. The TAUS post-editing
guidelines (TAUS 2016) for publishable quality were provided for guidance and par-
ticipants were told that full post-editing for publishable quality was expected. The
post-editing tasks were carried out with Translog-1I (Carl, 2012). Students also filled
a questionnaire after each task regarding their perception of post-editing speed, cog-
nitive effort, quality of the MT output, and of their own translations. The question-
naire results will be reported at a later juncture.

The data for the HT tasks used in this study were collected from another experi-
ment, completed by the 30 MTI students also from this advanced translation course
in May 2017. They were also divided into two homogenous groups based on Eng-
lish language proficiency. There were 15 students in each group, named Group 3
(G3) and Group 4 (G4). Text 1 was translated from scratch by G3 and Text 2 was

2 The Test for English Majors Band 8 is a national English test for English majors in China, which
requires a candidate to master about 13,000 words.
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18 Y.Jiaetal.

Table 4 Participants’ profile

Educational Number Age English language profi-  Post-editing  Professional

background ciency experience translation
experience

First-year MTI ~ 68 22-26 years old  TEMS or the equivalent  No Minimal

translated from scratch by G4. Their keystrokes were also logged by Translog-II. For
the post-editing tasks, there were six students who only finished one text. Further-
more, two participants’ logging data had to be discarded due to problems when sav-
ing the final logging data. Those participants’ data were excluded. In total, 90 tasks
remained for data analysis, including 30 HT tasks, 30 NMT post-editing tasks, and
30 PBSMT post-editing tasks (Table 5).

5 Results and discussion
5.1 Statistical analysis

The 90 translations were first manually aligned using the YAWAT tool (Germann
2008) and then processed into a set of CRITT TPR-DB tables (Carl et al. 2016). The
analysis was carried out at segment (SG) level, by concatenating all 90 SG-tables.
Each line in an SG table encodes approximately 55 different features which sum-
marize properties of the SL and TL segment and the translation production process.
The data were then analysed in the R statistical environment (R Core Team 2014) by
fitting linear mixed-effects models with the Ime4 package (Bates et al. 2014). This
statistical method was chosen over traditional factorial designs because it includes
both fixed and random effects in the linear mixed effects models (LMER), which
compensate for the weak control of variables in naturalistic translation tasks (Ball-
ing 2008).

In our study, the random effect was always the participant whose individual dif-
ference may influence the data and the source text segment whose inherent differ-
ence may influence the data. As the main objective of this study was to investigate
the difference in temporal, technical and cognitive effort during HT, post-editing
PBSMT and post-editing NMT for the two texts (Text 1 and Text 2), the fixed effects
were always task (HT, post-editing PBSMT and post-editing NMT) and text (Text 1
and Text 2) with interaction. The dependent variables were temporal, technical and
cognitive effort. We checked whether the impact of task on the dependent variables

Table 5 Data used for final data

1 Task type Text 1 Text 2 Total
analysis
NMT post-editing Gl1 (15) G2 (15) 30
PBSMT post-editing G2 (15) Gl1 (15) 30
HT G3 (15) G4 (15) 30
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varied between the two texts. The detailed results and discussions are introduced in
the following section.

5.2 Temporal effort

We measure temporal effort by the average token processing time in milliseconds
(ms), by dividing the total processing duration of a segment by the number of source
text tokens in a segment (DurTokS). The interaction effect of task and text on Dur-
TokS is plotted in Fig. 3. The results show that the participants spent significantly
less time post-editing both NMT and PBSMT than translation from scratch for both
texts. We also found that post-editing NMT reduced the average processing time
per token by about 30% (p=0.058) for Text 1 and almost 50% for Text 2 (p<0.05)
as compared to post-editing PBSMT. We assume that this is due to the better trans-
lation quality of the NMT output, as compared with PBSMT output. Interestingly,
post-editing (NMT and PBSMT) of the text with higher complexity (Text 2) was
quicker than Text 1 with lower complexity, which is also consistent with the better
MT translation quality of Text 2. However, we found that in HT participants spent
more time on the more complex text (Text 2) than the less complex one (Text 1).
This supports Jensen’s (2009, p. 62) claims that “(the source text complexity indi-
cated by) a set of objective indicators can to some extent account for the degree of
difficulty experienced by translators when translating a text”.

Our results are in agreement with Shterionov et al. (2018) and Jia et al. (2019).
Shterionov et al. report that post-editing both PBSMT and NMT is significantly
faster than HT. Jia et al. show that post-editing NMT from English to Chinese is
faster than HT for both general and domain-specific texts, although the result is only
significant for domain-specific texts. However, our finding contradicts Shterionov’s

Task*Text effect plot

Text
O 2 = O

1

| | |

10000 -

8000 -

%)
S
=
5 6000 o
a
4000 -
2000 -
I‘ T T
NMT PBSMT HT
Task

Fig. 3 Effect plot of interaction effect between task (HT, post-editing NMT and post-editing PBSMT)
and text (Text 1 and Text 2) on average duration per token in ms (DurTokS)
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et al. finding that post-editing NMT is faster than PBSMT for the English-Chinese
language pair. Although Shterionov et al. report that post-editing NMT from Eng-
lish to German, Spanish, Japanese and Italian is faster for most of their participants
than post-editing PBSMT, it is slower than post-editing PBSMT for most partici-
pants when it comes to English—Chinese language pair. Castilho et al. (2018) also
report that post-editing NMT is not faster for all language pairs investigated in their
study (English to German, Greek, Portuguese, and Russian). However, as there were
only three translators/post-editors in these two studies, the results may be due to
participants’ individual differences. Previous studies have shown mixed results with
respect to processing time of post-editing SMT output as compared with HT. While
in contrast with Carl et al. (2011), Screen (2017) and da Silva et al. (2017), our find-
ing is consistent with O’Brien (2007), Guerberof (2009), Plitt and Masselot (2010)
and Daems et al. (2017) in that post-editing SMT is significantly faster than HT. Our
results show that post-editing NMT output is more efficient than post-editing SMT
output.

5.3 Technical effort

We measure technical effort by the number of keystrokes, which can be separated
into insertions and deletions. We first check the total number of insertions and dele-
tions. Then, we check the numbers of insertions and deletions separately.

5.3.1 Total keystrokes

The total number of insertions and deletions within each segment was divided by the
number of tokens in each segment (Insdeltoks). Figure 4 shows the interaction effect
of task and text on average keystrokes per token. The results reveal that post-editing
NMT and PBSMT output produced significantly fewer keystrokes than HT for both
texts, and that post-editing NMT required the fewest keystrokes. Post-editing NMT
generated about one keystroke per token fewer for Text 1 (p<0.01) and around two
fewer than post-editing PBSMT for Text 2 (p<0.001). Similarly to the results for
temporal effort, post-editing NMT and PBSMT both generated fewer keystrokes per
token for the more complex text (Text 2) with better MT quality, while the partici-
pants produced more keystrokes per token when translating the text of higher com-
plexity (Text 2) from-scratch as compared to the less complex one (Text 1). Again,
the more difficult text requires more keystrokes only for HT but not for post-editing.

5.3.2 Deletions

The interaction effect of task and text on average deletions per token (DelTokS)
is presented in Fig. 5. For both texts, working with PBSMT generated the highest
number of deletions among the three kinds of tasks, while post-editing NMT gener-
ated more deletions in Text 1 but fewer deletions in Text 2 than HT. The difference
in average deletions per token between post-editing PBSMT and HT was significant
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Task*Text effect plot
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Fig. 4 Effect plot of interaction effect between task (HT, post-editing NMT and post-editing PBSMT)
and text (Text 1 and Text 2) on average keystrokes per token (Insdeltokes)

for both texts (p<0.05 for Text 1 and p<0.001 for Text 2). Compared with HT,
post-editing NMT produced more deletions in Text 1 (p=0.06), but fewer deletions
in Text 2 (p=0.3), but neither difference was significant. More translations of the
PBSMT output were deleted than those of the NMT output, which is likely to be due
to the lower quality of the PBSMT output.

Task*Text effect plot
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Fig.5 Effect plot of interaction effect between task (HT, post-editing NMT and post-editing PBSMT)
and text (Text 1 and Text 2) on average deletions per token (DelTokS)
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5.3.3 Insertions

Figure 6 presents the interaction effect plot of task and text on average insertions
per token. The general analysis shows that for both texts post-editing NMT and
PBSMT needed significantly fewer insertions per token than HT, and post-editing
NMT required fewer insertions per token than PBSMT. For Text 1, post-editing
NMT needed about four insertions per token fewer than HT (p <0.001) and almost
one insertion per token fewer than post-editing PBSMT (p <0.01). The situation was
similar in Text 2, where post-editing NMT reduced the number of insertions per
token by about five as compared with HT (p<0.001) and by about one compared
with post-editing PBSMT (p <0.001).

We find that post-editing significantly reduced the participants’ technical effort
measured by typing activity. Our finding that participants made significantly more
deletions and fewer insertions when post-editing PBSMT than HT is in line with
Carl et al. (2011), but only partly consistent with Koglin (2015), who report that
post-editing Google PBSMT requires both fewer insertions and deletions than HT.
Our results corroborate those of Castilho et al. (2018), finding that post-editing
NMT requires less technical effort than post-editing PBSMT. In our study, we show
in addition that the number of deletions and insertions correlate with the quality of
the NMT and the PBSMT output. Better MT quality leads to fewer typing activities.

5.4 Cognitive effort

Butterworth (1980) and Schilperoord (1996) argue that the number and the dura-
tion of pauses during language production are linked to cognitive effort. We use two
pause metrics to measure cognitive effort during the post-editing and translating

Task*Text effect plot
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Fig.6 Effect plot of interaction effect between task (HT, post-editing NMT and post-editing PBSMT)
and text (Text 1 and Text 2) on average insertions per token (InsTokS)
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process, based on Butterworth’s (1980) and Schilperoord’s (1996) argument that
both the number and duration of pauses generated in language production can be
linked to processing effort. The pause duration per token is based on the idea that
longer pauses indicate higher cognitive effort. The pause fo word ratio (PWR,
Lacruz and Shreve 2014), referred to hereafter as pause density is based on the idea
that more pauses indicate more cognitive effort. As these two metrics have not been
used together at the same time in the same study, we also want to check whether
the results of them point in the same direction. We adopted a pause threshold of
1000 ms which has been frequently used in previous studies (Jakobsen 1998; Krings
2001; O’Brien 2006; Lacruz et al. 2012).

5.4.1 Cognitive effort: pause duration

The pause duration per token (Pause1000) was computed by dividing the total pause
time per segment by the number of tokens in the source text segment. We used
Pause1000 as dependent variable and task and text with interaction as explanatory
factors. The interaction effect of task and text is illustrated in Fig. 7.

The results are similar to those presented in Sect. 5.1 and 5.2. They show that
participants paused significantly longer when translating from scratch than when
post-editing both NMT and PBSMT for both texts. Post-editing NMT shortened the
pause duration per token than by 35% for Text 1 (p<0.01) and almost 50% for Text
2 (p<0.01). Our findings on pause time support Koglin (2015) in that post-editing
Google PBSMT triggers a shorter pause time than HT. The findings are also consist-
ent with Jia et al. (2019) in that post-editing Google NMT from English to Chinses
costs significantly shorter pause time than HT. However, the results contradict

Task*Text effect plot
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Fig.7 Effect plot of interaction effect between task (HT, post-editing NMT and post-editing PBSMT)
and text (Text 1 and Text 2) on pause duration per token (Pause1000)
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Screen (2017) who suggests that post-editing Google PBSMT involves longer pause
time than HT.

During HT, participants paused longer per token for the more complex text (Text
2) than the less complex one (Text 1). However, shorter pause times were produced
when post-editing NMT output for Text 2 (the more complex one) than for Text 1
(the less complex one), while the pause time per token for post-editing PBSMT of
Text 1 and 2 was more or less the same. This observation confirms our previous find-
ings on temporal and technical effort that text of higher complexity seems to be cog-
nitively more effortful to translate only for HT but not necessarily for post-editing.

5.4.2 Cognitive effort: pause density

Pause density (PWR) was calculated by dividing the total number of production
pauses that occurred during the translation of a segment by the total number of
tokens in the ST segment (Lacruz and Shreve 2014). The pause density is expected
to be higher when translators exert more effort. We define PWR1000 as pause
density where each pause lasts 1000 ms or longer. We used PWR1000 as depend-
ent variable and task and text with interaction as explanatory factors. The effect is
presented in Fig. 8. Post-editing both PBSMT and NMT significantly lowered the
number of pauses per token for both texts, as compared with HT. The pause den-
sity for post-editing NMT (PWR1000=0.33) was significantly lower than for post-
editing PBSMT (PWR1000=0.46) (p <0.001) for Text 1. This effect is quite con-
sistent in Text 2, where post-editing NMT (PWR1000=0.18) caused significantly
fewer pauses than post-editing PBSMT (PWR1000=0.35) (p<0.001). The results
also show a similar picture as before. Both PBSMT and NMT post-editing triggered
significantly lower pause density for the more complex text (Text 2) than the less

Task*Text effect plot
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Fig.8 Effect plot of interaction effect between task (HT, post-editing NMT and post-editing PBSMT)
and text (Text 1 and Text 2) on pause density (PWR1000)
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complex one (Text 1). Translating the more complex text (Text 2) (PWR1000=0.76)
from scratch caused slightly higher pause density than the less complex one (Text 1)
(PWR=0.74).

The results on pause density are in line with Schaeffer et al. (2016), who also
report PWR scores that are significantly lower when post-editing SMT than HT
based on the multilingual data in CRITT TPR-DB. Our results also support Jia’s
et al. finding that post-editing Google NMT from English to Chinese causes lower
pause density than HT. As post-editing NMT output required both shorter pause
duration per token and lower pause density than post-editing PBSMT, it is rea-
sonable to suggest that NMT is a more promising approach for post-editing news
texts from English to Chinese than PBSMT and HT. Although post-editing NMT
was significantly faster than post-editing PBSMT for only one text, it has signifi-
cantly reduced the participants’ cognitive effort for both texts. This finding seems
to validate the argument of Krings (2001) and O’Brien (2011) that the productiv-
ity of post-editing should not only be determined by the processing time involved
but also the cognitive effort. Our results also confirm that temporal effort, technical
effort and cognitive effort each seem to have their own role in explaining the trans-
lation and post-editing process. What’s more, the results of the two pause metrics,
one based on pause length and the other one based on number of pauses, allow for
the same conclusion that HT is cognitively more effortful than both PBSMT and
NMT post-editing, and PBSMT post-editing is cognitively more effortful than NMT
post-editing.

5.5 Correlation between the measures of post-editing effort

In this section, we compute the Pearson’s correlations in R for the 18 segments,
between the measures of temporal (DurTokS), technical (DelTokS, InsTokS, and
InsDelToks) and cognitive effort (PWR1000 and Pause1000). A correlation matrix
is shown in Table 6. Results for NMT are in the upper part (red) and the ones for
PBSMT are in the lower part (blue). We see that all the behavioural measures have
a modest-to-strong positive correlation for both NMT and PBSMT post-editing.
The correlations between the measures for NMT are generally higher than the ones
for PBSMT. Higher post-editing time per token (DurTokS) is correlated with more

Table 6 Correlation matrix between the behavioural measurements of temporal, technical and cognitive
effort for NMT (in bold) and for PBSMT (in italics)

PBSMT NMT

DurTokS DelTokS InsTokS InsDelToks PWR1000 Pause1000

DurTokS - 0.73 0.61 0.68 0.68 0.66
DelTokS 0.63 - 0.70 0.83 0.70 0.59
InsTokS 0.48 0.72 - 0.98 0.83 0.58
InsDelToks 0.56 0.86 0.98 - 0.85 0.62
PWR1000 0.62 0.67 0.69 0.73 - 0.79
Pause1000 0.63 0.41 0.44 0.46 0.70 -
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deletions and insertions per token and longer and more pauses per token. The two
pause metrics for cognitive effort also have a very strong correlation both for both
NMT (r=0.79) and PBSMT (r=0.7).

6 General discussion and conclusion

This paper investigates whether NMT facilitates post-editing. To this end, we have
compared the fluency and accuracy of Google’s PBSMT and NMT output and com-
pared post-editing effort with human (from scratch) translation for the English-Chi-
nese translation of two news texts. Our main findings are: (1) NMT produced better
translations in terms of fluency and accuracy than PBSMT, (2) post-editing NMT
reduced the temporal, technical and cognitive effort, as compared with PBSMT and
HT, (3) all measures of post-editing effort were positively correlated, and (4) the
source text complexity measures tailored for HT only impact the effort expended
during HT, but not the quality of MT output and post-editing effort.

However, there are some limitations in this study should be addressed in future
research. Our findings are based on post-editing news texts of the NMT and PBSMT
output generated by Google-Translate by the student translators from English to Chi-
nese. Therefore, future studies could include additional text domains, MT engines
and language pairs to allow for more generalizable results. What’s more, as previous
studies show that the behaviors of student translators during post-editing process can
be different from professionals’ (e.g. Moorkens and O’Brien 2015; Yamada 2015),
participants with varying levels of expertise are ideally to be included in the future
research.

In the next step of our study, we intend to check the specific features of the NMT
output that help alleviate the post-editors’ cognitive effort as compared with the
PBSMT output. Besides, we will also further investigate the source text features that
impact MT quality and post-editing effort. The qualitative questionnaires, which
could provide us with more understanding of how post-editors work with NMT and
PBSMT, have not been analysed due to the scope of this study. Therefore, the ques-
tionnaires will be analysed in detail to check the translators’ attitude towards NMT
post-editing and NMT quality. Furthermore, the perceived post-editing effort indi-
cated by the questionnaires will be analysed to see its correlation with the objective
measurements of the effort.
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