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Abstract We describe a novel approach to MT that combines the strengths of the
two leading corpus-based approaches: Phrasal SMT and EBMT. We use a syntacti-
cally informed decoder and reordering model based on the source dependency tree,
in combination with conventional SMT models to incorporate the power of phrasal
SMT with the linguistic generality available in a parser. We show that this approach
significantly outperforms a leading string-based Phrasal SMT decoder and an EBMT
system. We present results from two radically different language pairs, and investi-
gate the sensitivity of this approach to parse quality by using two distinct parsers and
oracle experiments. We also validate our automated bleu scores with a small human
evaluation.

Keywords Example-based machine translation · EBMT · Statistical machine
translation · SMT · Syntax ·Dependency analysis

1 Introduction

Data-driven Machine Translation approaches, such as Example-based Machine Trans-
lation (EBMT) and Statistical Machine Translation (SMT), have revolutionized the
field of Machine Translation (MT). Where once the only tractable approach toward
MT was writing rule-based transfer systems, we are now seeing the emergence of
large-scale translation systems based on data-driven techniques. These approaches
are founded on similar datasets but very different principles. However, we believe
that that latest generation of data-driven MT systems demonstrate an increasing con-
vergence of EBMT and SMT (cf. Groves and Way 2005). After a brief survey of recent
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developments in EMBT and SMT, we describe a new syntax-based SMT approach
that draws successfully from both traditions to produce high-quality translations.

Although it is difficult to pinpoint the exact definition of EBMT (for a more detailed
discussion, see Carl 2005; Hutchins 2005; Wu 2005), there are several fundamental
principles that are generally accepted by the community as being characteristic of
EBMT. First, EBMT is a data-driven approach: translation information is learned
primarily from parallel corpora. Second, EBMT relies heavily on the concept of
translation by analogy. When presented with a new sentence to translate, an EBMT
system attempts to reuse translation information from its parallel corpus, preferably
reusing information in segments that are as large as possible. In this sense, EBMT is
a generalization of Translation Memory: it goes beyond reuse of translations at the
sentence level, attempting more aggressive reuse at the phrase, word, and perhaps
morpheme or even character level. Lepage and Denoual (2005) is an example of a
particularly pure EBMT system, relying on nothing except a purely analogical assem-
bly mechanism and a parallel corpus. Translation examples are not limited to words
or even contiguous phrases; often the most useful units of reuse are discontiguous in
nature.

A common way for EBMT systems to exploit complex phenomena is through
the use of linguistic analysis. As an example, consider the system of Menezes and
Richardson (2003). The first step in training is to parse both source and target language
sentences into a deep predicate–argument structure representation, which normalizes
away many of the surface differences between languages. Next these deep structures
are aligned; from this aligned structure, translation mappings can be automatically
extracted. To translate a new sentence, it is first parsed into this deep representation.
Then a target-language deep representation is constructed by combining translation
mappings learned from the parallel corpus. Finally the target-language sentence is
generated from the deep structure using a hand-written or machine-learned genera-
tion component. Other systems follow similar lines with some interesting variations.
Kurohashi et al. (2005) for instance obviate a target-language generation componnent
by employing a shallower analysis of both languages.

At the same time SMT began to develop using the same resources but different
ideas. Parallel corpora also formed the foundation of SMT, though initial attempts
at statistical translation models were less focused on the idea of reusing examples.
Instead, effort was devoted to defining generative models that were sufficiently pow-
erful to accommodate translational divergences while allowing tractable estimation.
The touchstone of this early work in SMT is Brown et al. (1993), who define a series
of generative models each providing a distribution over the set of foreign-language
sentences and word alignments given a source-language sentence. These models were
to be used as channel models in a noisy-channel decoder; n-gram language models
(like those commonly used in speech recognition) could act as the target-language
model. However, these initial systems never achieved the speed or quality necessary
to break into the mainstream translation market.

The recent activity in SMT has instead been driven by a by-product of the generative
models. Along with estimating parameters of channel models, these models could also
be used to produce a word alignment. As the EBMT community had recognized for
years, identifying word and phrase translations requires a fine-grained correspondence
between pieces of a sentence: an accurate word alignment opened many possibilities
for SMT. Seeing the potential power of larger translational units, approaches such as
alignment templates (Och and Ney 2004) and phrasal SMT (Koehn et al. 2003) took



Mach Translat (2006) 20:43–65 45

a major step toward EBMT (perhaps an unintentional one) by extracting multiword
translations from a word-aligned parallel corpus and stringing them together to form
a translation. However these new “phrasal” approaches were still grounded in statis-
tical decision theory. Example phrase pairs with counts were not sufficient to form a
full SMT system. The first systems still used something similar to the noisy-channel
approach to model translation, and tried to find heuristic search methods that approx-
imated optimal decoding behavior as much as possible. Latter systems generalized
the decoding approach to form what are now called hybrid generative–discriminative
models, using maximum entropy models (Och and Ney 2002) or direct optimization
of error rates (Och 2003) to optimize functions.

With the above developments, one may easily argue that the convergence of EBMT
and SMT had already begun. For instance, recent work, including Way and Gough
(2005) and Groves and Way (2005) has noted and explored the similarities between
phrasal SMT and Marker-based EBMT. Yet these phrasal SMT systems only started to
exploit the information that had been used for years in EBMT systems. Even the very
first EBMT systems found that effective reuse often requires noncontiguous phrases
in either the source language or the target language. Other well-known phenom-
ena (such as boundary friction (Somers 2003)) also pose problems for these systems
(though target language models may mitigate this somewhat). Nor does phrasal SMT
have an explicit model to account for ordering differences between languages. While
arbitrary reordering of words is allowed within memorized phrases, typically only a
small amount of phrase reordering is allowed, often modeled in terms of string-level
offsets. This reordering model is very limited in terms of linguistic generalizations. For
instance, when translating English to Japanese, an ideal system would automatically
learn large-scale typological differences: English SVO clauses generally become Jap-
anese SOV clauses, English postmodifying prepositional phrases become Japanese
premodifying postpositional phrases, etc. A phrasal SMT system may learn the inter-
nal reordering of specific common phrases, but it cannot generalize to unseen phrases
that share the same linguistic structure.

A natural solution to many of these problems is the incorporation of syntax.
Whether by incorporating linguistic parsers (as in Yamada and Knight 2002; Charniak
et al. 2003) or by simply including algorithms motivated by parsing (as in Wu 1997 or
Chiang 2005), syntax-based SMT allows the natural incorporation of discontiguous
phrases. Furthermore, syntax-based SMT also provides a natural means of modeling
constituent reordering.

An early, elegant approach to syntax-based SMT is that of Inversion Transduction
Grammars (ITG) (Wu 1997). No overt linguistic information is used; instead, it uses
algorithms inspired by parsers. Translation is viewed as a process of parallel parsing
of the source and target language via a synchronized grammar. To make this process
computationally efficient, however, some severe simplifying assumptions are made,
such as using a single nonterminal label. This results in the model simply learning a
very high-level preference regarding how often nodes should switch order without any
contextual information. Also these translation models are intrinsically word-based;
phrasal combinations are not modeled directly, and results have not been competitive
with the top phrasal SMT systems. Melamed (2004) generalizes this work, defining
parsing algorithms over multitext grammars and demonstrating how these versatile
tools can be used in various stages of a syntax-based SMT system.

In a similar vein, the Hiero approach (Chiang 2005) also uses a decoding algorithm
motivated by parsing, but incorporates phrasal translations. This is one of the first
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syntax-based SMT approaches to show significant improvements over a phrasal SMT
baseline. There are several important lessons to be drawn from this work. Phrasal
translations, effective decoding algorithms, and combinations of statistical models
together produce a formidable backbone of an MT system.

Other systems do take advantage of actual linguistic information in translation.
Yamada and Knight (2002) employ a parser in the target language to train probabil-
ities on a set of operations that convert an English tree to a Japanese string. These
models are then used in a noisy-channel decoder to find the best English translation.
Such an approach improves fluency slightly (Charniak et al. 2003), but does not sig-
nificantly impact overall translation quality. This may be because the parser is applied
to MT output, which is notoriously unlike native language, and no additional insight
is gained via source-language analysis. In a similar vein, Graehl and Knight (2004)
propose a framework for tree transduction that allows efficient training of transducers
using the Expectation-Maximization algorithm (Dempster et al. 1977). This promis-
ing approach of training channel models has the potential to improve string-to-tree
translation.

Parsers can be also used in the source language. For instance, Lin (2004) translates
dependency trees using paths. This is the first attempt to incorporate large phrasal
SMT-style memorized patterns together with a separate source dependency parser
and SMT models. However the phrases are limited to linear paths in the tree; the only
SMT model used is a maximum likelihood channel model and there is no ordering
model. Reported bleu scores (Papineni et al. 2002) are not yet at the level of leading
phrasal SMT systems.

Other approaches take advantage of both source and target language parsers.
Imamura et al. (2005) use both Japanese and English parsers to help limit the com-
putational complexity and make certain linguistic generalizations more evident. This
approach succeeds in outperforming a phrasal SMT baseline in a Japanese-to-English
translation task using only a small set of models.

2 Dependency treelet translation

In this paper we propose a novel dependency tree-based approach to phrasal SMT
that uses tree-based “phrases” and a tree-based ordering model in combination with
conventional SMT models to produce translations significantly better than a leading
string-based system. We believe this approach reinforces the convergence of EBMT
and SMT: our translations are firmly grounded in the training data, yet the transla-
tion process is guided by a number of probabilistic models in a general log-linear
framework.

Our system employs a source-language dependency parser, a target-language word-
segmentation component, and an unsupervised word-alignment component to learn
treelet translations from a parallel sentence-aligned corpus. We begin by parsing the
source text to obtain dependency trees and word-segmenting the target side, then
applying an off-the-shelf word-alignment component to the bitext.

The word alignments are used to project the source dependency parses onto the
target sentences. From this aligned parallel dependency corpus we extract a treelet
translation model incorporating source and target treelet pairs, where a treelet is
defined to be an arbitrary connected subgraph of the dependency tree (cf. Langlais
and Gotti (2006), whose translation model links source treelets and target strings).
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We also train a variety of statistical models on this aligned dependency tree corpus,
including a channel model and an order model.

To translate an input sentence, we parse the sentence, producing a dependency tree
for that sentence. We then employ a decoder to find a combination and ordering of
treelet translation pairs that cover the source tree and are optimal according to a set
of models that are combined in a log-linear framework, as in Och and Ney (2003).

This approach offers the following advantages over string-based SMT systems:
instead of limiting learned phrases to contiguous word sequences, we allow transla-
tion by all possible phrases that form connected subgraphs (treelets) in the source and
target dependency trees. This is a powerful extension: the vast majority of surface-
contiguous phrases are also treelets of the tree; in addition, we gain discontiguous
phrases, including combinations such as verb–object, article–noun, adjective–noun,
regardless of the number of intervening words.

Another major advantage is the ability to employ more powerful models for reor-
dering source-language constituents. These models can incorporate information from
the source analysis. For example, we may model directly the probability that the
translation of an object of a preposition in English should precede the corresponding
postposition in Japanese, or the probability that a premodifying adjective in English
translates into a postmodifier in French.

2.1 Corpus analysis and preparation

The following sections describe the process by which a word-aligned parallel depen-
dency-tree corpus is constructed from sentence-aligned data. These aligned parallel
dependency trees are used to train the translation system.

2.1.1 Source analysis

We require only a relatively shallow source-language analysis. We assume that source-
language fragments can be part-of-speech tagged, and a simple dependency analysis
can be produced. Arc labels are not required. The dependency analysis is viewed in
one of two isomorphic ways. First, we can look at this analysis as head annotation:
each word in the sentence has a unique parent, except for one word, which is the
root of the sentence. This parent function forms a directed acyclic graph. Second, we
can view this analysis in a tree-like manner: each word is annotated with a list of its
premodifying children and its postmodifying children.

2.1.2 Word alignment

We also require a word alignment of the parallel corpus. A word alignment can be
represented as a binary relation “∼” between the source words and the target words
in each sentence. The only restriction we place on this relation is that it cannot be
many-to-many. That is, if S and T are sets of source and target words such that s ∼ t
for all s ∈ S and t ∈ T, then either |S| = 1 or |T| = 1.

However we currently obtain word alignments with giza++ (Och and Ney 2003),
which limits the word alignments to involve at most one word in the target side.
Therefore, we follow the common practice of deriving many-to-many alignments by
running the IBM models in both directions and combining the results heuristically
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(cf. Groves and Way (2005) for a pictorial representation of this process). Our heu-
ristics differ in that they constrain many-to-one alignments to be contiguous in the
source dependency tree. We apply the following rules in order:

1. Accept all alignments from the intersection.
2. Accept all alignments that are unique on both sides (i.e., the only alignment in the

union from the given source word is to the given target word, and vice versa).
3. Accept all alignments that are unique on one side (i.e., the only alignment in the

union from the given source word is to that target word, but the target word has
other non-unique alignments, or vice versa).

4. Accept those many-to-one alignments that are adjacent to existing alignments in
the source dependency tree (i.e., accept an alignment (si, tk) if we have already
accepted an alignment (sj, tk), and either the parent of si is sj, or the parent of sj
is si.

5. Accept all one-to-many alignments.

The resulting alignment is a superset of the intersection and a subset of the union.

2.1.3 Dependency projection

Given a word-aligned sentence pair and a source dependency tree, we use the align-
ment to project the source structure onto the target sentence. One-to-one alignments
project directly to create a target tree isomorphic to the source. Many-to-one align-
ments project similarly; since the “many” source nodes are connected in the tree,
they act as if condensed into a single node. In the case of one-to-many alignments we
project the source node to the rightmost1 of the “many” target words, and make the
rest of the target words dependent on it.

Unaligned target words2 are attached into the dependency structure as follows:
assume there is an unaligned word tj in position j. Let i < j and k > j be the target
positions closest to j such that ti depends on tk or vice versa: attach tj to the lower of
ti or tk. If all the nodes to the left (or right) of position j are unaligned, attach tj to
the leftmost (or rightmost) word that is aligned. Algorithm 1 provides a pseudocode
description of the process.

The target dependency tree created in this process may not read off in the same
order as the target string, since our alignments do not enforce phrasal cohesion. For
instance, consider the projection of the parse of the phrase pair startup properties and
options and propriétés et options de démarrage (lit. ‘properties and options of startup’)
in Fig. 1 using the word alignment in Fig. 2a. Our algorithm produces the dependency
tree in Figure 2b. If we read off the leaves in a left-to-right in-order traversal, we do
not get the original input string: de démarrage appears in the wrong place.

A second reattachment pass corrects this situation. For each node in the wrong
order, we reattach it to the lowest of its ancestors such that it is in the correct place
relative to its siblings and parent. In Fig. 2c, reattaching démarrage to et suffices to
produce the correct order.

1 If the target language is Japanese, leftmost may be more appropriate.
2 Source unaligned nodes do not present a problem, with the exception that if the root is unaligned,
the projection process produces a forest of target trees anchored by a dummy root.
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Algorithm 1 Tree projection algorithm
function ProjectDeptree( S : source nodes, T : target nodes, A : alignment)

a←AlignmentFunction(S, T, A)
ht ← ProjectDeptreeBackbone (ε, root(S), ε, a)
ht ←AttachOthers(ht , T)
ht ← Reattach(t, ht)
return ht

function AlignmentFunction(S, T, A)
a← ∅
for all s ∈ S do

X ← {t ∈ T|(s, t) ∈ A}
a(s)← rightmost word in X; ε if X = ∅

return a
function ProjectDeptreeBackbone(s0, s1, t0, a)

h← ∅
t1 ← a(s1)

if t0 �= ε ∧ t1 �= ε then
h(t1)← t0

for all s2 ∈children(s1) do
h← h∪ ProjectDeptreeBackbone(s1, s2, t1, a)

return h
function AttachOthers(T, h, A)

for all t ∈ T such that h(t) = ε do
if t is aligned then

Find s ∈ S, t′ ∈ T such that (s, t), (s, t′) ∈ A and h(t′) �= ε

h(t) = t′
else

Find closest aligned words to the left and right tl, tr
h(t)← tl if tl is further from the root than tr; h(t)← tr otherwise.

return h
function Reattach(t, h)

Q← 〈t〉; a queue.
h′ ← ∅; the new parent relation without crossing dependencies
while Q is not empty do

t1 ← Pop(Q)
t0 ← h(t)
while (t0, t1) crosses some dependency already in h′ do

t0 ← h′(t0)

h′(t1)← t0
Enqueue(Q, children(t))

return h′

2.1.4 Extracting treelet translation pairs

From the aligned pairs of dependency trees we extract all pairs of aligned source
and target treelets along with word-level alignment linkages, up to a configurable
maximum size. We also keep treelet counts for maximum likelihood estimation.

2.2 Models

Generally we view translation as a global search problem: given an input dependency
tree, a search component (or decoder) produces possible translation candidates, which
are scored by a log-linear combination of feature functions. The highest scoring can-
didate is returned as the final translation.
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Fig. 1 An example
dependency tree

startup
NOUN

properties
NOUN

and
CONJ

options
NOUN

A candidate in this search consists of:

– S : a source dependency tree,
– T : a target dependency tree,
– A : a word alignment between the source and target trees, and
– I : a set of treelet translation pairs that are a partitioning of S and T into treelets.

Put formally, then, we wish to find argmaxT,A,I{score(S, T, A, I)}. The score function
is defined as a log-linear combination of the values of a set of feature functions F (1).

score(S, T, A, I) =
∑

f∈F

wf · log f (S, T, A, I) (1)

Fig. 2 Dependency trees
produced by the algorithm
(a) Word alignment
(b) Dependencies after initial
projection step
(c) Dependencies after
reattachment
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(c) Dependencies after reattachment
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the -2 Cancel -1 property -1 uses these -1 settings +1

la -1 propriété -1 Cancel +1 utilise ces -1 paramètres +1

Fig. 3 Aligned dependency tree pair annotated with head-relative positions

Theoretically, these feature functions could be any real-valued function of the can-
didate. Most, however, are simply the scores from probabilistic models. The following
sections explore these models in more detail.

2.2.1 Order model

Phrasal SMT systems often use a model to score the ordering of a set of phrases.
One approach is to penalize any deviation from monotone decoding; another is to
estimate the probability that a source phrase in position i translates as a target phrase
in position j (Koehn et al. 2003).

We attempt to improve on these approaches by incorporating syntactic information
into the ordering process. Our model assigns a probability to the order of a target
tree given an unordered target tree, a source tree, and a word alignment between the
two. Since we assume that dependencies are projective and phrases cohere during
translation (that is, the translation of a source constituent is a target constituent that is
a contiguous substring), the location of a constituent within a sentence is determined
by the position of its root node relative to its parent and the other modifiers of that
parent. One way to indicate this order is with head-relative positions: the closest pre-
modifier of a node has position −1, the next has position −2, and so on; the closest
postmodifier of a node has position +1, and so on. Figure 3 demonstrates an aligned
dependency tree pair annotated with head-relative positions for the sentence pair
in (2).

(2) The Cancel property uses these settings.
La propriété Cancel utilise ces paramètres.

We can estimate a conditional probability distribution Pr(T|S, Q, A) over ordered
target trees T given a source tree S, an unordered target tree Q (a tree with a head
function, but no relative order between nodes), and the word alignment A between S
and T. Then, given a function ϕ from ordered trees to their unordered counterparts,
we can use this probabilistic order model as another feature function in the log-linear
combination (3).

fOrder(S, T, A, I) = Pr(T|S, ϕ(T), A) (3)

We model this distribution in terms of head-relative orderings, and we make the
strong independence assumption that each node is positioned independently (4).

Pr(T|S, Q, A) ≈
∏

t∈Q

Pr(pos(t)|S, Q, A) (4)
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Furthermore, to make training tractable and to simplify decoding, we use only a very
small set of features reflecting local information in the dependency tree to model this
probability. In particular, these are the features used:

– the lexical items of the target node and and its parent;
– the lexical items of the source nodes aligned to the target node and its parent;
– the part-of-speech (category, or “cat”) of the source nodes aligned to the node and

its parent;
– the head-relative position of the source node aligned to the node.

One could also make a Markov assumption and condition on information from the
siblings of the target node; we found that this complicated the model and had little
impact in practice.

As an example, consider the children of propriété in Fig. 3. The head-relative
positions of its modifiers la and Cancel are −1 and +1, respectively. Then the model
attempts to predict the target positions as described in Fig. 4. Despite all the limitations
of this model, it can capture important linguistic generalizations that are not available
to purely phrase-based systems. For instance, the generalization that English premod-
ifiers of nouns generally become postmodifiers in French unless they are determiners
is straightforward to learn from a decision tree over the given features; similarly, one
can see that English prepositions generally become Japanese postpositions.

The training corpus in the form of word-aligned parallel dependency trees acts as
a training set for supervised classifiers. From each target-language node, we extract a
single data point, where the target feature is the head-relative position in the target
tree, and the other features are simply those available in the training set.

Such a training set could be used with many different machine learning methods.
We have found decision trees to be surprisingly effective: they are both fast to train,
relatively robust, and able to discover feature conjunctions, hence solve problems that
are not linearly separable.

For a given test feature vector, we compute a probability distribution from the
decision tree by first following the path to the leaf dictated by that feature vector, and
then use the MLE (maximum likelihood estimation) over the target feature counts at
that leaf (Chickering 2002).

2.2.2 Channel models

We incorporate two distinct channel models, an MLE model and a model computed
using Model-1 word-to-word alignment probabilities as in Vogel et al. (2003). The

Pr(pos(m1) = − 1 | lex(m1) = la, lex(h) = propriété,
lex(src(m1)) = the, lex(src(h) = property,
cat(src(m1)) = DET, cat(src(h)) = NOUN,
pos(src(m1)) = − 2) •

Pr(pos(m2) = +1 | lex(m2) = Cancel, lex(h) = propriété,
lex(src(m2)) = Cancel, lex(src(h)) = property,
cat(src(m2)) = NOUN, cat(src(h)) = NOUN,
pos(src(m2)) = − 1)

Fig. 4 Example order model decomposition
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MLE model effectively captures non-literal phrasal translations such as idioms, but
suffers from data sparsity. The word-to-word model does not typically suffer from
data sparsity, but prefers more literal translations.

Given a set of treelet translation pairs that cover a given input dependency tree and
produce a target dependency tree, we model the probability of source given target as
the product of the individual treelet translation probabilities: we assume a uniform
probability distribution over the decompositions of a tree into treelets. We have four
channel-model feature functions, since a model can either predict target given source
(a direct model) (5,7) or source given target (an inverse model) (6,8), and it can be
estimated using MLE (5,6) or via lexical translation probabilities (7,8).

fDirectMLE(S, T, A, I) =
∏

〈σ ,τ 〉∈I

c(σ , τ)

c(σ , ∗) (5)

fInverseMLE(S, T, A, I) =
∏

〈σ ,τ 〉∈I

c(σ , τ)

c(∗, τ)
(6)

fDirectLex(S, T, A, I) =
∏

〈σ ,τ 〉∈I

∏

t∈τ

∑

s∈σ
p(s|t) (7)

fInverseLex(S, T, A, I) =
∏

〈σ ,τ 〉∈I

∏

s∈σ

∑

t∈τ
p(t|s) (8)

The lexical translation probabilities p(s|t) and p(t|s) used here are from Model 1 of
Brown et al. (1993).

2.2.3 Target-language model

One crucial component of modern SMT systems is a target-language model. These
models appear simple—model the probability of a target string with a Markov assump-
tion, that is, find the probability of each word in the context of the previous n words—
but have a major impact on the fluency, grammaticality, and even accuracy of transla-
tion. As our dependency trees are ordered, an in-order walk suffices to enumerate the
target words in order, so adding an n-gram target-language model as another feature
is quite easy (9).

fTarget(S, T, A, I) =
|T|∏

i=1

Pr
(

ti|ti−1
i−n

)
(9)

We estimate the n-gram probabilities using modified Kneser–Ney smoothing (Good-
man 2001).

2.2.4 Miscellaneous feature functions

The log-linear framework allows us to incorporate other feature functions as “mod-
els” in the translation process. For instance, using fewer, larger treelet translation pairs
often provides better translations, since they capture more context and allow fewer
possibilities for search and model error. Therefore we add a feature function that
counts the number of phrases used (10). We also add a feature that counts the number
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of target words; this acts as an insertion/deletion bonus/penalty, and counteracts the
preference of the target language model for shorter sentences (11).

fPhraseCount(S, T, A, I) = e|I| (10)

fWordCount(S, T, A, I) = e|T| (11)

2.3 Decoding

The challenge of tree-based decoding is that the traditional left-to-right decoding
approach of string-based systems is inapplicable. Additional challenges are posed by
the need to handle treelets—perhaps discontiguous or overlapping—and a combina-
torially explosive ordering space.

Our decoding approach is influenced by ITG (Wu 1997) with several important
extensions. First, we employ treelet translation pairs instead of single word transla-
tions. Second, instead of modeling rearrangements as either preserving source order
or swapping source order, we allow the dependants of a node to be ordered in any
arbitrary manner and use the order model to estimate probabilities. Finally, we use a
log-linear framework for model combination that allows any amount of other infor-
mation to be modeled.

We will initially approach the decoding problem as a bottom-up, exhaustive search.
We define the set of all possible treelet translation pairs of the subtree rooted at each
input node in the following manner: a treelet translation pair x is said to match the
input dependency tree S iff there is some connected subgraph S′ that is identical to
the source side of x. We say that x covers all the nodes in S′ and is rooted at source
node s, where s is the root of matched subgraph S′.

Consider in turn each treelet translation pair x rooted at s. The treelet pair x may
cover only a portion of the input subtree rooted at s. Find all descendants s′ of s that
are not covered by x, but whose parent s′′ is covered by x. At each such node s′′ look
at all interleavings of the children of s′′ specified by x, if any, with each translation
t′ from the candidate translation list of each child s′, which is computed in the same
way on-demand and memoized. Each such interleaving is scored using the models
previously described and added to the candidate translation list for that input node.
The resultant translation is the best-scoring candidate for the root input node.

As an example, see the example dependency tree in Fig. 5 and treelet translation
pair in Fig. 6 for the sentence pair in (12).

(12) The software is installed on your computer.
Les logiciels sont installés sur votre ordinateur.

This treelet translation pair covers all the nodes in Fig. 5 except the subtrees rooted
at software and is. We first compute (and cache) the candidate translation lists for
the subtrees rooted at software and is, then construct full translation candidates by
attaching those subtree translations to installés in all possible ways. The order of sur
relative to installés is fixed; it remains to place the translated subtrees for the software
and is. Note that if c is the count of children specified in the mapping and r is the
count of subtrees translated via recursive calls, then there are (c + r + 1)!/(c + 1)!
orderings. Thus (1+2+1)!/(1+1)! = 12 candidate translations are produced for each
combination of translations of the software and is.



Mach Translat (2006) 20:43–65 55

the
DET

software
NOUN

is
VERB

installed
VERB

on
PREP

your
DET

computer
NOUN

Fig. 5 Example input dependency tree

Fig. 6 Example treelet
translation pair

installed
VERB

on
PREP

your
DET

computer
NOUN

installés sur votre ordinateur

2.3.1 Dynamic programming

Converting this exhaustive search to dynamic programming relies on several key
observations. First we note that the candidate scores are generally multiplicative. The
channel-model probability of a candidate constructed from a treelet and existing can-
didates for subtrees not covered by that treelet is simply the product of the treelet and
candidate channel-model probabilities; a similar situation exists for the word-count
and phrase-count features. For the order model, we must also score the head-relative
positions of the treelet as well as the root elements of the existing candidates, and
for the target-language model, we must multiply in the probabilities of the words at
the boundary of each candidate. Second, we note that these additional probabilities
depend only on a very small amount of information in the candidate: the order model
probability depends only on the lexical item at the root of the tree, and an n-gram
target-language model requires only the first and last (n−1) words in each subtree.
Therefore, for any given source subtree, we need to keep only the best-scoring trans-
lation candidate for each combination of (head, leading (n−1)-gram, (n−1)-gram
bigram). In the worst case, however, this still requires keeping O(V5) candidates per
input subtree, where V is the target language vocabulary size.

Although dynamic programming does limit the search space, it alone is not suffi-
cient to produce a real-time translation system. Therefore, we explore the following
optimizations that have proven effective in experimental settings, but do not preserve
optimality.

2.3.2 Beam search

Instead of keeping the full list of translation candidates for a given input node, we
keep a top-scoring subset of the candidates. While the decoder is no longer guaranteed
to find the optimal translation, in practice the quality impact is minimal with a beam
size of approximately ten.

Variable-sized n-best lists. A further speedup can be obtained by noting that the
number of translations using a given treelet pair is exponential in the number of sub-
trees of the input not covered by that pair. To limit this explosion we vary the beam
size in inverse proportion to the number of subtrees uncovered by the current treelet.
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This has the intuitive appeal of allowing a more thorough exploration of large treelet
translation pairs (that are likely to result in better translations) than of smaller, less
promising pairs.

2.3.3 Pruning treelet translation pairs

Channel-model scores and treelet size are powerful predictors of translation quality.
Heuristically pruning low-scoring treelet translation pairs before the search starts
allows the decoder to focus on combinations and orderings of high-quality treelet
pairs.

– Keep only those treelet translation pairs with an MLE probability above a thresh-
old t. This has the greatest impact on small, common treelets (such as translations
of the English word the) that have many possible translations. The vast majority
of these translations, however, are due to a single sentence pair in which the word
alignment was suboptimal.

– Given a set of treelet translation pairs with identical sources, keep those with an
MLE probability within a ratio r of the best pair.

– At each input node, keep only the top k treelet translation pairs rooted at that node,
as ranked first by size, then by MLE channel-model score, then by Model-1 score.
This final pruning heuristic has the greatest impact on translation speed.

2.3.4 Greedy ordering

The complexity of the ordering step at each node grows with the factorial of the
number of children to be ordered. This can be tamed by noting that given a fixed pre-
and post-modifier count, our order model is capable of evaluating a single ordering
decision independently from other ordering decisions.

One version of the decoder takes advantage of this to limit severely the number of
ordering possibilities considered. Instead of considering all interleavings, it considers
each potential modifier position in turn, greedily picking the most probable child for
that slot, moving on to the next slot, picking the most probable among the remaining
children for that slot and so on.

The complexity of greedy ordering is linear, but at the cost of a noticeable drop in
bleu score (see results in the next section). Under default settings our system tries to
decode a sentence with exhaustive ordering until a specified timeout, at which point
it falls back to greedy ordering.

3 Technical data experiments

We evaluated the translation quality of the system using the bleu metric (Papineni
et al. 2002) under a variety of configurations. We compared against two radically
different types of systems to demonstrate the competitiveness of this approach:

– Pharaoh: a leading phrasal SMT decoder (Koehn et al. 2003),
– the MSR-MT system described in Sect. 1, an EBMT/hybrid MT system.
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3.1 Language pairs

We ran experiments in translating English to French and English to Japanese. The
latter was chosen deliberately to highlight the challenges facing string-based MT
approaches in language pairs with significant word-order differences.

Word order in Japanese is fundamentally very different from English. English is
generally SVO, where Japanese is SOV with a strong bias for head-final structures.
Several other differences include:

– Word order is more flexible, since verbal arguments are generally indicated by post-
positions, for example, a direct object is indicated by the postposition o, a subject
by ga.

– Many English phrases that are realized as postmodifiers (such as relative clauses
and prepositional phrases) are translated as Japanese premodifiers; demonstratives
and adjectives remain premodifiers.

– Verbal and adjectival morphology in Japanese is relatively complex: information
contained in English premodifying modals and auxiliaries is often represented as
verbal morphology.

– Japanese nouns and noun phrases are not marked for definiteness or number.

The word-aligned sentence pairs in Figs. 7 and 8 (below) demonstrate many of
these phenomena.

3.2 Data

We used a corpus of Microsoft technical data (for example, support articles, product
documentation) containing over 1 million sentence pairs for each language pair. We
excluded sentences containing XML or HTML tags and for each language pair ran-
domly selected training data sets ranging from 1,000 to 500,000 sentence pairs as well
as 10,000 sentences for development testing and parameter tuning, 250 sentences for
lambda training and 10,000 sentences for testing. Table 1 presents basic characteristics
of these corpora.

3.3 Training

We parsed the source (English) side of the corpus using two different parsers: NLP-
WIN, a broad-coverage rule-based parser developed at Microsoft Research able to
produce syntactic analyses at varying levels of depth (Heidorn 2000), and a Treebank
parser (Bikel 2004). For the purposes of these experiments we used a dependency-tree
output with part-of-speech tags and unstemmed, case-normalized surface words.

For word alignment, we used giza++ (Och and Ney 2003), following a standard
training regimen of five iterations of Model 1, five iterations of the HMM Model,
and five iterations of Model 4, in both directions. Treelets were extracted from this
word-aligned parallel corpus; Table2 presents some statistics about those corpora. We
note that fewer treelet translation pairs were extracted from the English–Japanese
parallel corpus; this is presumably due the difficulty of aligning that language pair.

Target-language models were trained using only the French and Japanese sides,
respectively, of the parallel corpus; additional monolingual data may improve its per-
formance. Finally, we trained lambdas via Maximum bleu (Och 2003) on 250 held-out
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Table 1 Data characteristics English French English Japanese

Training Sentences 500,000 500,000 500,000 500,000
Words 6,598,914 7,234,153 7,909,198 9,379,240
Vocabulary 72,440 80,758 66,731 68,048
Singletons 38,037 39,496 50,381 52,911

Test Sentences 10,000 10,000 10,000 10,000
Words 133,402 153,701 175,665 211,139

Table 2 Treelet statistics

English–French, 300k English–Japanese, 500k

Total treelet translation pairs 42,201,316 35,420,445
Distinct treelet translation pairs 30,188,949 20,600,885
Distinct source treelets 12,659,291 9,554,323

sentences with a single reference translation, and tuned the decoder optimization
parameters (beam size, cutoffs, etc.) on the development test set.

3.3.1 Pharaoh

The same giza++ alignments as above were used in the Pharaoh decoder. We used
the heuristic combination described in Och and Ney (2003) and extracted phrasal
translation pairs from this combined alignment as described in Koehn et al. (2003).
Except for the order model (Pharaoh uses a penalty on the deviance from monotone),
the same models were used: MLE channel model, Model-1 channel model, target-
language model, phrase count, and word count. Lambdas were trained in the same
manner (Och 2003).

3.3.2 MSR-MT

MSR-MT used its own word-alignment approach as described in Menezes and
Richardson (2003) on the same training data. MSR-MT does not use lambdas or
a target-language model.

3.4 Results

We present bleu scores on an unseen 10,000-sentence test set using a single refer-
ence translation for each sentence. Speed numbers are the end-to-end translation
speed in sentences per minute. Unless otherwise specified all results are based on
a phrase/treelet size of 4 and a training set size of 100,000 sentences for English to
French and 500,000 sentences for English to Japanese. Unless otherwise noted all the
differences between systems are statistically significant at p < 0.01.

Comparative results are presented in Table 3. “Pharaoh monotone” refers to Pha-
raoh with phrase reordering disabled. Table 4 compares the systems at different
training corpus sizes. All differences are statistically significant at p < 0.01 except
for English–Japanese at training-set sizes less than 30k. Note that in English–French,
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Table 3 System comparisons

English–French, 100k English–Japanese, 500k

bleu Sents/min bleu Sents/min

Pharaoh monotone 37.06 4286 25.06 1600
Pharaoh 38.83 162 30.58 82
MSR-MT 35.26 453 — —
Treelet 40.66 10.1 33.18 21

Table 4 Bleu scores on training data subsets, phrase/treelet size 4

1k 3k 10k 30k 100k 300k 500k

English–French
Pharaoh 17.20 22.51 27.70 33.73 38.83 42.75 —
Treelet 18.70 25.39 30.96 35.81 40.66 44.32 —

English–Japanese
Pharaoh 14.85 15.99 18.18 21.89 23.01 26.67 30.58
Treelet 13.90 15.39 18.94 23.99 25.68 29.97 33.18

where word-order differences are mainly local, the gap between the systems narrows
slightly with larger corpus sizes, but in English–Japanese, with global ordering differ-
ences, the treelet system’s margin over Pharaoh (initially negative) actually increases
with increasing corpus size.

Table 5 compares Pharaoh and the Treelet system at different phrase sizes. The
wide gap at smaller phrase sizes is particularly striking. It appears that while Pha-
raoh depends heavily on long phrases to encapsulate reordering, our dependency
tree-based ordering model enables credible performance even with short phrases/tre-
elets. Our treelet system with two-word treelets outperforms Pharaoh with six-word
phrases.

Table 6 presents some statistics on the number of treelets available during decod-
ing time as well as the average number of treelets used in an individual sentence.
The number of treelets matched per sentence is slightly less in English–Japanese vs.
English–French; this is probably due to the smaller number of treelets extracted over-
all. However, we note that the number of treelet translation pairs is slightly higher.
Although this could be due to a greater amount of ambiguity in English–Japanese
translation, we think a more likely explanation is that the lower word-alignment qual-
ity leads to less consistent mappings, and therefore more possible translation pairs.
Finally, we see that on average more translation pairs are used to translate a single
sentence; this may partly account for the lower bleu scores in English–Japanese.

Table 7 compares different ordering strategies. In contrast to results reported for
English–Chinese (Vogel et al. 2003), monotone decoding severely degrades the per-
formance of both systems in English–Japanese. We presume that this is due to the
broad differences in word order between the two languages. In English–French the
degradation is less marked.

Table 8 shows that the translation results are not dependent on one particular
parser, though a parser trained on a different domain (here, the Treebank) is at a
disadvantage.
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Table 5 Effect of maximum treelet/phrase size measured in bleu scores

Max. size English–French English–Japanese

100k 100k 500k

Treelet Pharaoh Treelet Pharaoh Treelet Pharaoh

1 37.50 23.18 22.36 12.75 26.95 17.72
2 39.84 32.07 24.53 18.63 31.33 24.30
3 40.36 37.09 25.44 21.37 32.58 28.15
4 (default) 40.66 38.83 25.68 23.01 33.18 30.58
5 40.71 39.41 25.87 23.82 — —
6 40.74 39.72 25.92 24.43 — —

Table 6 Treelet statistics at decoding time

English–French English–Japanese

300k 500k

Average source treelets matched 61.84 57.24
Average treelet translation pairs available 114.84 130.20
Average treelet translation pairs used 8.44 9.96

Table 7 Effect of ordering strategy, measured by bleu score

English–French 100k English–Japanese 500k

bleu Sents/min bleu Sents/min

Monotone
Pharaoh 37.06 4286 25.06 1600
Treelet: no order model 35.35 39.7 26.43 67

Non-monotone
Pharaoh 38.83 162 30.58 82
Treelet: greedy ordering 38.85 13.1 31.99 43
Treelet: exhaustive 40.66 10.1 33.18 21

Table 8 Using different
parsers (English–Japanese,
100k, size 4)

bleu

Pharaoh 23.01
NLPWIN parser: top parse only 25.68
Bikel parser: top parse only 24.15

Table 9 shows the impact of using parses beyond the 1-best. The first experiment
is quite simple: we translate each parse separately, and keep the 1-best translation
from each. Finally, we pick the highest-scoring translation from each of these with
no additional information about the parse. Even without any features of the parse
itself, this approach boosts the bleu score by a significant amount. This highlights the
problems with the pipelined approach of using the single best parse, and suggests that
decoding over a packed forest of parses may produce significantly better results.

The last line in Table 9 is an oracle experiment to demonstrate the potential
improvements from better parse selection. In this experiment, we translate each parse
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Table 9 Using k-best parses
(English–Japanese, 500k,
size 4)

bleu

Pharaoh 30.58
Single NLPWIN parse 33.18
Top 100 NLPWIN parses 34.13
Oracle selection (top 100 NLPWIN parses) 36.91

separately and again keep only the top-scoring translation for each parse. However,
instead of picking among these translations based on score, we consult the reference
translation and pick the candidate most like the reference; the improvement in qual-
ity is quite impressive. Better parse-ranking mechanisms may, therefore, have a pos-
itive impact on translation quality. Unfortunately we do not have source-language
sentences with both gold-standard dependency annotations and target-language ref-
erence translations, so it is difficult to identify the correlation between monolingual
parse accuracy and efficacy in translation.

Returning to the 1-best parse, in Table 10 we see a translation oracle experiment
that demonstrates the impact of model error. The oracle picks the translation most
like the reference translation from among the top n translations produced by the tre-
elet system. Better models have the potential for major quality improvements, though
Och et al. (2004) suggest achieving this gain is difficult.

Finally, we expect that the gains due to better parse selection may be somewhat
orthogonal to the gains due to better channel-model selection. Often when a parse
is incorrect, it precludes selection of the correct translation. In the future we plan
to explore the interactions between k-best parsing and n-best translations in more
detail. Discriminative reranking including features from the source parse tree are
particularly promising.

Figure 7 shows examples of sentences where the Pharaoh translation was preferred
over the Treelet translation, with some analysis, and Fig. 8 shows the opposite case.

Table 10 Translation oracle
(English–Japanese, 500k,
size 4)

Translations bleu

1 33.18
4 35.30

16 37.38
64 38.56

256 38.70

Table 11 Human evaluation
of 100 sentences
(English–Japanese, 500k,
size 4)

Rater 1 Rater 2

Treelet preferred 30 50
Neither preferred 59 34
Pharaoh preferred 11 16
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SOURCE type a new name for the Riched32.dll file ( for example ,
Riched32.old ) , and then press ENTER .

REFERENCE Riched32.dll ( Riched32.old )
Enter

PHARAOH Riched32.dll ( Riched32.old
Enter

TREELET Riched32.dll ( Riched32.old )
Enter

ANALYSIS Treelet incorrectly translates "type" as " " ("consider as
input") rather than " " ("input")

——————————————————————————
SOURCE click to select the Use the Same Proxy Server for All Protocols

check box .
REFERENCE [ ]

PHARAOH Proxy Server ]

TREELET

ANALYSIS Treelet misparses input sentence: "Use the Same Proxy Server for
All Protocols" is not identified as a user interface term modifying
"check box". Main verb is therefore incorrect, amongst other errors.

Fig. 7 Sentences where the Pharaoh translation was preferred over the Treelet translation

3.5 Human evaluation

Two human raters were presented (in random order) both Pharaoh and Treelet trans-
lations of 100 sentences between 10 and 25 words and corresponding source and ref-
erence translations. They were asked to pick the more accurate translation. Table 11
shows that for most of the sentences, humans prefer the Treelet translations, which is
consistent with the bleu scores above.

4 Conclusions and future work

We have presented a novel approach to syntactically informed SMT by leveraging a
parsed dependency-tree representation of the source language via a tree-based order-
ing model and a syntactically informed decoder. We have shown that it outperforms
a leading phrasal SMT decoder in bleu and human quality judgments. We have also
shown that it outperformed our own logical form-based EBMT/hybrid MT system.

Even in the absence of a parse-quality metric, we found that employing multiple
parses could improve translation quality. Adding a parse probability may help further
the gains from these additional possible analyses.

The syntactic information used in these models is still rather shallow. Order model-
ing may benefit from additional information such as semantic roles or morphological
features. Furthermore, different model structures, machine-learning techniques, and
target feature representations all have the potential for significant improvements.
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SOURCE in Visual Studio .NET , create a new Managed C++ application
called determine0S .

REFERENCE Visual Studio .NET determine0S
Managed C

PHARAOH Visual Studio .NET Managed C
determine0S

TREELET Visual Studio .NET determine0S Managed
C

ANALYSIS Pharaoh drops main verb "create"; "call" becomes main verb;
"determineOS" incorrectly compounded onto "application"

——————————————————————————
SOURCE in the Named box , type scsi1hlp.vxd , and then click Find Now .

REFERENCE [ ] scsi1hlp.vxd
[ ]

PHARAOH [ ] [ ]
scsi1hlp.vxd

TREELET [ ] scsi1hlp.vxd [ ]

ANALYSIS Pharaoh incorrectly moves "scsi1hlp.vxd" end of sentence. Treelet
translation is not perfect, however: should have placed accusative
marker on "scsi1hlp.vxd" and used " " instead of " ".

——————————————————————————
SOURCE you may be able to recover some disk space by quitting unneeded

programs .
REFERENCE

PHARAOH

TREELET

ANALYSIS Pharaoh directly concatenates clauses with no conjunction.
——————————————————————————

SOURCE when an ALTER TABLE statement is executed , the ROWCOUNT
value of the session is taken into account .

REFERENCE ALTER TABLE
ROWCOUNT

PHARAOH ALTER TABLE
ROWCOUNT

TREELET ALTER TABLE
ROWCOUNT

ANALYSIS Pharaoh loses man verb "taken into account". Again Treelet
translation is not perfect: less fluent word order, and the transitive
verb has an inanimate subject, which is strongly dispreferred by
Japanese speakers.

Fig. 8 Sentences where the Treelet translation was preferred over the Pharaoh translation



64 Mach Translat (2006) 20:43–65

Acknowledgements We would like to thank Colin Cherry for his contributions and insight, Bob
Moore for many enlightening technical discussions, and Chris Brockett, Hisami Suzuki, and Takako
Aikawa for crucial insights and discussions of Japanese linguistic phenomena.

References

Bikel DM (2004) Intricacies of Collins parsing model. Comput Ling 30:479–511
Brown PF, Della Pietra SA, Della Pietra VJ, Mercer RL (1993) The mathematics of statistical machine

translation: parameter estimation. Comput Ling 19:263–311
Carl M (2005) A system-theoretic view of EBMT. Mach Translat 19:229–249
Carl M, Way A (eds) (2003) Recent advances in example-based machine translation, Kluwer Aca-

demic Publishers Dordrecht, The Netherlands
Charniak E, Knight K, Yamada K (2003) Syntax-based language models for statistical machine trans-

lation. In: MT Summit IX, Proceedings of the ninth machine translation summit, New Orleans,
USA, pp 40–46

Chiang D (2005) A hierarchical phrase-based model for statistical machine translation. In: 43rd annual
meeting of the Association for Computational Linguistics, Ann Arbor, MI pp 263–270

Chickering DM (2002) The WinMine toolkit. Technical Report MSR-TR-2002-103, Microsoft
Research, Seattle, WA

Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algo-
rithm. J Royal Stat Soc 39:1–38

Goodman J (2001) A bit of progress in language modeling. Technical Report MSR-TR-2001-72,
Microsoft Research, Seattle, WA

Graehl J, Knight K (2004) Training tree transducers. In: HLT-NAACL 2004: Human language tech-
nology conference of North American chapter of the Association for Computational Linguistics,
Boston, MA, pp 105–112

Groves D, Way A (2005) Hybrid data-driven models of machine translation. Mach Translat 19:301–323
Heidorn G (2000) Intelligent writing assistance. In: Dale R, Moisl H, Somers H (eds) Handbook of

natural language processing. Marcel Dekker New York, NY, pp 181–208
Hutchins J (2005) Example-based machine translation—a review and commentary. Mach Translat

19:197–211
Imamura K, Okuma H, Sumita E (2005) Practical approach to syntax-based statistical machine trans-

lation. In: MT Summit X, The tenth machine translation summit, Phuket, Thailand, pp 267–274
Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: HLT-NAACL 2003: Human

language technology conference of North American chapter of the Association for Computational
Linguistics, Edmonton, Alberta, Canada, pp 127–133

Kurohashi S, Nakazawa T, Alexis K, Kawahara D (2005) Example-based machine translation pur-
suing fully structural NLP. In: Proceedings of the international workshop on spoken language
translation, Pittsburgh, PA, pp.207–212

Langlais P, Gotti F (2006) EBMT by tree-phrasing. Mach Translat 20:1–25
Lepage Y, Denoual E (2005) Purest ever example-based machine translation: detailed presentation

and assessment. Mach Translat 19:251–282
Lin D (2004) A path-based transfer model for machine translation. In: Coling: 20th international

conference on computational linguistics, Geneva, Switzerland, pp 625–630
Melamed ID (2004) Statistical machine translation by parsing. In: 42nd annual meeting of the Asso-

ciation for Computational Linguistics, Barcelona, Spain, pp 653–660
Menezes A, Richardson SD (2003) A best-first alignment algorithm for extraction of transfer map-

pings. In: Carl and Way (2003), pp 421–442
Och FJ (2003) Minimum error rate training in statistical machine translation. In: 41st annual meeting

of the Association for Computational Linguistics, Sapporo, Japan, pp 160–167
Och FJ, Gildea D, Khudanpur S, Sarkar A, Yamada K, Fraser A, Kumar S, Shen L, Smith D, Eng K,

Jain V, Jin Z, Radev D (2004) A smorgasbord of features for statistical machine translation. In:
HLT-NAACL 2004: Human language technology conference of North American chapter of the
Association for Computational Linguistics, Boston, MA, pp 161–168

Och FJ, Ney H (2002) Discriminative training and maximum entropy models for statistical machine
translation. In: 40th annual meeting of the Association for Computational Linguistics, Philadel-
phia, PA, pp 295–302



Mach Translat (2006) 20:43–65 65

Och FJ, Ney H (2003) A systematic comparison of various statistical alignment models. Comput Ling
29:19–51

Och FJ, Ney H (2004) The alignment template approach to statistical machine translation. Comput
Ling 30:417–449

Papineni K, Roukos S, Ward T, Zhu W-J (2002) Bleu: A method for automatic evaluation of machine
translation. In: 40th annual meeting of the Association for Computational Linguistics, Philadel-
phia, PA, pp 311–318

Somers H (2003) An overview of EBMT. In: Carl and Way (2003), pp 3–58 [Revised version of article
in Mach Translat 14 (1999), 113–158]

Vogel S, Zhang Y, Huang F, Tribble A, Venugopal A, Zhao B, Waibel A (2003) The CMU statistical
machine translation system. In: MT Summit IX, Proceedings of the ninth machine translation
summit, New Orleans, USA, pp 402–409

Way A, Gough N (2005) Comparing example-based and statistical machine translation. Nat Lang Eng
11:295–309

Wu D (1997) Stochastic inversion transduction grammars and bilingual parsing of parallel corpora.
Comput Ling 23:377–403

Wu D (2005) MT model space: Statistical vs. compositional vs. example-based machine translation.
Mach Translat 19:213–227

Yamada K, Knight K (2002) A decoder for syntax-based statistical MT. In: 40th annual meeting of
the Association for Computational Linguistics, Philadelphia, PA, pp 303–310



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


