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Abstract This work is the first comprehensive analysis of the properties of word
embeddings learned by neural machine translation (NMT)models trained on bilingual
texts. We show the word representations of NMT models outperform those learned
from monolingual text by established algorithms such as Skipgram and CBOW on
tasks that require knowledge of semantic similarity and/or lexical–syntactic role.
These effects hold when translating from English to French and English to Ger-
man, and we argue that the desirable properties of NMT word embeddings should
emerge largely independently of the source and target languages. Further, we apply a
recently-proposed heuristic method for training NMTmodels with very large vocabu-
laries, and show that this vocabulary expansion method results in minimal degradation
of embedding quality. This allows us to make a large vocabulary of NMT embeddings
available for future research and applications. Overall, our analyses indicate that NMT
embeddings should be used in applications that require word concepts to be organised
according to similarity and/or lexical function, while monolingual embeddings are
better suited to modelling (nonspecific) inter-word relatedness.
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4 F. Hill et al.

1 Introduction

It is well known that word representations can be learned from the distributional
patterns in corpora. Originally, such representations were constructed by counting
word co-occurrences, so that the features in one word’s representation corresponded
to otherwords (Landauer andDumais 1997; Turney and Pantel 2010). Neural language
models, an alternative method for learning word representations, use language data to
optimise (latent) featureswith respect to a languagemodelling objective. The objective
can be to predict either the next word given the initial words of a sentence (Bengio
et al. 2003; Mnih and Hinton 2009; Collobert and Weston 2008), or simply a nearby
word given a single cue word (Mikolov et al. 2013b; Pennington et al. 2014).

The representations learned by neural language models (sometimes called embed-
dings), are an example of successful and effective unsupervised learning. Word
embeddings acquired from raw (unlabelled) text via task-agnostic learning objec-
tives perform very effectively when applied as pre-trained features in a range of
NLP applications, including document classification (Kusner et al. 2015), informa-
tion retrieval (Weston et al. 2010), semantic role labelling (Collobert et al. 2011) and
analogy detection (Baroni et al. 2014).

Despite these clear results, it is not well understood how the architecture of neural
models affects the information encoded in their embeddings. Here we contribute to
this understanding by considering the embeddings learned by architectures with a very
different objective function: neural machine translation (NMT)models. NMTmodels
have recently emerged as an alternative to statistical, phrase-based translation models,
and are beginning to achieve impressive translation performance (Kalchbrenner and
Blunsom 2013; Devlin et al. 2014; Sutskever et al. 2014).

In this article, we show that NMT models are not only a potential new direc-
tion for machine translation, but are also a means to acquire word embeddings with
interesting and useful properties. Specifically, translation-based embeddings encode
information relating to conceptual similarity (rather than non-specific relatedness or
association) and lexical syntactic role more effectively than embeddings from mono-
lingual neural language models. We demonstrate that these properties persist when
translating between different language pairs (English–French and English–German).
Based on the observation of subtle language-specific effects in the embedding spaces,
we conjecture as to why similarity dominates over other semantic relations in trans-
lation embedding spaces. Finally, we discuss a potential limitation of the application
of NMT models for embedding learning—the computational cost of training large
vocabularies of embeddings—and show that a novel method for overcoming this issue
preserves the aforementioned properties of translation-based embeddings.

2 Learning embeddings with neural language models

All neural languagemodels, includingNMTmodels, learn real-valued embeddings for
words in some pre-specified vocabulary, V , coveringmany or all words in their training
corpus. At each training step, a ‘score’ for the current training example (or batch) is
computed based on the embeddings in their current state. This score is compared to
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The representational geometry of word meanings acquired… 5

the model’s objective function, and the error is backpropagated to update both the
model weights (affecting how the score is computed from the embeddings) and the
embedding features themselves. At the end of this process, the embeddings should
encode information that enables the model to optimally satisfy its objective.

2.1 Monolingual models

In the original neural language model (Bengio et al. 2003) and subsequent variants
(Collobert and Weston 2008), training examples consist of an ordered sequence of n
words, with the model trained to predict the n-th word given the first n−1 words. The
model first represents the input as an ordered sequence of embeddings, which it trans-
forms into a single fixed length ‘hidden’ representation, generally by concatenation
and non-linear projection. Based on this representation, a probability distribution is
computed over the vocabulary, from which the model can sample a guess for the next
word. The model weights and embeddings are updated to maximise the probability of
correct guesses for all sentences in the training corpus.

More recent work has shown that high quality word embeddings can be learned via
simpler models with no nonlinear hidden layers (Mikolov et al. 2013b; Pennington
et al. 2014). Given a single word or unordered window of words in the corpus, these
models predict which words will occur nearby. For each wordw in V , a list of training
cases (w, c) : c ∈ V is extracted from the training corpus according to some algorithm.
For instance, in the skipgram approach (Mikolov et al. 2013b), for each ‘cue word’ w

the ‘contextwords’ c are sampled fromwindows either side of tokens ofw in the corpus
(with cmore likely to be sampled if it occurs closer tow).1 For eachw in V , the model
initialises both a cue-embedding, representing thew when it occurs as a cue-word, and
a context-embedding, used when w occurs as a context-word. For a cue word w, the
model uses the corresponding cue-embedding and all context-embeddings to compute
a probability distribution over V that reflects the probability of a word occurring in
the context of w. When a training example (w, c) is observed, the model updates both
the cue-word embedding of w and the context-word embeddings in order to increase
the conditional probability of c.

2.2 Bilingual representation-learning models

Various studies have demonstrated that word representations can also be effec-
tively learned from bilingual corpora, aligned at the document, paragraph or word
level (Haghighi et al. 2008; Vulić et al. 2011; Mikolov et al. 2013a; Hermann and
Blunsom 2014; Chandar et al. 2014). These approaches aim to represent the words
from two (or more) languages in a common vector space so that words in one lan-
guage are close to words with similar or related meanings in the other. The resulting
multilingual embedding spaces have been effectively applied to bilingual lexicon
extraction (Haghighi et al. 2008; Vulić et al. 2011;Mikolov et al. 2013a) and document

1 Subsequent variants use different algorithms for selecting the (w, c) from the training corpus (Hill and
Korhonen 2014; Levy and Goldberg 2014).
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classification (Klementiev et al. 2012a; Hermann and Blunsom 2014; Chandar et al.
2014; Kočiský et al. 2014).

We focus our analysis on two representatives of this class of (non-NMT) bilingual
model. The first is that of (Hermann and Blunsom 2014), whose embeddings improve
on the performance of (Klementiev et al. 2012b) in document classification appli-
cations. As with the NMT models introduced in the next section, this model can be
trained directly on bitexts aligned only at the sentence rather than word level. When
training, for aligned sentences SE and SF in different languages, the model computes
representations RE and RF by summing the embeddings of the words in SE and SF
respectively. The embeddings are then updated to minimise the divergence between
RE and RF (since they convey a common meaning). A noise-contrastive loss func-
tion ensures that the model does not arrive at trivial (e.g. all zero) solutions to this
objective. (Hermann and Blunsom 2014) show that, despite the lack of prespecified
word alignments, words in the two languages with similar meanings converge in the
bilingual embedding space.2

The second model we examine is that of (Faruqui and Dyer 2014). Unlike the
models described above, (Faruqui and Dyer 2014) showed explicitly that projecting
word embeddings from two languages (learned independently) into a common vector
space can favourably influence the orientation of word embeddings when considered
in their monolingual subspace; i.e., relative to other words in their own language. In
contrast to the other models considered in this paper, the approach of (Faruqui and
Dyer 2014) requires bilingual data to be aligned at the word level.

2.3 Neural machine translation models

The objective of NMT is to generate an appropriate sentence in a target language
St given a sentence Ss in the source language (see e.g. Kalchbrenner and Blunsom
2013; Sutskever et al. 2014). As a by-product of learning to meet this objective, NMT
models learn distinct sets of embeddings for the vocabularies Vs and Vt in the source
and target languages respectively.

Observing a training case (Ss, St ), thesemodels represent Ss as an ordered sequence
of embeddings of words from Vs . The sequence for Ss is then encoded into a single
representation RS . Finally, by referencing the embeddings in Vt , RS and a repre-
sentation of what has been generated thus far, the model decodes a sentence in the
target language word by word. If at any stage the decoded word does not match the
corresponding word in the training target St , the error is recorded. The weights and
embeddings in the model, which together parameterise the encoding and decoding
process, are updated based on the accumulated error once the sentence decoding is
complete.

Although NMT models can differ in the details of their architecture (Kalchbrenner
and Blunsom 2013; Cho et al. 2014; Bahdanau et al. 2015), the translation objective

2 The models of Chandar et al. (2014) and Hermann and Blunsom (2014) both aim to minimise the
divergence between source and target language sentences represented as sums ofword embeddings. Because
of these similarities, we do not compare with both in this paper.
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exerts similar pressure on the embeddings in all cases. The source language embed-
dings must be such that the model can combine them to form single representations
for ordered sequences of multiple words (which in turn must enable the decoding pro-
cess). The target language embeddings must facilitate the process of decoding these
representations into correct target-language sentences.

3 Experiments

To learn translation-based embeddings, we trained two different NMT models. The
first is the RNN encoder–decoder (Cho et al. 2014), referred to as RNNenc, which
uses a recurrent neural network to encode all of the source sentence into a single
vector on which the decoding process is conditioned. The second is the RNN Search
architecture (Bahdanau et al. 2015), which was designed to overcome limitations
exhibited by the RNN encoder–decoder when translating very long sentences. RNN
Search includes a attentionmechanism, an additional feed-forward network that learns
to attend to different parts of the source sentence when decoding each word in the
target sentence.3 Both models use gated recurrent units (GRUs) (Cho et al. 2014) as
activation functions in the recurrent parts of the encoder and decoder, with source and
target vocabularies restricted to the 30,000 most frequent words in both languages.
The models were trained on a 348m word corpus of English–French sentence pairs or
a 91m word corpus of English–German sentence pairs.4

To explore the properties of bilingual embeddings learned via objectives other than
direct translation, we trained the BiCVM model of (Hermann and Blunsom 2014) on
the same data, and also downloaded the projected embeddings of (Faruqui and Dyer
2014), FD, trained on a bilingual corpus of comparable size (≈ 300 million words per
language).5 Finally, for an initial comparison with monolingual models, we trained a
conventional skipgrammodel (Mikolov et al. 2013b) and itsGlove variant (Pennington
et al. 2014) for the same number of epochs on the English half of the bilingual corpus.

To analyse the effect on embedding quality of increasing the quantity of training
data,we then trained themonolingualmodels on increasingly large randomsubsamples
ofWikipedia text (up to a total of 1.1bn words). Lastly, we extracted embeddings from
a full-sentence language model (referred to here as CW Collobert and Weston 2008),
which was trained for several months on the same Wikipedia 1bn word corpus. Note
that increasing the volume of training data for the bilingual (and NMT) models was
not possible because of the limited size of available sentence-aligned bitexts.

3 Access to source code and limited GPU time prevent us from training and evaluating the embeddings from
other NMT models such as that of Kalchbrenner and Blunsom (2013), Devlin et al. (2014) and Sutskever
et al. (2014). The underlying principles of encoding–decoding also apply to these models, and we expect
the embeddings would exhibit similar properties to those analysed here.
4 These corporawere produced from theWMT14parallel data after conducting the data-selection procedure
described by Cho et al. (2014).
5 Available from http://www.cs.cmu.edu/mfaruqui/soft.html. The available embeddings were trained on
English–German aligned data, but the authors report similar results for English–French.
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8 F. Hill et al.

Table 1 NMT embeddings (RNNenc and RNNsearch) clearly outperform alternative embedding-learning
architectures on tasks that require modelling similarity (italics), but not on tasks that reflect relatedness

Monolingual models Biling. models NMT models

Skipgram Glove CW FD BiCVM RNNenc RNNsearch

WordSim-353 ρ 0.52 0.55 0.51 0.69 0.50 0.57 0.58

MEN ρ 0.44 0.71 0.60 0.78 0.45 0.63 0.62

SimLex-999 ρ 0.29 0.32 0.28 0.39 0.36 0.52 0.49

SimLex-333 ρ 0.18 0.18 0.07 0.24 0.34 0.49 0.45

TOEFL % 0.75 0.78 0.64 0.84 0.87 0.93 0.93

Syn/antonym % 0.69 0.72 0.75 0.76 0.70 0.79 0.74

Bilingual embedding spaces learned without the translation objective are somewhere between these two
extremes

3.1 Similarity and relatedness modelling

As in previous studies (Agirre et al. 2009; Bruni et al. 2014; Baroni et al. 2014), our ini-
tial evaluations involved calculating pairwise (cosine) distances between embeddings
and correlating these distances with (gold-standard) human judgements of the strength
of relationships between concepts. For this we used three different gold standards:
WordSim-353 (Agirre et al. 2009), MEN (Bruni et al. 2014) and SimLex-999 (Hill
et al. 2014). Importantly, there is a clear distinction betweenWordSim-353 and MEN,
on the one hand, and SimLex-999, on the other, in terms of the semantic relationship
that they quantify. For both WordSim-353 and MEN, annotators were asked to rate
how related or associated two concepts are. Consequently, pairs such as [clothes–
closet], which are clearly related but ontologically dissimilar, have high ratings in
WordSim-353 and MEN. In contrast, such pairs receive a low rating in SimLex-999,
where only genuinely similar concepts, such as [coast–shore], receive high ratings.

To reproduce the scores in SimLex-999, models must thus distinguish pairs that
are similar from those that are merely related. In particular, this requires models to
develop sensitivity to the distinction between synonyms (similar) and antonyms (often
strongly related, but highly dissimilar).6

Table 1 shows the correlations of NMT (English–French) embeddings, other
bilingually-trained embeddings and monolingual embeddings with these three lexical
gold-standards. NMT outperform monolingual embeddings, and, to a lesser extent,
the other bilingually trained embeddings, on SimLex-999. However, this clear advan-
tage is not observed on MEN and WordSim-353, where the projected embeddings
of (Faruqui and Dyer 2014), which were tuned for high performance on WordSim-
353, perform best. Given the aforementioned differences between the evaluations, this
suggests that bilingually-trained embeddings, and NMT based embeddings in partic-
ular, better capture similarity, whereas monolingual embedding spaces are orientated
more towards relatedness.

6 For a more detailed discussion of the similarity/relatedness distinction, see (Hill et al. (2014)).
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The representational geometry of word meanings acquired… 9

To test this hypothesis further, we ran three more evaluations designed to probe
the sensitivity of models to similarity as distinct from relatedness or association. In
the first, we measured performance on SimLex-Assoc-333 (Hill et al. 2014). This
evaluation comprises the 333 most related pairs in SimLex-999, according to an inde-
pendent empirical measure of relatedness (free associate generation Nelson et al.
2004). Importantly, the pairs in SimLex-Assoc-333, while all strongly related, still
span the full range of similarity scores.7 Therefore, the extent to which embeddings
can model this data reflects their sensitivity to the similarity (or dissimilarity) of two
concepts, even in the face of a strong signal in the training data that those concepts
are related.

The TOEFL synonym test is another similarity-focused evaluation of embedding
spaces. This test contains 80 cue words, each with four possible answers, of which one
is a correct synonym (Landauer and Dumais 1997). We computed the proportion of
questions answered correctly by each model, where a model’s answer was the nearest
(cosine) neighbour to the cue word in its vocabulary.8 Note that, since TOEFL is a
test of synonym recognition, it necessarily requires models to recognise similarity as
opposed to relatedness.

Finally, we tested how well different embeddings enabled a supervised classifier
to distinguish between synonyms and antonyms, since synonyms are necessarily sim-
ilar and people often find antonyms, which are necessarily dissimilar, to be strongly
associated. For 744 word pairs hand-selected as either synonyms or antonyms9 we
presented a Gaussian SVM with the concatenation of the two word embeddings. We
evaluated accuracy using 10-fold cross-validation (Fig. 1).

As shown in Table 1, with these three additional similarity-focused tasks we again
the same pattern of results. NMT embeddings outperform other bilingually-trained
embeddings which in turn outperform monolingual models. The difference is par-
ticularly striking on SimLex-Assoc-333, which suggests that the ability to discern
similarity from relatedness (when relatedness is high) is perhaps the most clear dis-
tinction between the bilingual spaces and those of monolingual models.

These conclusions are also supported by qualitative analysis of the various embed-
ding spaces.As shown inTable 2, in theNMTembedding spaces the nearest neighbours
(by cosine distance) to concepts such as teacher are genuine synonyms such as pro-
fessor or instructor. The bilingual objective also seems to orientate the non-NMT
embeddings towards semantic similarity, although some purely related neighbours are
also oberved. In contrast, in the monolingual embedding spaces the neighbours of
teacher include highly related but dissimilar concepts such as student or college.

It is notable that, while all NMT embedding spaces reflect similarity better than
other embedding spaces, those acquired by the RNNenc model achieve better perfor-
mance than those from the RNNsearch across our evaluations. This may be a simple

7 The most dissimilar pair in SimLex-Assoc-333 is [shrink,grow] with a score of 0.23. The highest is
[vanish,disappear] with 9.80.
8 To control for different vocabularies, we restricted the effective vocabulary of each model to the inter-
section of all model vocabularies, and excluded all questions that contained an answer outside of this
intersection.
9 Available online at http://www.cl.cam.ac.uk/fh295/.

123

http://www.cl.cam.ac.uk/fh295/


10 F. Hill et al.

Fig. 1 A 2D PCA visualisation of word embedding spaces. Dimensions in the space correspond to the
two principal components of the embedding space. The tendency of MT-based embeddings (RNNenc) to
organise according to ontological similarity rather than topical associations can be observed on the left,
where fruits and vegetables occupy one part of the space and associated qualities occupy another. In the
Skipgram embedding space (right) this regularity is not observed

Table 2 Nearest neighbours (excluding plurals) in the embedding spaces of different models

Skipgram Glove CW FD BiCVM RNNenc RNNsearch

Teacher Vocational Student Student Elementary Faculty Professor Instructor

In-service Pupil Tutor School Professors Instructor Professor

College University Mentor Classroom Teach Trainer Educator

Eaten Spoiled Cooked Baked Ate Eating Ate Ate

Squeezed Eat Peeled Meal Eat Consumed Consumed

Cooked Eating Cooked Salads Baking Tasted Eat

Britain Northern Ireland Luxembourg UK UK UK England

Great Kingdom Belgium British British British UK

Ireland Great Madrid London England America Syria

All models were trained for six epochs on the translation corpus except CW and FD (as noted previously).
NMT embedding spaces are oriented according to similarity, whereas embeddings learned by monolingual
models are organized according to relatedness. The other bilingual model BiCVM also exhibits a notable
focus on similarity

consequence of the fact, since it lacks an attention mechanism, a greater proportion of
the memory capacity of the RNNenc model resides in its word embedding weights,
which stimulates the acquisition of richer lexical representations.

3.2 Importance of training data quantity

In previous work, monolingual models were trained on corpora many times larger
than the English half of our parallel translation corpus. Indeed, the ability to scale
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Fig. 2 The effect of increasing the amount of training data on the quality ofmonolingual embeddings, based
on similarity-based evaluations (SimLex-999) and two relatedness-based evaluations (MEN andWordSim-
353). ET in the legend indicates models trained on the English half of the translation corpus.Wiki indicates
models trained on Wikipedia

to large quantities of training data was one of the principal motivations behind the
skipgram architecture (Mikolov et al. 2013b). To check if monolingual models simply
need more training data to capture similarity as effectively as bilingual models, we
therefore trained them on increasingly large subsets of Wikipedia.10 As shown in
Fig. 2, this is not in fact the case. The performance of monolingual embeddings on
similarity tasks remains well below the level of the NMT embeddings and somewhat
lower than the non-MT bilingual embeddings as the amount of training data increases.

3.3 Analogy resolution

Lexical analogy questions have been used as an alternative way of evaluating word
representations. In this task, models must identify the correct answer (girl) when
presented with analogy questions such as ‘man is to boy as woman is to ?’. It has
been shown that Skipgram-style models are surprisingly effective at answering such
questions (Mikolov et al. 2013b). This is because, if m,b and w are skipgram-style
embeddings for man, boy and woman respectively, the correct answer is often the
nearest neighbour in the vocabulary (by cosine distance) to the vector v = w+b−m.

We evaluated embeddings on analogy questions using the same vector-algebra
method as in (Mikolov et al. 2013b). As in the previous section, for fair comparison
we excluded questions containing a word outside the intersection of all model vocab-
ularies, and restricted all answer searches to this reduced vocabulary. This left 11,166
analogies. Of these, 7219 are classed as ‘syntactic’, in that they exemplify mappings
between parts-of-speech or syntactic roles (e.g., fast is to fastest as heavy is to heavi-
est), and 3947 are classed as ‘semantic‘ (Ottawa is to Canada as Paris is to France),

10 We did not do the same for our translation models because sentence-aligned bilingual corpora of com-
parable size do not exist.
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Fig. 3 Translation-based embeddings perform best on syntactic analogies (run,ran:hide,hid). Monolingual
skipgram/Glove models are better at semantic analogies (father, man; mother, woman)

since successful answering seems to rely on some (world) knowledge of the concepts
themselves.

As shown in Fig. 3, NMT embeddings yield relatively poor answers to semantic
analogy questions compared with monolingual embeddings and the bilingual embed-
dings FD (which are projections of similar monolingual embeddings).11 It appears
that the translation objective prevents the embedding space from developing the same
linear, geometric regularities as skipgram-stylemodels with respect to semantic organ-
isation. This also seems to be true of the embeddings from the full-sentence language
modelCW. Further, in the case of the Glove and FDmodels this advantage seems to be
independent of both the domain and size of the training data, since embeddings from
these models trained on only the English half of the translation corpus still outperform
the translation embeddings.

On the other hand,NMTembeddings are effective for answering syntactic analogies
using the vector algebra method. They perform comparably to or even better than
monolingual embeddings when trained on less data (albeit bilingual data). It is perhaps
unsurprising that the translation objective incentivises the encoding of a high degree
of lexical syntactic information, since coherent target-language sentences could not
be generated without knowledge of the parts-of-speech, tense or case of its vocabulary
items. The connection between the translation objective and the embedding of lexical
syntactic information is further supported by the fact that embeddings learned by the
bilingual model BiCVM do not perform comparably on the syntactic analogy task.
In this model, sentential semantics is transferred via a bag-of-words representation,
presumably rendering the precise syntactic information less important.

When considering the two properties of NMT embeddings highlighted by these
experiments, namely the encoding of semantic similarity and lexical syntax, it is worth
noting that items in the similarity-focused evaluations of the previous section (SimLex-

11 The performance of the FD embeddings on this task is higher than that reported by Faruqui and Dyer
(2014) because we search for answers over a smaller total candidate vocabulary.
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Table 3 Comparison of embeddings learned by RNN Search models translating between English–French
(EN–FR) and English–German (EN–DE) on all semantic evaluations (left) and nearest neighbours of
selected cue words (right)

EN–FR EN–DE ‘Earned’ ‘Castle’ ‘Money’

WordSim-353 ρ 0.60 0.61 EN-FR Gained Chateau Silver

MEN ρ 0.61 0.62 Won Palace Funds

SimLex-999 ρ 0.49 0.50 Acquired Fortress Cash

SimLex-Assoc-333 ρ 0.45 0.47

TOEFL % 0.90 0.93 EN-DE Gained Chateau Funds

Syn/antonym % 0.72 0.70 Deserved Palace Cash

Syntactic analogies % 0.73 0.62 Accummulated Padlock Resources

Semantic analogies % 0.10 0.11

Bold italics indicate target-language-specific effects. Evaluation items and vocabulary searches were
restricted to words common to both models

999 and TOEFL) consist of word groups or pairs that have identical syntactic role.
Thus, even though lexical semantic information is in general pertinent to conceptual
similarity (Levy and Goldberg 2014), the lexical syntactic and conceptual properties
of translation embeddings are in some sense independent of one another.

4 Effect of target language

To better understand why a translation objective yields embedding spaces with partic-
ular properties, we trained the RNN Search architecture to translate from English to
German.

As shown in Table 3 (left side), the performance of the source (English) embeddings
learned by thismodelwas comparable to that of those learned by the English-to-French
model on all evaluations, even though the English–German training corpus (91 mil-
lion words) was notably smaller than the English–French corpus (348m words). This
evidence shows that the desirable properties of translation embeddings highlighted
thus far are not particular to English–French translation, and can also emerge when
translating to a different language family, with different word ordering conventions.

5 Overcoming the vocabulary size problem

A potential drawback to using NMT models for learning word embeddings is the
computational cost of training such a model on large vocabularies. To generate a
target language sentence, NMT models repeatedly compute a softmax distribution
over the target vocabulary. This computation scales with vocabulary size and must be
repeated for eachword in the output sentence, so that trainingmodels with large output
vocabularies is challenging. Moreover, while the same computational bottleneck does
not apply to the encoding process or source vocabulary, there is no way in which
a translation model could learn a high quality source embedding for a word if the
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14 F. Hill et al.

plausible translations were outside its vocabulary. Thus, limitations on the size of the
target vocabulary effectively limit the scope ofNMTmodels as representation-learning
tools. This contrasts with the shallower monolingual and bilingual representation-
learningmodels considered in this paper, which efficiently compute a distribution over
a large target vocabulary using either a hierarchical softmax (Morin and Bengio 2005)
or approximate methods such as negative sampling (Mikolov et al. 2013b; Hermann
and Blunsom 2014), and thus can learn large vocabularies of both source and target
embeddings.

A recently proposed solution to this problem enables NMT models to be trained
with larger target vocabularies (and hence larger meaningful source vocabularies) at
comparable computational cost to training with a small target vocabulary (Jean et al.
2015). The algorithm uses (biased) importance sampling (Bengio and Sénécal 2003)
to approximate the probability distribution of words over a large target vocabulary
with a finite set of distributions over subsets of that vocabulary. Despite this element
of approximation in the decoder, extending the effective target vocabulary in this way
significantly improves translation performance, since the model can make sense of
more sentences in the training data and encounters fewer unknown words at test time.
In terms of representation learning, the method provides a means to scale up the NMT
approach to vocabularies as large as those learned by monolingual models. However,
given that themethod replaces an exact calculation with an approximate one, we tested
how the quality of source embeddings is affected by scaling up the target language
vocabulary in this way.

As shown in Table 4, there is no significant degradation of embedding quality when
scaling to large vocabularies with using the approximate decoder. Note that for a fair
comparison we filtered these evaluations to only include items that are present in
the smaller vocabulary. Thus, the numbers do not directly reflect the quality of the
additional 470k embeddings learned by the extended vocabulary models, which one

Table 4 Comparison of embeddings learned by the original (RNN Search-30k English, French, German
words) and extended-vocabulary (RNN Search-LV-500k words) models translating from English to French
(EN–FR) and from English to German (EN–DE). For fair comparisons, all evaluations were restricted to
the intersection of all model vocabularies

RNN Search RNN Search RNN Search-LV RNN Search-LV
EN-FR EN-DE EN-FR EN-DE

WordSim-353 ρ 0.60 0.61 0.59 0.57

MEN ρ 0.61 0.62 0.62 0.61

SimLex-999 ρ 0.49 0.50 0.51 0.50

SimLex-Assoc-333 ρ 0.45 0.47 0.47 0.46

TOEFL % 0.90 0.93 0.93 0.98

Syn/antonym % 0.72 0.70 0.74 0.71

Syntactic analogies % 0.73 0.62 0.71 0.62

Semantic analogies % 0.10 0.11 0.08 0.13
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Fig. 4 The influence of the source-target language pair on the geometry of MT-based word embedding
spaces. In the source embedding space of a model trained to translate from English to French (left), English
word pairs that are generally translated to a single word in French (denoted by a common colour) occupy
proximate locations. In the embedding space of Skipgram models trained on English text only (right), this
effect is not observed

would expect to be lower since they are words of lower frequency. All embeddings
can be downloaded from http://www.cl.cam.ac.uk/fh295/.12

6 How similarity emerges

Although NMT models appear to encode both conceptual similarity and syntactic
information for any source and target languages, it is not the case that embedding
spaces will always be identical. Interrogating the nearest neighbours of the source
embedding spaces of the English–French and English–German models reveals occa-
sional language-specific effects. As shown in Table 3 (right side), the neighbours for
the word earned in the English–German model are as one might expect, whereas the
neighbours from the English–French model contain the somewhat unlikely candidate
won. In a similar vein,while the neighbours of theword castle from theEnglish–French
model are unarguably similar, the neighbours from the English–German model con-
tain the word padlock. This effect is also observed in visualisations of the embedding
spaces, as indicated in Fig. 4 .

These infrequent but striking differences between the English–German and
English–French source embedding spaces indicate how similaritymight emerge effec-
tively in NMT models. Tokens of the French verb gagner have (at least) two possible
English translations (win and earn). Since the translation model, which has limited
encoding capacity, is trained to map tokens of win and earn to the same place in the
target embedding space, it is efficient to move these concepts closer in the source
space. Since win and earn map directly to two different verbs in German, this effect

12 A different solution to the rare-word problem was proposed by Luong et al. (2014). We do not evaluate
the effects on the resulting embeddings of this method because we lack access to the source code.
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is not observed. On the other hand, the English nouns castle and padlock translate to
a single noun (Schloss) in German, but different nouns in French. Thus, padlock and
castle are only close in the source embeddings from the English–German model.

Such cases suggest that the induction of similarity in NMT models relies on the
following condition on the semantic configuration between two languages.

(1) For words w1 and w2 in the source language, there is some word t in the
target language such that there are sentences in the training data in which w1
translates to t and sentences in which w2 translates to t.

if and only if

(2) w1 and w2 are semantically similar.

Of course, this condition is not true in general. However, we propose that the extent
to which it holds over all possible word pairs corresponds to the quality of similarity
induction in the translation embedding space. Note that strong polysemy in the target
language (such as gagner meaning either win or earn), can lead to cases in which (1)
is satisfied but (2) is not. The conjecture claims that these cases are detrimental to
the quality of the embedding space (at least with regards to similarity). In practice,
qualitative analyses of the embedding spaces and native speaker intuitions suggest
that such cases are comparatively rare. Moreover, when such cases are observed, w1
and w2, while perhaps not similar, are not strongly dissimilar. This could explain
why related but strongly dissimilar concepts such as antonym pairs do not converge
in the translation embedding space. This is also consistent with qualitative evidence
presented by Faruqui and Dyer (2014) that projecting monolingual embeddings into
a bilingual space orientates them to better reflect the synonymy/antonymy distinction.

7 Conclusion

In thiswork,wehave shown that the embedding spaces fromneuralmachine translation
models are orientated more towards conceptual similarity than those of monolingual
models, and that translation embedding spaces also reflect richer lexical syntactic
information. To perform well on similarity evaluations such as SimLex-999, embed-
dings must distinguish information pertinent to what concepts are (their function or
ontology) from information reflecting other non-specific inter-concept relationships.
Concepts that are strongly related but dissimilar, such as antonyms, are particularly
challenging in this regard (Hill et al. 2014). Consistent with the qualitative observation
made by Faruqui and Dyer (2014), we suggested how the nature of the semantic corre-
spondence between the words in languages enables NMT embeddings to distinguish
synonyms and antonyms and, more generally, to encode the information needed to
reflect human intuitions of similarity.

The language-specific effects we observed in Sect. 4 suggest a potential avenue
for improving translation and multi-lingual embeddings in future work. First, as hard-
ware improves, training speeds fall, and data becomes more prevalent, we would like
to explore the embeddings learned by NMTmodels that translate between much more
distant language pairs such as English–Chinese or English–Arabic. For these language
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pairs, theword alignmentwill be lessmonotonic andmay result in evenmore important
semantic and syntactic information being encoded in the lexical representations. Fur-
ther, as observed by both Hermann and Blunsom (2014) and Faruqui and Dyer (2014),
the bilingual representation learning paradigm can be naturally extended to update
representations based on correspondences between multiple languages (for instance
by interleaving English–French and English–German training examples). Such an
approach should smooth out language-specific effects, leaving embeddings that encode
only language-agnostic conceptual semantics and are thus more generally applicable.
Another related challenge is to develop smaller or less complex representation-learning
tools that encode similarity with as much fidelity as NMT models but without either
the computational overhead or the requirement for sentence-aligned parallel corpora.
Such a development would enable the techniques proposed here to be used to learn
word representations for a wider range of low-resource languages.

Not all word embeddings learned from text are born equal. Depending on the appli-
cation, those learned by NMT models may have particularly desirable properties. For
decades, distributional semantic models have aimed to exploit Firth’s famous distri-
butional hypothesis to induce word meanings from (monolingual) text. However, the
hypothesis also betrays the weakness of themonolingual distributional approach when
it comes to learning humah-quality concept representations. For while it is undeniable
that “words which are similar in meaning appear in similar distributional contexts”
(Firth 1957), the converse assertion, which is what really matters for extracting word
meanings, is only sometimes true.
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Vulić I, De Smet W, Moens MF (2011) Identifying word translations from comparable corpora using latent
topic models. In: Proceedings of the 49th annual meeting of the association for computational linguis-
tics: human language technologies: short papers, Vol 2, Association for Computational Linguistics,
pp 479–484

Weston J, Bengio S, Usunier N (2010) Large scale image annotation: learning to rank with joint word-image
embeddings. Mach Learn 81(1):21–35

123

http://arxiv.org/abs/1408.3456
http://arxiv.org/abs/1410.8206

	The representational geometry of word meanings acquired by neural machine translation models
	Abstract
	1 Introduction
	2 Learning embeddings with neural language models
	2.1 Monolingual models
	2.2 Bilingual representation-learning models
	2.3 Neural machine translation models

	3 Experiments
	3.1 Similarity and relatedness modelling
	3.2 Importance of training data quantity
	3.3 Analogy resolution

	4 Effect of target language
	5 Overcoming the vocabulary size problem
	6 How similarity emerges
	7 Conclusion
	Acknowledgements
	References




