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Abstract Recent efforts to develop new machine translation evaluation methods
have tried to account for allowable wording differences either in terms of syntactic
structure or synonyms/paraphrases. This paper primarily considers syntactic struc-
ture, combining scores from partial syntactic dependency matches with standard local
n-gram matches using a statistical parser, and taking advantage of N-best parse prob-
abilities. The new scoring metric, expected dependency pair match (EDPM), is shown
to outperform BLEU and TER in terms of correlation to human judgments and as
a predictor of HTER. Further, we combine the syntactic features of EDPM with the
alternative wording features of TERp, showing a benefit to accounting for syntactic
structure on top of semantic equivalency features.

Keywords Machine translation evaluation · Syntax · Dependency trees

1 Introduction

A challenge in automatic machine translation (MT) evaluation is accounting for allow-
able variability: two equally good translations may be quite different in surface form.
Currently, the most popular approaches are BLEU (Papineni et al. 2002), based on
n-gram precision, and Translation Edit Rate (TER), an edit distance (Snover et al.
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2006). These measures can only account for variability when given multiple transla-
tions, and studies show that they may not accurately track translation quality (Charniak
et al. 2003; Callison-Burch 2006).

Alternative measures that incorporate synonym knowledge sources include:
METEOR (Banerjee and Lavie 2005), which uses synonym tables and morphological
stemming to do progressively more forgiving matching; TER Plus (TERp) (Snover
et al. 2009), which is an extension of the previously-mentioned TER that also incorpo-
rates synonym sets and stemming, along with automatically-derived paraphrase tables.
Other metrics modeling syntactically-local (rather than string-local) word-sequences
include: tree-local n-gram precision in various configurations of constituency and
dependency trees (Liu and Gildea 2005); and the d and d_var measures proposed
by Owczarzak et al. (2007a,b) that compare relational tuples derived from a lexical
functional grammar (LFG) over reference and hypothesis translations.1 These syntac-
tically-oriented measures require a system for proposing dependency structure over
the reference and hypothesis translations. Liu and Gildea (2005) use a PCFG parser
with deterministic head-finding, while Owczarzak et al. (2007a) extract the semantic
dependency relations from an LFG parser (Cahill et al. 2004). This work extends the
dependency-scoring strategies of Owczarzak et al. (2007a), which reported substan-
tial improvement in correlation with human judgment relative to BLEU and TER,
by using a publicly-available probabilistic context-free grammar (PCFG) parser and
deterministic head-finding rules. In addition, we consider more types of constituents
and different score combinations, as well as combination with synonym-type scores.

MT measures are evaluated in a variety of ways. Some (Banerjee and Lavie 2005;
Liu and Gildea 2005; Owczarzak et al. 2007a) compare the measure to human judg-
ments of fluency and adequacy. In other work, e.g. Snover et al. (2006), measures are
compared to human-targeted TER (HTER), a distance to a human-revised reference
that uses wording closer to the MT system choices (keeping the original meaning) that
is intended to measure the post-editing work required after translation. In this paper,
we explore both kinds of evaluation.

We describe our approach to including syntax in MT evaluation by outlining a fam-
ily of metrics in Sect. 2 and implementation details in Sect. 3. Section 4 examines the
correlation of members of this family with human judgments of fluency and adequacy,
using the Owczarzak et al. (2007a) paradigm to provide comparisons and select a best
case configuration, expected dependency pair match (EDPM). The EDPM measure
is then compared to BLEU and TER in terms of correlation with HTER, exploring
language/genre effects in Sect. 5 and combination with TERp’s synonym/paraphrase
features in Sect. 6. Finally, findings and future work are summarized in Sect. 7.

2 Approach

The specific family of dependency pair match (DPM) measures explored here com-
bines precision and recall scores of various decompositions of a syntactic dependency

1 Owczarzak et al. (2007a) extend their previous line of research (Owczarzak et al. 2007b) by variably-
weighting dependencies and by including synonym matching, two directions not pursued here. Hence, the
earlier paper is cited in comparisons.
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Fig. 1 Example dependency trees and their dlh decompositions

Fig. 2 The dl and lh
decompositions of the
hypothesis tree in Fig. 1

tree. These measures are extensions of the dependency-pair F measures found in
Owczarzak et al. (2007b). Rather than comparing string sequences, as BLEU does
with its n-gram precision, this approach defers to a parser for an indication of the
relevant word tuples associated with meaning—in these implementations, the head on
which that word depends. Each sentence (both reference and hypothesis) is converted
to a labeled syntactic dependency tree and then relations from each tree are extracted
and compared.

We motivate the use of dependencies with actual translations:

Ref: Authorities have also closed southern Basra’s airport and seaport.
S1: The authorities also closed the airport and seaport in the southern port of Basra.
S2: Authorities closed the airport and the port of.

A human judged the system 1 result (S1) as equivalent to the reference, but the system
2 (S2) result as having errors. BLEU gives both a similar score (0.199 vs. 0.203).
TER scores S2 as better (errors of 0.9 vs. 0.7, respectively), since a simple deletion
requires fewer edits that rephrasing. By representing matches of dependencies, we
obtain a score for S1 from the new EDPM measure that is higher than that for S2
(0.414 vs. 0.356). The two phrases “southern Basra’s airport and seaport” and “the
airport and seaport in the southern port of Basra” have more in similarities in terms of
dependencies than word order.

The particular relations that are extracted from the dependency tree are referred
to here as decompositions. Figure 1 illustrates the dependency-link-head decompo-
sition of a toy dependency tree into a list of 〈d, l, h〉 tuples. Some members of the
DPM family may apply more than one decomposition; other good examples are the
dl decomposition, which generates a bag of dependent words with outbound links,
and the lh decomposition, which generates a bag of inbound link labels, with the head
word for each included. Figure 2 shows the dl and lh decompositions for the same
hypothesis tree.
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It is worth noting here that the dlh and lh decompositions (but not the dl
decomposition) “overweight” the headwords, in that there are n elements in the result-
ing bag, but if a word has no dependents it is found in the resulting bag exactly one time
(in the dlh case) or not at all (in the lh case). Conversely, syntactically “key” words,
that are directly modified by many other words in the tree, are included multiple times
in the decomposition (once for each inbound link). This “overweighting” leverages
syntactic indications of which words are more important to translate correctly (e.g.,
“Basra” in the example).

A statistical parser provides confidences associated with parses in an n-best list,
which we use to compute expected counts for each decomposition in both reference and
hypothesized translations. The expected counts lead to partial matches (or weighted
counts) used in computing precision and recall. This approach addresses both error in
the best parse and ambiguity in the translations (reference and hypothesis).

When multiple decomposition types are used together, we may combine these
subscores in a variety of ways. Here, we experiment with using two variations of a
harmonic mean: computing precision and recall over all decompositions as a group
(giving a single precision and recall number) vs. computing precision and recall sep-
arately for each decomposition. We distinguish between these using the notation:

F[dl, lh] = µh (Prec (dl ∪ lh) , Recall (dl ∪ lh)) (1)

µP R[dl, lh] = µh (Prec (dl) , Recall (dl) , Prec (lh) , Recall (lh)) (2)

where µh represents a harmonic mean. Dependency-based SParseval Roark et al.
(2006) and the d approach from Owczarzak et al. (2007a) may each be understood
as F[dlh], while the latter’s d_var method may be understood as something close to
F[dl, lh]. Both the combination methods F and µP R are “naive” in that they treat each
component score as equivalent to the next. When we introduce syntactic/paraphrasing
features, we will move to a weighted combination.

3 Parsing and dependency extraction

The family of DPM measures may be implemented with any parser that generates a
dependency graph (a single labelled arc for each word, pointing to its head-word).
Prior work (Owczarzak et al. 2007a) on related measures has used an LFG parser
(Cahill et al. 2004) or an unlabelled dependency tree (Liu and Gildea 2005).

In this work, we use a state-of-the-art PCFG (the first stage of Charniak and Johnson
2005) and context-free head-finding rules (Magerman 1995) to generate an N-best
list of dependency trees for each hypothesis and reference translation. We use the
parser’s default (English) Wall Street Journal training parameters. Head-finding uses
the Charniak parser’s rules, with three modifications to make the semantic (rather
than syntactic) relations more dominant in the dependency tree: prepositional and
complementizer phrases choose nominal and verbal heads respectively (rather than
functional heads) and auxiliary verbs are modifiers of main verbs (rather than the
converse). These changes capture the fact that main verbs are more important for
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Fig. 3 An example constituent
tree (heads of each constituent
are listed below the label) and
the labelled dependency tree
derived from it

adequacy in translation, as illustrated by the functional equivalence of “have also
closed” vs. “also closed” in the example in Sect. 2.

Having constructed the dependency tree, we label the arc between dependent d and
its head h as A/B when A is the lowest constituent-label headed by h and dominating
d and B is the highest constituent label headed by d. For example, in Fig. 3, the S
node is the lowest node headed by stumbled that dominates cat, and the NP node is the
highest constituent label headed by cat, so the arc linking cat to stumbled is labelled
S/N P . This strategy is very similar to one adopted in the reference implementation
of labelled-dependency SParseval (Roark et al. 2006), and may be considered as a
shallow approximation of the rich semantics generated by LFG parsers (Cahill et al.
2004). The A/B labels are not as descriptive as the LFG semantics, but they have a
similar resolution, e.g. the S/N P arc label usually represents a subject dependent of
a sentential verb.

For the cases where we have N-best parse hypotheses, we use the associated parse
probabilities (or confidences) to compute expected counts. The sentence will then be
represented with more tuples, corresponding to alternative analyses. For example, if
the N-best parses include two different roles for dependent “Basra”, then two different
dl tuples are included, each with the weighted count that is the sum of the confidences
of all parses having the respective role.2 The parse confidence p̃ is normalized so that
the N-best confidences sum to one. Because the parser is overconfident, we explore
a flattened estimate: p̃(k) = p(k)γ∑

i p(i)γ , where k, i index the parse and γ is a free
parameter.

4 Correlation with human judgments of fluency and adequacy

We explore various configurations of the DPM by assessing the results against a cor-
pus of human judgments of fluency and adequacy, specifically the LDC Multiple

2 The use of expectations with N-best parses is different from d_50 and d_50_pm in Owczarzak et al.
(2007a) in that the latter uses the best-matching pair of trees rather than an aggregate over the tree sets and
they do not use parse confidences.
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Translation Chinese corpus parts 2 (LDC 2003) and 4 (LDC 2006), which are
composed of translations of written Chinese news stories. These corpora include mul-
tiple human judgments of fluency and adequacy for each sentence (assigned on a
five-point scale), with each judgment using a different human judge and a different
reference translation. For a rough3 comparison with Owczarzak et al. (2007a), we treat
each judgment as a separate segment, which yields 16,815 tuples of 〈hypothesis, ref-
erence, fluency, adequacy〉. We compute per-segment correlations.4 The baselines for
comparison are case-sensitive BLEU (4-grams, with add-one smoothing) and TER.

The specific dimensions of DPM explored include:

Decompositions. We compute precision and recall of:
dlh 〈Dependent, arc Label, Head〉—full triple

dl 〈Dependent, arc Label〉—marks how the word fits into its syntactic context
(what it modifies)

lh 〈arc Label, Head〉—implicitly marks how key the word is to the sentence
dh 〈Dependent, Head〉—drops syntactic-role information.

1g,2g —simple measures of unigram (bigram) precision and recall.
Parser variations. When using more than one parse, we explore:
Size of n-best list. 50 (as in Owczarzak et al. 2007a)
Parse confidence. The distribution flattening parameter is varied from γ = 0 (uniform

distribution) to γ = 1 (no flattening).
Score combination. Global F vs. component harmonic mean µP R .

Considering only the 1-best parse, we compare DPM with different decompositions
to the baseline measures. Table 1 shows that all decompositions except [dlh] have a
better per-segment correlation with the fluency/adequacy scores than TER or BLEU4.
Dependencies [dl, lh] and string-local n-grams [1g, 2g] give similar results, but the
combination gives further improvement. The results also confirm, with a PCFG, what
Owczarzak et al. (2007a) found with an LFG parser: that partial-dependency matches
are better correlated with human judgments than full-dependency links. Including
progressively larger chunks of the dependency graph with F[1g, dl, dlh], inspired
by the BLEUk idea of progressively larger n-grams, did not give an improvement
over [dl, lh]. F gives substantially better results than µP R , which is never better than
BLEU for these decompositions.

Table 2 shows the impact of using N-best parses for different decompositions. For
the n = 50 cases, we set γ = 0 to assign uniform probabilities, which was slightly
better than γ = 1. While not all of these differences are significant, there is a con-
sistent trend of correlation r improving with 50 vs. 1 parse. Tuning experiments find
that increasing γ to 0.25 can increase the r reported here for F[1g, 2g, dl, lh] (but
insignificantly).

3 Our segment count differs slightly from Owczarzak et al. (2007a) for the same corpus: 16,807 vs. 16,815.
As a result, the baseline per-segment correlations differ slightly (BLEU4 is higher here, while TER here is
lower), but the trends in gains over those baselines are very similar.
4 The use of the same hypothesis translations in multiple comparisons in the Multiple Translation Corpus
means that scored segments are not strictly independent, but for methodological comparison with prior
work, this strategy is preserved.

123



Expected dependency pair match 175

Table 1 Per-segment
correlation with human
fluency/adequacy judgments of
baselines and different
decompositions

Metric |r |

F[1g, 2g, dl, lh] 0.237

F[1g, 2g] 0.227

F[dl, lh] 0.226

BLEU4 0.218

F[dlh] 0.185

TER 0.173

Table 2 Per-segment
correlation with human
fluency/adequacy judgments
comparing n = 1 vs. 50 parses
for different decompositions

Metric n r

F[1g, 2g, dl, lh] 50 0.239

F[1g, 2g, dl, lh] 1 0.237

F[1g, dl, lh] 50 0.237

F[1g, dl, lh] 1 0.234

F[dl, lh] 50 0.234

F[dl, lh] 1 0.226

In summary, exploring a number of variants of the DPM metric against an average
fluency/adequacy judgment leads to a best-case of:

EDPM = F[1g, 2g, dl, lh], n = 50, γ = 0.25

We use this configuration in experiments assessing correlations with HTER.

5 Correlating EDPM with HTER

In this section, we compare EDPM to baseline metrics in terms of document- and
segment-level correlation with HTER scores using the GALE 2.5 translation corpus.
The corpus includes system translations into English from three sites, all of which use
system combination to integrate results from several systems, some phrase-based and
some that use syntax on either the source or target side. No system provided system-
generated parses. The source data comprises Arabic and Chinese in four genres: bc
(broadcast conversation), bn (broadcast news), nw (newswire), and wb (web text),
with corpus sizes shown in Table 3. The corpus includes one English reference trans-
lation (LDC 2008) for each sentence and a system translation for each of the three
systems. Additionally, each of the system translations has a corresponding human-tar-
geted reference aligned at the sentence level, so we have available the HTER score at
both the sentence and document level.

HTER and automatic scores all degrade on average for more difficult sen-
tences. Since there are multiple system translations in this corpus, it is possible to
roughly factor out this source of variability by correlating mean normalized scores,5

5 Previous work (Kahn et al. 2008) reported HTER correlations against pairwise differences among transla-
tions derived from the same source to factor out sentence difficulty, but this violates independence assump-
tions used in the Pearson’s r tests.
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Table 3 Corpus statistics for
the GALE 2.5 translation corpus

Arabic Chinese Total

doc sent doc sent doc sent

bc 59 750 56 1,061 115 1,811

bn 63 666 63 620 126 1,286

nw 68 494 70 440 138 934

wb 69 683 68 588 137 1,271

Total 259 2,593 257 2,709 516 5,302

Table 4 Per-document correlations of EDPM and others to HTER, by genre and by source language

r vs. HTER bc bn nw wb All Arabic All Chinese All

TER 0.59 0.35 0.47 0.17 0.54 0.32 0.44

BLEU −0.42 −0.32 −0.46 −0.27 −0.42 −0.33 −0.37

EDPM −0.69 −0.39 −0.47 −0.27 −0.60 −0.39 −0.50

Bold numbers are within 95% significance of the best per column; italics indicate that the sign of the r
value has less than 95% confidence

Table 5 Per-sentence, length-weighted correlations of EDPM and others to HTER, by genre and by source
language

r vs. HTER bc bn nw wb All Arabic All Chinese All

TER 0.44 0.29 0.33 0.25 0.44 0.25 0.36

BLEU −0.31 −0.24 −0.29 −0.25 −0.31 −0.24 −0.28

EDPM −0.46 −0.31 −0.34 −0.30 −0.44 −0.30 −0.37

Bold numbers indicate significance as above

m(ti ) = m(ti ) − 1
I

∑I
j=1 m(t j ) where m can be HTER, TER, BLEU or EDPM and

ti represents the i th translation of segment t . Mean-removal ensures that the reported
correlations are among differences in the translations rather than among differences
in the underlying segments.

In Table 4, we show per-document Pearson’s r between EDPM and HTER, as well
as the TER and BLEU4 baselines. EDPM has the highest correlation in each of the sub-
corpora created; by division of genre or by source language, as well as on the corpus as
a whole. In structured data (bn and nw), these differences are not always significant,
but in the unstructured domains (wb and bc), EDPM is always significantly better
than at least one of the comparison baselines.

Table 5 presents per-sentence correlations based on scores normalized by sentence
length in order to get a per-word measure which reduces variance across sentences.
(Even with length weighting, the r values are smaller in magnitude due to the higher
variability at the sentence level.) EDPM again has the largest correlation in each cat-
egory, but TER has r values within 95% confidence of EDPM scores on nearly every
breakdown.
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6 Combining syntax, edit and semantic knowledge sources

While our results show that EDPM is as good or better than other measures, the
correlation is still low, which is consistent with the example in Sect. 2, where the
EDPM score is much less than 1 for the good translation. For that reason, we investi-
gated combining the alternative wording features of TERp with the EDPM syntactic
features.

The TERp tools (Snover et al. 2009) provide an optimizer for weighting multiple
simple subscores. The TERp optimizer performs a hill-climbing search, with random-
ized restarts, to maximize the correlation of a linear combination of the subscores
with a set of human judgments. Within the TERp framework the subscores are the
counts of the various edit types normalized for the length of the reference, where the
counts are determined after aligning the MT output to the reference using default edit
costs.

The experiments here leverage the TERp optimizer but extend the set of subscores
by including the syntactic and n-gram overlap features (modified to reflect false and
missed detection rates for the TERp format rather than precision and recall). The
subscores explored include:

E: the 8 fully syntactic subscores from the EDPM family, including false/miss error
rates for the dl, lh, dlh, and dh decompositions.

N: the 4 n-gram subscores from the DPM family; specifically, error rates for the 1g
and 2g decompositions.

T: the 11 subscores from TERp, which include matches, insertions, deletions, sub-
stitutions, shifts, synonym and stem matches, and four paraphrase edit scores.

For these experiments, we again use the GALE 2.5 data, but with 2-fold cross-
validation in order to have independent tuning and test data. Documents are parti-
tioned randomly, such that each subset has the same document distribution across
source-language and genre. The objective is length-normalized per-sentence correla-
tion with HTER, using mean-removed scores as before. In Fig. 4, we plot the Pearson’s
r (with 95% confidence interval) for the results on the two test sets combined, after
linearly normalizing the predicted scores to account for magnitude differences in the
learned weight vectors. The baseline scores, which involve no tuning, are not normal-
ized.

The figure shows that TER and EDPM are significantly more correlated with HTER
than BLEU, consistent with the overall results of the previous section. The N + E com-
bination outperforms E alone (i.e. it is helpful to use both n-gram and dependency
overlap) but gives lower performance than EDPM because of the particular combina-
tion technique. Both findings are consistent with the fluency/adequacy experiments.
The TERp features, which account for synonym/paraphrase differences, have much
higher correlation with HTER than the syntactic E + N subscores. However, a signifi-
cant additional improvement is obtained by adding syntactic features to TERp (T + E).
Adding the n-gram features to TERp (T + N) gives almost as much improvement,
probably because most dependencies are local. There is no further gain from using all
three subscore types.
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Fig. 4 Pearson’s r for various feature tunings, with 95% confidence intervals

7 Conclusion

In summary, we explore a family of dependency pair match measures. Through a
corpus of human fluency and adequacy judgments, we settle on EDPM, a member of
that family with promising predictive power. We find that EDPM is superior to BLEU
and TER in terms of correlation with human judgments and as a per-document and
per-sentence predictor of mean-normalized HTER. We also experiment with including
syntactic and synonym/paraphrase features in a TERp-style linear combination, and
find that the combination improves correlation with HTER over either method alone.

One difference with respect to the work of Owczarzak et al. (2007a) is the use of
a PCFG vs. an LFG parser. The PCFG has the advantage that it is publicly available
and easily adaptable to new domains. However, the performance varies depending on
the amount of labeled data for the domain, which raises the question of how sensitive
EDPM and related measures are to parser quality.

A limitation of this method for MT system tuning is the computational cost of
parsing compared to word-based measures such as BLEU or TER. Two alternative
low-cost use scenarios include late-pass evaluation, for choosing between different
system architectures, or system diagnostics, looking at relative quality of these com-
ponent scores compared to those of an alternative configuration.
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