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Abstract Neural machine translation (NMT) has recently gained substantial pop-
ularity not only in academia, but also in industry. For its acceptance in industry it
is important to investigate how NMT performs in comparison to the phrase-based
statistical MT (PBSMT) model, that until recently was the dominant MT paradigm.
In the present work, we compare the quality of the PBSMT and NMT solutions of
KantanMT—a commercial platform for custom MT—that are tailored to accommo-
date large-scale translation production, where there is a limited amount of time to train
an end-to-end system (NMT or PBSMT). In order to satisfy the time requirements of
our production line, we restrict the NMT training time to 4 days; to train a PBSMT
system typically requires no longer than one day with the current training pipeline
of KantanMT. To train both NMT and PBSMT engines for each language pair, we
strictly use the same parallel corpora and the same pre- and post-processing steps
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(when applicable). Our results show that, even with time-restricted training of 4 days,
NMT quality substantially surpasses that of PBSMT. Furthermore, we challenge the
reliability of automatic quality evaluation metrics based on n-gram comparison (in
particular F-measure, BLEU and TER) for NMT quality evaluation. We support our
hypothesis with both analytical and empirical evidence. We investigate how suitable
these metrics are when comparing the two different paradigms.

Keywords Neural machine translation · NMT · Phrase-based statistical machine
translation · PBSMT · SMT · Evaluation metrics · Quality evaluation · BLEU ·
F-measure · F-score · TER ·Human evaluation ·A/B testing · Ranking · Productivity ·
Quality comparison

1 Introduction

Since the development and the release of the Moses toolkit (Koehn et al. 2007) in
2007, statistical machine translation (SMT) (Koehn 2010) has become the dominant
MT paradigm not only in academia but also in industry. Despite the advantages of
SMT over previous approaches to MT (e.g. compared to rule-based systems, SMT
improves on semantics (Costa-Jussà et al. 2012), training and translation efficiency
and requires only a sufficient amount of parallel bilingual data for training), SMT has
some limitations such as subject-verb agreement, word reordering, tense modeling,
and others (Vanmassenhove et al. 2016).

Recent research in MT based on artificial neural networks—neural machine trans-
lation (NMT) (Cho et al. 2014; Sutskever et al. 2014; Bahdanau et al. 2015)—has
shown promising results and has gained popularity not only in academia but also in
industry. It promises to solve some of the drawbacks of SMT. Studies like those of
Bentivogli et al. (2016), Junczys-Dowmunt et al. (2016),Wu et al. (2016), and Castilho
et al. (2017) indicate that the quality of NMT can surpass that of PBSMT, and a shift
in the-state-of-the-art is imminent. Although several MT vendors, such as Google,1

Microsoft,2 Systran,3 and KantanMT4 offer NMT as part of their services, it is still
uncertain to what extent NMT can replace PBSMT as the core technology for large-
scale translation projects. The main reasons are the computational (and financial) cost
of NMT and the uncertainty regarding the actual quality; while NMT output is often
very fluent, sometimes it lacks adequacy or is even completely wrong.

In this work, we compare phrase-based SMT (PBSMT) and NMT within a trans-
lation production line. We set a time limit for training NMT models of 4 days, which
is sufficient for our NMT models to reach high quality without introducing delays in
the production line. We use quality evaluation metrics such as F-measure (Melamed
et al. 2003), BLEU (Papineni et al. 2002) and translation edit rate (TER: Snover et al.

1 https://translate.google.com/.
2 https://www.bing.com/translator/.
3 https://systransoft.com.
4 https://kantanmt.com/.
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(2006)),5 as well as human evaluation. We challenge the relevance of these metrics for
scoring NMT models. Our hypothesis is that they underestimate the quality of NMT
models. We test this hypothesis by comparing F-measure, BLEU and TER scores with
human judgment and provide empirical as well as analytical evidence to support this
hypothesis.

The first contribution of this study is the comparison of the quality of PBSMT
and NMT in the specific setting of KantanMT’s training and translation pipelines. We
acknowledge that the variability of the software and hardware settings, the training
parameters, the data specifics, the available time for training as well as other settings
impact the performance of the MT systems. In order to make a fair comparison, we
investigateMT systems as part of the KantanMT translation production line. NMT and
PBSMT systems are trained and customised on the same data, using the same general6

pre- and post-processing steps and optimised towards time and resource allocation.
Our view is that such analysis allows us to answer more honestly the question as
to whether NMT is suitable for deployment in a large-scale translation production
environment

The second contribution is the comparison between human and automatic quality
evaluation. This analysis may help to produce amore reliable quality evaluationmetric
in the future.

Third, we also investigate whether translators would prefer using NMT as part of
the translation pipeline given the training (and retraining) time, monetary costs and
quality. We thus evaluate the productivity, expressed in terms of post-editing time, of
human translators that post-edit PBSMT and NMT outputs.

The remainder of the paper is structured as follows: in Sect. 2, we summarise pre-
vious comparative studies of PBSMT and NMT; in Sect. 3 we discuss n-gram quality
evaluation metrics, focusing on BLEU, and their relevance for NMT. We present our
empirical data and its analysis in Sect. 4 and conclude in Sect. 5.

2 Related work

Since 2015, NMT systems have been outperforming SMT for many language pairs
and translation tasks. In the International Workshop on Spoken Language Translation
(IWSLT) 2015 competition (Cettolo et al. 2015),7 an NMT system outperformed a
number of PBSMT systems. Bentivogli et al. (2016) compare and analyse the overall
translation quality as well as the translation errors of NMT and PBSMT systems for
English → German based on data from the IWSLT 2015 competition (Cettolo et al.
2015). Their results show that NMT is better than all four different SMT systems on
all investigated criteria: (i) higher automatic scores (in terms of BLEU); (ii) lower

5 F-measure, BLEUandTERare algorithms for quality evaluation ofMTsystems, typically used to estimate
fluency, adequacy and extent of translation errors (cf. Way 2018b for more details).
6 We consider tokenization and cleaning as general preprocessing steps; word segmentation (e.g. Byte Pair
Encoding (BPE): Sennrich et al. 2016) is an NMT-specific pre-processing step.
7 http://workshop2015.iwslt.org/.
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morphological, lexical and reordering (especially, verb reordering) errors; and (iii)
reduced post-editing effort.

Despite the thoroughness of their analysis and the significance of their results, Ben-
tivogli et al. (2016) compare systems trained and tuned on different data. In particular,
the English→German phrase-based SMT system they analyse (Ha et al. 2015) is built
with TED talks, EPPS, news commentary,8 and CommonCrawl data; the NMT system
they compare to (Luong and Manning 2015) is a pre-trained NMT system that was
further improved with data provided by the IWSLT2015 organizers. Furthermore, the
PBSMT system was provided with 2.4 billion tokens of monolingual data to improve
the language model. In contrast, our work compares PBSMT and NMT trained on
exactly the same data; we scored our systems and performed side-by-side comparison
on the same test sets as well.

SMTandNMTsystems have also been extensively compared by Junczys-Dowmunt
et al. (2016). The authors investigate the BLEU scores of multiple NMT and SMT
systems for 10 languages and 30 language directions trained on the United Nations
Parallel Corpus v1.0 (Ziemski et al. 2016). Their NMT systems outrank SMT for
all but three cases: French → Spanish (the BLEU score for PBSMT is 1.16 points
higher than for NMT), French→ English (the BLEU score for the hierarchical system
Hiero (Chiang 2005) as implemented in Moses is 1.15 points higher than their initial
NMT system; after additional training, the BLEU score for NMT is 1.13 points higher
than Hiero) and Russian → English (the BLEU score for the hierarchical system is
respectively 1.32 and 0.75 points higher than the initial NMT system and the one with
additional training).9 On an NVIDIA GTX 1080, their NMT systems were initially
trained for 8 days; for the language pairs that include English, an additional training
of 8 days (16 days in total) was performed.

One of the largest providers of MT services (both public and commercial)—
Google—has presented their NMT (Google NMT or GNMT) approach and compared
it to PBSMT as well as to human translation (Wu et al. 2016). They score their
GNMT models using tokenized BLEU and compare them to PBSMT models. They
also report results from a three-way side-by-side evaluation by human translators:
evaluators are asked to score translations from (i) Google’s production PBSMT sys-
tems, (ii) the GNMT models, and (iii) human translators fluent in both the source
and target languages. The reported results, although quite disputed,10 provide once
again empirical evidence that NMT quality is generally higher than that of PBSMT.
The GNMT systems follow a rather optimised implementation of the sequence-to-
sequence model (Sutskever et al. 2014) with attention mechanism (Bahdanau et al.
2015) trained on 96 NVIDIA Tesla K80 GPUs. Each model was trained for approxi-
mately 6 days, and then refined for approximately 3 days (9 days in total). For training,
36 million parallel sentences for English → German and 5 million parallel sentences
for English → French were used.

8 http://www.casmacat.eu/corpus/news-commentary.html.
9 BLEU scores are presented in the range of 0–100.
10 In http://kv-emptypages.blogspot.ie/2016/09/the-google-neural-machine-translation.html the author
argues against the generalizability of the results and the appropriateness of the evaluations performed.
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Another comparison between NMT and other MT paradigms was presented in
Crego et al. (2016). This work investigates the quality (scored in terms of BLEU
as well as human evaluation) of NMT systems, PBSMT, rule-based MT and human
translation (from both professional and non-professional translators); moreover, an
error analysis is presented. Although their NMT systems outperform PBSMT and
rule-based MT, they still cannot surpass the quality of translations produced by the
human translators employed in the experiment.

In Castilho et al. (2017) the authors investigate the performance of PBSMT and
NMT systems for three use-cases and domains: (i) MT for the e-commerce domain,
(ii) MT for the patent domain, and (iii) MT for the EU-funded TraMOOC (Translation
for Massive Open Online Courses) project.11 They compare automatic metrics as well
as human evaluation. Their work investigates in what scenarios NMT systems cannot
outperform otherMT solutions. It is interesting to note that in one of their experiments,
while the automatic metrics they analysed show that two NMT systems are outper-
formed by the PBSMT one, the adequacy score, as judged by human evaluators, for
one of the NMT systems is on a par with the adequacy for the PBSMT system. This
fact indicates a gap between automatic metrics and human evaluation.

The work of Klubička et al. (2017) also performs an in-depth comparative analysis
of PBSMT and NMT systems for the English-Croatian language pair. They use the
same data (4,786,516 sentence pairs) to train PBSMT, factored PBSMT and NMT
systems. They train language models of the PBSMT systems using additional mono-
lingual data. Furthermore, the NMT system is trained for 10 days and an ensemble
of the 4 best NMT models (judged according to BLEU) is used for decoding. The
presented results show that NMT output is generally judged to be of better quality—
not only according to automatic measures, but also having far fewer errors as well as
being more fluent and containing more grammatical language—which corroborates
other research on the topic of NMT and PBSMT comparison.

The current work extends the work presented in Shterionov et al. (2017) by (i)
analysing other automatic metrics than BLEU, i.e. F-measure and TER, and (ii) pre-
senting our findings about post-editing productivity.

3 Quality metrics for (N)MT

3.1 BLEU

BiLingual Evaluation Understudy (BLEU) (Papineni et al. 2002) is the most widely
used quality evaluation metric for MT systems. The correlation between BLEU scores
and human judgment of MT translations has been extensively researched. The work
of Papineni et al. (2002), Agarwal and Lavie (2008), and Farrús et al. (2012), among
others, show that BLEU scores do highly correlate with human judgment; others
such as Callison-Burch et al. (2006), Chiang et al. (2008), and Smith et al. (2016)
argue about the shortcomings of the metric and its inability to capture the actual
quality dimensions of the translation output and present improvements or variations

11 http://tramooc.eu.
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to overcome these shortcomings. However, BLEU dominates other metrics mainly
because it is language-independent, very quick and has proven to be the best metric
for tuning PBSMT models (Cer et al. 2010).

BLEU measures the precision of an MT system computed through the compari-
son of the system’s output and a set of ideally correct, and usually human-generated
reference translations. The BLEU algorithm counts the number of matching n-grams
(typically n ∈ {1, .., 4}) and computes a weighted average. That is, the more n-gram
matches between a translation and the references, the higher the score. Lower values
of n capture lexical coverage of the translation; the higher values of n reflect the word
order. The relevant factors for computing BLEU scores are thus: (i) translation length:
a correct translation matches the reference in length; (ii) translated words: the words
in a correct candidate translation match the words in the reference; (iii) word order:
the order of words in a correct candidate translation and in the reference is the same.

While BLEU was initially proposed as a document-level metric, later adaptations
present sentence-level BLEU (Chen and Cherry 2014). BLEU scores range between
0 (or 0% – lowest quality = completely unrelated to the reference) and 1 (or 100% –
highest quality = same as the reference).12

3.2 TER and F-measure

Webriefly outline themechanics of F-measure (Melamed et al. 2003) andTER (Snover
et al. 2006). Similar to BLEU, we look into the factors that lead to high scores.

F-measure is the harmonic mean of the precision and the recall of a system. Similar
to BLEU, it is concerned with the comparison of candidate translations to a set of
reference translations at the n-gram level. Precision is the fraction of the number of
correctly translated n-grams to the total number of translated n-grams; recall is the
fraction of the number of correctly translated n-grams to the total number of reference
n-grams. Typically, F-measure is computed based on unigrams, i.e. words or tokens.13

That is, F-measure is concerned with the correctly translated words regardless of their
order.

TER estimates the effort needed to edit a translation to match a reference. The TER
score is computed as the minimum number of complete-word edits (such as insertions,
deletions and shifts) normalized by the average length of the sentences. Factors for a
high F-measure score as well as for TER are the length of the translated sentence and
the correct word choice.

We present our empirical results and analysis using these metrics in Sect. 4.

3.3 Conformity with n-gram evaluation metrics

In PBSMT, phrase-level (n-gram) translations are arranged in a specific order thatmax-
imises the sentence-level translation likelihood. The phrase-level translations originate

12 Few translations will attain a score of 1 unless they are identical to a reference translation. Even trans-
lations by professional translators will not necessarily obtain a BLEU score of 1.
13 Character-based F-measure was also shown to correlate well with human judgment (Popović 2015).
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from the translation model represented by the phrase-table; the language models, typ-
ically operating also at phrase-level, determine the word-order and affect the word
choice in order to maximise the translation likelihood. If an n-gram cannot be trans-
lated, usually the original text is transferred. The phrase length n for both the translation
and language models is selected to optimise the translation quality/efficiency ratio and
is usually 7 and 5, respectively.

NMT systems operate differently from PBSMT. A typical encoder–decoder sys-
tem (Cho et al. 2014; Sutskever et al. 2014) would generate a sentence translation
based on the complete sequence of tokens from the source sentence, as well as all pre-
ceding translated tokens from the current sentence. That is, NMT translations are not
bound by the limits of n-grams and can substantially deviate from a reference accord-
ing to translation length and word order. Furthermore, to tackle out-of-vocabulary
issues and reduce vocabulary size, it is customary to build NMT systems on subword
units (Sennrich et al. 2016) or even characters (Chung et al. 2016). This would pro-
vide the network with greater flexibility and allow it to extend beyond exact words
or phrases from the training data. However, the generated words may not exist in the
training data (although the subword units they are composed of do) and may even
even be (linguistically) incorrect. Word embeddings14 used to encode (semantically)
similar words as vectors with smaller distance and dissimilar words as vectors with
larger distance may also affect the word choice in the translation. For these reasons,
although representing a correct translation, NMT output may also deviate significantly
from the reference according to word choice. In Example 1, we illustrate how NMT
generates a correct sentence that deviates significantly from the reference.

In sum, while in PBSMT n-gram (with 1 < n < 7) translations are combined in a
sentence that is optimised according to translation length, translated words and word
order with respect to the training data, NMT output may deviate from any reference
when it comes to the same factors. As such, PBSMT translations conform with the
factors for F-measure, BLEU and TER better than NMT translations do.

Example 1 An NMT translation with low BLEU score that is better (as judged by
human evaluators) than a PBSMT one with a higher BLEU score.
Source (EN) All dossiers must be individually analysed by the ministry responsible
for the economy and scientific policy.
Reference (DE) Jeder Antrag wird von den Dienststellen des zuständigen Ministers
für Wirtschaft und Wissenschaftspolitik individuell geprüft.
PBSMT Alle Unterlagen müssen einzeln analysiert werden von den Dienststellen des
zuständigen Ministers für Wirtschaft und Wissenschaftspolitik. BLEU: 55.82%
NMT Alle Unterlagen müssen von dem für die Volkswirtschaft und die wis-
senschaftliche Politik zuständigen Ministerium einzeln analysiert werden. BLEU:
3.21% ��

The BLEU scoring mechanism relies on sentence length, word order and word
matching between translation output and reference, as noted earlier. In Example 1, the
PBSMT translation has a sentence length of 16, closer to the length of the reference
(15) than the NMT translation (17). Furthermore, the PBSMT translation has more

14 See e.g. https://deeplearning4j.org/word2vec.html.
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n-grams in common with the reference, e.g. von den Dienststellen des zuständigen
Ministers für Wirtschaft und Wissenschaftspolitik.; the NMT translation, in contrast,
has no 4-gram, 3-gram nor 2-gram phrases in common with the reference; common
unigrams are von, für, und and zuständigen leading to the aforementioned score of just
3.21% BLEU. Nonetheless, during the evaluation, the NMT translation of Example 1
was preferred over the PBSMT output, i.e. it was judged to be of higher quality by all
three of our evaluators.

Our hypothesis is that F-measure, BLEU and TER underestimate the quality of
NMT systems. That is, F-measure, BLEU and TER correlate better with human judge-
ment of the quality of PBSMT than ofNMT systems. In Sect. 4, we empirically support
this hypothesis. We ought to note that we focus on sentence-level BLEU, F-measure
and TER which has the granularity that suits our sentence-by-sentence comparison.
In our examples and experiments we present BLEU scores computed with the script
provided together with the Moses toolkit.15

Previous research has challenged the reliability of BLEU also for SMT systems.
A complete discussion of the metrics’ shortcomings is given in Callison-Burch et al.
(2006) and Smith et al. (2016). However, to the best of our knowledge, our research
is the first to question the reliability of BLEU for NMT systems (cf. also Way 2018a).

4 Comparing NMT to PBSMT output

4.1 PBSMT and NMT pipelines

For the present work, we employ KantanMT, a cloud-basedMT platform which deliv-
ers MT services individually to each user. A user can create, customise and exploit
their own MT engine(s)16 within a secure environment.17 Typically, a user creates an
engine from scratch; in case their data is not sufficient to train an engine with good
performance, additional data can be added, or a pre-built engine can be retrieved from
KantanMT’s data banks.

The training pipeline for both NMT and PBSMT engines follows the same architec-
ture: 1. Instance setup hardware is allocated, software is set up: and data is downloaded;
2. Data pre-processing: data is converted to a suitable format, cleaned and partitioned
for training, testing and tuning; for NMT the required dictionaries are prepared; 3.
Building of models: for PBSMT, translation, language and recasing models are built;
for NMT an encoder–decoder model is built; 4. Engine post-processing: the engine is
evaluated, optimised and stored for future use. Figure 1 illustrates these steps.

To train PBSMT models, the KantanMT pipeline uses Moses 2.1 with default
settings and a lexicalised reordering model with a distortion limit of 6 words. We
use monolingual data extracted from the target side of the parallel corpus to build a

15 https://github.com/moses-smt/mosesdecoder/scripts/generic/multi-bleu.perl.
16 An MT engine refers to the package of models (translation, language and recasing models for PBSMT,
and an encoder–decoder model for NMT) as well as to the required rules and dictionaries for pre- and
post-processing.
17 KantanMT provides both cloud-based and on-premise solutions.
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Prepare FS

Install SW
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Data preprocessing
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Store
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Fig. 1 KantanMT training pipeline for PBSMT and NMT engines. FS file system, SW software, NMT
neural machine translation, LM language model, RM recasing model, TM translation model

5-gram language model.18 For word alignment, we use fast_align (Dyer et al. 2013),
following experimentation described in Shterionov et al. (2016). Tuning is performed
using MERT (Och and Ney 2003) with a maximum of 25 iterations.

For NMT, we employ the OpenNMT toolkit (Klein et al. 2017). A single NMT
model is trained on one NVIDIAG520 GPUwith 4GBRAM. As a learning optimiser,
we use Adam (Kingma and Ba 2014) with a learning ratio of 0.0005. Within the scope
of this study, we impose the following training limits: minimum number of training
epochs is 3; maximum training time is 4 days; we consider a model to be fit for
evaluation if its perplexity is below 3 at the end of training. One exception, English
→ German, has a perplexity of 3.02 at the end of the fourth day; we ought to note
also that the English → Chinese engine achieved perplexity of 2 on the first day after
only 2 training epochs; due to the low validation perplexity score the training was
terminated at that point.

For data in Chinese, Japanese, Korean or Thai, KantanMT’s pipeline uses dictio-
naries based on character-by-character segmentation (Chung et al. 2016). For other
languages, we use dictionaries built from word-subunits. These subunits are gener-
ated from the training data using byte-pair encoding (BPE) with 40,000 operations.
We prepare the dictionaries from true-cased (i.e. lower- and upper-case) tokenised
data, which revokes the requirement for a recasing model.

The setup mentioned above was determined to optimise the trade-off between
quality of NMT engines and training time via a number of experiments during the
implementation and initial evaluation of KantanMT’s NMT pipeline. In particular, we
observed that engines that reach a validation perplexity of (approximately) 3 within
the first 3 epochs would improve insignificantly if left to train for longer.19

18 Typically additional monolingual data is employed to train the language model of a PBSMT engine.
While we acknowledge that monolingual data, among other optimisations, may improve a PBSMT engine,
within the scope of this work we keep the same-data assumption. That is, we do not employ any other
data except for the parallel corpus provided. This requirement is vital when trying to answer the question:
“When a user has at their disposal a set of parallel data, which of the two paradigms is preferable to train:
PBSMT or NMT?”.
19 Expressed in terms of increases in BLEU and F-measure and decreases in TER, as well as according to
internal human evaluation.
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Table 1 Details about the data used for experiments

Lang. pair Sent. count Word count Dict. size Domain

EN–DE 8,820,562 110,150,238 859,167 Legal/medical

EN–ES 3,681,332 44,917,583 752,089 Legal

EN–IT 2,756,185 35,295,535 765,930 Medical

EN–JA 8,545,366 87,252,129 676,244 Legal/technical

EN–ZH 6,522,064 84,426,931 956,864 Legal/technical

Our decision to set a training limit of four days is also guided by economic and
practical reasons related to KantanMT’s MT development process time restrictions.
In particular, the MT development process has a (maximum) duration of six weeks
and includes: (i) data preparation/cleaning, (ii) engine creation and training with data
augmentation (3 iterations), (iii) translation and linguistic evaluation with engine
retraining, and (iv) engine deployment. Training an engine for more than four days
would disrupt the structure of this process and may impose further delays in a large-
scale translation project. Furthermore, it is also economically inviable.

4.2 Data used

We built five NMT and five PBSMT engines for the following language pairs: English
→German (EN–DE), English→Chinese (EN–ZH),20 English→ Japanese (EN–JA),
English→ Italian (EN–IT), and English→ Spanish (EN–ES). For each language pair,
both the PBSMT and the NMT engines were built using strictly the same data set. By
keeping identical training, test and tuning data sets from one engine to another, we can
give amore informative comparisonof thePBSMTandNMTengines and their outputs.
Details about the data used in our experiments are given in Table 1. The data comprises
parallel translation memories in the legal, medical and technical domains, acquired
from the European Commission (DGT)21 and from Opus.22 Prior to training, the data
was cleaned and normalised, i.e. duplicates were removed. Untranslated segments and
segments made of special characters were also removed. Segments of low linguistic
qualitymay introduce noise to the engine and decrease its translation ability. Examples
include segments entirely composed of product numbers, markup, file path names, and
others. For such cases it is preferable to ignore them during engine training, but create
a terminology table that would provide desired ‘translations’ if required.

We selected these language pairs and domains for the following reasons:

– EN–DE is a language pair that is hard for PBSMT to deal with. The major issue
is word reordering.

20 By Chinese, we mean Simplified Mandarin Chinese.
21 https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory.
22 http://opus.lingfil.uu.se/.
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Table 2 Evaluation scores (in %), training time (T ) in hours and perplexity (P) (only for NMT)

Lang. pair PBSMT NMT

F-measure↑ BLEU↑ TER↓ T F-measure↑ BLEU↑ TER↓ P T

EN–DE 62.00 53.08 54.31 18 62.53 47.53 53.41 3.02 92

EN–ES 71.53 54.78 41.87 9 69.41 49.24 44.89 2.59 71

EN–IT 69.74 56.98 42.54 8 64.88 42.00 48.73 2.70 83

EN–JA 80.04 63.27 43.77 9 69.51 40.55 49.46 1.89 68

EN–ZH 77.16 45.36 46.85 6 71.85 39.39 47.01 2.00 10

– EN–JA and EN–ZH are two other language pairs that are hard for PBSMT, but
they also require different word segmentation when training the corresponding
NMT engines: BPE for the English side of the corpus and SCN (single character
n-gram, cf. Chung et al. 2016) for the Chinese/Japanese side.

– EN–ES and EN–IT are two language pairs for which PBSMT performs typically
very well.

– For all engines we have used legal, medical or technical data which typically
contains specific terminology.

4.3 Evaluation

4.3.1 Quality evaluation metrics

Table 2 shows the scores of the quality evaluation metrics we use (F-measure, BLEU
and TER) for both PBSMT andNMT engines.We also show the training time in hours;
for the NMT engines, each model’s perplexity on the test set is also given.

4.3.2 Side-by-side comparison

We set up a side-by-side (or A/B test) project with KantanLQRTM, an online quality
evaluation tool with ranking capabilities. For the test, human evaluators compared
200 segments translated using the PBSMT and NMT engines described above. The
test sets did not contain any duplicates.23 The evaluation was performed by three
evaluators per language pair, all of whom were native speakers of the language they
evaluated, i.e. the target language. All evaluators were translation studies students
recruited from five different universities in Europe, holding certificates of English
proficiency or attending courses taught in English. All evaluators of one language pair
had to compare the same segments translated by the two engines (PBSMT and NMT).
Evaluators had no communication with other evaluators.

The test was performed online via the interface of KantanLQR. Each evaluator was
instructed as to how to access the platform and how to perform the test. Each evaluator
was requested to evaluate all test sentences without taking any significant break. Three

23 Training, testing and tuning data was normalised prior to building the MT engines.
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sentences at a time were presented on the screen: Source, PBSMT Translation, NMT
Translation. We denote these sentences as s, tPBSMT, tNMT, respectively. The order
of the sentences tNMT and tPBSMT was randomised according to provenance of MT
output, i.e. tNMT could precede tPBSMT or vice versa. This ensured that the evaluators
did not get used to one style of translation and show a preference towards it. An
evaluator was instructed to first read the original sentence (s) in English, then the two
translation candidates (tNMT or tPBSMT) and then decide which was of better quality
or whether they were of equal quality (either good or bad).

According to the A/B test, each evaluator assigned each translation triplet
(s, tNMT, tPBSMT) to one of three classes: PBSMT = NMT if the quality of the two
translations was the same; PBSMT > NMT if the quality of the PBSMT translation
was better than the NMT translation; PBSMT < NMT if the quality of the NMT trans-
lation was better than the PBSMT translation. For each evaluator and class, we count
the translation triplets assigned to that class and compute the ratio towards the total
number of entries, i.e. 200. These results together with an average over all evaluators
(per language pair) are presented in Table 3 and visualised in Fig. 2.

To assess the agreement between each three evaluators we compute Fleiss’ kappa
coefficient (Fleiss 1971) (also presented in Table 3 and denoted by κ), which indicates
to what extent evaluators agree with each other above chance. According to Landis
and Koch (1977), the values of κ should be interpreted as follows: κ < 0%—poor
agreement; 0% < κ ≤ 20%—slight agreement; 20% < κ ≤ 40%—fair agreement;
40% < κ ≤ 60%—moderate agreement; 60% < κ ≤ 80%—substantial agreement;
80% < κ ≤ 100%—almost perfect agreement.

We observe that all evaluators scored more of the translations that originate from an
NMTengine better (i.e. being translations of higher linguistic quality and/or expressing
more accurately the meaning of the source sentences) than their PBSMT alterna-
tives. Averaging over all evaluators, the amount of better NMT translations are 18%,
34%, 27%, 38% and 15% more than those PBSMT translations denoted as better
for the EN–DE, EN–ES, EN–IT, EN–JA and EN–ZH language pairs, respectively.
This shows that NMT is always adjudged to be better under the conditions speci-
fied in Sect. 4.1. Moreover, it shows a discrepancy between evaluation metrics and
human judgement of NMT quality. In Sect. 4.3.4 we present our comparative anal-
ysis of the quality evaluation metrics and human judgement of PBSMT and NMT
quality.

We also note that for EN–JA and EN–ZH the inter-annotator agreement (expressed
by the kappa coefficient, 62.65% and 62.68%, respectively) is substantial while for
the other language pairs it is fair to moderate. That is, we can be strongly confident in
the evaluation results for EN–JA and EN–ZH, and still confident in the results for the
other language pairs.

It is also interesting to observe (see Table 3) that for the EN–ZH data, on average
37% of the translations are scored the same and the difference between the scores
for the PBSMT > NMT and PBSMT < NMT is the smallest (average among all
evaluators 15%); in general, for this language pair, the NMT engine is not evaluated as
high as the others. As noted earlier, this engine was trained quite quickly as it reached
a low training perplexity that allowed the training process to terminate at an early
stage. While further investigation regarding whether additional training would lead to
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Fig. 2 Average scores of the side-by-side human evaluation for each language pair and total average for
the complete set of experimental engines

improving these scores is required, we stress the importance of training iterations or
epochs for an NMT engine.

4.3.3 Productivity

To further assess the comparative quality of our NMT and PBSMT engines we con-
ducted a productivity experiment. Similar to the side-by-side evaluation, we employed
three translators for each language pair with the same background as for the A/B tests.
Each translator was requested to: (i) manually translate 50 sentences into English, (ii)
to post-edit PBSMT output, and (iii) to post-edit NMT output. The test set for (i) was
extracted from data used to train our engines so that it is in the same domain and style
as the other test sets. The test set for (ii) is composed of the PBSMT translations judged
by the human evaluators in our AB tests to be better than the NMT ones together with
randomly selected PBSMT translations from the PBSMT = NMT category (where
both PBSMT and NMT quality was judged the same). Similarly, the test set for (iii) is
composed of the NMT translations judged in the AB test to be better than the PBSMT
ones together with the translations from the PBSMT = NMT category that were
not yet selected for (ii). We then measured the time to perform the requested task:
(htrans—time for translation; hpe−−PBSMT—time for post-editing PBSMT output; and
hpe−NMT—time for post-editing NMT output) and counted the number of words that
were processed: either produced by translating the English sentences, or reviewed
in the post-editing tasks (wtrans, wpe−PBSMT and wpe−NMT, respectively). We then
calculated the productivity rate as words per hour: wY

hY
, for Y ∈ {trans, pe-PBSMT,

pe-NMT}. Our results are presented in Table 4.
From Table 4 we first notice that both post-editing PBSMT and post-editing NMT

are more productive than human translation per se, which conforms with previous
research. Second, the majority of translators are more productive when post-editing

123



Human versus automatic quality evaluation of NMT and PBSMT 231

Table 4 Words per hour for translating (trans), post-editing PBSMT (pe-PBSMT) or post-editing NMT
(pe-NMT) output performed by human translators

Lang. pair Trans pe-PBSMT pe-NMT

H1 H2 H3 Avg. H1 H2 H3 Avg. H1 H2 H3 Avg.

EN–DE 522 622 807 650 1641 1331 2016 1663 1989 2192 2923 2368

EN–ES 410 741 766 576 1264 2589 1754 1869 1425 2849 1097 1790

EN–IT 559 493 432 495 956 1046 560 854 1338 1173 682 1064

EN–JA 304 166 261 243 538 203 569 437 644 235 812 564

EN–ZH 368 129 245 247 1100 434 550 695 886 302 605 597

In bold font are the highest rates for each translator and language pair. H1, H2 and H3 denote the human
evaluators

NMT output, with the exception of the EN–ZH NMT engine. We already noted that
the training of this engine was terminated earlier when it reached low perplexity,
but possibly not the highest possible quality. However, we exploit this shortcoming
to express a particular observation. Consider the entries for the EN–ZH entries in
Table 3 and Fig. 2. While all three evaluators scored NMT output better than PBSMT,
Table 4 shows that translators’ productivity is higher when post-editing PBSMT. This
indicates that NMT leads to errors that are harder to correct while the output may seem
of higher quality. While the work presented in Bentivogli et al. (2016), Crego et al.
(2016), Castilho et al. (2017), and Klubička et al. (2017)—as well as the papers in
this volume—conducts an in-depth analysis of the translation errors, in the future we
aim to further look into this phenomenon and, similar to Daems et al. (2017), analyse
the correlation between errors from NMT translations and productivity. Third, the fact
that the majority of translators are more productive when post-editing NMT output
supports our hypothesis that automatic scores underestimate NMT quality.We address
this in more detail in the next section.

4.3.4 Underestimation of NMT output quality by evaluation metrics

We focus on the data from the A/B test and use it to analyse to what extent F-measure,
BLEU and TER underestimate NMT quality as compared to human judgement. This
analysis aids in supporting our hypothesis that current automatic evaluation metrics
underestimate NMT quality.

For each language pair,we selected the set of triplets (s, tNMT, tPBSMT) forwhich the
translation produced by the NMT engine was considered of better quality by all three
evaluators. Let us denote their count as dPBSMT<NMT. Then, from this set we counted
the number of translations with F-measure and BLEU scores lower and a TER score
higher than their PBSMT counterparts (i.e. the PBSMT translation is scored as better).
Let us denote these numbers as dFMPBSMT>NMT, d

BLEU
PBSMT>NMT and dTERPBSMT>NMT. For

each of these we then computed the fraction
dXPBSMT>NMT
dPBSMT<NMT

(for X ∈ {FM,BLEU,TER}).
Weperformed the same check for the PBSMTcandidates thatwere considered of better

quality by the three evaluators, i.e. we computed the fraction
dX
PBSMT<NMT

dPBSMT>NMT
(for X ∈

{FM,BLEU,TER}). We present the underestimation ratios as percentages in Table 5.
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Table 5 Underestimation of quality evaluation scores

Lang. pair F-measure BLEU TER

PBSMT (%) NMT (%) PBSMT (%) NMT (%) PBSMT (%) NMT (%)

EN–DE 4 52 8 52 8 41

EN–ES 6 52 12 53 6 37

EN–IT 13 40 20 40 13 28

EN–JA 0 61 0 65 0 44

EN–ZH 20 38 20 35 20 28

Average 9 49 12 49 9 38

The lower the underestimation score, themore accurate (judged according to human
evaluators) the evaluation metric expresses the quality of anMT engine. From Table 5,
we observe that the percentage of underestimated sentences for NMT is higher than
for PBSMT for all three metrics. Most significantly, this phenomenon is expressed
for the BLEU and F-measure metrics, and furthermore for all language pairs (49%
for each). That is, we can say that BLEU and F-measure are more suitable to predict
the human judgements of quality in an AB test for PBSMT engines rather than for
NMT engines. The TERmetric has the lowest underestimation for NMT engines (only
38% on average). As such, we can consider TER to express the quality of an NMT
engine the closest to human judgment. The closer TER underestimation scores for
PBSMT and NMT arise from the fact that TER is not strictly based on the n-gram
correlation between reference and translation sentences, but it considers the number of
edits between the reference and translated sentences (shifts, insertions or deletions).
As such TER scores of NMT quality correlate better with human judgement than
BLEU and F-measure.

It is also interesting to highlight that EN–JA does not have any underestimated
scores for PBSMT, but it is the highest underestimated language pair (according to all
three metrics) in the NMT case. On average, the underestimation of F-measure, BLEU
and TER for our NMT engines and our test sentences amounts to 49%, 49% and 38%.
That is, we can say that on average, 49%, 49% and 38% of the NMT translations
with F-measure, BLEU and TER scores worse than for their PBSMT counterparts are
actually judged by the human evaluators as better.

This analysis shows that quality evaluation metrics based on n-grams do behave
differently for PBSMT and NMT engines. It supports our hypothesis stated in Sect. 3
that F-measure, BLEU and TER underestimate NMT quality. Furthermore, it shows
that these metrics correlate better with human judgement of the quality of PBSMT
than of NMT systems.

5 Conclusions and future work

In this work, we analysed the NMT and PBSMT systems of a commercial MT
platform—KantanMT. We trained four NMT and four PBSMT engines on the same
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data and under a time limitation that would allow for a large-scale translation devel-
opment with no delays. We then compared the quality evaluation scores (F-measure,
TER and BLEU) of these engines with human evaluation.While the quality evaluation
scores indicate that the PBSMT engines perform better, human reviewers show the
opposite results, i.e. that NMT outperforms PBSMT. The human reviewers, all native
speakers of the evaluated language pairs, ranked the quality of theNMT engines higher
than that of PBSMT in all cases. While these results are in agreement with previous
research, we show that F-measure, BLEU and TER scores do not always conformwith
NMT quality, as determined by human experts. Rather, they underestimate NMT qual-
ity. We performed an extensive empirical evaluation on the three quality evaluation
metrics and confirmed our hypothesis. We also conducted a productivity test, mea-
suring the time for translating, post-editing PBSMT and post-editing NMT outputs.
This experiment shows that the majority of translators are most productive when post-
editing NMT output. These results further support our hypothesis that n-gram-based
metrics correlate better with human judgement of the translation quality of PBSMT
systems than of NMT ones.

In the future, we plan to perform quality ranking of other language pairs, including
more challenging ones, e.g. Baltic or Indian languages. Furthermore, we intend to
measure the quality of the NMT output in comparison to the quality of the PBSMT
output to observe whether the difference is significant and whether it varies depending
on the language pairs. Given the current differences in terms of setup and cost between
PBSMT and NMT, this information is essential for MT users in a commercial envi-
ronment.
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