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Abstract Morphologically rich languages pose a challenge for statistical machine
translation (SMT). This challenge is magnified when translating into a morphologi-
cally rich language. In this work we address this challenge in the framework of a broad-
coverage English-to-Arabic phrase based statistical machine translation (PBSMT). We
explore the largest-to-date set of Arabic segmentation schemes ranging from full word
form to fully segmented forms and examine the effects on system performance. Our
results show a difference of 2.31 BLEU points averaged over all test sets between the
best and worst segmentation schemes indicating that the choice of the segmentation
scheme has a significant effect on the performance of an English-to-Arabic PBSMT
system in a large data scenario. We show that a simple segmentation scheme can per-
form as well as the best and more complicated segmentation scheme. An in-depth
analysis on the effect of segmentation choices on the components of a PBSMT system
reveals that text fragmentation has a negative effect on the perplexity of the language
models and that aggressive segmentation can significantly increase the size of the
phrase table and the uncertainty in choosing the candidate translation phrases during
decoding. An investigation conducted on the output of the different systems, reveals
the complementary nature of the output and the great potential in combining them.
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4 H. Al-Haj, A. Lavie

1 Introduction

Morphologically rich languages pose a challenge for statistical machine translation
(SMT), as these languages possess a large set of morphological features producing a
large number of rich surface forms. This increase in surface forms leads to larger vocab-
ularies and higher sparsness, adversely affecting the performance of SMT systems.
The effects of these factors are magnified when translating into a morphologically rich
language.

In this work we address the challenge posed by the morphological richness of Ara-
bic in the framework of a broad coverage English-to-Arabic statistical phrase-based
machine translation (PBSMT). We explore the largest-to-date set of Arabic segmen-
tation schemes ranging from full word forms to fully segmented forms separating
every possible Arabic clitic, and we examine the effect on system performance. We
conduct an in-depth analysis on the effect of segmentation choices on the different
components that make up the PBSMT system, including the language model and the
extracted phrase table. We also assess the variation of the Arabic translation output
across the different segmentation schemes.

The segmentation schemes are applied in a preprocessing step to both the Arabic
side of the training data and the test sets. Twelve different broad-coverage PBSMT sys-
tems are trained on the NIST09 Constrained Training Condition Resources (NIST09)
data, segmented using these various schemes. The built PBSMT systems are evaluated
and compared on English-to-Arabic test sets that we construct from existing NIST09
Arabic-to-English test sets. Based on this comparison we identify the best and the
worst segmentation schemes and lay out a set of general observations on the effect of
splitting of different sets of clitics (affixes) on the performance of a broad coverage
PBSMT system. We also experiment with six different detokenization techniques, of
increasing level of complexity, for recombining the segmented Arabic output.

We then conduct an in-depth analysis on the effect of segmentation on the different
components of the PBSMT system by comparing the systems’ components along var-
ious features defined in this work. We also investigate the variation across the output
of the systems trained using the different segmentation schemes.

Previous work that addressed the effect of Arabic rich morphology and tokeniza-
tion on SMT concentrated on Arabic-to-English machine translation (Lee 2004; Sadat
and Habash 2006; Zollmann et al. 2006). However, few works focused on SMT into
Arabic. Sarikaya and Deng (2007) use joint morphological-lexical language models to
rerank the output of an English-dialectal Arabic MT system. Research more relevant
to our work was done by Badr et al. (2008). In their work they compare a segmented
English-to-Arabic system with an unsegmented system. They also experiment with a
number of detokenization techniques. A more recent work, following the steps of Badr
et al. (2008), was done by El Kholy and Habash (2010a). In their work they experi-
ment with Arabic-side normalization and segmentation, and introduce three additional
segmentation schemes. They show that their best segmentation scheme outperforms
the best segmentation proposed by Badr et al. (2008).

In contrast with previous works that apply segmentation schemes previously pro-
posed for Arabic-to-English machine translation, we explore the largest-to-date set of
Arabic segmentations. Starting from a full word form, we gradually peal off affixes,
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Impact of Arabic morphological segmentation 5

creating 12 different segmentations. While some of these segmentation schemes were
introduced before, other segmentations have not been used in any previous work.

Furthermore, previous works applied their Arabic segmentation to a small data
scenario of at most 4.5 million words, extrapolating their conclusion to larger data
scenarios. In this work we investigate the effect of Arabic segmentation in the frame-
work of a broad coverage translation system with at least 150M words used as training
data. We reveal that in the broad-coverage scenario segmentation schemes exhibit a
different behavior from what has been shown previously for a small data scenario.
Simple segmentation that lagged behind under small data scenario can perform as
well as the best and more complicated segmentation scheme. Furthermore, our results
demonstrate that the choice of segmentation scheme still has a significant effect on
the performance of the PBSMT system in a large data scenario, in contrast to the
diminishing effect predicted in previous works.

Finally, while previous works based their conclusion just on the comparison of the
final scores of the different systems, we conduct a deeper investigation and compare
the components that make up these systems, providing insight on the reasons behind
the differences in the performance of the systems.

The remainder of the paper is organized as follows: In Sect. 2 we present some rel-
evant background on Arabic linguistics to motivate the Arabic preprocessing schemes
discussed in Sect. 3. All the different detokenization schemes are described in Sect. 4.
The training and test data used is described in Sect. 5, while Sect. 6 describes the
experiments and results for all the different segmentation schemes. In Sect. 7 we
conduct an analysis on the components making up the different translation systems
and investigate the variation in their output. Finally, conclusions and future work are
described in Sect. 8.

2 Arabic morphology and orthography

Arabic is a morphologically rich language with a large set of morphological features1

that are realized using both concatenative (affixes and stems) and templatic (root and
patterns) morphology. Arabic has a set of attachable clitics (affixes), to be distinguished
from inflectional features such as gender, number, person, voice, aspect, etc. These
clitics attach to the word, increasing the ambiguity of alternative readings. Arabic
clitics apply to a word base in a strict order:

C O N J + P ART + DET + WORD_BASE + P RO N

Table 1 lists the Arabic clitics2 divided into 4 classes: conjunction proclitics
(CONJ+), particle proclitics (PART+), definite article (DET+), and pronominal enc-
litics (+PRON) which comprise of possessive and object pronouns. The first three
classes of clitics in Table 1 are given along with their English meaning. The clitics of

1 In Arabic words have the following fourteen morphological features: part of speech, person, number,
gender, voice, aspect, determiner proclitic, conjunctive proclitic, particle proclitic, pronominal enclitic,
nominal case, nunation, idafa (possessed), and mood (Sadat and Habash 2006).
2 Arabic transliterations are provided in Buckwalter transliteration scheme (Buckwalter 2002).
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6 H. Al-Haj, A. Lavie

Table 1 Arabic clitics divided to four classes

CONJ w+ (and), f+ (then)

PART l+ (to/for), b+ (by/with), k+ (as/such) s+ will/future.

DET Al+(the)

PRON +h (+O:3MS, +P:3MS),+hA (+O:3FS,+P:3FS)

+hm (+O:3MP,+P:3MP),+hmA (+O:3D,+P:3D), +hn (+O:3FP, +P:3FP)

+k (+O:2FS,+P:2FS,+O:2MS,+P:2MS), + km (+O:2MP,+P:2MP)

+kmA (+O:2D,+P:2D), +kn (+O:2FP,+P:2FP)

+nA (+O:1P,+P:1P), +y (+O:1S,+P:1S)

the fourth class (PRON) are given followed by O (for object pronoun) or P (possessive
pronoun), followed by their morphological features: person, gender, and number in
the this order (Habash and Rambow 2005).

Arabic orthography introduces further challenges as certain letters in Arabic script
are often spelled inconsistently which leads to an increase in both sparsity (multiple
forms of the same word) and ambiguity (same form corresponding to multiple words).
One example is the letter Alif in Arabic, which can appear with Hamza on top , or
below , and with maddah on top All these forms are often written as bare Alif
Another example is the two letters Ya and Alif Maqsura which are often used
interchangeably in word final position. Added to all this is the optionality of diacritics
(short vowels) in Arabic script.

This inconsistent variation in raw Arabic text is typically addressed using ortho-
graphic normalization which maps all Alif to bare Alif, Dotless Ya/Alif Maqsura form
to Dotted Ya and deletes diacritics.

El Kholy and Habash 2010a called this type of orthographic normalization of Ara-
bic text “reduction”. This reduction may be acceptable when Arabic is the source
language, but is clearly problematic when translating into Arabic. Therefore, we use
the “enriched” form of the Arabic raw text throughout this work. According to El
Kholy and Habash 2010a terminology, the enriched form of text uses the correct form
of Alif and the right form of Ya and Alif Maqsura in word final position while
omitting all diacritics.

3 Arabic preprocessing schemes

We experiment with various Arabic preprocessing schemes by splitting of different
subsets of the clitics mentioned in Sect. 2. The raw Arabic text is enriched and tok-
enized using the Morphological Analysis and Disambiguation for Arabic (MADA)
toolkit (Habash and Rambow 2005; Habash 2007).3 The various Arabic tokeniza-
tion schemes that we experiment with range from coarse segmentation, which uses
unsegmented text, to fine segmentation which splits off all possible clitics.

3 We use MADA + TOKAN version 2.32. which was the most recent release of MADA when this work
was done.
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Impact of Arabic morphological segmentation 7

All the different tokenization schemes are described in detail below from coarse to
fine:

• UT: This scheme uses the full (un-tokenized) enriched form of the word (ST
in Habash and Sadat 2006). This scheme is used as input to produce the other
schemes.

• S0: This scheme splits off the conjunction proclitic w+ (WA in Habash and Sadat
2006).

• S1: This scheme splits off +f in addition to the w+ split by S0 (D1 in MADA).
• S2: This scheme splits off all the particle proclitics (PART+) in addition to the

clitics split off by S1 (D2 in MADA).
• S3: This scheme splits off all clitics from the (CONJ+) class and all clitics of

(PART+) class except s+ prefix. It also splits off all the suffixes from the (+PRON)
class. This scheme is equivalent to the Penn Arabic Treebank (PATB; Maamouri
et al. 2004) tokenization, but to distinguish between the possessive and object
pronouns, which have the same surface form, we use their morphological features
(henceforth, MF form), instead as given in Table 1 between parentheses.

• S0PR: This scheme splits off all suffixes from the (+PRON) class in addition to
the w+ prefix split off by S0. The MF forms of the (+PRON) clitics are used here.

• S4: This scheme splits off all clitics split by S3 plus splitting off the s+ clitic. This
scheme is equivalent to the Arabic Treebank: Part 3 v3.2 (ATBv3.2) tokenization.
The MF forms of the (+PRON) clitics are used here.

• S5: This scheme splits off all the possible clitics appearing in Table 1. The MF
form of the (+PRON) clitics are used here (D3 in MADA).

We also experiment with a number of variations of these schemes:

• S4SF: Similar to scheme S4 but with the (+PRON) clitics in their surface form.
• S5SF: Similar to scheme S5 but with the (+PRON) clitics in their surface form.

This scheme is similar to the main segmentation scheme suggested by Badr et al.
(2008).

• S5SFT: Similar to scheme S5 but with the prefixes concatenated together into one
prefix. This scheme is similar to the best scheme suggested by Badr et al. (2008).

• S3T: Similar to scheme S3 but with the prefixes concatenated together into one
prefixes.

Table 2 exemplifies the effect of all the different schemes on the same sentence from
the training data.

As can be seen from the example in Table 2 the text’s fragmentation increases as we
move from coarse to fine tokenization. This increased fragmentation, as we will see
in Sect. 4, enhances the complexity of recombining the tokens of the Arabic output.
However, this also has a positive effect, as it decreases the vocabulary (word types),
which results in lower out-of-vocabulary counts on a held out test set. For each toke-
nization scheme, Table 3 shows the number of tokens and types of the Arabic side of
the training data, and the OOV on a held-out set.

The held-out set comprises of 728 sentences and 18,277 unsegmented words from
the NIST MT02 test set.
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8 H. Al-Haj, A. Lavie

Table 2 Some of the different tokenization schemes exemplified on the same sentence

wbAlnsbp lAyTAlyA fAnh yEny AnhA sttSrf kdwlp Sgyrp ttxlY En ms&wlyAthA

Gloss and regarding to Italy this means that it will act as a country small giving up its responsibilities

English And regarding Italy, this mean that it will act as a small country giving up its responsibilities

UT wbAlnsbp l<yTAlyA f>nh yEny >nhA sttSrf kdwlp Sgyrp ttxlY En ms&wlyAthA

S0 w+ bAlnsbp l<yTAlyA f>nh yEny >nhA sttSrf kdwlp Sgyrp ttxlY En ms&wlyAthA

S1 w+ bAlnsbp l<yTAlyA f+ >nh yEny >nhA sttSrf kdwlp Sgyrp ttxlY En ms&wlyAthA

S2 w+ b+ Alnsbp l+ <yTAlyA f+ >nh yEny >nhA s+ ttSrf k+ dwlp Sgyrp ttxlY En

ms&wlyAthA

S0PR w+ bAlnsbp l<yTAlyA f>n +O:3MS yEny >n +O:3FS sttSrf kdwlp Sgyrp ttxlY En

ms&wlyAt +P:3FS

S3 w+ b+ Alnsbp l+ <yTAlyA f+ >n +O:3MS yEny >n +O:3FS sttSrf k+ dwlp Sgyrp ttxlY En

ms&wlyAt +P:3FS

S3T wb+ Alnsbp l+ <yTAlyA f+ >n +O:3MS yEny >n +O:3FS sttSrf k+ dwlp Sgyrp ttxlY En

ms&wlyAt +P:3FS

S4 w+ b+ Alnsbp l+ <yTAlyA f+ >n +O:3MS yEny >n +O:3FS s+ ttSrf k+ dwlp Sgyrp ttxlY En

ms&wlyAt +P:3FS

S4SF w+ b+ Alnsbp l+ <yTAlyA f+ >n +h yEny >n +hA s+ ttSrf k+ dwlp Sgyrp ttxlY En

ms&wlyAt +hA

S5 w+ b+ Al+ nsbp l+ <yTAlyA f+ >n +O:3MS yEny >n +O:3FS s+ ttSrf k+ dwlp Sgyrp ttxlY En

ms&wlyAt +P:3FS

S5SF w+ b+ Al+ nsbp l+ <yTAlyA f+ >n +h yEny >n +hA s+ ttSrf k+ dwlp Sgyrp ttxlY En

ms&wlyAt +hA

S5SFT wbAl+ nsbp l+ <yTAlyA f+ >n +h yEny >n +hA s+ ttSrf k+ dwlp Sgyrp ttxlY En
ms&wlyAt +hA

Table 3 Tokens, and types count of the Arabic side of the training data for the different schemes and the
out-of-vocabulary tokens on NIST MT02 test set

Seg. Token # Type # %OOV Seg. Token # Type # %OOV

UT 136,280,410 653,584 0.46 S3T 159,891,078 425,654 0.29

S0 145,826,275 566,024 0.39 S4 160,599,031 418,832 0.29

S1 146,162,567 552,150 0.39 S4SF 160,599,031 418,819 0.29

S0PR 151,465,273 490,065 0.33 S5SF 199,164,334 391,170 0.22

S2 154,974,999 475,335 0.33 S5SFT 193,378,931 391,187 0.23

S3 160,194,619 425,645 0.29 S5 199,179,300 391,190 0.22

4 Arabic automatic detokenization

The Arabic output produced by all MT systems trained using all the schemes described
in Sect. 3 except UT is segmented and needs to be recombined in order to produce the
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Impact of Arabic morphological segmentation 9

Table 4 Examples of several
morphological adjustments that
govern the process of Arabic
detokenization

Rule Example

l+ Al+ → ll+ l+ Al+ >wlad → ll>wlad “for the kids”

p+ pron→t+pron lEbp +hm → lEbthm “their game”

Y+ pron→A+pron rmY +h →rmAh “threw him/it”

Table 5 Examples of ambiguity
in Arabic detokeniztion

Tokens sequence Possible combinations

f t y An + n A f ty An A(0.88) “our boys”

f t y Ann A(0.12) “our boys”

>bn A′ + h A >bn A&h A(0.22) “her sons”, (.nom)

>bn A′h A(0.1) “her sons”(.acc)

>bn A}h A(0.68) “her sons”(.gen)

final Arabic text. We call the process of recombining the Arabic output as detokeni-
zation.

4.1 Challenges of Arabic detokenization

Arabic detokenization is far from being a simple concatenation of the tokens, as sev-
eral morphological adjustments, driven by morpho-phonological rules, apply to the
tokens when they are combined. The first three rows of Table 4 include examples of
such morphological adjustments.

Another challenging aspect of Arabic detokenization is that in some cases it could
be ambiguous i.e. tokens could be combined into more than one grammatically cor-
rect form. Examples of Arabic detokenization ambiguity are given in Table 5. The
first column in Table 5 gives the token sequence while the second column lists all the
possible combined forms for this sequence. Each possible combined from is followed
by the probability, computed over the training data, of this word being the combined
form of the given token sequence appearing in the training data. The second line of
Table 5 demonstrates that the combined form corresponding to the sequence token
could depend on the morphological case of the word base. In this case the word base
>bnA′ “sons” is a noun which could have three cases: nominative, accusative, genitive.

When a possessive pronoun suffix attaches to >bnA′ then the case of the noun is
marked using three different letters &, ′, and }. However, when no suffix is present
then the case marker is a diacritic appearing on the last letter of the noun >bnA′. This
diacritic is omitted in the Arabic enriched form used here, which creates the ambiguity
that we see in the second entry of Table 5.

4.2 Detokenization schemes

We experiment with six different detokenization techniques of increasing
complexity:
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C: This is the most trivial technique which just concatenates the tokens of the
segmented form together.
R: This technique uses manually defined morphological adjustments rules to com-
bine the Arabic tokens. Examples of such rules are given in Table 4. We use a script
implementing the complete set of morphological adjustments rules as described in
(El Kholy and Habash 2010b).
T: Uses a table derived from the Arabic side of the training data to map the seg-
mented form of the word to its original enriched form. If a segmented word has
more than one original form then it is mapped to the most frequent one. A seg-
mented word that does not appear in the table will be mapped to the output as is.
For example, in Table 5, the segmented word >bnA′ +hA is associated with three
original forms in training data with different frequencies (normalized to probabili-
ties). According to the T technique, it will be mapped to >bnA}hA as it is the form
with the highest probability.
T + C: Similar to the T technique but backs off to the C method when encountering
an unknown token sequence.
T + R: Similar to the T technique but backoff to the R method when encountering
an unknown token sequence.
T + LM + R: In addition to the table used by T + R, this technique also uses a
5-gram language model trained on the full enriched form. The full enriched form
of the tokenized input sentence is determined by selecting the FullForm which
maximizes:

P (Full Form|Tokenized Form) · PL M (Full Form)

This was implemented using the disambig utility available within the SRILM toolkit
(Stolcke 2002).

For evaluating the detokenization schemes described above, a test set of 50k sen-
tences (∼1.3M words) were randomly selected and removed from the Arabic training
corpora. The remaining corpora were used to train the tables for the last four detokin-
zation techniques and the 5-gram language models used by the T + LM + R technique.

Table 6 lists the percentage of sentence error rate (SER) of the six detokinzation
techniques for all Arabic tokenizations schemes that we experiment with. A general
theme that we notice by looking at Table 6 is that the SER increases as we move from
coarse to fine tokenization scheme: The more fragmented the text the harder it is to
recombine. We notice that the SER for the S3 and the S5SF schemes are similar to
the SER of the S3T and the S5SFT schemes respectively. This is because most of
the morpho-phonological rules, as discussed in Sect. 4.1 apply to the boundary of the
affix and the stem when they are combined. This boundary remains the same when
the prefixes are concatenated together.

Going from left to right over the results in Table 6, we notice that the SER drops
with the increase in the complexity of the detokeniztion technique. However, this drop
in SER diminishes as we move up the complexity ladder. The extremely high SER
of the C technique demonstrates that detokenization is far from being a simple con-
catenation of the tokens. From the R column we see that introducing morphological
adjustments rules gives a significant improvement over the simple concatenation. An
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Table 6 SER for different tokenization scheme using the six different detokenization schemes

Tok. C R T T + C T + R T + LM + R

S0 3.30 3.37 1.07 0.41 0.48 0.49

S1 4.41 4.48 1.32 0.55 0.60 0.60

S0PR 26.54 19.07 3.31 2.35 2.29 2.08

S2 36.66 11.30 2.28 1.10 1.09 1.10

S3T 50.26 23.93 3.00 1.76 1.60 1.47

S3 50.26 23.93 3.00 1.76 1.59 1.47

S4 50.59 24.51 3.21 1.94 1.77 1.64

S5 53.45 29.92 3.56 2.20 2.04 1.81

S5SFT 53.52 30.04 3.73 2.40 2.25 2.00

S5SF 53.52 30.04 3.73 2.40 2.25 1.99

S4SF 50.59 24.51 3.20 1.96 1.79 1.65

additional significant improvement in SER is achieved, especially on fine segmenta-
tion, when using tables learned from the data as in the T technique. In an analysis of
the output of the R technique we found that some of the combination errors are caused
by tokenization errors introduced by the morphological analyzer. These kind of errors
are fixed using the T method, which demonstrates the advantageous ability of the T
method to successfully cope with errors introduced by the morphological analyzer.

Additional improvement in SER is obtained when backing off to the C method, as
can be seen from the T +C column in Table 6. Backing off to R, in most of the cases ,

gives minor improvement over backing off to C . Furthermore, using a language model
in the detokinization process, as in the T + L M + R, gives a very small improvement
over the T + R technique. This very small improvement in SER comes at a costly
price of a 9-fold increase in detoknization time, besides having to load the LM into
memory (>1 GB). For these reasons we use the T + R method for detokinizing the
output of our SMT systems during evaluation in the Sect. 6.

5 Training and testing data

We use the NIST09 Constrained Training Condition (NIST09) Resources to train and
test broad-coverage English-to-Arabic phrase based statistical machine translation
systems.

5.1 Training data

The Arabic-English parallel training data available within the NIST09 resources con-
sists of about 5 million sentence pairs with about 150 million and 172 million words on
the Arabic and English side respectively. The English side of the training corpora was
first tokenized using the Stanford English tokenizer4 then lower cased. The Arabic

4 The main reason for this preprocessing step is that in future works the best system built here will be
extended with syntactic information based on parsing the training data using the Stanford parser.
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12 H. Al-Haj, A. Lavie

side was enriched and the different tokenizations generated using the Morphologi-
cal Analysis and Disambiguation for Arabic (MADA) toolkit (Habash and Rambow
2005; Habash 2007). The parallel training corpora was then filtered by first removing
sentence pairs longer than 99 words on either side then deleting unbalanced sentence
pairs with a ratio of more than 4-to-1 in either direction.

After preprocessing and filtering, the parallel corpora consisted of 4,867,675 sen-
tence pairs with 152 million on the English side. The Arabic side of the training
corpora is used to train twelve 5-gram language models for the different tokenization
schemes using the SRILM toolkit (Stolcke 2002). An additional two 7-gram language
models were trained for the S4 and S5 tokenization schemes in order to account for
the increase in length of the segmented Arabic. Tokens and type counts of the Arabic
training corpora, using different tokenization schemes, is given in Table 3.

The processed and filtered parallel corpora was then aligned using MGIZA++ (Gao
and Vogel 2008); an extended and optimized multi-threaded version of GIZA++. The
Moses toolkit (Koehn et al. 2007) is then used to symmetrize the alignment using the
grow-diag-final-and heuristic and to extract phrases with maximum length of 7. A
distortion model lexically conditioned on both the Arabic phrase and English phrase
is then trained.

5.2 Tuning and testing sets

We use existing Arabic-to-English test sets available within the NIST09 resources
to construct our English-to-Arabic tuning and test sets. As all NIST09 test sets were
intended for use in Arabic-to-English machine translation, each Arabic source sen-
tences is associated with four English references. From such a test set, an English-to-
Arabic test or tuning set could be constructed in a number of ways. One possible way
is constructing an English-to-Arabic test set by pairing each Arabic source with only
one of the four English references, giving us four different single reference test sets.
Alternatively, an English-to-Arabic test set could also be constructed by pairing each
Arabic source sentence with all four English references resulting in a single reference
test set four times larger than the test sets constructed previously.

Before deciding which of the above techniques to use in constructing the English-to-
Arabic tuning set, we tested the effect of these different test set construction techniques
on the overall performance of the PBSMT system. Using the techniques described
above, we construct 5 different English-to-Arabic tuning sets using 728 sentences
chosen from the NIST09 MT02 test set. The UT system is then tuned on the differ-
ent tuning set and tested on an English-to-Arabic test sets constructed from the NIST
MT03–MT05 test sets by pairing each Arabic source sentence with the first English ref-
erence. We report the results on the MT03–MT05 test sets using the BLEU-4 (Papineni
et al. 2002) evaluation metric. All the results are given in Table 7.

UTi is the UT system tuned on a tuning set constructed from MT02 by pairing the
Arabic source with the ith English reference, while UTAll is the UT system tuned
on the tuning set constructed by pairing the Arabic source with all the four English
references. Comparing the performance of the systems UT1–UT4, and UTAll we
notice that there is no significant difference between the scores of UT1, UT3, UT4
and UTALL on MT03–MT05 while UT2 performs the worst, especially on MT04 and
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Table 7 BLUE scores for all
UT systems on the MT03–MT05
test sets

System MT03 MT04 MT05

UT1 27.52 22.64 30.02

UT2 27.25 22.13 29.39

UT3 27.72 22.87 30.15

UT4 27.38 22.64 29.94

UTAll 27.79 22.70 30.39

Table 8 Number of sentences,
unsegmented tokens and genres
of the tuning and test sets we use

# Sentences # Tokens Genre

MT02 728 18,277 Newswire

MT03 663 16,369 Newswire

MT04 1353 35,870 707 Newswire

646 Speech/editorial

MT05 1056 28,399 Newswire

MT05. Therefore, for tuning all the systems built in this work, we use a tuning set
constructed from MT02 test set by pairing each Arabic source sentence with the first
English reference.

All the systems in this work are tested on the MT03–MT05 test sets used in this
section. Table 8 includes information about the tuning and all the test sets, including
number of sentences and tokens, and division of sentences according to their genres.

6 Results

We test and compare the performance of twelve PBSMT systems trained using the dif-
ferent tokenization schemes. The systems use the translation, reordering and language
models described in Sect. 5.

The decoding weights for these components were optimized for Bleu-4 (Papineni
et al. 2002) on the MT02 tuning set using an implementation of the Minimum Error
Rate Training procedure (Och 2003). We use the Moses (Koehn et al. 2007) decoder
with a distortion window of 6 is to decode the systems on the MT03, MT04, and
MT05 test sets. As discussed in Sect. 4.2, we use the T + R detokenization technique
to recombine the Arabic tokens of the different segmentation schemes. The evalua-
tion results reported are all on the detokenized output of systems evaluated against
unsegmented enriched single reference test sets.

We report the results on all test sets using a number of evaluation metrics including
BLEU-4, TER 5 (Snover et al. 2006), and METEOR5 (Lavie and Denkowski 2009).
Table 9 lists the translation results of all the systems on MT03 using all the evaluation

5 METEOR v1.2, language independent version.
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Table 9 BLEU, TER, and METEOR scores for all the systems on the MT03 test set

System BLEU TER METEOR System BLEU TER METEOR

UT 27.52 54.47 44.10 S4 28.24 54.08 44.59

S0 28.34 54.42 44.53 S5 26.68 56.05 43.08

S1 27.69 55.16 43.94 S4SF 27.73 54.36 44.34

S2 26.98 57.00 42.74 S5SF 25.27 57.14 43.08

S0PR 28.10 54.67 44.38 S5SFT 26.67 56.16 43.02

S3 28.16 54.05 44.63 S4,7gram 27.84 54.65 44.17

S3T 27.72 54.72 44.19 S5,7gram 26.60 55.98 43.09

Table 10 BLEU, TER, and METEOR scores for all the systems on the MT04 test set

System BLEU TER METEOR System BLEU TER METEOR

UT 22.64 60.29 38.11 S4 23.06 60.12 38.52

S0 22.99 60.50 38.48 S5 22.01 62.09 37.34

S1 22.05 61.23 37.85 S4SF 23.11 60.24 38.47

S2 21.37 63.64 36.68 S5SF 21.20 62.43 36.57

S0PR 22.80 60.76 38.20 S5SFT 22.05 62.25 37.37

S3 23.06 60.42 38.43 S4,7gram 22.69 60.37 38.25

S3T 23.11 60.37 38.51 S5,7gram 22.10 61.74 37.33

Table 11 BLEU, TER, and METEOR scores for all the systems on the MT05 test set

System BLEU TER METEOR System BLEU TER METEOR

UT 30.02 51.41 46.61 S4 30.24 51.54 46.86

S0 30.37 51.85 46.77 S5 29.22 53.55 45.73

S1 29.91 51.73 46.19 S4SF 29.91 52.51 46.62

S2 28.79 54.38 45.23 S5SF 28.30 54.06 44.88

S0PR 29.85 52.32 46.36 S5SFT 28.92 53.65 45.64

S3 30.26 51.53 46.86 S4,7gram 29.91 51.77 46.66

S3T 30.16 51.79 44.88 S5,7gram 29.26 53.26 45.60

metrics discussed earlier. Table 10 shows the results on the MT04 test set while the
results on MT05 test set are given in Table 11.

All statements below about the difference in BLEU score were tested for statistical
significance using paired bootstrap resampling (Koehn 2004) with 95% confidence
interval. Looking at the results, we see that across all test sets, S0/S4/S3 perform best
(highlighted with bold, while S2/S5SF (highlighted with italic) perform the worst.
The performance of all the other segmentation schemes falls between these two ends.

The difference in translation scores between S0 and S5SF is 2.31 BLEU, −2.28
TER and 1.75 METEOR points averaged over all test sets. This big difference in trans-
lation quality indicates that the choice of the segmentation scheme has a significant
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effect on the performance of English-to-Arabic PBSMT systems in a large data sce-
nario. The S4 (ATBv3.2) scheme outperforms S5SFT (the best scheme in Badr et al.
(2008) S5SFT) by 2.25 BLEU point averaged on all test sets.

The results also show that a simple segmentation scheme S0 which just splits off the
w+ (and) can perform as well as the best and more complicated S4 scheme. The sim-
plicity of S0 gives it advantage over the S4 as it can be both generated and recombined
with lower error rate in the tokenization and detokenization processes respectively, as
described in Sect. 4.

Comparing the scores of different schemes across all test sets we are also able to
come up with the following observations:

• S1 outperforms S2 on all test sets, which indicates that splitting off the particle
proclitics (PART+) can hurt the performance.

• The effect of splitting off the (PRON+) suffixes on the system depends on the
prefixes that are split off. When the only prefix that is split off is w+ as in S0,
splitting off the (PRON+) suffixes in S0PR causes an insignificant drop of 0.15
(no change) BLEU points on average on all test sets. However, in case the prefixes
split off are the (PART+) and (CONJ+) clitics, as in S2, then splitting off the
(PRON+) suffixes as in S3 causes a significant increase of 1.44 BLEU averaged
on all test sets.

• S4 outperforms S5 on all test sets, indicating that splitting off the definite article
Al+ hurts the performance.

• S3 and S4 perform about the same on all test sets indicating that splitting off the
s+ (will) clititc has no significant effect on the performance of the system.

• Comparing S4 with S4SF and S5 with S5SF we see that using morphological
features instead of the surface form of the suffixes can only benefit the system.

• Concatenation of the prefixes together improved the performance of S5FT scheme
by a significant 1.07 BLEU points averaged on all test set, while dropping by an
insignificant −0.16 (no change) BLEU points averaged on all test sets in the case
of S3. This indicates that concatenating the prefixes has a positive effect on the
most fragmented scheme S5SF but this effect diminishes as the scheme becomes
less and less fragmented as in the case of S3.

• Comparing S4–5.7gram with S4–5 on all test sets indicates that using higher
order (>5) n-grams for highly fragmented schemes has no significant effect on
the performance of the system.

7 Systems comparison

In previous sections we described all the different segmentation schemes and their
effect on the final performance of the systems. In this section we conduct an in-depth
analysis on the effect of segmentation choices on the different components that make
up the PBSMT system, including the language model and the extracted phrase table.
We also assess the variation of the Arabic translation output across the different seg-
mentation schemes.
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7.1 Language models

The Arabic side of the training corpora for all the different tokenization schemes was
used to train twelve 5-gram language models using the modified Kneser–Ney smooth-
ing and cutoffs of 1 for orders bigger than 2. The size of the training corpora used to
build the different language model is given in Table 3, Sect. 3.

The different language models are compared by computing the n-gram preces-
sion (coverage) and perplexities on the Arabic side of the MT03 test set. The n-gram
precision is defined as the percentage of n-grams in the test set which appears in
the language model. Table 12 lists the size of the MT03 test set and the type/token
n-gram precision for all the language models trained using the different segmentation
schemes. The perplexity of all the language models is evaluated on the MT03 test set
and is given in Table 12.

Looking at Table 12, we notice that the more fragmented the scheme the higher is
the n-gram precision. We also notice that the difference between the n-gram precision
of a fine and a coarse scheme becomes more significant for higher order n-grams. This
difference in n-gram precession between coarse and fine segmentations is reflected in
perplexity scores on the test set. The perplexity steadily decreases from 108.682 for the
UT scheme down to 33.24 for the most fragmented scheme S5. However, the n-gram
precision and the perplexity were computed over tokens where the definition of a token
varies across the different segmentation schemes. This variation is expressed in the
different sizes of the MT03 test sets for each scheme, which makes a comparison of
the language models based on n-gram precision and perplexity much less meaningful.
One way to make the comparison of the different language models perplexities more
meaningful is to use “normalized perplexity” (Kirchhof et al. 2006).

N N P(w1, . . . , wM ) = 2− 1
N

∑M
i=1 log(P(wi |wi−1,...,wi−k+1)) (1)

The normalized perplexity of an k-gram language model on a test set of size M is
given in Eq. 1. As we see in Eq. 1, the normalized perplexity differs from the regular
perplexity only in the normalization factor. In the case of normalized perplexity the
log likelihood of the data is averaged by dividing it by the number of the unsegmented
words N in the test set, as opposed to the number of tokens in test set M. This is
done in order to compensate for the effect that perplexity tends to be lower for a text
containing more individual units, since the sum of log probabilities is divided by a
larger denominator.

The normalized perplexities of all language models are given in the last column
of Table 12. Looking at the normalized perplexities gives us a totally different pic-
ture than the one we got from comparing regular perplexities. We see that normalized
perplexities increase as we move from coarse to fine segmentation. The most signifi-
cant change in normalized perplexity occurs when moving from S4 to S5, where the
normalized perplexity increases by 12.79%. As S5 differs from S4 in splitting off an
additional prefix Al+ (the), this big increase in normalized perplexity indicates that
splitting off the Al+ has a significant negative effect on the language model.
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The low normalized perplexities that we see in Table 12 for the UT and S0 language
models contributes to the fact that coarse segmentation systems can perform as good
as systems built using the more complicated schemes. Furthermore, we notice that
using morphological features instead of surface forms for the suffixes has no signifi-
cant effect on the perplexity of the language model, as can be seen from comparing S5
to S5SF and S4 to S4SF. We also notice that the difference in normalized perplexities
between the language model of S5SF and S5SFT is 1.33 points compared to the 0.034
difference between S3 and S3T. This contributes to the significant difference in the
performance between the S5SF and S5SFT compared to the much smaller difference
between S3 and S3T systems in Tables 9, 10, and 11.

7.2 Phrase table

The phrase table is one of the most important components of a PBSMT system. In this
section we compare and analyze the differences between all the phrase tables built
and trained on the various segmentation schemes defined in this work.

All the phrase tables are first filtered to the MT03 test set then contrasted according
to several features:

• Number of source phrases and Phrase pairs: For each scheme we calculate the
number of phrase pairs and source phrases. The results are given in the first two
columns of Table 13.

• Phrase Table Entropy (PTE): Phrase Table Entropy (Koehn et al. 2009) captures
the amount of uncertainty involved in choosing candidate translation phrases. For
each source phrase s with a set of possible translations (target sides) in the phrase
table T, the phrase entropy of s PE(s) is defined in Eq. 2. The Phrase Table Entropy
is defined as the average of phrase entropy for all the source phrases in the phrase
table. Table 13 gives the phrase table entropy for all schemes.

P E(s) = −
∑

t∈T

P(t |s). log P(t |s) (2)

• Average number of target phrases per phrase length: The phrase table entropy
provides a measure to the amount of uncertainty in choosing a translation aver-
aged over the whole phrases in the phrase table. However, it would be very useful
to zoom in on the phrase table entropy and look into the phrase table target side
ambiguity for each phrase length. Therefore, we compute the average number of
target phrases (ANTP) per phrase lengths of 1–7 (max phrase length). All the
results are given in Table 13.

Looking at Table 13, we notice that the number of phrase pairs steadily and grad-
ually grows when moving from the coarse UT to the fine S4SF scheme, while the
number of source phrases relatively remains the same. The PTE for these segmenta-
tions does not significantly change and remains in the range 3.33–3.41. However the
most significant increase in phrase table size and PTE happens when moving from
S4SF to the S5 scheme and its variants S5SF and S5SFT. The size of the phrase table
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increases by 21.6% relative when comparing S5 to S4, while the number of source
phrases decreases by 3.31%. This significant increase in the size of the phrase table
compared to a small increase in the number of the source phrases adds to the uncer-
tainty in choosing the candidate translation phrases as can be seen by comparing the
PTEs of the two systems. We see a relatively significant jump in the phrase table
entropies (PTE) of S5 compared to S4. The PTE increases by 10% relative when
moving from S4 to S5. A clearer explanation for this increase in PTE can be found
by comparing the ANTPs of the S4 and S5 system. We notice that the ANTP of S5
is higher from the ANTP of S4 for short phrases but is lower for longer phrases.
The ANTP1 of the S5 system is 26.62% higher than the ANTP1 of S4. This dif-
ference drops to 14.21% for ANTP2 and 4.73% for ANTP3. A total change in the
trend occurs for ANTP4 and higher, where the ANTP of S5 becomes lower than
for S4. The ANTP4 of S5 is −3.1% lower than the ANTP4 of S4, this difference
increases to −9.72% for ANTP5, −34.62% for ANTP6, and −42.55% for ANTP7.
This relatively high PTE, and ANTPs for S5 and its variants contribute to the fact
that these segmentation are among the worst performing segmentation as seen in
Sect. 6.

One reason for the significant difference in phrase table size, PTE, and ANTP
between S5 and S4 (and the other schemes) can be found when looking into the set
of affixes that these two schemes split off. The only difference between the S4 and S5
scheme is that the S5 scheme splits off the Al+ (the) in addition to all the affixes split of
in S4. From the results discussed above, we conclude the splitting off the Al+ causes
a significant increase in the size of the phrase table and magnifies the ambiguity and
the uncertainty inherited in the target side choice in the phrase table, especially for
shorter phrases.

We looked into the phrase tables of both S4 and S5 and found several cases of
source phrases for which the splitting off the Al+ caused an increase in the average
number of target phrases. One of the most frequent cases was source phrases with the
“noun adjective” POS pattern. In Arabic, the adjective follows the noun in definiteness
which is expressed by attaching the Al+ before the word. For example, the expression
Al$rq Al>wsT (lit. “the east the middle”) “the middle east”, could also appear in
the indefinite form as $rq > wsT (lit. “ east middle”) “middle east”, but never in
the ungrammatical form $rq Al>wsT . However, we found that when splitting of the
Al+ prefix as in S5 an Arabic phrase such as $rq Al# >wsT could be extracted from
the Arabic text and end up as a target phrase for the English source phrase “middle
east”. Such cases are frequent and increase the average number of target phrases by
introducing ungrammatical target phrases that did not exist in the S4 phrase table,
especially for short source phrases (<3).

7.3 Output variation

One important question which could be asked here is how different are the outputs of
the PBSMT systems that were trained using the different segmentation schemes?

One way for quantifying the output variation is to find out how much gain in per-
formance, compared to the best single system, could be achieved when performing an
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oracle combination over the output of all the systems. Therefore, we conduct here an
oracle study into system combination.

An oracle combination output was created by selecting for each input sentence the
output of the system with the highest sentence-level METEOR score. One way for
doing this oracle combination is to include in the combination the output of all the
systems built in this work then to evaluate the combined output. However, it would
be much more useful to divide the systems into intra-related groups in order to isolate
their contribution to the performance of the final combined system. This will give us
an insight into the variation of the output across the different systems groups.

We start by performing an oracle combination on the systems in the first group
(G1). Then we gradually add each group to the combined systems. Table 14 lists the
five system groups and the names of the systems in each group. The results of the
combined systems on MT03, MT04, and MT05 are given in Tables 15, 16 and 17
respectively. The best single system (BSS) for each test set is used as a baseline.

Looking at Tables 15, 16, and 17 we notice a significant improvement in the per-
formance of the oracle combination of all the systems (G5) over the best single system
(BSS). The G5 system outperforms the BSS by 7.28 BLEU points averaged over
all test sets. This great difference between the combined system and the BSS is an
indication of the complementary nature of the output produced by the systems using
different schemes. It also demonstrates the great potential in automatically combining
the output of the different systems. These results are consistent with the results of
Sadat and Habash Sadat and Habash (2006). In their work, they demonstrate, using
oracle combination, the great potential in automatically combining the output of dif-
ferent Arabic-to-English systems which use different Arabic segmentations in a small
data scenario.

Table 14 The systems in each
of the five groups

Group Systems

G1 UT, S0-S5, S0PR

G2 G1+ S4SF, S5SF

G3 G2+ S4, 7gram, S5, 7gram

G4 G3+ S3T, S5SFT

G5 G4+ UT2–4, UTALL

Table 15 Combined systems
scores on MT03

The best performing system is
indicated in bold, while the
poorest performing system is
indicated in italics

System BLEU TER METEOR

BSS 28.34 54.42 44.53

G1 33.54 48.28 50.56

G2 33.88 47.98 51.01

G3 34.24 47.54 51.41

G4 34.49 47.33 51.65

G5 35.51 46.67 52.48
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Table 16 Combined systems
scores on MT04

The best performing system is
indicated in bold, while the
poorest performing system is
indicated in italics

System BLEU TER METEOR

BSS 23.11 60.37 38.51

G1 27.98 54.81 44.26

G2 28.39 54.20 44.78

G3 28.70 53.72 45.18

G4 29.03 53.37 45.52

G5 29.76 52.60 46.30

Table 17 Combined systems
scores on MT05

The best performing system is
indicated in bold, while the
poorest performing system is
indicated in italics

System BLEU TER METEOR

BSS 30.37 51.85 46.77
G1 36.21 45.56 53.12

G2 36.82 45.03 53.71

G3 37.29 44.68 54.13

G4 37.53 44.53 54.32

G5 38.39 43.57 55.25

8 Conclusions and future work

In this work we investigated the impact of Arabic morphological segmentation on
the performance of a broad-coverage English-to-Arabic SMT system. We explored
the largest-to-date set of Arabic segmentation schemes ranging from full word forms
to fully segmented forms, and we examined the effects on system performance. Our
results show a difference of 2.31 BLEU points averaged over all test sets between
the best and worst segmentation schemes, indicating that the choice of segmentation
scheme has a significant effect on the performance of English-to-Arabic PBSMT sys-
tems in a large data scenario. We also show that a simple segmentation scheme which
just splits off the w+ (and) can perform as well as the best and more complicated
(ATBv3.2) segmentation scheme.

An in-depth analysis on the effect of segmentation choices on the components that
make up a PBSMT system reveals that the normalized perplexities of the language
models increase as we move from coarse to fine segmentation. The analysis also shows
that aggressive segmentation such as S5, which splits of all possible affixes including
Al+ (the) can significantly increase the size of the phrase table and the uncertainty
in choosing the candidate translation phrases during decoding which has a negative
effect on the machine translation quality. A significant improvement of 7.28 BLEU
averaged over all test sets is achieved over the best single system in an oracle com-
bination of the output of the different systems. This demonstrates the complementary
nature of the output and the great potential in automatically combining the output of
the different systems.

Following the findings in this work we plan to experiment with automatic system
combination on the output of the systems built here. We also plan to explore whether
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current findings extend to English-to-Arabic syntax-based and hierarchical SMT sys-
tems.
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