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Abstract Differences in domains of language use between training data and test
data have often been reported to result in performance degradation for phrase-based
machine translation models. Throughout the past decade or so, a large body of work
aimed at exploring domain-adaptation methods to improve system performance in the
face of such domain differences. This paper provides a systematic survey of domain-
adaptation methods for phrase-based machine-translation systems. The survey starts
out with outlining the sources of errors in various components of phrase-based mod-
els due to domain change, including lexical selection, reordering and optimization.
Subsequently, it outlines the different research lines to domain adaptation in the liter-
ature, and surveys the existing work within these research lines, discussing how these
approaches differ and how they relate to each other.

Keywords Statistical machine translation · Domain adaptation · Survey

1 Introduction

Machine translation (MT) systems are often applied in settings where the test data
might be sampled from a distribution that differs from the training data, usually due to
different domains of language use. This domain mismatch between training and test
data often leads to performance degradation, usually due to lexical differences between
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the domains.When aword in the test data is found in the training data, its most suitable
translation in the test domain might be different from that in the training domain. For
example, when translating from English to Russian, the most natural translation for
the word ‘code’ would be ‘xifr’ (‘cipher’), ‘zakon’ (‘law’) or ‘’ (‘program’) if we
consider cryptography, legal and software development domains, respectively. Given
parallel training data originating from one of those domains, training an MT system
on the data would produce a rather suboptimal translation for the other domains.

Surprisingly, degradation in translation quality is observed even when we train an
MT system on large heterogeneous corpora such as EuroParl (Koehn 2005),1 Common
Crawl Corpus,2 UNCorpus,3 and News Commentary4 (Shah et al. 2012; Carpuat et al.
2014; Cuong et al. 2016b). For instance, Axelrod et al. (2011) show that when it comes
to a domain-specific task, a small percentage of well-selected data can outperform the
full heterogeneous dataset for training MT systems (Biçici and Yuret 2011; Poncelas
et al. 2017). Shah et al. (2010) show that it would benefit from training word alignment
with weighting sentence pairs according to their relevance to a domain-specific task.

In this paper, we provide a comprehensive survey of domain adaptation for statis-
tical machine translation (SMT), aimed particularly at phrase-based systems (Koehn
et al. 2003). A very basic question is what constitutes a domain? There are different
definitions in the literature, for example:

– The ‘provenance’ of the training data (Foster and Kuhn 2007; Moore and Lewis
2010; Sennrich 2012);

– The difference of words and grammars between corpora (Pecina et al. 2012);
– The thematic content in the training data, such as topic (Hasler et al. 2014; Hu
et al. 2014);

– A particular combination of many factors: genres, topics, dialects and writing
styles (Chen et al. 2013a).

We do not aim to find the best answer, as the concept of domain is still an open question
and has not been well-defined in the literature (see Van Der Wees et al. (2015) for a
discussion).We rather provide a systematic overviewof previous approaches to domain
adaptation, showing their advantages/disadvantages, as well as how they relate to and
differ from each other.

The survey is organized as follows. We first introduce SMT in general, with a focus
on aspects of SMT relevant to domain adaptation (Sects. 2, 3).5 The survey identifies
components that need to be adapted when an SMT system is applied to new domains
(Sect. 4). We explain what may go wrong in translation by analyzing potential sources
of translation errors and providing an explanation as to why each specific type of error
may happen.

1 See Ozdowska and Way (2009) for a clear demonstration that building MT systems with more EuroParl
data does not always lead to better translation results.
2 http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz.
3 http://www.statmt.org/wmt13/training-parallel-un.tgz.
4 http://www.statmt.org/wmt15/training-parallel-nc-v10.tgz.
5 Readers may refer to Lopez (2008) or Koehn (2010) for a comprehensive survey of SMT in general.
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Subsequently, we present a general picture of domain adaptation for SMTwhere we
outline the main general approaches (Sect. 5). A major part focuses on the induction
(Sect. 6) and combination (Sect. 7) of domain-focused phrase translation tables, lexical
weights and reordering probabilities. The induction of domain-focused sparse features
and word-alignment probabilities are discussed in Sects. 8.1 and 8.2.

Finally we also cover several practical adaptation scenarios, including adapting an
existing system to multiple specific domains at the same time (Sect. 8.3). Another
scenario addressed in (Sect. 8.4) is embedding an SMT system into a Cross-lingual
Information Retrieval (CLIR) system (i.e. automatically translating queries into dif-
ferent languages, so that a search engine can return search results in the corresponding
languages). We also discuss how web-based translation services such as Bing Trans-
lator6 and Google Translate7 can be improved when the domain of a new request is
not known in advance. Specifically, we cover cache-based adaptive models (Sect. 8.5)
and rewarding domain invariance for adaptation (Sect. 8.6).

2 Statistical machine translation

In SMT, we aim to translate a source (foreign) sentence f into a sentence in the target
language e. Among the target translation hypotheses, the translation hypothesis ê with
the highest probability given the source sentence is selected, as in (1):

ê = argmaxe{P(e| f)} = argmaxe{P(e)P(f| e)}. (1)

This approach to modeling translation is referred to as the noisy-channel framework.
The architecture of the framework includes two components: the translation model
(i.e. P(f| e)) and the language model (i.e. P(e)).

A more powerful approach exploits a log-linear formulation, more formally, where
the posterior probability P(e| f) is modeledwith a set ofM feature functionsφ(e, f) =
{φ1(e, f), . . . , φM (e, f)} with model parameters w = {w1, . . . , wM } as in (2):

P(e| f) ∝ exp(w · φ(e, f)). (2)

Under this framework, we obtain the decision rule in (3):

ê = argmaxew · φ(e, f). (3)

The decision rule is simple as we can safely ignore the daunting normalization factor.
The model was first proposed by Och and Ney (2002), forming the basis of phrase-

based SMT systems. It is straightforward to see that this framework contains the
noisy-channel framework as a special case. Its advantage lies in its flexibility, relative
to the noisy-channel framework, as one can extend a basic SMT system containing
translation and language models by including arbitrary feature functions of the source

6 https://www.bing.com/translator/.
7 https://translate.google.com.
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and the target sentences. There are many possibilities for defining feature functions
that help the SMT system to improve translation, such as linguistic features, word
and phrase penalties, reordering features, and rule counting. Simply adding feature
functions from the target to source language also often improves translation.

Learning themodel parametersw = {w1, . . . , wM }) using a held-out development
set is crucial to improving translation quality. In principle, training for log-linear
models can be done using maximum likelihood or related criteria (e.g. cross-entropy,
perplexity). Such an objective function is convex, and global optimization is possible.
The main difficulty, however, is that we need to compute the normalization factor
during learning. This is intractable, aswe cannot explore the full space of all translation
hypotheses for each translation input. In practice, the normalization factor is computed
using an N -best list of top-N translation hypotheses or a lattice (Macherey et al. 2008).8

Optimizing anSMTsystemusingmaximum likelihood or related criteria has a loose
relation to the translation quality on unseen text (Och 2003). There is a need to directly
incorporate translation accuracy on a held-out development set into the optimization,
now a fundamental part of modern SMT systems. Numerous optimization methods
have been proposed in the literature, such asMERT (Och2003),MIRA (Watanabe et al.
2007; Chiang et al. 2008; Cherry and Foster 2012), and Pairwise Ranked Optimization
(PRO: Hopkins and May (2011)). Readers may refer to Neubig and Watanabe (2016)
for a comprehensive survey of system optimization methods in general.

The latter SMT framework has two notable shortcomings that make the problem
of domain adaptation for SMT even more challenging:

– First, having more translation features significantly increases the difficulty of the
optimization. Specifically, having more feature dimensions requires a much larger
held-out development set for system optimization, as shown in Waite and Byrne
(2015). This is an issue in domain adaptation for SMT because creating such an
in-domain held-out development dataset is expensive.

– Second, log-linear models try to separate good and bad translation hypotheses
using a linear hyper-plane. This is potentially problematic, as interactions between
domain-specific features can be complex. It may be necessary to perform prepro-
cessing steps over the feature space to produce a feature set that is less prone
to non-linearities (Liu et al. 2013; Clark et al. 2014). However, methods tailored
to such a special treatment are quite sophisticated and not widely deployed in
practice.

3 Phrase-based SMT system

There are many types of translation systems that have been built in the past, for
example:

– Syntax-based translation systems (Yamada and Knight 2001),
– Phrase-based SMT systems (Och and Ney 2002; Koehn et al. 2003),
– Hierarchical phrase-based SMT systems (Chiang 2005, 2007),

8 As a side note, the size of the N -best list does not seem to have a significant impact on adaptation [cf.
Bertoldi and Federico (2009)].
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– Syntactic phrase-basedSMTsystems (Quirk et al. 2005;Quirk andMenezes 2006).

This paper focuses on phrase-based SMT systems (Och and Ney 2002; Koehn et al.
2003).

3.1 Model

A standard phrase-based SMT system has various dense feature functions (i.e. highly
informative feature functions) estimated at phrase level. Three of the most important
translation models are a phrase-based model φT M (e, f), lexical weighting φLW (e, f),
and reordering model φRM (e, f). A common domain-adaptation strategy for SMT is
to directly adapt these models. We thus describe them in detail below.

– Phrase-based model At the core of a phrase-based SMT system is the phrase-
based model, which aims at modeling translation of sentence pairs at phrase level.
Given an input sentence f, let us assume that a sequence of target-language phrases
e = (ẽ1, ẽ2, · · · , ẽn) is currently hypothesized by the decoder. Let us also assume
we are providedwith a phrase alignment a = (a1, a2, · · · , an) that defines a source
f̃ai for each translated phrase ẽi . The model is estimated as in (4):

φT M (e, f) = log PTM (e| f) = log
∏n

i=1
P(ẽi | f̃ai )

=
∑n

i=1
log P(ẽi | f̃ai ) (4)

– lexical weighting The lexical weighting provides smoother estimates for probabil-
ities of phrase pairs. The model is estimated as in (5):

φLW (e, f) = log PLW (e| f) = log
∏n

i=1
P(ẽi | f̃ai , ai )

=
∑n

i=1
log P(ẽi | f̃ai , ai ) (5)

Here, the distribution P(ẽi | f̃ai , ai ) is computed based on lexical probabilities
P(e | f ) between words 〈e, f 〉 in a phrase pair 〈ẽi , f̃ai 〉. Different models
have a slightly different way of computing P(ẽi | f̃ai , ai ). A typical estimate
of P(ẽi | f̃ai , ai ) (Koehn et al. 2003) is as in (6):

P(ẽi | f̃ai , ai ) =
∏|ẽi |

i=1

1

|{ j |( j, k) ∈ ai }|
∑

( j, k)∈ai
P(ẽki | f̃ j

ai ). (6)

Here,
– ẽki : word at position k in target phrase ẽi ,

– f̃ j
ai : word at position j in source phrase f̃ai .

– |ẽi |: length of phrase ẽi
– |{ j |( j, k) ∈ ai }|: the number of source words that each target word at position
k in phrase ẽi aligns to.
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– Reordering model Such phrase-based models and lexical weighting are not meant
for handling word/phrase order phenomena between languages. For state-of-
the-art phrase-based SMT systems, integrating lexicalized reordering models
(Tillmann 2004; Koehn et al. 2007; Galley and Manning 2008) must be con-
sidered. These models estimate the probability of a sequence of orientations
O = (o1, o2, . . . , on) as in (7):

φRM (e, f, O) = log PRM (O| e, f) = log
∏n

i=1
P(oi |ẽi , f̃ai , ai−1, ai−2)

=
∑n

i=1
log P(oi | ẽi , f̃ai , ai−1, ai−2) (7)

Here, each orientation oi takes possible values {M, S, D}, representing how likely
a phrase is to directly follow a previous phrase (Monotone), to swap positions
with it (Swap), or to be not adjacent to it (Discontinous).

Beside these three types of dense translation features, there are also penalties for
word, phrase and distance-based reordering. Those are the basic translation features
that form a phrase-based SMT system (beside the language model).

A phrase-based SMT system can be also augmented with millions of sparse feature
functions (e.g. phrase features (Chiang et al. 2009; Simianer et al. 2012), lexical
features (Watanabe et al. 2007; Chiang et al. 2009), or syntax-based features (Blunsom
and Osborne 2008; Marton and Resnik 2008)). It is possible to induce sparse features
using a large portion of the parallel training data. However, scaling training to large
data requires extensive additional efforts [cf. Yu et al. (2013)]. Models employing
sparse features are often trained using a small held-out development set in practice.

3.2 Training

The most common approach to training a phrase-based SMT system is using relative
frequency estimation. We take phrase translation scores as an example. To compute
P(ẽ| f̃ ), we first count the number of times phrase ẽ aligns to phrase f̃ in the parallel
training data, before normalizing into probability by dividing by the total number of
possible alignments to f̃ , as in (8):

P(ẽ| f̃ ) = c(ẽ, f̃ )
∑

ẽ′ c(ẽ′, f̃ )
(8)

This distribution, however, does not necessarilymaximize the likelihood of the parallel
training data. This is similar to the Data Oriented Parsing (DOP) method (Bod et al.
2003) in parsing, which hypothesizes a distribution over many possible derivations of
each training example from subtrees of varying sizes.

The key to the training is extracting bilingual phrases from bilingual data. The
standard way is to rely on the word-aligned training data, using a heuristic method
such as grow-diag-final-and, grow-diag-final or final (Koehn et al. 2003).
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3.2.1 Word alignment

We now discuss how to create word-aligned training data. Given a parallel sentence,
we look for the most probable alignment between words, â, as in (9):

â = argmax
a

P(f, a| e). (9)

The idea of word alignment can be traced back to Brown et al. (1990). The degree of
difficulty of the search inEq. (9) depends on the underlying independence assumptions.
Even now, over twenty years since the IBMModels (Brown et al. 1993) and the HMM-
based alignment model (Vogel et al. 1996), word alignment is still an active research
topic (Simion et al. 2013; Chang et al. 2014; Tamura et al. 2014; Liu et al. 2015; Shen
et al. 2015; Wang et al. 2015).

We now briefly review the HMM alignment model (Vogel et al. 1996), which is
one of the most popular and widely used alignment models. The generative story of
the model is shown in Fig. 1. The latent states rely on the target-language words and
generate source-language words.

Formally, let us assume the target sentence e contains I words e = (e1, . . . , eI )
and the source sentence f contains J words f = ( f1, . . . , f J ). For an alignment
a = (a1, . . . , aJ ) of the sentence pair 〈e, f〉, the model factors P(f, a| e) into the
word-translation and transition probabilities as in (10):

P(f, a| e) =
∏J

j=1
P( f j | ea j )P(a j | a j−1). (10)

Here, P( f j | ea j ) represents word-translation probabilities and P(a j | a j−1) represents
word-transition probabilities. In practice P(a j | a j−1) depends only on the distance
(a j − a j−1). Note also that the first-order dependency model is an extension of the
uniform dependency model of IBM Model 1 and zero-order dependency model of
IBM model 2. With the HMM alignment model, the most probable alignment â for
each sentence pair can be computed efficiently using the Viterbi algorithm.

The HMM alignment model has two kinds of parameters: word-translation prob-
abilities and transition probabilities. Adapting the expectation maximization (EM)
algorithm (Dempster et al. 1977) for training the model is straightforward (Vogel
et al. 1996). For the sake of completeness we present the algorithm in detail. We use
c( f | e; f, e) to denote the expected count of word e aligning to word f . We also use
c(i | i ′; f, e) to denote the expected counts of two certain consecutive source words

fj−1 fj fj+1

aj−1 aj aj+1

Observed layer (source words)

Latent alignment layer (target words)

Fig. 1 HMM alignment model with observed and latent alignment layers
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E-step

c(f | e; f , e) =
∑

a

P (c)(f , a| e)
P (c)(f | e)

∑J

j=1
δ(f, fj)

∑I

i=0
δ(e, ei) (11)

c(i| i′; f , e) =
∑

a

P (c)(f , a| e)
P (c)(f | e)

∑J

j=1
δ(aj , i)δ(aj−1, i′) (12)

M-step

P (+)(f |e) =
∑

〈f , e〉 c(f |e; f , e)
∑

f

∑
〈f , e〉 c(f | e; f , e)

, P (+)(i|i′) =
∑

〈f , e〉 c(i|i′; f , e)
∑

i

∑
〈f , e〉 c(i| i′; f , e)

(13)

Fig. 2 Pseudocode for the training algorithm for theHMMalignmentmodel. Note that P(c) denotes current
iteration estimates, P(+) denotes the re-estimates and δ denotes the Kronecker delta function. Note that
P(·| ·) = ∑

a P(·, a| ·) which can be computed efficiently using dynamic programming

j and j − 1 aligning to two target words i and i ′, respectively. Figure 2 presents the
algorithm.

Does word alignment suffer from domain mismatch? A domain mismatch could
have a negative impact on word-alignment accuracy, for example:

– Word-alignment models, like any statistical models, suffer from lack of in-domain
data for training (Duh et al. 2010; Shah et al. 2010; Gao et al. 2011).

– The insensitivity of existing word-alignment models to domains often yields sub-
optimal results on large heterogeneous data (Gao et al. 2011; Cuong and Sima’an
2015).

In Sect. 8.2 we discuss this aspect in detail.

3.3 Decoding

Decoding for phrase-based SMT system is a difficult problem. The search can be
done by various approaches, such as beam search (Koehn 2004) or exact decoding
(Chang and Collins 2011; Aziz et al. 2014). Among these competing approaches,
beam search is probably the most popular decoding framework for phrase-based SMT
systems. Starting from an initial hypothesis, given an input string of words, a number
of phrase translations are applied to expand the current hypothesis until all words are
marked as translated.

Beam search heuristically prunes the search space, and as a result, the search is
inexact and search errors can occur as the best-scoring hypothesis is not necessarily
optimal in terms of the given model parameters. Extensive prior work on minimum
Bayes risk (MBR) objectives [cf. Kumar and Byrne (2004)] can potentially mitigate
this issue. MBR methods select translations that are less ‘risky’ by taking the uncer-
tainty in model predictions into account. Sect. 8.6 discusses a link between MBR and
domain adaptation for SMT.
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Table 1 Translation errors on an unseen domain

English–Spanish (task: consumer and industrial electronics)

Input El reproductor puede reproducir señales de audio grabadas en mix-mode cd, cd-g,
cd-extra y cd text

Human translation The player can play back audio signals recorded in mix-mode cd, cd-g, cd-extra
and cd text

SMT output The player can reproduce signs of audio recorded in mix-mode cd, cd-g, cd-extra
and cd text

Input Se puede crear un archivo autodescodificable cuando el archivo codificado se abre
con la contraseña maestra

Human translation A self-decrypting file can be created when the encrypted file is opened with the
master password

SMT output To create an file autodescodificable when the file codified commenced with the
password teacher

Input Repite todas las pistas (únicamente cds de vídeo sin pbc)

Human translation Repeat all tracks (non-pbc video cds only)

SMT output Repeated all avenues (only cds video without pbc)

4 Translation errors when applied to new domains

Applying a phrase-basedSMTsystem to newdomains produces suboptimal translation
in practice, e.g. Newswire (Foster et al. 2013), Medical (Irvine et al. 2013b), Patents
(Wäschle and Riezler 2012), Transcribed Lectures (Federico et al. 2012), Web Blogs
(Su et al. 2012; Foster et al. 2013), TED Talks (Duh et al. 2010; Mansour et al. 2011;
Hasler et al. 2014), Subtitles (Irvine et al. 2013b), or Web Queries (Nikoulina et al.
2012). This section reviews different sources of translation errors when applied to new
domains.

4.1 Lexical selection

Lexical selection appears to be the most common source of errors (Irvine et al. 2013a;
Van Der Wees et al. 2015). We present some examples in Table 1. Here, we train a
standard phrase-based SMT system for English–Spanish on a large dataset combined
frommultiple resources including EuroParl, Common Crawl Corpus, UNCorpus, and
News Commentary. We then apply the system to a new domain of “Consumer and
Industrial Electronics”. As shown in Table 1, incorrect translations are “can reproduce
signs of audio” instead of “can play back audio signals”, “password teacher” instead
of “master password”, “commencedwith” instead of “openedwith” file, and “Repeated
all avenues” instead of “Repeat all tracks”.

An important question is what went wrong with lexical selection, i.e. what made
the phrase-based SMT system suffer from degradation in lexical translation quality on
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Fig. 3 Statistical translation
framework

Bilingual data

Domain-
confused model

Optimization

Decoding

new domains? Twomain different error types that cause the degradation are as follows
(Irvine et al. 2013a)9:

– SEEN/SENSE: an incorrect translation for unobserved source-language words
and an incorrect translation because of known source-language words but with
unobserved target words in the parallel training data.

– SCORE: an incorrect translation for which the system goes for an incorrect trans-
lation path (i.e. incorrect ranking).

The majority of cases where degradation in lexical translation quality is seen are due
to SEEN and SENSE errors. However, it is important to understand that improving
coverage does not necessarily result in better translation quality. This leads to the error
type SCORE, which is perhaps a much harder problem to address.

To provide a better understanding of the SCORE error, let us step back and recon-
sider how SMTmodels are estimated (Fig. 3). Statistical translationmodels are trained
without integrating (likely hidden) domain information of the bilingual data. This
results in coarse and domain-confused translation statistics that reflect translation
preferences aggregated over different translation options with respect to different
domains. Some translation options are more popular than others for a specific word or
phrase in general. When it comes to a specific domain, however, it is likely that one of
the rare translation options would be the most relevant one. A standard phrase-based
SMT system is unlikely to be able to provide such a translation in this case, given
that resulting domain-confused statistics are not expressive enough as they do not take
domain information into account.

9 In principle, search errors caused by a decoding algorithm can be a factor. The contribution of this factor
to degradation of lexical translation quality, however, is minor, as shown in Irvine et al. (2013a).
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4.2 Reordering

Different from the lexical selection, it is not clear that reordering model adaptation
improves translation. There is some evidence supporting this hypothesis, notably from
Chen et al. (2013a) and Zhang et al. (2015). Chen et al. (2013a) show that there are
two potential reasons for an improvement in translation quality caused by reordering
model adaptation:

– some corpora may be better for training reordering models than others, and
– there exists domain-dependent differences in reordering.

The first statement is intuitively plausible. Some data may contain noisy parallel
sentences (e.g. comparable data), or simply too short parallel examples (e.g. Subti-
tles, Search Queries), which have a negative impact on parameter estimates (i.e. less
accurate estimates).

Meanwhile, it is not at all obvious that reordering of phrase pairs is particularly
domain-specific. Chen et al. (2013a) suggest that this is the case for Chinese–English
and Arabic–English. They train lexicalized reordering models (Tillmann 2004; Koehn
et al. 2007; Galley and Manning 2008) on different but high-quality parallel training
data with specific genres. Their results show that the estimates of reordering param-
eters are significantly different between the corpora (e.g. the reordering probabilities
estimated from News bilingual training data are different from those estimated from
Legal bilingual data). It is, therefore, unsurprising that domain adaptation can help
phrase-based SMT systems to improve reordering for English–Chinese as in Chen
et al. (2013a).

However, it is unlikely that this would happen for all language pairs. Taking
English–Spanish as an example, Cuong and Sima’an (2014a) train different lexicalized
reordering models on a somewhat similar scenario with News parallel training data,
including four sub-corpora: EuroParl, Common Crawl Corpus, UN Corpus, and News
Commentary. They show that adapting reordering models for a new domain of Con-
sumer and Industrial Electronics contributes only a minor translation improvement
for this domain. Cuong et al. (2016a) show similar examples with English–Dutch.

As a side note, it is likely the case that dialect contributes to reordering behaviour, cf.
Chen et al. (2013a) for Chinese, and Jeblee et al. (2014) for Egyptian Arabic. Domain
adaptation with respect to this aspect (e.g. training lexicalized reordering models
on different dialect bilingual training data) might, therefore, contribute reordering
improvements.

4.3 Optimization

Domain mismatch between held-out development and test data is also an important
source of errors. This is widely observed in many studies, e.g. Nikoulina et al. (2012),
Pecina et al. (2012). In Table 2, we show a qualitative example. Specifically, we first
train a phrase-based SMT system for English–German on a large dataset combined
from multiple resources including EuroParl, Common Crawl Corpus and News Com-
mentary. We then apply the system to a new domain of “Legal Service”, but with three
different scenarios for system optimization:
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Table 2 Degradation in
translation quality on a
domain-specific translation task
with different tuning scenarios

English–German (task: legal)
Tuning scenario BLEU↑
In-domain (Legal) 28.8

Mixed-domains (including legal) 28.5

Mixed-domains (exclude legal) 28.3

1. we optimize the system on an in-domain (Legal) held-out development set with
2K sentence pairs;

2. we optimize the system on a mixed-domain held-out development set with 8K
sentence pairs from a combination of different domains: The in-domain Legal
held-out development set itself, plus three different held-out development sets of
Software, Hardware and Professional & Business Services;

3. we optimize the system on another mixed-domain held-out development set with
6K sentence pairs of Software,Hardware and Professional & Business Services in
the third setting. This is the mixed-domain held-out development set in the second
setting, but excludes the in-domain development set part.

Note that there is no prior knowledge about the domain’s provenance of the mixed-
domain held-out development set in the second and third settings.

Table 2 presents the translation performance of the phrase-based SMT system with
respect to the different tuning scenarios. It can be seen quite clearly from the lower
BLEU scores (Papineni et al. 2002) that moving to a new domain without having an
in-domain held-out development set for system optimization can degrade the trans-
lation quality of a phrase-based SMT system. Note that our comparison may favour
mixed-domain tuning scenarios: the mixed-domain held-out development sets are at
least three times larger than the in-domain set, which presumably improves system
optimization. In practice, the degradation in translation quality may be much more
substantial, especially in a setting where the desired task is different from the held-out
development set (e.g. Subtitles, Search Queries).

5 Domain adaptation: a general picture

A typical phrase-based SMT system contains various components, such as word align-
ment, language, translation and reorderingmodels. This distinguishes SMT frommost
other Natural Language Processing tasks, and makes application of standard domain-
adaptation methods less straightforward.

In general, the most popular approach to domain adaptation for SMT is to induce
domain-focused translation statistics from seed in-domain data. Domain-focused
translation statistics are typically domain-specific phrase translation probability dis-
tributions, lexical weighting and reordering probabilities. In the end, we can combine
them togetherwith the baseline ‘domain-confused’ translation features, or even replace
the baseline features. This results in a statistical translation framework with a com-
bination of multiple (sub-)models for translation. Figure 4 provides an illustration of
the standard approach to domain adaptation for SMT.

123



A survey of domain adaptation for statistical machine translation 199

Bilingual data

Sub-model1 Sub-modeli Sub-modelK... ...

Optimization

Decoding

Fig. 4 Statistical translation framework with a combination of multiple K sub-models for translation

Implementing such a framework, however, is non-trivial. Two main technical chal-
lenges are as follows:

– The induction of domain-focused translation statistics: specific prior knowledge
(e.g. in-domain bilingual corpora, comparable corpora, monolingual corpora)
requires a different model for inducing domain-focused translation statistics. Sec-
tion 6 provides a systematic overview of previous approaches to the problem.

– The combination ofmultiple (sub-)models for translation: themain object is a com-
bination model tailored to high-dimensional feature spaces, which is surprisingly
hard to achieve. Sect. 7 reviews different combination models for adaptation.

Beside the two main research lines, previous work also considers other adapta-
tion scenarios. This survey covers several adaptation trends (Sect. 8). We first review
the induction of domain-focused sparse features and word-alignment probabilities
(Sects. 8.1, 8.2). We also show how an existing system can be adapted to multiple
specific domains at the same time (Sect. 8.3). Another scenario is applying an SMT
system to web search queries (Sect. 8.4). We also discuss how web-based translation
services can be improved when domain of a new request is not known in advance
(Sect. 8.5, 8.6).

6 Domain-specific translation induction for SMT

We start with induction using in-domain parallel data, and continue with comparable
andmonolingual corpora.We also discuss the inductionwith the domain’s provenance,
which is special in that we are provided with a large corpus consisting of different
domain-specific subcorpora that are not necessarily strictly related to the desired task.
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6.1 Induction with in-domain parallel data

In many studies, a seed in-domain parallel corpus (CI N ) exemplifying the target trans-
lation task is used as a form of prior knowledge for domain adaptation for SMT.
The data, however, is very small compared with a mixed of domains corpus COUT .
The main goal of translation induction with in-domain parallel corpora is inducing
a phrase-based model from COUT for adaptation. We now review the two most pop-
ular approaches to domain adaptation in this scenario: instance weighting and data
selection.

Instance weighting Instanceweighting is perhaps themost effective approach to learn-
ing domain-focused translation statistics. To give some intuition about how instance
weighting addresses the problem, in this general exposition we introduce a latent
domain variable z to mark whether a phrase is in-domain (z1) or out-of-domain (z0).
With the introduction of the latent variable, we expect to extend the translation tables
in phrase-based models from domain-confused P(ẽ| f̃ ) to domain-focused by condi-
tioning them on z, i.e. P(ẽ| f̃ , z). Note how P(ẽ| f̃ , z) contains P(ẽ| f̃ ) as a special
case, as in (14):

P(ẽ| f̃ , z) = P(ẽ| f̃ )P(z| ẽ, f̃ )
∑

ẽ′ P(ẽ′| f̃ )P(z| ẽ′, f̃ )
. (14)

Here P(z| ẽ, f̃ ) is viewed as a latent phrase-relevance model, i.e. the probability that a
phrase pair is in- (z1) or out-of-domain (z0). In the end, the adaptation can be performed
by replacing the domain-confused tables P(ẽ| f̃ ) with the in-domain-focused ones
P(ẽ| f̃ , z1), or simply by using these domain-focused models as additional features
for the baseline phrase-based SMT system.

From Eq (14), the main challenge of inducing P(ẽ| f̃ , z) is inducing the latent
phrase-relevance model P(z| ẽ, f̃ ). Following Matsoukas et al. (2009), a fairly large
body of work on domain adaptation for SMT embeds P(z| ẽ, f̃ ) in an asymmetric
sentence-level model P(z| e, f) for sentence pairs 〈e, f〉. Specifically, the estimation
of P(z| ẽ, f̃ ) for phrases ẽ and f̃ can be simplified by computing P(z| e, f) for
sentence pairs 〈e, f〉 as in (15):

P(z| ẽ, f̃ ) =
∑

e, f P(z| e, f) c(ẽ; e) c( f̃ ; f)
∑

z′∈{z1, z0}
∑

e, f P(z′| e, f) c(ẽ; e) c( f̃ ; f)
. (15)

Here, c(ẽ, e) and c( f̃ , f) are the count of phrases ẽ and f̃ in sentence pairs 〈e, f〉 in
the training corpus.

But howcan the asymmetric sentence levelmodel be learned?A simple and straight-
forward way proposed by Cuong and Sima’an (2014a) is to devise an EM algorithm
for learning (Fig. 5). At every iteration, in- or out-of-domain estimates provide full
sentence pairs 〈e, f〉 with probabilities P(z| e, f). The latent phrase-relevance model
parameters are then re-estimated using these expectations.Metaphorically, during each
EM iteration the current in- or out-of-domain phrase pairs compete in inviting COUT
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P (z| ẽ, f̃) P (z| e, f)

Phrase level Sentence level

Re-update phrase level parameters

Update sentence level parameters

Fig. 5 The EM-based training algorithm for learning P(z| ẽ, f̃ ) and P(z| e, f) simultaneously

sentence pairs to be in- or out-of-domain, which bring in new (weights for) in- and
out-of-domain phrases.

Another approach is directly building a logisticweightingmodel for the asymmetric
sentence-level model. Specifically, a logistic weighting model maps a set of features
φ(e, f) with the parameter vector w to a scalar weight in (0, 1). There are numerous
types of sentence-level features that can be used, such as manual sub-corpus and genre
membership, number of source and target token, and ratio of number of the tokens on
both sides. Interestingly, the parameter vectorw can be learned directly simultaneously
with the log-linear model weight parameters so as to optimize the translation accuracy
on a held-out development set. This approach was first proposed by Matsoukas et al.
(2009).

An alternative approach to learning domain-focused translation statistics is directly
building a discriminative model at phrase level. This approach is intuitively plausible,
as a sentence itself may often contain a mixture of domains. In the work of Foster
et al. (2010), the estimation of domain-focused phrase translation probabilities can be
directly computed as in (16):

P(ẽ| f̃ , I N ) = cw(ẽ, f̃ )
∑

ẽ′ cw(ẽ′, f̃ )
, (16)

where the modified count cw(ẽ, f̃ ) is computed as in (17):

cw(ẽ, f̃ ) = 1

1 + exp(− w · φ(ẽ, f̃ ))
c(ẽ, f̃ ). (17)

Learning the weight parameters w = {w1, . . . , wK } of K features for the logistic
weighting model can be done using maximum likelihood or related criteria. More
specifically, let us assume a held-out development set in which each sentence 〈e, f〉
contains a (multi-)set A(e, f) of extracted phrases 〈ẽ, f̃ 〉. The objective function is
the maximization of the likelihood overA(e, f) for all parallel sentences 〈e, f〉 in the
development set with respect to w, as in (18):

ŵ = argmax
w

∑

〈e, f〉

∑

〈ẽ, f̃ 〉∈A(e,f)

P̃(ẽ, f̃ ) log P(ẽ| f̃ , I N ). (18)
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Here, note that P̃(ẽ, f̃ ) is computed from all phrase pairs extracted from the
held-out development set. The optimization problem can be solved using the popular
L-BFGS algorithm, as shown in Foster et al. (2010). The algorithm requires computing

the gradient ∂P(ẽ| f̃ , I N )
∂wi

, which is done as in (19):

∂P(ẽ| f̃ , I N )

∂λi
= 1

P(ẽ| f̃ , I N )

[
cwi (ẽ, f̃ )

∑
f̃ ′ cw(ẽ, f̃ ′)

−
cw(ẽ, f̃ )

∑
f̃ ′ cwi (ẽ, f̃ ′)

(∑
f̃ ′ cw(ẽ, f̃ ′)

)2

]
. (19)

where:

cwi (ẽ, f̃ ) = cw(ẽ, f̃ ) fi (ẽ, f̃ )

(
exp(− w · φ(ẽ, f̃ ))

1 + exp(− w · φ(ẽ, f̃ ))

)
. (20)

Both approaches have their own advantages and disadvantages. The EM-based
approach strives for simplicity and is accordingly much easier to implement. How-
ever, using a discriminative model to learn relevance of sentence pairs and phrases
in the parallel training data would perhaps be much more effective, but requires fea-
ture engineering, so is more difficult to implement. An empirical comparison of the
approaches, however, has yet to be thoroughly conducted, to the best of our knowledge.

Note that using the same algorithm we can also adapt all other core translation
components in tandem, including lexical weighting and lexicalized reorderingmodels.

Data selection Another approach to learning domain-focused translation statistics is
selecting training data from a large corpus. Then, we can simply train a phrase-based
SMT system on the selected data. The resulting translation statistics are presumably
domain-focused. Data selectionwould naturally be less effective than instance weight-
ing, as we strictly remove a lot of bilingual data that are (presumably) not relevant to
a desired task. However, data selection has received considerable attention in the past
years for two main reasons:

1. Large bilingual training data comes with a cost: training phrase-based SMT sys-
tems on large data is extremely expensive and time-consuming;

2. A small, well-selected subset of the data often outperforms the full dataset for
training a phrase-based SMT system (Axelrod et al. 2011; Biçici and Yuret 2011;
Mansour et al. 2011; Duh et al. 2013; Cuong and Sima’an 2014b; Kirchhoff and
Bilmes 2014; Mansour and Ney 2014; Zhang and Chiang 2014; Poncelas et al.
2017).

Existing work can be roughly classified depending on what kind of information
is used for selection. The most popular approach (Axelrod et al. 2011) selects sen-
tence pairs using the cross-entropy difference between in- and out-of-domain language
models (both source and target sides), as in (21):
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rank(f, e) =
(
HLMIN (f) − HLMOUT (f)

)

︸ ︷︷ ︸
source side

+
(
HLMIN (e) − HLMOUT (e)

)

︸ ︷︷ ︸
target side

. (21)

The cross-entropy is defined as in (22)–(23):

HLM (f) = − 1

m

∑m

i=1
log P( fi | f i−1

1 ) (22)

HLM (e) = − 1

l

∑l

i=1
log P(ei | ei−1

1 ) (23)

Themethod itself is amodification of themethod proposed inMoore andLewis (2010),
which was introduced to address exactly the same problem we are discussing, but for
only one side (i.e. monolingual data).

More recent approaches (Mansour et al. 2011; Cuong and Sima’an 2014b;Mansour
and Ney 2014) use translation model information. The idea is intuitively plausible:
in the translation context, a source phrase often has different translations in different
domains, which cannot be distinguished with monolingual language models. But how
much should data selection depend on bilingual vs. monolingual factors? Cuong and
Sima’an (2014b) present a comprehensive study of the contribution of these factors,
showing that they actually complement each other for data selection.

One of themost difficult problems in data selection is to jointly learn translation and
language models. An EM-based learning algorithm was first proposed by Cuong and
Sima’an (2014b) to address the problem. However, a joint bilingual neural network
model proposed by Devlin et al. (2014) might be a more powerful solution to the
problem. Chen et al. (2016) were the first to deploy the joint bilingual neural network
model to address the problem. In their work, promising data-selection performance is
observed.

As a side note, data selection often goes hand in hand with data reduction for SMT
(Eck et al. 2005; Lewis and Eetemadi 2013). Data reduction aims at reducing the size
of data that is used for training, while at the same time impacting very little on quality.

6.2 Induction with comparable corpora

Creating an in-domain dataset is extremely expensive in practice. A cheaper approach
to domain adaptation for SMT is mining comparable corpora (Snover et al. 2008;
Daumé and Jagarlamudi 2011; Irvine et al. 2013b).

We now present two notable approaches as examples. The first approach is mining
unseenwords for an adaptation task (Daumé and Jagarlamudi 2011), which extends the
approach described in Haghighi et al. (2008) to mining translations from comparable
corpora. Learning bilingual lexicons from comparable corpora is obviously not an easy
task [cf. Koehn and Knight (2002), Haghighi et al. (2008), Tamura et al. (2012)], and
their mining is “bootstrapped” based on a bilingual dictionary that is created automat-
ically from out-of-domain corpora. The output of the dictionary-mining approach is
normally a list of (source and target) word pairs, with corresponding scores represent-
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ing the word-translation probability. Perhaps surprisingly, a straightforward approach
to incorporating the induced word pairs by having an additional feature representing
dictionary-mining translation probability may not be helpful. Amore effective way, as
described in Daumé and Jagarlamudi (2011), is to have not only the dictionary-mining
translation-probability feature, but also an additional feature to mark whether a phrase
pair is seen in the source and target data or not.

The second approach, proposed by Irvine et al. (2013b), directly recovers the joint
probability distribution of source and target word pairs on a new domain. Specifically,
assume we have access to a joint distribution POUT( f, e) over source and target word
pairs 〈 f, e〉, estimated from an out-of-domain corpus. Let P̃( f ) and P̃(e) be the
empirical marginal distributions estimated from comparable corpora (i.e. we extract
raw word frequencies from the corpora). Irvine et al. (2013b) cast the learning of the
joint probability distribution of source and target word pairs on a new domain as a
linear programming problem, as in (24):

P̂I N = argmin
PI N

‖
∑

〈 f, e〉
PI N ( f, e) − POUT ( f, e)‖1, (24)

subject to:

∑

〈 f,e〉
PI N ( f, e) = 1,

∑

e

PI N ( f, e) = P̃( f ),

∑

f

PI N ( f ) = P̃(e), and PI N ( f, e) ≥ 0.

Here, l1-norm (‖ · ‖1) is used to measure the distance between two distributions.
Regularization terms are usually added into Eq. (24) so that the solution would be as
sparse as possible. A linear programming solver can be used to learn PI N ( f, e) from
Eq. (24).

The method is perhaps one of the most elegant approaches to domain adaptation
for SMT. It exploits cheap resources and shows significant improvement in translation
quality on new domains.

6.3 Induction with monolingual data

Exploiting in-domain monolingual data is also an effective approach to domain adap-
tation for SMT. In general, synthetic bilingual data is first generated by using a
phrase-based SMT system. Then, we can use the created data to induce domain-
focused translation statistics (Schwenk 2008; Wu et al. 2008; Bertoldi and Federico
2009; Schwenk and Senellart 2009). Empirical results show that having in-domain
monolingual data could substantially improve translation quality for a new domain,
especially with in-domain monolingual data on the target side (Lambert et al. 2011).

Surprisingly, we can still derive improvements from incorporating induced domain-
focused translation features to the baseline, given that the baseline is already
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augmented with induced domain-focused language-model features. As a side note,
the adaptation of reordering model gives consistent but modest improvements in this
scenario (Schwenk 2008; Bertoldi and Federico 2009).

6.4 Induction with monolingual data and meta-information

Beside generating synthetic bilingual data, are there any other ways of adapting trans-
lation models with monolingual corpora? There has been an intensive line of research
that focuses on translation-model adaptation using topic models (Gong et al. 2011;
Eidelman et al. 2012; Su et al. 2012; Hewavitharana et al. 2013; Hasler et al. 2014;
Hu et al. 2014). Such studies interchangeably use the term “topic” and “domain”.

Assume we are provided with an out-of-domain parallel corpus COUT =
{SOUT , TOUT }, together with an in-domain monolingual corpus on the source side
SI N only. Given the data, a general approach is building an adapted translation model
in the following steps:

– Step 1: Estimating topicmodels (e.g. Probabilistic Latent Semantic Analysis (Hof-
mann1999), LatentDirichletAllocation (Blei et al. 2003), orHiddenTopicMarkov
Models (Gruber et al. 2007)) at document level in monolingual corpora;

– Step 2: Estimating topic-specific translation models (i.e. conditioning the transla-
tion of phrase pairs on the topic information of source phrases);

– Step 3: Estimating topic posterior distributions of phrases;
– Step 4: Estimating phrase-translation probabilities using predefined topic-specific
translation models and topic posterior distributions of phrases.

More formally, let us use P(zfI N | f) and P(zfOUT | f) to indicate how a sentence f
expresses a specific source-side topic in in- and out-of-domain monolingual corpora.
The sentence-topic distributions are provided by topic models (Step 1).

Let us use P(ẽ| f̃ , z f̃OUT
) to indicate the probability of translating a phrase f̃ as a

phrase ẽ given the source-side topic z f̃OUT
. The topic-specific translation models are

estimated as in (25) (Step 2):

P(ẽ| f̃ , z f̃OUT
) =

∑
e, f ∈ COUT

P(z f̃OUT
| f) c( f̃ ; f) c(ẽ; e)

∑
ẽ′

∑
e, f ∈ COUT

P(z f̃OUT
| f) c( f̃ ; f) c(ẽ′; e)

. (25)

Let us use P(z f̃ I N | f̃ ) and P(z f̃OUT
| f̃ ) to denote the phrase-topic distributions.

The distributions can be computed as in (26)–(27) (Step 3):10

P(z f̃ I N | f̃ ) =
∑

f ∈ SI N
P(z f̃ I N | f) c( f̃ ; f)

∑
z′
f̃ I N

∑
f ∈ SI N

P(z′
f̃OUT

| f) c( f̃ ; f)
. (26)

10 In Su et al. (2012), an interpolation model is computed for PI N (z f̃ I N
| f̃ ), which is decomposed into

the topic posterior distribution at word level for smoothing.
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P(z f̃OUT
| f̃ ) =

∑
f ∈ SOUT

P(z f̃OUT
| f) c( f̃ ; f)

∑
z′
f̃OUT

∑
f ∈ COUT

P(z′
f̃OUT

| f) c( f̃ ; f)
. (27)

Finally, phrase-translation probabilities can be computed as in (28) (Step 4):

P(ẽ| f̃ ) =
∑

z f̃ I N

∑
z f̃OUT

P(ẽ| f̃ , z f̃OUT
)P(z f̃OUT

| z f̃ I N )P(z f̃ I N | f̃ ), (28)

where the topic-mapping probability distribution P(z f̃OUT
|z f̃ I N ) can be computed as

in (29):11

P(z f̃OUT
|z f̃ I N ) =

∑
f̃ ∈SI N ∩ SOUT

PI N (z f̃ I N | f̃ )POUT (z f̃OUT
| f̃ ). (29)

The estimate of P(ẽ| f̃ ) as in Eq. (28) can be used to replace the domain-confused
translation probability. It can also simply serve as an additional feature to the baseline.

In practice, it is also possible that instead of having only the source side SI N mono-
lingual data, we are providedwith an in-domain parallel corpus CI N = {SI N , TI N }. In
that case, bilingual topic inference should be preferred to monolingual topic inference
(Mimno et al. 2009; Hasler et al. 2014; Hu et al. 2014).

Using topic models for domain adaptation for SMT provides an effective way of
quantifying the effect of the topical context information on translation selection. Using
the same approach, we can adapt all other core translation components in tandem,
including lexical weighting and lexicalized reordering models.

Meanwhile, the model has a potential drawback: most parallel corpora lack the
annotation of document boundaries. Of course, a single sentence can be considered
as a short pseudo-document, but it is questionable whether such a corpus with short
pseudo-documents is topic-model ‘friendly’ (Tang et al. 2014).

6.5 Induction using a domain’s provenance

In practice, there are adaptation scenarios where we are provided with a large corpus
consisting of different domain-specific subcorpora, where the subcorpora are manu-
ally grouped/annotated, but not necessarily strictly related to the desired task. In that
scenario, it is still very useful to condition the lexical weighting features on provenance
(Chiang et al. 2011). In the end, we can simply optimize the systemwith different types
of domain-focused translation statistics on an in-domain held-out development set.

Another simple and elegant approach is to use a vector space model. Specifically,
let us assume we are provided with a corpus consisting of N different domain-specific
subcorpora. First, we create a vector profile for every phrase pair extracted from the
training data, as in (30):

11 Joint inference of topic models on a concatenation of SI N and SOUT would drop the requirement
of computing the topic-mapping probability distribution [cf. Gong et al. (2011) and Hewavitharana et al.
(2013)]. An empirical comparison of the approaches, however, has yet to be thoroughly conducted, to the
best of our knowledge.
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Vtraining( f̃ , ẽ) =
[
w1( f̃ , ẽ), . . . , wN ( f̃ , ẽ)

]
(30)

Another vector profile is created for every phrase pair extracted from the in-domain
held-out development set, as in (31):

Vdev( f̃ , ẽ) =
[
w1( f̃ , ẽ), . . . , wN ( f̃ , ẽ)

]
(31)

In principle, each element of the vector w( f̃ , ẽ) can simply be the count of a phrase
pair. A better approach proposed by Chen et al. (2013b) is adapting standard tf-idf
statistics, a standard technique in IR.

Then, we simply use the similarity score between these two types of vectors as
additional feature functions (e.g. the Bhattacharyya distance (Bhattacharyya 1946),
the Kullback-Leibler distance (Kullback and Leibler 1951), and the cosine distance),
which reward phrase pairs that are relevant to the desired task.

The vector space model approach was first proposed by Chen et al. (2013b), and is
a very effective adaptation technique for SMT. However, a domain’s provenance is not
always available in practice. Despite the fact that topic models can automatically pro-
vide meta-information, experiments in this setting show only a modest improvement
[cf. Hewavitharana et al. (2013)].

7 Model combination for adaptation

Domain-focused translation statistics, once induced, need to be combined together
in an appropriate way. The main desire is to have a combination model tailored to
high-dimensional feature spaces.

7.1 Log-linear mixture

Log-linear translation model mixtures (Birch et al. 2007; Koehn and Schroeder 2007)
are of the form in (32):

φT M (e, f) = λ
∑n

i=1
log P(ẽi | f̃ai , I N )

+ (1 − λ)
∑n

i=1
log P(ẽi | f̃ai , OUT ). (32)

Here, P(ẽi | f̃ai , I N ) and P(ẽi | f̃ai , I N ) represent different types of domain-focused
translation statisticswith respect to INandOUT.As inEq. (32), they canbe added to the
baseline as additional features. There is also no further effort needed for training: the
respective weights are set with any weight optimization method (e.g. MERT, MIRA,
PRO).

The implementation of a log-linear translation mixture model for adaptation can
be slightly different in practice. It is common to leave the decoder as is (Razmara
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et al. 2012), but it is also possible to put constraints on hypotheses generated by
the decoder (Birch et al. 2007; Koehn and Schroeder 2007). For instance, the decoder
may only generate hypotheses that are contained in both in-domain and out-of-domain
translation tables. The decodermay also generate hypotheses that are contained in each
of the tables. An empirical comparison of the implementations, however, has yet to
be thoroughly conducted, to the best of our knowledge.

This model has two potential drawbacks:

1. In practice, it is common to have many sub-models, which leads to significantly
longer search and potentially more search errors. This also makes system opti-
mization even more challenging. It is not uncommon for such a log-linear mixture
model to perform significantly worse than a system trained on a concatenation of
all the data (Sennrich 2012; Wäschle and Riezler 2012);

2. Having high-dimensional feature spaces requires a much larger held-out develop-
ment set for system optimization (Waite and Byrne 2015). This is unrealistic in
practice, as in-domain data is very expensive to annotate.

7.2 Linear mixture

Linear translation model mixtures are of the form in (33):

φT M (e, f) =
∑n

i=1
log

(
λP(ẽi | f̃ai , I N ) + (1 − λ)P(ẽi | f̃ai , OUT )

)
(33)

An alternative form of linear combination is a maximum a posteriori (MAP) combi-
nation, as in (34):

φT M (e, f) =
∑n

i=1
log

(
cI N (ẽi , f̃ai ) + λP(ẽi | f̃ai , OUT )

∑
ẽ′ cI N (ẽ′, f̃ai ) + λ

)
(34)

This model was first proposed by Foster and Kuhn (2007), but training the model is
not straightforward. It is desirable to directly optimize the weights of the baseline
system w = {w1, . . . , wM } and interpolation weight λ directly for BLEU. This is
possible (Foster et al. 2013; Haddow 2013), but very challenging to implement.12

In practice, the most common approach is performing system optimization with a
two-step procedure as follows:

– First, we learn the interpolation weight by maximum likelihood or related criteria;
– We hold the interpolation weight as constant, and optimize the log-linear weights
as normal with any optimization method.

By isolating the task of learning log-linear weights, the problem of learning the
interpolation weight is not hard (Foster et al. 2010; Sennrich 2012). Specifically, let us

12 There has not been any attempt at such an implementation for combining multiple sub-models, as far as
we are aware.
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assumeaheld-out development set, inwhich each sentence pair 〈e, f〉 contains a (multi-
)set A(e, f) of extracted phrases 〈ẽ, f̃ 〉. The objective function is the maximization
of the likelihood over A(e, f) for all pairs 〈e, f〉 with respect to λ, as in (35):

λ̂ = argmax
λ

∑

〈e, f〉

∑

〈ẽ, f̃ 〉∈A(e,f)

P̃(ẽ, f̃ )

log

(
λP(ẽ| f̃ , I N ) + (1 − λ)P(ẽ| f̃ , OUT )

)
(35)

If we are using MAP, the objective function of training is as in (35):

λ̂ = argmax
λ

∑

〈e, f〉

∑

〈ẽ, f̃ 〉∈A(e,f)

P̃(ẽ, f̃ ) log
cI N (ẽ, f̃ ) + λP(ẽ| f̃ , OUT )

∑
ẽ′ cI N (ẽ, f̃ ) + λ

(36)

Note that P̃(ẽ, f̃ ) in both cases is computed from all phrase pairs extracted from the
held-out development set.

Since the objective function is convex, the optimization can be done efficiently with
EM (Carpuat et al. 2014) or Limited-memory BFGS algorithm (Sennrich 2012).13

Both algorithms require computing the gradient ∂
∂λ
. The gradient is easy to compute

in the first case, as in (37):

∂

∂λ
=

[
P(ẽ| f̃ , I N ) − P(ẽ| f̃ , OUT )

λP(ẽ| f̃ , I N ) + (1 − λ)P(ẽ| f̃ , OUT )

]
(37)

If we are using MAP, the gradient is slightly different, as in (38):

∂

∂λ
= −∑

ẽ′ cI N (ẽ′, f̃ )
( ∑

ẽ′ cI N (ẽ′, f̃ ) + λ
)2

[
P(ẽ| f̃ , I N ) − P(ẽ| f̃ , OUT )

cI N (ẽ, f̃ )+λP̄(ẽ| f̃ ,OUT )∑
ẽ′ cI N (ẽ′, f̃ )+λ

]
(38)

A linear translation model is perhaps the most common combination model for
adaptation. Compared with the log-linear translation model, it often works better with
high-dimensional feature spaces. However, the model has two potential drawbacks:

1. The maximum likelihood or related criteria may not correlate well with translation
accuracy. It is not uncommon that assigning optimized weights underperforms
compared to uniform weights;

2. The performance would likely suffer from combining too many (e.g. more than
10) sub-models, leaving an open question of how best to design a combination
model tailored to very high-dimensional feature spaces.

13 The EM algorithm often gives a more efficient and stable performance in practice [cf. Razmara et al.
(2012)].
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7.3 Fill-up

A very simple approach that provides a competitive performance to log-linear and
linear translation model mixtures is Fill-up. The idea of Fill-up was first proposed by
Besling and Meier (1995) for addressing the problem of language model adaptation
for speech recognition. It was first introduced in SMT by Nakov (2008), and first used
in domain adaptation for SMT in the work of Bisazza et al. (2011).

Let us assumewe have two translation tables TI N and TOUT , with their correspond-
ing phrase translation probabilities P(ẽ| f̃ , I N ) and P(ẽ| f̃ , OUT ), respectively. A
Fill-up table TF I LLU P is defined as in (39):

∀( f̃ , ẽ) ∈ TI N ∪ TOUT :

TF I LLU P ( f̃ , ẽ) =
{

{P(ẽ| f̃ , I N ), exp(0)} if ( f̃ , ẽ) ∈ TI N
{P(ẽ| f̃ , OUT ), exp(1)} otherwise.

(39)

Here, the entries of TF I LLU P correspond to the union of the two phrase tables, in
which we consider TI N as the more reliable source and use it whenever possible.
The exponential function (i.e. exp(0) and exp(1)) is to mark whether a phrase pair is
in-domain (TI N ) or out-of-domain (TOUT ).14

Simplicity is perhaps the main advantage of Fill-up. The model, however, has two
potential drawbacks:

– It remains unclear whether the approach is able to scale to many sub-models. Such
an empirical evaluation has yet to be thoroughly conducted, to the best of our
knowledge.

– Translation probabilities in TF I LLU P do not form a full probability distribution.
This is potentially problematic: interactions between features can be complex and
log-linear models may not be able to handle the interactions.

8 Other trends in domain adaptation

This survey covers several other adaptation trends. We first review the induction of
domain-focused sparse features and word-alignment probabilities (Sects. 8.1, 8.2).
We also show how an existing system can be adapted to multiple specific domains
at the same time (Sect. 8.3). Another scenario is applying an SMT system to web
search queries (Sect. 8.4). We also discuss how web-based translation services can be
improved when domain of a new request is not known in advance (Sects. 8.5, 8.6).

14 Zhang et al. (2014a) improve upon the binary fill-up model of Bisazza et al. (2011) with a probability
distribution over phrase pairs to signify the extent to which a phrase pair is considered in-domain or out-
of-domain.
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fj−1 fj fj+1

aj−1 aj aj+1

z

Observed layer (source words)

Latent alignment layer (target words)

Latent domain layer

Fig. 6 Latent domain HMM alignment model. An additional latent layer representing domains has been
conditioned on by both the remaining layers

8.1 Adaptation with sparse features

Having in-domain sparse feature functions is particularly useful when applying a
phrase-based SMT system to new domains (Bertoldi and Federico 2009; Hasler et al.
2012; Green et al. 2013, 2014). This is because sparse features allow for more flexibil-
ity than dense features, but at the risk of increasing the difficulty of the optimization.
Applying cross-validation techniques (e.g. jackknife training (Hasler et al. 2012)) is
often very useful to avoid overfitting.

8.2 Domain adaptation for word alignment

There is some evidence to support the claim that like any statistical models, word-
alignment models suffer significantly from a lack of in-domain data for training. Wu
et al. (2005) train different alignment models independently on different domain-
specific subcorpora. In the end, they show that an interpolation of the alignmentmodels
improves word-alignment accuracy.

Similar findings are reported in Duh et al. (2010) and Gao et al. (2011). Duh et
al suggest that training a phrase-based SMT system might benefit from using the
following simple trick: they first train statistical alignment models on a concatenation
of both in-domain and a much larger out-of-domain dataset, and then exclude out-of-
domain data during phrase extraction. Gao at al show that an interpolation of domain-
specific and general-domain alignment models improves translation accuracy.

As a side note, Shah et al. (2010) show that weighting sentence pairs according to
their relevance to a new domain benefits word-alignment training.

Recently, Cuong and Sima’an (2015) provide an in-depth study of domain adapta-
tion for word alignment. They focus on the insensitivity of existing word-alignment
models to domain differences, which often yields suboptimal results on heterogeneous
corpora (e.g. EuroParl, Common Crawl Corpus, UNCorpus, and News Commentary).
A latent domain word-alignment model is proposed, which explicitly incorporates
latent domain information in learning domain-focused lexical and alignment statis-
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tics. Figure 6 presents such a case with a latent domain HMMalignment model. Cuong
and Sima’an (2015) train the model on a heterogeneous corpus, using a small num-
ber of seed samples from different domains. Their experiments show that the derived
domain-focused statistics, once combined together, produce significant improvements
both in word alignment and translation.

8.3 Multi-domain adaptation for SMT

A common scenario in practice is adapting an existing system to multiple domain-
specific tasks at the same time, which is clearly a challenging problem.

8.3.1 Adaptation with multi-task learning

The main approach is to optimize an SMT system in the way that exploits common-
alities shared among different tasks (Wäschle and Riezler 2012). More formally, let
us use {ŵ1, . . . , ŵK } to denote a set of model parameters with respect to K different
domains. The commonalities shared among different tasks are modeled as in (40):

wAVG = 1

K

∑K

d=1
wd . (40)

In the end, the goal is to learn model parameters that maximize the objective function,
as in (41):

{ŵ1, . . . , ŵK } = argmin
w1,...,wK

∑K

d=1
lossd(wd)

+ λ
∑K

d=1
‖wd − wAVG‖1. (41)

Here, the parameter λ controls the influence of the regularization, which trades off
between task-specific parameter vectors and their distance to the average. Meanwhile,
we use lossd(wd) to represent a translation loss function on the held-out develop-
ment set from task d. The optimization problem can be solved using gradient-descent
optimization with l1-regularization (Tsuruoka et al. 2009; Wäschle and Riezler 2012).

While this method is intuitively plausible, it gives only a modest translation
improvement (Wäschle and Riezler 2012). Different variants are proposed in the liter-
ature (Simianer et al. 2012; Cui et al. 2013) which show a potentially more promising
performance.

8.3.2 Adaptation with genre-aware decoding

Another interesting approach to multi-domain adaptation for SMT is using a genre-
aware classifier (Wang et al. 2012). The core to this approach is a source-sentence
genre classifier that signals the most relevant domain to source sentences. In this way,
the MT system is configured to use the proper domain feature weights and appropriate
domain language model. Note that in the work of Wang et al. (2012), their system
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uses a single translation model to serve different domains. This allows the system to
scale more easily to many domains, but makes tuning and decoding more difficult.
Wang et al. (2012) introduce simple genre-aware decoding and tuning techniques to
address the problem. Their experiments show that the proposed system is capable
of producing better domain-specific translations while simultaneously preserving the
quality of general-domain translations.

8.4 Cross-lingual information retrieval

A practical real-world problem is translating web search queries into several target
languages, so that a search engine can return search results in the corresponding lan-
guages. The quality of a translation component thus plays a crucial role. The problem,
however, is particularly difficult for three specific reasons:

1. Translation quality degrades substantially when applying a generic phrase-based
SMT system to a domain-specific task. This is particularly true for search queries,
due to their unique characteristics: search queries are very short (just a couple of
words per query) and the word order is typically different to a typical sentence in
natural language.

2. Second, a phrase-basedSMTsystem is usually trained to optimize the quality of the
translation, which is not necessarily correlatedwith the retrieval quality (especially
for the short queries) (Kettunen 2009; Nikoulina et al. 2012). For example, the
word order which is crucial for translation quality is often ignored by IR models.
In contrast, retrieval systems often use bag-of-word representations in document-
scoring models, and queries are rarely grammatical natural language sentences.

3. Finally, there are only a few tiny corpora of parallel queries (e.g. CLEF tracks)
that can be obtained.

A very simple, yet effective approach to improving adaptation for CLIR is reranking
the N -best translation candidates generated by a baseline system (Nikoulina et al.
2012). Note that a re-ranker should be optimized to maximize a retrieval metric rather
than translation accuracy. Putting constraints on hypotheses generated by the decoder
is another approach to improving adaptation for CLIR (Dong et al. 2014; Hieber and
Riezler 2015).While the latter approachmaybemore efficient, such an implementation
is obviously far more complicated.

8.5 Cache-based adaptive models for translation adaptation

A common scenario in practice, particularly for web-based translation services such
as Bing Translator and Google Translate, is that translation requests are unknown as
to their domain. A common approach is to exploit two general phenomena in natural
language and translation:

1. Repetition and recency effects of words: many words, especially content words,
are repeated in close context;

2. Consistency of translations: the translation of content words is consistent given a
specific context.
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The two phenomena provide us with a natural way to perform fully unsupervised
domain adaptation on a new domain: a phrase-based SMT system performs the trans-
lation of a sentence by not only considering the sentence itself, but also taking the
translation history of recent input sentences into account.

Accounting for these phenomena in translation is fairly simple, using a cache-
based adaptive model (Kuhn andDeMori 1992).More specifically, Tiedemann (2010)
develops two cache-based adaptive models, that we now describe.

Cache-based adaptive languagemodel Tiedemann (2010) uses a dynamic cache-based
adaptive language model in the form of a linear mixture as in (42):

P(en| en−k, . . . , en−1) = (1 − λ)P(en| en−k, . . . , en−1, OUT )

+ λP(en| en−k, . . . , en−1, CACHE) (42)

Here, the cache stores the best translation hypotheses of previous sentences. Of course
the size of the cache is very small (e.g. 100-5000words). The value of the interpolation
weight λ can be set manually. The EM algorithm can also be used to learn the weight
automatically.

Implementing the model as a simple unigram model is a good option, but a better
solution in practice would be introducing a decay factor in the estimation of cache
probabilities, as in (43):

P(en| en−k, . . . , en−1, CACHE) ∝
∑n−1

i=n−k
δ(en = ei ) exp

(
− α(n − i)

)

(43)

This approach was first introduced by Clarkson and Robinson (1997). Here, δ is the
Kronecker delta function. The decay rate α is normally set to a very small value [e.g.
0.005 as in Clarkson and Robinson (1997)].

Cache-based adaptive translation model Tiedemann (2010) develops a cache-based
adaptive translation model in a similar manner, using a decay factor to compute trans-
lation model scores from the cache, as in (44):

P(ẽn| f̃n, CACHE) ∝
∑K

i=1
δ

(
〈ẽn, f̃n〉 = 〈ẽi , f̃i 〉

)
exp

(
− αi

)
(44)

The cache-based adaptivemodels can be integrated into a phrase-basedSMTsystem
in a straightforward manner: both can be used to replace the language and translation
models, or to serve as additional feature functions within a log-linear model. In the
end, the decoder is forced to prefer identical translations for repeated terms.

While using cache-based adaptive models is an elegant approach, Tiedemann
observes that the adaptation effect is rather modest. Nor is it terribly robust; it is not
uncommon that an augmented SMT system produces a rather suboptimal translation.
There are two potential reasons for this:

– First, it would be risky to assume that previous translation hypotheses are good
enough to be cached [cf. the risk of error propagation (Tiedemann 2010)].
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– Second, using the translation of initial sentences in the input stream may not be so
beneficial.

Potential solutions to these problems are quite straightforward (Gong et al. 2011;
Louis and Webber 2014). For instance, in the work of Gong et al. (2011), the cache
stores similar target sentence pairs in the bilingual training data to the translation
hypotheses, instead of the translation hypotheses by themselves. As a side note, other
types of cache can be developed to improve adaptation, e.g. caching not only phrase
pairs but also topic caches, as in Gong et al. (2011).

8.6 Rewarding domain invariance for adaptation

When the target domain is unknown at training time, the system could also be trained
to make safer choices, preferring translations which are likely to work across different
domains. For exampleAs we pointed out early on, when translating from English to
Russian, the most natural translation for the word ‘code’ would be highly dependent
on the domain (and the corresponding word sense). Russian words ‘xifr’ (‘cipher’),
‘zakon’ (‘law’) or ‘programma’ (‘program’) would perhaps be optimal choices if
we consider cryptography, legal and software development domains, respectively.
However, the translation ‘kod’ (‘code’) is also acceptable across all these domains
and, as such, would be a safer choice when the target domain is unknown. Note that
such a translation may not be the most frequent overall and, consequently, might not
be proposed by a standard (i.e. domain-agnostic) phrase-based translation system.

In order to encode a preference for domain-invariant translations,we canfirstproject
phrases onto a compact (K − 1) dimensional simplex of subdomains with vectors, as
in (45)–(46):

ẽ =
[
P(z = 1| ẽ), . . . , P(z = K | ẽ)

]
(45)

f̃ =
[
P(z = 1| f̃ ), . . . , P(z = K | f̃ )

]
. (46)

See Fig. 7 for an illustration of the projection framework.

Fig. 7 The projection
framework of phrases into a
K-dimensional vector space of
probabilistic latent subdomains

Source Phrase

Projection

domain.i... ...domain.1 domain.K

Target Phrase

Projection
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Of course, the subdomains are usually not specified in the heterogeneous training
data. We can treat the subdomains as latent, and induce them automatically (Cuong
et al. 2016b). In the end, we can use a relevant measure to quantify how likely a phrase
(or a phrase-pair) is to be “domain-invariant”, for instance:

– Domain-specificity of phrases A rule with source and target phrases having a
peaked distribution over latent subdomains is likely domain-specific. Technically
speaking, entropy is a natural choice for quantifying domain specificity. Here, we
opt for the Renyi entropy and define the domain specificity as in (47)–(48):

Dα(ẽ) = 1

1 − α
log

(∑K

i=1
P(z = i | ẽ)α

)
(47)

Dα(f̃) = 1

1 − α
log

(∑K

i=1
P(z = i | f̃ )α

)
(48)

Normally, the value ofα is set to 2 by default (also known as the Collision entropy).
– Source-target coherence across subdomains A translation rule with source and
target phrases having two similar distributions over the latent subdomains is likely
to be safer to use. We can use the Chebyshev distance to measure the similarity
between two distributions. The divergence of two vectors ẽ and f̃ is defined as in
(49):

D(ẽ, f̃) = max
i={1, ..., K }

∣∣∣P(z = i | ẽ) − P(z = i | f̃ )
∣∣∣ (49)

Once integrated into a phrase-based SMT system as feature functions, the measures
force the decoder to give higher preference to domain-invariant translations, which
work well across domains, over risky domain-specific alternatives. The translation
improvement is quite robust; it is obtained without tuning specifically for the target
domain or using other domain-related meta-information in the training corpus (Cuong
et al. 2016b).

A similar idea has been deployed in Zhang et al. (2014b), which exploits topic-
insensitivity that is learned over documents for translation. There is a link between this
line of work and extensive prior work onminimumBayes risk (MBR) objectives (used
either at test time (Kumar andByrne 2004) or during training (Goodman1998; Sima’an
2003; Smith and Eisner 2006; Pauls et al. 2009)). The goal of MBR minimization
is to select translations that are less ‘risky’, but there is a degree of uncertainty in
modelling such predictions, and some of this uncertainty may indeed be associated
with domain-variability of translations. Still, a system trained with an MBR objective
will tend to output the most frequent translation rather than the most domain-invariant
one, and this, as we argued in the introduction, might not be the right decision when
applying it across domains. We believe that the two classes of methods are largely
complementary.
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9 Conclusion

This paper contributes a comprehensive survey of domain adaptation for SMT.We first
introduce preliminaries regarding SMT in general, with a focus on aspects of SMT
relevant to domain adaptation. We present an in-depth discussion where we explain
what may go wrong with translation when applying a phrase-based SMT system to
new domains.

The question of “what constitutes a domain?” is an open one which has not been
well defined in the literature. Each different view of factors contributing to defining
the domain leads to a different approach to domain adaptation. We provide a general
picture of domain adaptation, and show how different research lines fall into a specific
part of the general picture, as well as how they relate to each other. Providing such a
comprehensive survey is, to the best of our knowledge, a novel contribution.

As discussed, SMT is just one among data-driven approaches to modeling trans-
lation. Other approaches can be deployed, e.g. example-based machine translation
(Nagao 1984; Carl and Way 2003) and neural MT (Bahdanau et al. 2015). While
it is pretty clear that example-based machine translation can benefit from what the
domain-adaptation literature for SMT offers, it would be less clear whether neural
MT can learn from that or not. Recent studies suggest this is the case, where classic
techniques in domain adaptation for SMT can be used to perform adaptation for neu-
ral translation models [cf. Durrani et al. (2015), Joty et al. (2015)]. More specifically,
Durrani et al. (2015) shows that EM-based mixture modeling and data-selection tech-
niques also give a significant improvement in adaptation. Joty et al. (2015) reveal that
regularizing the loss function towards the in-domain neural network joint model also
improves translation.
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