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Abstract Quality estimation (QE) for machine translation is usually addressed as a
regression problem where a learning model is used to predict a quality score from a
(usually highly-redundant) set of features that represent the translation. This redun-
dancy hinders model learning, and thus penalizes the performance of quality estimation
systems. We propose different dimensionality reduction methods based on partial least
squares regression to overcome this problem, and compare them against several reduc-
tion methods previously used in the QE literature. Moreover, we study how the use
of such methods influence the performance of different learning models. Experiments
carried out on the English-Spanish WMT12 QE task showed that it is possible to
improve prediction accuracy while significantly reducing the size of the feature sets.

Keywords Machine translation · Quality estimation · Dimensionality reduction ·
Partial least squares regression

1 Introduction

Despite an intensive research in the last 50 years, machine translation (MT) systems are
still error-prone. Thus, a desirable feature to improve the broader and more effective
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deployment of (nowadays) imperfect MT technology is the capability of predicting the
reliability, namely the quality, of the generated translations. Historically, translation
quality assessment has been done manually by human experts. These experts need
to read the automatic translation and the source text to be able to judge whether the
translation is good or not which, obviously, is a very time consuming task. Therefore,
automatical translation quality assessment is a crucial problem, either to present the
translations in such way as to make end-users aware of the quality (Specia et al. 2009b),
or to filter out the translations according to the requirements of a given task and level of
expertise of the professional translator, e.g. to avoid professional translators spending
time reading/post-editing certain translations (Blatz et al. 2004; Quirk 2004; Specia
et al. 2009a; González-Rubio et al. 2010). This task, referred to as confidence or
quality estimation (QE), is concerned about predicting MT output quality without
any information about the expected output. Quality information may be provided for
each word (Gandrabur and Foster 2003; Ueffing and Ney 2007; Sanchis et al. 2007),
sentence (Blatz et al. 2004; Quirk 2004; Gamon et al. 2005; Specia et al. 2009b) or
document (Soricut and Echihabi 2010). This article focuses on sentence-level QE.

We distinguish the task of QE from that of MT evaluation by the need, in the
latter, of reference translations. The goal of MT evaluation is to compare an automatic
translation to reference translation(s) and provide a quality score which reflects how
close the two translations are. In QE, the task consist in estimating the quality of the
translation given only information about the input and output texts and the translation
process.

Sentence-level QE is typically addressed as a regression problem (Quirk 2004; Blatz
et al. 2004; Specia et al. 2009b). Given a translation generated by an MT system (and
potentially other additional sources of information) a set of features is extracted. Then,
a model trained using a particular machine learning algorithm is employed to compute
a quality score from these features. Most QE works consider a fixed set of features and
study the performance of different learning algorithms on those features. However,
feature sets tend to be highly redundant, i.e. there is high multicollinearity between
the features, and some of the features may even be irrelevant to predict the quality
score. Moreover, a set of translations labeled with their “true” quality score is required
to train the learning model. Since this labeling process is usually done manually,
training sets rarely contain enough labeled samples to accurately train the model. By
removing irrelevant and redundant features from the data, dimensionality reduction
(DR) methods potentially improve the performance of learning models by alleviating
the effect of the “curse” of dimensionality, enhancing generalization capability of the
model, and speeding up the learning process. Additionally, DR may also help the
researchers to acquire better understanding about their data by telling them which are
the important features and how they are related with each other. Despite these potential
improvements, works on QE usually put little attention on DR. For example, only six
out of the eleven participants to the QE task of the 2012 workshop on statistical MT
(Callison-Burch et al. 2012) applied DR, and even those participants that used DR
only implemented simple feature selection methods.

In this article, we propose two novel DR methods based on partial least squares
regression (PLSR) (Wold 1966). We consider both a DR method that selects a subset
of the original features, namely a feature selection method, and a method that projects
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Fig. 1 Dataflow of the proposed two-step quality estimation approach

the original data into a space of fewer dimensions, a feature extraction method. Despite
being usually more complex, feature extraction methods have a potential advantage
over feature selection: they can generate new features that summarize the “informa-
tion” contained in all original features. In contrast, the information contained in the
features discarded by a feature selection method is inevitably lost. The proposed meth-
ods are compared to other DR methods previously used in the literature: methods based
on statistical multivariate analysis such as PCA (Pearson 1901) and PLSR regressors
selection (Specia et al. 2009b), and heuristic wrapper selection methods (Kohavi and
John 1997). Moreover, we study how these DR methods affect the performance of
different learning models.

The performance of each DR method was evaluated by the prediction accuracy of
the models trained in the corresponding reduced feature sets. Figure 1 shows a scheme
of the process followed to obtain a quality score from a given translation. First, from
the translation, and additional information sources, we compute a (possibly high-
dimensional and highly-redundant) set of features that represent the translation. Then,
we apply a DR method to obtain a reduced feature set that still contains the relevant
information present in the original feature set. Finally, we use a trained learning model
to predict the quality score of the translation from this reduced feature set. To assure an
accurate comparison between the different DR methods, identical pipelines were used
to train the models. By providing a detailed description and a systematic evaluation
of these DR methods, we give the reader various criteria for deciding which method
to use for a given task.

It should be noted that despite being tested in a QE task, the proposed two-step
training and DR methods do not make particular assumptions about the features or the
learning model. Thus, they constitute a general methodology that can be applied to a
great variety of supervised learning tasks.

The rest of the article is organized as follows. In Sect. 2, we formalize the regression
approach to QE. In Sect. 3, we state the DR problem and present the different DR
methods under study. Section 4 is devoted to describe our experimental setting which
include a description of the features extracted for each translation (Sect. 4.2), and
the different learning models used in the experimentation (Sect. 4.3). In Sect. 5, we
present and discuss the empirical results obtained in the experimentation, and, finally,
we conclude with a summary in Sect. 6.

2 Quality estimation

We formalize QE as a regression problem where we model the relationship between
a dependent variable y (the quality score), and a vector of m explanatory variables
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xT = (x1, . . . , xm) (the features that represent the translation). Given a data set with
n samples {yi , xi }n

i=1, our goal is to build a predictive model Mθ : R
m → R with free

parameters θ . The data set is usually represented in matrix form where y is a vector
that contains the quality scores, and X is a matrix where each row is the feature vector
of one training sample:

y =

⎛
⎜⎜⎜⎝

y1
y2
...

yn

⎞
⎟⎟⎟⎠ X =

⎛
⎜⎜⎜⎜⎝

xT
1

xT
2
...

xT
n

⎞
⎟⎟⎟⎟⎠

=

⎛
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x11 x12 · · · x1m

x21 x22 · · · x2m
...

...
. . .

...

xn1 xn2 · · · xnm

⎞
⎟⎟⎟⎠

To carry out the regression, the form of the model Mθ must be specified. Since we do
not know how y and X actually relate, we use different flexible models (see Sect. 4.3)
whose free parameters θ can be estimated to fit the data. Typically, these models
include a regularization term (Tibshirani 1996) that facilitates the learning process in
the presence of noisy and collinear data. One of the goals of the experimentation will be
to study if regularized models can also benefit from an explicit DR of the feature space.

3 Dimensionality reduction

3.1 Motivation

The proposed QE formalization assumes that translation quality can be described by
a number of independent variables. Since these underlying variables are unknown, in
practice, we instead extract a (possibly larger) set of features that aim at describing the
prediction information contained in the underlying variables. This approach implies
to consider translation quality as governed by more variables than it really is, which
results in several learning problems due to the addition of irrelevant features, or the
multicollinearity between them. However, provided the influence of this “extra” fea-
tures is not too strong as to completely mask the original structure, we should be able
to “filter” them out and recover the original variables or an equivalent set of them.
DR methods aim at somehow strip off this redundant information, producing a more
economic representation of the data.

DR can also be seen as a method to overcome the so-called “curse” of dimen-
sionality. This term, coined in Bellman (1961), refers to the fact that, in the absence
of simplifying assumptions, the sample size needed to estimate a function of several
variables to a given degree of accuracy grows exponentially with the number of vari-
ables. Responsible for the “curse” of dimensionality is the fact that high-dimensional
spaces are inherently sparse which is known as the empty space phenomenon (Scott
and Thompson 1983). This is a difficult problem in model estimation, as regions of
relatively very low density can contain a considerable part of the distribution, whereas
regions of apparently high density can be completely devoid of observations in a sam-
ple of moderate size. DR technology address these problems, by reducing the input
dimension of the function to be estimated.
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3.2 Problem statement and approaches

The DR problem can be stated as follows: given a regression problem P1 : R
m → R,

we want to obtain an equivalent problem P2 : R
r → R where r � m. In other words,

we want to obtain a low-dimensional, compact representation of the input data that still
retains the information required to perform an accurate prediction. Formally, DR is
defined by a function Δ that transforms an m-dimensional space into an r -dimensional
space:

Δ : R
m → R

r (1)

The determination of the dimension r of this compact representation is central
to the DR problem, because knowing it would eliminate the possibility of over- or
under-fitting. All the methods studied in this article take this intrinsic dimension as a
parameter to be given by the user; a trial-and-error process is thus necessary to obtain
a satisfactory value for it.

Next, we describe the different DR methods tested in the experimentation. For
a more clear presentation, we distinguish between heuristic methods and methods
derived from statistical multivariate analysis.

3.3 Heuristic feature selection methods

We consider heuristic wrapper (Kohavi and John 1997) methods to address the problem
of feature selection. In the wrapper methodology, the learning model is considered a
perfect black box. In its most general formulation, this methodology consists in using
the prediction accuracy of a given learning model to assess the relative usefulness of
subsets of features. In practice, the different wrapper methods are defined by the search
strategy implemented to explore the space of possible subsets. An exhaustive search
can conceivably be performed if the number of features is not too large. For example,
all the subsets for 24 features (224) were explored in Soricut et al. (2012). However,
the problem is known to be NP-hard (Amaldi and Kann 1998) and the search quickly
becomes computationally intractable.

In out experimentation, we tested two search strategies that define two different
heuristic feature selection methods: ranking of feature selection, and greedy forward
selection (GFS). Since the computational complexity of these simple methods depends
on the complexity of the chosen learning model, we use symbol ζ(n, m) to denote the
time complexity to train the actual learning model with n samples of m-dimensional
feature vectors.

3.3.1 Rank of feature

Rank of feature selection (RFS) generates subsets of features by selecting the top-
scoring features according to the prediction accuracy of a QE system trained solely
with that feature (González-Rubio et al. 2012). RFS is typically used as a baseline selec-
tion mechanism because of its simplicity, scalability and (somewhat) good empirical
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success (Guyon and Elisseeff 2003). The computational complexity of RFS to gen-
erate the first reduced feature set is given by O(m · ζ(n, 1)); once the scores for the
features are computed, we can generate reduced groups of different sizes with no fur-
ther calculations. For example, the complexity of RFS if we use a linear model1 is in
O(m · n) given that ζ(n, 1) is proportional to n.

Since RFS selects the features according to their individual prediction accuracy,
we expect to obtain subsets of features that also provide good prediction accuracy.
However, RFS does not take into account the correlations that may exist between
the different features, thus, these subsets will probably contain a large number of
redundant features.

3.3.2 Greedy forward

Greedy forward selection (Kohavi and John 1997; Avramidis 2012) incrementally
creates subsets of features by selecting at each iteration the feature that, when added
to the current set, yields the learned model that performs best. In contrast to RFS,
GFS recomputes the importance of each feature at each step having into account the
current subset of features. Thus, the computational complexity of GFS to compute a
reduced set of size r is O(

∑r
i=1

∑m−i+1
j=1 ζ(n, i)) that is upper bounded by O(r · m ·

ζ(n, r)). For example, if we use a linear model the temporal complexity of GFS is in
O(r2 · m · n) given that ζ(n, r) ∝ n · r .

Since GFS selects at each step the feature that improves most the QE model per-
formance, we expect to obtain subsets with lower redundancy in comparison to RFS.
However, it requires to re-compute the contribution of each feature to the QE model
at each step, O(ζ(n, r)), which penalizes GFS complexity.

3.4 DR methods based on statistical multivariate analysis

Statistical multivariate analysis is a generic term for any statistical technique concerned
with analyzing data in high dimensions (Anderson 1958). In particular, we focus on
statistical techniques to partition the variability of the data into components attributable
to different sources of variation. In this work, we consider two of these techniques:
principal component analysis (PCA), and PLSR. Given a number of dimensions r , both
PCA and PLSR compute a transformation of the original data space into an orthogonal
r -dimensional space. However, they differ in the criteria followed to compute this
transformation.

The main advantage of these methods stems in the orthogonality of the output
space; which means that the transformed features will be linearly independent by
construction. Therefore, using these transformations we obtain reduced feature sets
with almost no redundant information. Moreover, statistical multivariate methods are
mathematically well-founded and independent of the choosen learning model. How-
ever, these methods also have an obvious drawback, i.e. new features are computed as

1 This particular setup can be considered as a lower bound of the complexity of RFS.
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Fig. 2 PCA example for a 2-dimensional gaussian distribution. The vectors represent the two principal
components of the data

a linear combination of all original features which makes it often difficult to interpret
them.

3.4.1 Principal component analysis

Principal component analysis (Pearson 1901) defines a transformation of the original
data into a new space of features, known as principal components. This transformation
is defined in such a way that the first principal component has the largest possible
variance (that is, accounts for as much of the variability in the data as possible),
and each succeeding component in turn has the highest variance possible under the
constraint of being uncorrelated with the preceding components. Therefore, each of
these principal components represent one of the individual latent factors that actually
govern the variability of the data, as exemplified in Fig. 2.

Given a matrix X whose rows represent the n samples and each column represents
one of the m features, PCA is formalized by the following decomposition:

X = TPT (2)

where P is the space transformation matrix that contains the eigenvectors of the covari-
ance matrix XT X, and the rows of T represent the principal components of each training
sample. The nonlinear iterative partial least squares (NIPALS) algorithm (Wold 1966)
is commonly used to obtain the eigenvectors.

Given that the eigenvectors in P are unitary and orthogonal (PT P = I), we can
multiply both sides of Eq. (2) by P to obtain the principal components T of the data:

XP = T (3)

Figure 3 shows a graphical example of the computation of two principal components
t = (t1, t2) for a single data point x. Each principal component tk is computed by
projecting x over the corresponding unitary eigenvector pk . Specifically, tk = x ·pk =
||x|| · ||pk || · cos(αk) = ||x|| · cos(αk), where αk is the angle between x and pk .

3.4.1.1 PCA projection The principal components are linearly independent, and each
of them accounts for the maximum variability in X not explained by previous compo-
nents, thus we follow González-Rubio et al. (2012) and select the first r components to
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Fig. 3 Example of the principal component values (t1, t2) for a data point x in Fig. 2. Values t1, t2 are
computed by projecting x over the corresponding eigenvectors (p1, p2)

create the reduced feature sets. Since each of these components is a linear combination
of the original features, this is a feature extraction method. In the experiments, we use
PCA-P to denote this DR approach.

The complexity of PCA-P to compute a reduced set of size r is given by the
complexity of the NIPALS algorithm: O(r ·m ·n). Note that in contrast to the previously
presented heuristic methods, the cost of PCA-P does not depend on the complexity of
the chosen learning model.

3.4.2 Partial least squares regression

PCA generates sets of orthogonal features where each feature explains the variability
of the data X in one principal direction. However, this transformation ignores the scores
y to be predicted. Thus, although the features generated by PCA-P contain almost no
redundancy, they do not necessarily have to be the best set of features to perform the
prediction. Partial least squares regression (PLSR) (Wold 1966) is an alternative to
PCA that takes into account y when computing the transformation of X. Specifically,
PLSR computes a ordered set of latent variables such that each of them account for the
maximum co-variability between X and y under the constraint of being uncorrelated
with previous latent variables. Formally, PLSR builds the following model where b is
a vector of regressor coefficients, and f is a vector of zero-centered Gaussian errors:

y = Xb + f (4)

Even though this is a linear regression model the estimation of the regression coef-
ficients b for PLSR is different from the conventional least squares regression, see
Sect. 4.3.1. The intuitive idea of PLSR is to describe y as well as possible, hence to
make ||f || as small as possible, and, at the same time, take advantage of the relation
between X and y. To do that, PLSR defines two independent PCA-like transforma-
tions P and q (for X and y respectively) with E and f being the corresponding residual
errors, and a linear relation R linking both blocks:

X = TPT + E y = UqT + f (5)

U = TR (6)
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where matrices T and U are the projections from X and y respectively. Specifically,
each of the columns of the T matrix represents one of the latent variables of X.

The NIPALS algorithm (Wold 1966) is also used to solve this optimization problem.
In this case, b is estimated as:

b = RqT where R = W(PT W)−1 (7)

where W is an internal weight matrix used by the algorithm that accounts for the
correlation between X and U. An exhaustive description of the NIPALS algorithm for
PLSR can be found in Geladi and Kowalski (1986).

Since PLSR is a much more sophisticated model than PCA, different elements of the
PLSR model can be used to obtain reduced feature sets. In addition to the regressors-
based selection method previously described in Specia et al. (2009b), we propose one
new feature selection method, variance importance in projection (VIP), and one new
feature extraction method, PLSR projection. Similarly to PCA-P, the computational
complexity of these three PLSR-based DR methods is also given by the complexity
of the NIPALS algorithm, O(r · m · n).

3.4.2.1 Feature importance in regression Let us consider a linear model such as the
one used by PLSR:

ŷ = b0 + b1x1 + · · · + bi xi + · · · + bm xm (8)

Regressor scores bi denote the expected value increment of the predicted quality
score ŷ by unitary increment of feature xi , i.e., they denote the importance of each
feature in the regression. However, due to the usually different scale of the features,
these values cannot be directly compared; first data need to be standardized by sub-
tracting the feature mean from the raw data values and dividing the difference by the
standard deviation. Standardized features become dimensionless, and then regressors
are directly comparable. We thus can create a reduced set of features by selecting them
in descending regressor absolute value (b in Eq. (4)). This method, first proposed by
Specia et al. (2009b), is labeled FIR in the experiments.

3.4.2.2 Variance importance in projection Given the weight matrix W, we can com-
pute the VIP (Chong and Jun 2005) of the features. VIP is a score that evaluates the
importance of each feature to find the r latent variables. Therefore, similarly as done
for RFS in Sect. 3.3.1, we propose to select subsets of top-scoring features according
to their VIP. The VIP score for the kth feature is given by:

VIPk =

√√√√√m
∑r

j=1

(
wk j

||w j ||
)2

ESS j∑r
j=1 ESS j

(9)

where m is the number of original features, ESS j = b2
j t

T
j t j is the square of the

contribution of the j th latent variable to the score predicted by the PLSR model, t j is
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the j th column of matrix T, b j is the j th regressor coefficient in b, and
wk j

||w j || is the
normalized value of weight wk j .

3.4.2.3 PLSR projection The latent variables are linearly independent, and each of
them accounts for the maximum co-variability between X and y not explained by pre-
vious latent variables. Thus, we propose to obtain a reduced feature set by extracting
the first r latent variables, i.e. the first r columns in matrix T. In contrast to PCA, the
latent variables computed by PLSR take into account the relation between the features
X and the quality scores y. Therefore, in addition of being linearly independent, we
expect the latent variables to attain more predictive potential than the equivalent num-
ber of principal components. This feature extraction method is labeled PLS-P in the
experiments.

4 Experimental setting

4.1 Data

We computed quality scores for translations of the English-Spanish news evaluation
data used in the shared QE task2 featured at the 2012 workshop on statistical MT
(Callison-Burch et al. 2012). Those translations were generated by a phrase-based
MT system (Koehn et al. 2007) trained on the Europarl and News Commentaries
corpora as provided for the shared translation task.3 Evaluation data contains 1,832
translations for training and 422 translations for test. Each translation was manually
scored by several professional translators in terms of post-editing effort according to
the following scheme:

1. The translation is incomprehensible. It must be translated from scratch.
2. About 50–70 % of the translation needs to be edited to be publishable.
3. About 25–50 % of the translation needs to be edited.
4. About 10–25 % of the translation needs to be edited.
5. The translation is clear and intelligible. It requires little to no editing.

The final quality score of each translation (a real number in the range [1,5]) is the
average of the scores given by the different experts. Additionally, for each translation
the corresponding source sentence, and decoding information (decoding graph and
1000-best translations) are available. We used these and the training data of the shared
translation task to compute the features of each translation.

4.2 Features

We extract a total of 480 features described in previous works for translation QE (Blatz
et al. 2004; Ueffing and Ney 2007; Sanchis et al. 2007). Some of these features are
highly-correlated, for example, we consider both the translation probability and the

2 http://statmt.org/wmt12/quality-estimation-task.html.
3 http://statmt.org/wmt12/translation-task.html.
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perplexity given by a language model. As described in Sect. 3.1, working with such
redundant features involves several learning issues. However, these inherent learn-
ing issues make translation QE a task where DR techniques may lead to important
improvements in prediction accuracy.

Following Specia et al. (2009b), we consider both black-box and glass-box features.
On the one hand, black-box features (B) can be extracted given only the input sentence
and the translation produced by the MT system, i.e. the source and target sentences,
and possibly additional monolingual or parallel data. On the other hand, glass-box (G)
features may also depend on some aspect of the translation process.

We distinguish between sentence- and subsequence-based features. Sentence-based
features consider the translated sentence as an atomic unit and represent the transla-
tion as a whole. In contrast, subsequence-based features consider the translation as
a sequence, and are computed by combining the feature scores of the subsequences
(words or sequences thereof) contained in each translation.

4.2.1 Sentence-based features

– Source and translation lengths, and their ratio (B, 3 features).
– Source and translation probabilities, probabilities divided by length, and perplex-

ities computed by language models of order 1–5 (B, 30 features).
– Translation probability, probability divided by translation length, and perplexity

computed by language models of order 1–5 trained on the complete 1000-best file,
and in the particular 1000-best translations of each source sentence (G, 3 indicators
× 5 orders × 2 training corpora=30 features).

– Average length of the 1000-best translations, vocabulary size of the 1000-best
translations divided by average length, and 1000-best vocabulary size divided by
source length (G, 3 features).

– Proportion of death nodes in the decoding search graph. (G, 1 feature)
– Number of source phrases of sizes one to six used in decoding (G, 6 features).
– Number and average size of the alternative translations considered in decoding for

source phrases of sizes one to six (G, 12 features).

4.2.2 Subsequence-based features

We represent each subsequence feature by five sentence-level indicators: the aver-
age value of the subsequence scores in the translation, and the percentage of scores
belonging to each frequency quartile.4 Each method represent a different approach
to summarize the subsequence scores. The average value is a rough indicator that
measures the “middle” value of them, while the quartile percentages are more fine-
grained indicators that denote how spread out the scores are. We compute the following
features for subsequences of sizes 1–4:

– Number of translation options for each source word in a Model-1 lexicon trained
on the translation task data (B, 1 × 5 = 5 features).

4 Frequency quartiles were computed on the training data of the shared translation task.
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– Frequencies of source sentence subsequences in the training data of the translation
task (B, 4 sizes × 5=20 features).

– Confidence score of each translation word computed by a Model-1 lexicon as in
Ueffing and Ney (2007) (B, 1 × 5=5 features).

– Posterior probabilities of translation subsequences computed on the 1000-best
translations (Ueffing et al. 2003). We follow Sanchis et al. (2007) and use four
different criteria to align the subsequences of the translation to the subsequences
of the alternative 1000-best translations, and three different weighting schemes to
score each aligment. The accumulated score of the alignments of each subsequence
is normalized to obtain the posterior probability of the subsequence (B, 4 sizes ×
4 criteria × 3 weightings × 5=240 features).

– Confidence scores of the translation subsequences computed from the correspond-
ing posterior probabilities by a smoothed naïve Bayes classifier as in Sanchis et al.
(2007). We used three position correctness criteria to automatically generate the
reference correctness labels required to train the classification model (B, 4 sizes
× 3 criteria × 5=60 features).

We also compute the number of words in the translation with zero (<10−7) confi-
dence according to the Model-1 lexicon (B, 1 feature), the number of source subse-
quences that do not appear in the training data of the translation task (B, 4 sizes = 4
features), the number of translation subsequences with zero (<10−7) posterior prob-
ability (B, 4 sizes × 4 criteria × 3 weightings = 48 features), and the number of
translation subsequences classified as correct by the naïve Bayes classifier (B, 4 sizes
× 3 criteria = 12 features).

4.3 Machine learning models

Now, we describe the particular learning models (Mθ in Sect. 2) tested in the experi-
ments. We use the WEKA (Hall et al. 2009) package to estimate the values of the free
parameters θ that best fit training data.

4.3.1 Linear regression

Linear regression assumes a linear relationship between the prediction value yi

and the vector of features xi which is modeled by a vector of weights θT =
(θ1, . . . , θm). Formally, linear regression models take the form of a set of equa-
tions:

yi = θ1xi1 + · · · + θm xim + εi , i = 1, . . . , n (10)

where n is the number of training samples, m is the number of features, and εi are
zero-centered Gaussian error variables. Often all equations are stacked together and
written in matrix form:

y = Xθ + ε (11)
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The most common technique to estimate the free parameters θ of linear models is
known as least squares estimation. This method minimizes the sum of squared errors,
and leads to a closed-form expression for the optimum values of θ :

θ̂ = (XT X)−1XT y (12)

Additionally, different regularization techniques are usually implemented to pre-
vent ill-posed learning problems when multicollinearity is present. Regularization
techniques deliberately introduce bias into the estimation of θ̂ to penalize complex
models. In the experiments, we used ridge and LASSO regression (Tibshirani 1996).
Both methods constraint the norm of the parameter vector (L2-norm ridge and L1-norm
LASSO) to be lower than a given value γ .

4.3.2 Support vector machines

In practice, few natural phenomena exhibit a linear relationship between their explana-
tory variables x and the corresponding dependent variable y. Thus, linear regression
cannot adequately describe such nonlinear phenomena.

Support vector machines (SVMs) (Cortes and Vapnik 1995) are a class of machine
learning models that, as linear regression, assume a linear relationship between X and
y. However, prior to any calculation, SVMs project the data into an alternative space.
This projection, defined by a kernel function ϕ(x), may be nonlinear; thus, though
a linear relationship is learned in the projected feature space, this relationship may
be nonlinear in the original input space. Choice of the kernel determines whether the
resulting SVM is a polynomial regressor, a two-layer neural network, a radial basis
function machine, or some other learning machine.

The linear relationship is estimated as a regularized (L2-norm) optimization prob-
lem. In contrast to linear regression, the SVM model depends only on a subset of the
training data, because the cost function for building the model does not care about
those training samples that already lie within a given margin. There exist several spe-
cialized algorithms for solving the quadratic programming problem that arises. For
example, sequential minimal optimization (Platt 1999) breaks the problem down into
2-dimensional sub-problems that can be solved analytically.

Preliminary experiments studying different kernels showed that radial basis kernel
obtained among the best results and additionally was easier to train than other kernels
such as polynomial kernels. Therefore, in the experimentation we used SVMs with a
radial basis kernel.

4.3.3 Regression trees

Typical regression models, such as linear regression or SVMs, are global. In other
words, there is a single predictive formula holding over the entire data-space. When
the data has lots of features which interact in complicated, nonlinear ways, assembling
a single global model can become a very difficult problem. An alternative regression
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Fig. 4 Example of a regression tree. It uses four feature comparisons to partition the data-space, and
Gaussian normal distributions to model the data on each of the five partitions

approach is to recursively partition the data-space into smaller regions, until they are
simple enough to fit elemental models to them.

Regression trees use a tree structure to represent such a recursive partition. Each
of the terminal nodes of the tree represents a region of the partition, and has attached
to it a simple model which applies in that region only. We start at the root node of
the tree, and ask a sequence of questions about the features. The interior nodes are
labeled with questions, and the edges between them are labeled with the answers.
Typically, each question refers to only a single feature, and has a yes or no answer,
e.g., “Is Horsepower > 50?” or “Is GraduateStudent == FALSE?”. Features can
be of different types (continuous, discrete, categorical, etc), and more-than-binary
questions can be done, but these can always be accommodated as a larger binary tree.
Figure 4 shows an example of a regression tree using gaussian normal distributions to
model the data on each partition.

Once we fix the tree structure, local models are completely determined, and easy to
find, so all the effort should go into finding a good tree structure, which is to say into
finding a good partitioning of the data-space. In our experiments, we specifically use
M5 regression tree (Quinlan 1992) because one of the best submissions to the 2012
QE task (Callison-Burch et al. 2012) used such tree model.

5 Experiments

5.1 Methodology

We extracted the 480 features described in Sect. 4.2 for each of the automatic trans-
lations in the evaluation data of the QE task. As a result, we obtained a training and a
test set of 480-dimensional real vectors with 1,832 and 422 samples respectively. All
features were standardized by subtracting the feature mean from the raw values, and
dividing the difference by the standard deviation.

Then, we carried out an exhaustive experimentation to test the different DR methods
described in Sect. 3, and to study how their use affect the prediction performance of
the different learning models presented in Sect. 4.3. We tested all 18 combinations of
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a DR method and a learning model in a series of two-step experiments as depicted
in Fig. 1. Since we did not know the optimum size r of the reduced feature set (see
Sect. 3.2), each experiment involved several trains of the model with reduced feature
sets of different sizes. For each size, we performed a cross-validation training with
ten randomly-chosen data splits to learn the meta-parameters of the models, e.g. the
γ parameter of ridge regression.

5.2 Evaluation criteria

Since we view DR as a way to build robust prediction models, we evaluated each DR
method by the prediction accuracy of the regression models trained on the correspond-
ing reduced feature sets. The performance of a regression model is usually measured
by the average error of the predictions ŷ = {ŷ1, . . . , ŷn} with respect to the actual
scores y = {y1, . . . , yn}. Specifically, we compute the root mean squared prediction
error (RMSPE) as in Specia et al. (2009b):

RMSPE(y, ŷ) =
√√√√1

n

n∑
i=1

(yi − ŷi )2 (13)

where n is the number of test samples. RMSPE quantifies the average deviation of the
estimation with respect to the expected score. I.e. the lower the value, the better the
performance of the learning model.

5.3 Cross-validation training results

We now present the results for cross-validation training experiments. The conclusions
were similar for all learning models. Thus, to keep the presentation clear, we only show
RMSPE results using SVMs as learning model. Figure 5 shows SVMs cross-validation
RMSPE for the different DR methods presented in Sect. 3.

The results of the four feature selection methods were very close, and all of
them slightly outperformed the baseline SVM model trained with the whole 480-
dimensional feature set (0.71 RMSPE). RFS, VIP, and feature importance in regres-
sion (FIR) obtained virtually the same results. Their performance improved as more
features were selected, and they required to select above 100 features to reach their top
performance. Then, as more features were selected their results slowly converged to
the performance of the baseline model. Since these methods do not take into account
the correlations that may exist between the features, their reduced feature sets were
highly-redundant; which explains the large number of features they needed to stabi-
lize. In contrast, GFSobtained great improvements with few features. However, its
higher computational complexity complicates its practical deployment; reason why
we carried out experiments only up to 30 features. Nevertheless, with only these 30
features it was able to equal the performance of the baseline model trained on the
original 480 features.
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RMSPE
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Feature selection: RFS GFS VIP FIR
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Feature extraction: PCA-P PLS-P

Fig. 5 SVMs cross-validation training results for different DR methods as a function of the size of the
reduced feature set. In comparison, the baseline SVM trained on the 480 original features obtained 0.71
RMSPE. Best PLS-P results were statistically better than the rest

Regarding the two feature extraction methods, they exhibited important differences
in performance. PCA projection (PCA-P) obtained worse results than the four feature
selection methods, moreover it did not even improve the results of the baseline model.
PCA-P reached its top performance when ∼120 principal components were generated,
and it slightly deteriorated as the number of features increased. In contrast, PLSR pro-
jection (PLS-P) obtained much better results consistently outperforming PCA-P and
all feature selection methods. Moreover, with only five latent variables PLS-P was
able to outperform the baseline SVM model trained with 480 features, and it only
required 44 features to reach its top performance. Additionally, the performance dif-
ference observed between the best result of PLS-P and the rest of the DR methods
was significant with a probability of improvement of 95 % according to a pair-wise
bootstrap analysis (Bisani and Ney 2004). These results indicate that PLS-P gener-
ates more “information-dense” features that constitute a better summary the original
high-dimensional feature set.

Although results in Fig. 5 are representative for all learning models, we observed
important differences in the stability of the learning curves of the different models.
Figure 6 displays training cross-validation results for linear ridge regression using
PCA-P and PLS-P as DR methods. We present results only for these two DR methods
for simplicity. Since the baseline ridge model (trained with the original 480 features)
obtained a dreadful RMSPE of 16.73, we present results for two alternative linear
regression baselines: a LASSO regression model also trained with all the original 480
features, and for the predictions directly generated by the PLSR model according to
Eq. (4). In contrast to the results for SVMs, we now obtained rougher learning curves
with large performance variations, particularly as we increased the number of features.
However, the proposed two-step training procedure (see Fig. 1) partially addresses
this problem. This is exemplified in the comparison between PLSR and PLS-P. Both
methods use a linear model to predict the quality scores from the projected data,
however PLS-P obtains a much smother learning curve than PLSR. Finally, we could
extract the same conclusion as for SVMs: among all the tested DR methods, PLS-P is
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Fig. 6 Cross-validation training results for linear ridge regression using PCA-P and PLS-P DR methods.
We also display baseline results for LASSO regression, and PLSR (Eq. (4)). As for SVMs in Fig. 5,
PLS-P outperforms any other tested approaches. Additionally, note that the use of the proposed two-step
training procedure, see Fig. 1, allows to smooth the rough learning curves obtained by conventional PLSR,
compare PLSR and PLS-P learning curves

the best performing one allowing us to improve the performance of even sophisticated
regularized models such as SVMs or linear LASSO regression.

These results show that the proposed two-step training is an efficient procedure to
deal with noisy and correlated input features, and it can outperform models such as
LASSO regression and PLSR that integrate DR in their formulation.

5.4 Blind test results

Next, for each combination of a DR method and a learning model, we built a new model
using the full training set and the best configuration (size of the reduced feature set, and
values of the meta-parameters of the learning model) observed in the corresponding
cross-validation experiments. Then, we reduced the test set to the optimal dimension
estimated by cross-validation training, and tested the performance of the new trained
model for the reduced test set. Table 1 displays these results. In contrast to the previous
cross-validation experiments, results on the test set were quite different for the three
learning models. While for SVMs, the use of DR improved the performance of the
baseline model trained on the 480 original features, no improvement was obtained
at all for linear ridge regression, or for regression trees. This was quite a surprising
result. Given the large improvements over the baseline obtained in the cross-validation
experiments, we expected to obtain similar improvements over baseline in test.

To better understand these results, we carried out a multivariate Hotelling’s two-
sample T-squared test (Hotelling 1931; Anderson 1958) to study the possible differ-
ences that may exist between the training and test feature sets. The objective of such
tests is to determine whether two samples, in our case the training and test sets, have
been sampled from the same population or not. The result of the test indicated that
there were a statistically significant difference between the two feature sets (p < 0.01),
and thus they seemed to come from different populations. Since the training and test
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translations come from a similar news domain (Callison-Burch et al. 2012), we hypoth-
esize that the difference between the feature sets was mainly due to the specific chosen
features. In fact, results of individual Student’s two-samples t tests for each feature
showed that 260 of the 480 extracted features were significantly different (p < 0.01)
between training and test. For example, the number of words with zero posterior prob-
ability is significantly different between the samples in training (μ = 1.7, σ = 1.39)
and test (μ = 0.90, σ = 0.80).

In addition to the relatively small number of training samples (1,832), this mismatch
between the distribution of the features values in the training and test sets may be the
explanation for the unintuitive results displayed in Table 1, compared to the cross-
validation results in Figs. 5 and 6 where PLS-P largely improved Baseline. DR methods
obtain a reduced feature set based on the training set, thus, if the training set is not
representative of the test set, as proved by the Hotteling’s test, the computed reductions
cannot be adequate for test. Also, the fact that SVMs actually improved baseline test
results when DR methods were used can be explained by the fact that SVMs are more
complex models than ridge regression and regression trees. SVMs performance is more
heavily penalized due to the lack of data. Thus, we hypothesize that the use of reduced
feature sets, even if they are inadequate, allows to improve SVMs performance.5

Despite these problems, Table 1 shows that PLS-P was the top-performing DR method
for linear regression and SVMs. However, for regression trees, all methods obtained
similar results. This fact indicates that regression trees were not able to fully exploit
the more “information-dense” features generated by PLS-P. Since these “information-
dense” features are the combination of several of the original features, we hypothesize
that they are also more difficult to be partitioned into regions to create the tree structure
of the model. Nevertheless, even in this pessimistic setting PLS-Pgenerated reduced
sets of features that performed similarly as the original 480 features. We consider that,
given the cross-validation results in Sect. 5.3, larger performance improvements could
be expected whenever an adequate set of features, and/or a large enough training set
are provided.

Additionally, since the time required to train the model and to perform the prediction
are directly related to the number of features, an additional advantage of DR methods
is that they can improve the practical deployment of QE technology by reducing train-
ing/test time. For example, training an SVM model (including meta-parameter opti-
mization) using the original 480 features typically required ∼30 h in our test machine,
while the training time using the optimal 44 latent variables extracted by PLS-P was
below 3 h.

5.5 Feature analysis

We perform a final analysis on the features that contribute more to create the reduced
feature sets. For feature selection methods, we simply looked for the most frequently
selected features. For PCA-P and PLS-P, that combine the original features into new
features (the principal components and the latent variables respectively) by a matrix

5 Few features imply few parameters to be estimated with the same amount of data.
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Table 1 Prediction results (RMSPE) on the test set for the different DR methods and learning models
under study

Ridge regression Support vector machines Regression trees

NF RMSPE NF RMSPE NF RMSPE

Original features 480 0.79 480 0.97 480 0.87
RFS 69 0.83 162 0.84 72 0.91
GFS 22 0.82 22 0.83 16 0.89
VIP 67 0.83 126 0.83 57 0.88
FIR 82 0.83 136 0.82 71 0.86
PCA-P 57 0.83 122 0.81 31 0.90
PLS-P 55 0.78 44 0.78 9 0.88

NF denotes the number of features of the reduced test sets. Best results for each learning model are displayed
in bold. As a comparison, the result for a linear LASSO regression model was 0.82 RMSPE

transformation (P in Eqs. (2) and (6)), we computed the contribution of each feature
by summing up the absolute value of the scores in the corresponding column of P. We
then can highlight the following features:

– Source and translation lengths and language model probabilities.
– Vocabulary of the 1000-best translations divided by their average length.
– Number of source phrases of size one used in decoding.
– Number of source phrases used in decoding.
– Frequencies of source subsequences (sizes 1–4).†
– Posterior probabilities of translation subsequences (sizes one and two).†
– Probability of the translation subsequences (sizes one and two) by a naïve Bayes’

classifier.†

Additionally, for the subsequence-based features (marked with †) the most impor-
tant sentence-level indicators were specifically the average value of the feature, and
the number of subsequences in the first and fourth quartile.

Despite this general result, we observed slight differences in the importance of
each feature according to the different methods. For example, the simple RFS method
tended to add lots of similar features, such as the posterior probabilities of the tar-
get subsequences, which independently are quite informative but together are highly
redundant. In contrast, the more computationally complex GFS method selected only
one or two features that represent all features of the same type.

6 Summary and future work

We have proposed two novel DR methods based on PLSR and compared them against
several DR methods previously used in the QE literature. The DR methods under
consideration can be classified by their theoretical background: statistical multivariate
analysis or heuristic methods, or by how they perform the reduction: feature selection
or feature extraction methods. Moreover, we have studied how DR affect the prediction
performance of different learning models.

We have evaluated each DR method by the prediction performance of the learning
models trained on the corresponding reduced feature set. This quality measure has the
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advantage of automatic evaluation, and, using identical pipelines to train the models,
it allows us to accurately compare the different DR methods. The key results of the
experiments are as follows:

– Feature extraction methods can outperform feature selection methods.
– Methods based on multivariate analysis can outperform heuristic methods.
– To obtain a good prediction performance, DR methods have to take into account

the scores to be predicted.
– The performance-wise ranking of the DR methods is to a great extent independent

of the chosen learning model.
– However, for simple models such as linear regression the use of some DR methods

may result in erratic learning curves.

One of the proposed DR methods, PLS-P, can be seen as a summary of the con-
clusions: a feature extraction method based on multivariate analysis that takes into
account the values to be predicted to perform the reduction. Thus, it consistently
obtained the best results in the cross-validation training experiments. Additionally,
the unintuitive results observed in test (where PLS-P did not improve baseline) can
be explained by a difference between the distribution of the features in training and
test. The use of statistical tests to detect this problem is then a necessary tool to build
robust QE systems.

As future work, we plan to explore additional feature selection methods based on
redundancy minimization and relevancy maximization, and new feature extraction
methods based in nonlinear projections, and also to integrate statistical tests over
the features as a preliminary step to filter out problematic features. Additionally, we
also plan to investigate automatic techniques to estimate the internal dimension r
of the problem, interactions between the features, and outliers detection methods to
efficiently use of the (usually) scarce training data.
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