
Computational Optimization and Applications (2024) 89:1–32
https://doi.org/10.1007/s10589-024-00583-7

Stochastic Steffensen method

Minda Zhao1 · Zehua Lai2 · Lek-Heng Lim3

Received: 15 June 2023 / Accepted: 12 May 2024 / Published online: 7 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Is it possible for a first-order method, i.e., only first derivatives allowed, to be quadrat-
ically convergent? For univariate loss functions, the answer is yes—the Steffensen
method avoids second derivatives and is still quadratically convergent like Newton
method. By incorporating a specific step size we can even push its convergence order
beyond quadratic to 1+√

2 ≈ 2.414.While such high convergence orders are a point-
less overkill for a deterministic algorithm, they become rewarding when the algorithm
is randomized for problems of massive sizes, as randomization invariably compro-
mises convergence speed.Wewill introduce two adaptive learning rates inspired by the
Steffensen method, intended for use in a stochastic optimization setting and requires
no hyperparameter tuning aside from batch size. Extensive experiments show that
they compare favorably with several existing first-order methods. When restricted to
a quadratic objective, our stochastic Steffensen methods reduce to randomized Kacz-
marz method—note that this is not true for SGD or SLBFGS—and thus we may also
view our methods as a generalization of randomized Kaczmarz to arbitrary objectives.

Keywords Steffensen method · Barzilai–Borwein · Quasi-Newton · Stochastic
gradient descent

Mathematics Subject Classification 65K10 · 65B05 · 65C05 · 68W20

Minda Zhao, Zehua Lai and Lek-Heng Lim authors contributed equally to this work.

B Lek-Heng Lim
lekheng@uchicago.edu

Minda Zhao
mzhao327@gatech.edu

Zehua Lai
zehua.lai@austin.utexas.edu

1 School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Drive,
Atlanta, GA 30332, USA

2 Department of Mathematics, University of Texas, 2515 Speedway, Austin, TX 78712, USA

3 Computational and Applied Mathematics Initiative, University of Chicago, 5747 South Ellis Avenue,
Chicago, IL 60637, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-024-00583-7&domain=pdf

2 M. Zhao et al.

1 Introduction

In minimizing a univariate function f with an iteration xk+1 = xk − f ′(xk)/g(xk),
possibilities for g include

gradient: g(xk) = 1,

secant: g(xk) = f ′(xk) − f ′(xk−1)

xk − xk−1
,

Newton: g(xk) = f ′′(xk),

Steffensen: g(xk) = f ′(xk + f ′(xk)) − f ′(xk)
f ′(xk)

,

with different orders of convergence q, i.e., |xk+1 − x∗| ≤ c|xk − x∗|q . Gradient
descent has q = 1, secant method q = (1 + √

5)/2, Newton and Steffensen methods
both have q = 2.

Steffensen method [1, 2] is a surprise. Not only does it not require second deriva-
tives (like Newton) to achieve quadratic convergence, it also does not achieve its
superior convergence through the use of multisteps (like secant). In other words, the
kth Steffensen iterate only depends on xk but not xk−1, xk−2, etc.

Nevertheless, while the other three methods have widely used multivariate gener-
alizations (secant method has several, as quasi-Newton methods, as Barzilai–Borwein
step size, etc), all existing multivariate generalizations of Steffensen method [3–15]
involve multivariate divided differences that require O(n2) function evaluations and
are no less expensive than using the full Hessian. Furthermore thesemultivariate gener-
alizations are no longer one-step methods. As a result they have not found widespread
use.

Our contributions are as follows:

(i) We show that by incorporating a carefully chosen step size parameter the con-
vergence of Steffensen method may be further improved beyond quadratic to
q = 1 + √

2.
(ii) We extend Steffensen method to a multivariate setting as an adaptive learning

rate, avoiding divided differences, requiring just two gradient evaluations, and
remaining a one-step method.

(iii) We show that when used in a randomized setting, our methods outperform SGD,
SVRG, and SLBFGS on a variety of standard machine learning tasks on real data
sets.

The performance in (iii) is measured in actual running time. But aside from speed,
our methods have two advantages over SLBFGS, which has become a gold standard
in machine learning:

(a) Quasi-Newton methods may involve matrix–vector product, a two-loop recursion
with O(d2) computation. Although deterministic LBFGS does not form matrix–
vector product explicitly, stochastic LBFGS does. Our multivariate Steffensen
methods, whether deterministic or stochastic, are free of such products.

123

Stochastic Steffensen method 3

(b) Quasi-Newton methods come in two flavors: Hessian or inverse Hessian updates.
The latter seems a nobrainer as it avoids matrix inversion but this is a fallacy. It
is common knowledge among practitioners [16, Section 4.5.2.2] that the inverse
Hessian version often conceals an ill-conditioned approximateHessian; one should
instead update the Cholesky factors of the approximate Hessian in order to detect
ill-conditioning. By its design, LBFGS inevitably uses the inverse Hessian version.
Our multivariate Steffensen methods are not quasi-Newton methods and do not
involve approximate Hessians, avoiding this issue entirely.

A theoretical counterpart to (iii) is that when measured by the number of stochastic
gradient evaluations, we have the following complexity estimates:

SSM/SSBB: O
(
(n + κ2) log(1/ε)

)
,

SVRG–BB: O
(
(n + κ3) log(1/ε)

)
,

SLBFGS: O
(
(n + κ2+2(d+h)) log(1/ε)

)
,

to minimize a d-variate convex function of the form f = f1 + · · ·+ fn to ε-accuracy.
So our proposed methods SSM and SSBB are at least an order of magnitude faster1

than SVRG–BB and SLBFGS in terms of the condition number κ . Here h refers to the
‘history size’ of SLBFGS. The algorithms and quantities involved will all be explained
in due course.

Johan Steffensen first proposed his eponymous method [1] in 1933. See [19] for
an informative history of the method and a biography of its inventor. The method was
described in the classic books of Henrici [5, pp. 91–95] and Householder [20, p. 164]
but has remained more of a textbook curiosity. One reason, as we mentioned above
and will elaborate in Sect. 2.2, is that there has been no viable multivariate version.

Another reason, as we will speculate, is that much like the Kaczmarz method [21,
22] for iterative solution of linear systems had lingered in relative obscurity until it was
randomized [23], Steffensen method is also most effective in a randomized setting.
This is in fact more than an analogy; we will show in Sect. 2.4 that the stochastic
Steffensenmethodwe propose reduces to randomizedKaczmarzmethodwhen applied
to a quadratic objective—not true for SGD, SVRG, or SLBFGS. So one may also view
our stochastic Steffensenmethod as a generalization of randomized Kaczmarz method
to arbitrary differentiable objective functions.

In Sect. 3 we will supply proofs of linear convergence of our methods and a theo-
retical comparison with other existing methods. In Sect. 4 we show how to adapt our
methods for nonsmooth functions. In the numerical experiments in Sect. 5, we will
see that our stochastic Steffensen method compares favorably with SGD, SVRG (with
or without Barzilai–Borwein step size), and SLBFGS across different tasks in the
LIBSVM datasets: ridge regression, logistic regression, and support vector machines
with squared hinge loss.

1 SSM and SSBB are adpative methods; and we restrict our comparison here to other adaptive methods
like SVRG–BB and SLBFGS as opposed to nonadaptive methods like the ones in [17, 18].

123

4 M. Zhao et al.

Background

As in the usual setting for stochastic gradient descent and its variants, our goal is to
minimize an objective function of the form

f (x) = 1

n

n∑

i=1

fi (x), (1)

where x ∈ R
d is the model parameter. Such functions are ubiquitous in machine

learning, arising from the empirical risk minimization (ERM) problem where fi takes
the form

fi (x) = �(wT
i x; yi) + λR(x),

with � : R × R → R+ the loss function, R : Rd → R+ the regularizer, λ ≥ 0 the
regularization parameter, and {(wi , yi) ∈ R

d × R : i = 1, . . . , n} the training set
with labels. Different choices of � and R give l2-regularized logistic regression, lasso
regression, soft-margin support vector machine, etc.

The challenge here is that the dimension d and sample size n are extremely large
in modern situations, mandating the use of first-order methods that rely only on first
derivatives. But when n is large, even computing the full gradient of all f1, . . . , fn
is intractable, and we need stochastic optimization methods that update x only after
processing a small subset of data, permitting progress in the timedeterministicmethods
make only a single step. Consequently, stochastic first-order methods have become the
method of choice, with stochastic gradient descent (SGD) [24] and its many variants
[25–27] and various stochastic quasi-Newton methods [28–30] ruling the day.

Stochastic optimization has grown into a vast subject. We have limited our com-
parison in this article to stochastic variants of classical methods that rely primarily on
gradients. We did not include more sophisticated stochastic optimization algorithms
that bring in additional features like moments [31, 32] or momentum [33–36] for two
reasons. Firstly these more sophisticated algorithms invariably require heavy tuning
compared to purely gradient-basedmethods. Secondly we view them as enhancements
to gradients-based methods and our proposed stochastic Steffensen methods likewise
lend themselves to such enhancements. As such, the most appropriate and equitable
comparisons for us would be the aforementioned gradient-based methods.

Convention

In this article, we use the terms learning rate and step size slightly differently. Take
for example our Steffensen–Barzilai–Borwein iteration in (10):

xk+1 = xk − βk‖∇ f (xk)‖2
[∇ f (xk + βk∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

∇ f (xk),

123

Stochastic Steffensen method 5

the coefficient

ηSBB
k := βk‖∇ f (xk)‖2

[∇ f (xk + βk∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

will be called a learning rate whereas the coefficient

βk := ‖xk − xk−1‖2
[∇ f (xk) − ∇ f (xk−1)]T(xk − xk−1)

will be called a step size. In general, the term ‘learning rate’ will be used exclusively
to refer to the coefficient of a search direction, which may be a gradient, a stochastic
gradient, a variance-reduced stochastic gradient, etc. The term ‘step size’ will be used
for coefficients in other contexts like βk in the definition of the learning rate ηSBB

k .
We will use ηk to denote a general learning rate. For the learning rate of a particular

algorithm, we will indicate the algorithm in superscript. For example, ηSBB
k above is the

learning rate of Steffensen–Barzilai–Borwein method (SBB). The Barzilai–Borwein
step size above will always be denoted βk throughout.

2 Stochastic multivariate Steffensenmethods

Our three-step strategy is to (a) push the convergence order of the univariate Steffensen
method to its limit, (b) extend the resulting method to a multivariate setting, and then
(c) randomize the multivariate algorithm. For (a), we are led naturally to the Barzilai–
Borwein step size; for (b), we emulate the multivariate extension of secant method
into quasi-Newton method; and for (c), we draw inspiration from stochastic gradient
descent and its various derivatives.

2.1 Deterministic univariate setting

As we saw in Sect. 1, univariate Steffensen method:

xk+1 = xk − f ′(xk)2

f ′(xk + f ′(xk)) − f ′(xk)
(2)

avoids second-order derivatives and yet preserves quadratic convergence with the use
of two first-order derivatives f ′(xk + f ′(xk)) and f ′(xk). With modern hindsight, it is
clear that we may obtain an immediate improvement in (2), one that is essentially free,
by incorporating a coefficient βk that only depends on quantities already computed.
The analysis in the next two results will lead us to an appropriate choice of βk . Note
that although the algorithms require only first derivatives of f , the convergence results
assume that f has a higher degree of smoothness.

Proposition 1 (Convergence order of Steffensen method) Let f be a function that is
C3 in a neighborhood of a stationary point x∗ with f ′(x∗) = 0 and f ′′(x∗) �= 0. Let

123

6 M. Zhao et al.

α ∈ R be a nonzero constant parameter and

xk+1:=xk − α f ′(xk)2

f ′(xk + α f ′(xk)
) − f ′(xk)

for k = 0, 1, 2, If limk→∞ xk = x∗, then

lim
k→∞

|εk+1|
|ε2k |

= 1

2

∣∣
∣∣
f ′′′(x∗)
f ′′(x∗)

∣∣
∣∣
∣
∣1 + α f ′′(x∗)

∣
∣ ,

where εk :=xk − x∗ denotes the error in iteration k.

Proof Let εk = xk − x∗. Subtracting x∗ from both sides, we get

εk+1 = εk − α f ′(xk)2

f ′(xk + α f ′(xk)) − f ′(xk)
.

Taylor expanding f ′(xk + α f ′(xk)) about xk , we get

f ′(xk + α f ′(xk)) = f ′(xk) + f ′′(xk)α f ′(xk) + f ′′′(ξk)
2

α2 f ′(xk)2

for some ξk between xk and xk + η f ′(xk). Combining the previous two equations, we
have

εk+1 = εk − f ′(xk)
f ′′(xk) + f ′′′(ξk)

2 α f ′(xk)

= − f ′(xk) + f ′′(xk)εk + 1
2 f ′′′(ξk)α f ′(xk)εk

f ′′(xk) + 1
2 f ′′′(ξk)α f ′(xk)

.

(3)

Taylor expanding f ′ about xk , we get

0 = f ′(x∗) = f ′(xk) − f ′′(xk)εk + f ′′′(ξ∗
k)

2
ε2k

for some ξ∗
k between xk and x∗. Plugging f ′(xk) into (3) gives us

εk+1 = f ′′′(ξ∗
k)ε2k + α f ′′′(ξk) f ′′(xk)ε2k − α

2 f ′′′(ξk) f ′′′(ξ∗
k)ε3k

2 f ′′(xk) + f ′′′(ξk)α f ′(xk)
.

Taking limit k → ∞ and using continuity of f ′, f ′′, and f ′′′ at x∗, we have

lim
k→∞

|εk+1|
|ε2k |

= lim
k→∞

∣∣∣
∣
f ′′′(ξ∗

k) + α f ′′′(ξk) f ′′(xk) − α
2 f ′′′(ξk) f ′′′(ξ∗

k)εk

2 f ′′(xk) + f ′′′(ξk)α f ′(xk)

∣∣∣
∣

= 1

2

∣∣
∣∣
f ′′′(x∗)
f ′′(x∗)

∣∣
∣∣|1 + α f ′′(x∗)|

123

Stochastic Steffensen method 7

as required. ��
We next show that with an appropriate choice of α, we can push Steffensen

method into the superquadratically convergent regime. The quadratic convergence
in Proposition 1 is independent of the value α and we may thus choose a different
α at every step. Of course if we simply set αk = −1/ f ′′(xk) in Proposition 1, we
will obtain a cubically convergent algorithm. However since we want a first-order
method whose learning rate depends only on previously computed quantities, we set
αk = −(xk − xk−1)/[f ′(xk) − f ′(xk−1)] to be the finite difference to avoid second
derivatives — as it turns out, this improves convergence order to 1 + √

2.

Theorem 2 (Convergence order of Steffensen method with Barzilai–Borwein step
size) Let f be a function that is C4 in a neighborhood of a stationary point x∗ with
f ′(x∗) = 0 and f ′′(x∗) �= 0. Let

βk = − xk − xk−1

f ′(xk) − f ′(xk−1)

and

xk+1 = xk − βk f ′(xk)2

f ′(xk + βk f ′(xk)
) − f ′(xk)

(4)

for k = 0, 1, 2, If limk→∞ xk → x∗, then

lim
k→∞

|εk+1|
|ε2kεk−1|

=
(f ′′′(x∗)
2 f ′′(x∗)

)2
.

In particular, the order of convergence of (4) is superquadratic with 1+ √
2 ≈ 2.414.

Proof Taylor expanding f ′(xk + βk f ′(xk)) at xk , we get

f ′(xk + βk f
′(xk)) = f ′(xk) + f ′′(xk)βk f

′(xk) + f (3)(xk)

2
β2
k f ′(xk)2

+ f (4)(ξk)

6
β3
k f

′(xk)3

for some ξk between xk and xk + ηk f ′(xk). Let εk = xk − x∗, we have

εk+1 = εk − f ′(xk)
f ′′(xk) + 1

2 f (3)(xk)βk f ′(xk) + 1
6 f

(4)(ξk)β
2
k f ′(xk)2

= − f ′(xk) + f ′′(xk)εk + 1
2 f (3)(xk)βk f ′(xk)εk + 1

6 f
(4)(ξk)β

2
k f ′(xk)2εk

f ′′(xk) + 1
2 f (3)(xk)βk f ′(xk) + 1

6 f
(4)(ξk)β

2
k f ′(xk)2

.

(5)
Taylor expanding f ′(x∗) at xk to 4th, 3th, and 2nd order, we get

0 = f ′(x∗) = f ′(xk) − f ′′(xk)εk + f (3)(xk)

2
ε2k − f (4)(ξ∗

k)

6
ε3k ,

123

8 M. Zhao et al.

0 = f ′(x∗) = f ′(xk) − f ′′(xk)εk + f (3)(ξ ′
k)

2
ε2k ,

0 = f ′(x∗) = f ′(xk) − f ′′(ξ†k)εk .

Plugging these into (5) and defining

Ak := f ′′(xk) + f (3)(xk)

2
βk f

′(xk) + f (4)(ξk)β
2
k f ′(xk)2

6
,

Bk := f (4)(ξk)

6
β2
k f ′′(ξ†k)2ε3k − f (4)(ξ∗

k)

6
ε3k − f (3)(xk)

4
f (3)(ξ ′

k)βkε
3
k ,

we obtain

εk+1 =
1
2 f (3)(xk)ε2k (f

′′(xk)βk + 1) + Bk

Ak
.

Since βk = −(xk − xk−1)/(f ′(xk) − f ′(xk−1)), we may Taylor expand f ′(xk−1) at
xk to get

f ′(xk−1) = f ′(xk) + f ′′(xk)(εk−1 − εk) + f (3)(ξ
‡
k)

2
(εk−1 − εk)

2

for some ξ
‡
k between xk−1 and xk . Plugging it into

βk = − 1

f ′′(xk) + 1
2 f (3)(ξ

‡
k)(εk−1 − εk)

gives us

εk+1 =

f (3)(xk) f (3)(ξ
‡
k)ε2k (εk−1 − εk)

2(2 f ′′(xk) + f (3)(ξ
‡
k)(εk−1 − εk))

+ Bk

Ak
.

We deduce that

lim
k→∞

|εk |
|εk−1| = 0, lim

k→∞
|Bk |

|ε2kεk−1|
= 0,

and therefore

lim
k→∞

|εk+1|
|ε2kεk−1|

=
(f (3)(x∗)
2 f (2)(x∗)

)2
.

Hence the convergence order is 1 + √
2. ��

123

Stochastic Steffensen method 9

The choice of βk above is exactly the Barzilai–Borwein (BB) step size for a univari-
ate function [37]. In the multivariate setting, βk will be replaced by the multivariate
BB step size. Theorem 2 provides the impetus for a first-order method with Steffensen
updates and BB step size, namely, it is superquadratically convergent for univariate
functions. Such a high convergence order is clearly an overkill for a deterministic
algorithm but our experiments in Sect. 5 show that they are rewarding when the algo-
rithm is randomized, as randomization inevitably compromises convergence speed.
For easy comparison, we tabulate the convergence order, i.e., the largest q such that
|εk+1| ≤ c|εk |q for some c > 0 and all k sufficiently large, of various methods below:

Method Convergence Derivatives Steps

Steepest descent 1 1st Single step
Secant = Barzilai–Borwein = quasi-Newton (1 + √

5)/2 1st Mutltistep
Newton 2 2nd Single step
Steffensen 2 1st Single step
Steffensen–Barzilai–Borwein 1 + √

2 1st Multistep

Note that for a univariate function, Barzilai–Borwein step size and any quasi-
Newton method with Broyden class updates (including BFGS, DFP, SR1) reduce
to the secant method. In particular, they are all two-step methods, i.e., its iterate at
step k depends on both xk and xk−1. As a result Steffensen–Barzilai–Borwein method
is also a two-step method as it involves the Brazlai–Borwein step size but Steffensen
method is a one-step method.

2.2 Deterministic multivariate setting

There have been no shortage of proposals for extending Steffensen method to a mul-
tivariate or even infinite-dimensional setting [3–15]. However all of them rely on
various multivariate versions of divided differences that require evaluation and stor-
age of O(n2) first derivatives in each step. Although they do avoid second derivatives,
computationally they are just as expensive as Newton method and are unsuitable for
modern large scale applications like training deep neural networks.

We will propose an alternative class of multivariate Steffensen methods that use
only O(n)first derivatives, by emulating quasi-Newtonmethods [38–41] andBarzilai–
Borwein method [37] respectively. Our observation is that expensive multivariate
divided differences can be completely avoided if we just use the ideas in Sect. 2.1 to
define learning rates. Another advantage is that these learning rates could be readily
used in conjunction with existing stochastic optimization methods, as we will see in
Sect. 2.3.

The key idea behind quasi-Newton method is the extension of univariate secant
method to a multivariate objective function f : R

d → R by replacing the finite
difference approximation of f ′′(xk), i.e., hk = [f ′(xk)− f ′(xk−1)]/(xk − xk−1), with

123

10 M. Zhao et al.

the secant equation Hksk = yk or

Bk yk = sk (6)

where sk = xk − xk−1 and yk = ∇ f (xk) − ∇ f (xk−1), avoiding the need to divide
vectorial quantitites. Here Hk (resp. Bk) is the approximate (resp. inverse) Hessian.

We use the same idea to extend Steffensen method to a multivariate setting, solving
(6) with

sk = ∇ f (xk), yk = ∇ f (xk + ∇ f (xk)) − ∇ f (xk).

Note that with these choices, (6) roughly says that “Bk = sk/yk = ∇ f (xk)/[∇ f (xk +
∇ f (xk)) − ∇ f (xk)],” which gives us f ′(xk)/[f ′(xk + f ′(xk)) − f ′(xk)] as in the
univariate Steffensen method when d = 1 but is of course meaningless when d > 1.
Nevertheless we may pick a minimum-norm solution to (6), which is easily seen to
be given by the rank-one matrix

Bk = argmin
Byk=sk

‖B‖ = sk yTk
yTk yk

regardless of whether ‖ · ‖ is the Frobenius or spectral norm. Hence we obtain a
multivariate analogue of Steffensen method (2) as

xk+1 = xk − Bk∇ f (xk) = xk − [∇ f (xk + ∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

‖∇ f (xk + ∇ f (xk)) − ∇ f (xk)‖2 ∇ f (xk).

(7)
We will call this quasi-Steffensen method in analogy with quasi-Newton methods.

The key idea behind the Barzilai–Borwein method [37] is an alternative way of
treating the secant equation (6), whereby the approximate Hessian Bk is assumed to
take the form Bk = σk I for some scalar σk > 0. Since in general it is not possible to
find σk so that (6) holds exactly with Bk = σk I , a best approximation is used instead.
We seek σk so that the residual of the secant equation ‖yk−(1/σk)sk‖2 or ‖σk yk−sk‖2
is minimized. The first minimization problem gives us

σk = argmin
σ>0

‖yk − (1/σ)sk‖2 = sTksk
sTk yk

= ‖∇ f (xk)‖2
[∇ f (xk + ∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

,

(8)
and the secondminimization gives the same expression as (7).Wewill call the resulting
iteration

xk+1 = xk − ‖∇ f (xk)‖2
[∇ f (xk + ∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

∇ f (xk)

123

Stochastic Steffensen method 11

Steffensen method since it most resembles the univariate Steffensen method in (2).
Note that the Barzilai–Borwein step size derived in [37] is

βk = ‖xk − xk−1‖2
[∇ f (xk) − ∇ f (xk−1)]T(xk − xk−1)

(9)

and differs significantly from (8). In particular, xk+1 = xk − βk∇ f (xk) is a multistep
method whereas xk+1 = xk − σk∇ f (xk) remains a single step method.

Both (7) and (8) reduce to (2) when f is univariate. Motivated by the univari-
ate discussion before Theorem 2, we combine features from (8) and (9) to obtain a
Steffensen–Barzilai–Borwein method in analogy with the univariate case (4):

xk+1 = xk − βk‖∇ f (xk)‖2
[∇ f (xk + βk∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

∇ f (xk). (10)

Note that (10) reduces to (4) when f is univariate. The stochastic version of (10) will
be our method of choice, supported by extensive empirical evidence some of which
we will present in Sect. 5.

In summary, we have four plausible learning rates:

Quasi-Steffensen: η
qS
k = [∇ f (xk + ∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

‖∇ f (xk + ∇ f (xk)) − ∇ f (xk)‖2 ,

Quasi-Steffensen–Barzilai–Borwein: η
qSBB
k = βk [∇ f (xk + βk∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

‖∇ f (xk + βk∇ f (xk)) − ∇ f (xk)‖2 ,

Steffensen: ηS
k = ‖∇ f (xk)‖2

[∇ f (xk + ∇ f (xk)) − ∇ f (xk)]T∇ f (xk)
,

Steffensen–Barzilai–Borwein: ηSBB
k = βk‖∇ f (xk)‖2

[∇ f (xk + βk∇ f (xk)) − ∇ f (xk)]T∇ f (xk)
.

Hereβk is theBarzilai–Borwein step size in (9). For a univariate function, the iterations
with η

qS
k and ηS

k reduce to (2) whereas those with η
qSBB
k and ηSBB

k reduce to (4). The
computational costs of all four learning rates are the same: two gradient evaluations
and two inner products.

Note that our muiltivariate Steffensen and quasi-Steffensen methods are one-step
methods— ηS

k and η
qS
k depend only on xk —just like the univariate Steffensenmethod.

Steffensen–Barzilai–Borwein and quasi-Steffensen–Barzilai–Borwein are inevitably
two-step methods because they involve the Barzilai–Borwein step size βk , which has
a two-step formula.

The main difference between our multivariate Steffensen methods and those in the
literature [3–15] is that ours are encapsulated as learning rates and avoid expensive
multivariate divided differences. Recall that for g = (g1, . . . , gn) : Rn → R

n , its
divided difference [42] at x, y ∈ R

n is the matrix �x, y� ∈ R
n×n whose (i, j)th entry

123

12 M. Zhao et al.

is

�x, y�i j :=

⎧
⎪⎪⎨

⎪⎪⎩

gi (x1, . . . , x j , y j+1, . . . , yn) − gi (x1, . . . , x j−1, y j , . . . , yn)

x j − y j
x j �= y j ,

∂gi
∂x j

(x1, . . . , x j , y j+1, . . . , yn) x j = y j ,

for i, j = 1, . . . , n.
In a stochastic setting, the learning rates ηS

k, η
qS
k , ηSBB

k , η
qSBB
k share the same upper

and lower bounds in Lemma 7 and as a result, the linear convergence conclusion in
Theorem 10 applies alike to all four of them. Our experiments also indicate that ηqS

k and
ηS
k have similar performance and likewise for η

qSBB
k and ηSBB

k , although there is a slight
difference between ηS

k and ηSBB
k . One conceivable advantage of the ‘quasi’ variants is

that for a given ∇ f (xk), the denominator vanishes only at a single point, e.g., when
∇ f (xk + ∇ f (xk)) = ∇ f (xk), as opposed to a whole hyperplane, e.g., whenever
∇ f (xk +∇ f (xk))−∇ f (xk) ⊥ ∇ f (xk). Nevertheless, in all our experiments on their
stochastic variants, this has never been an issue.

We prefer the slightly simpler expressions of the Steffensen and Steffensen–
Barzilai–Borwein methods and will focus our subsequent discussions on them. Their
‘quasi’ variants may be taken as nearly equivalent alternatives for users who may have
some other reasons to favor them.

2.3 Stochastic multivariate setting

Encapsulating Steffensen method in the form of learning rates offers an additional
advantage — it is straightforward to incorporate them into many stochastic optimiza-
tion algorithms, which we will do next.

Standard gradient descent applied to (1) requires the evaluation of n gradients. The
stochastic gradient descent (SGD), instead of using the full gradient ∇ f (xk), relies
on an unbiased estimator gk with E[gk] = ∇ f (xk) [24]. One common randomization
is to draw ik ∈ {1, . . . , n} randomly and set gk = ∇ fik (xk), giving the update:

xk+1 = xk − ηk∇ fik (xk).

Note thatE[∇ fik (xk) | xk] = ∇ f (xk) and its obvious advantage is that each step relies
only on a single gradient ∇ fik , resulting in a computational cost that is 1/n that of
the standard gradient descent. While we could adopt this procedure to randomize our
Steffensen and Steffensen–Barzilai–Borwein iterations, we will use a slightly more
sophisticated variant with variance reduction and minibatching.

The price of randomization is paid in the form of variance, as the stochastic gradient
∇ fik (xk) equals the gradient∇ f (xk) only in expectation but each∇ fik (xk) is different.
Of the many variance reduction strategies, one of the best known and simplest is the
stochastic variance reduced gradient method (SVRG) [27], based on the tried-and-
tested notion of control variates in Monte Carlo methods. We will emulate SVRG to
randomize (7) and (10).

123

Stochastic Steffensen method 13

The basic idea of SVRG is to compute the full gradient once every m iterations for
some fixed m and use it to generate stochastic gradients with lower variance in the
next m iterations:

xk+1 = xk − ηk
(∇ fik (xk) − ∇ fik (̃x) + ∇ f (̃x)

)
.

Here x̃ denotes the point where full gradient is computed. Notice that when k → ∞,
xk and x̃ are very close to the optimal point x∗. As xk and x̃ are highly correlated, the
variability of the stochastic gradient is reduced as a result [27].

We may similarly randomize multivariate Steffensen method. Our stochastic Stef-
fensen method (SSM) in Algorithm 1 operates in two nested loops. In the kth iteration
of the outer loop, we compute two full gradients ∇ f (xk) and ∇ f (xk + ∇ f (xk)).
Note that xk plays the role of x̃ in the above paragraph. These two terms are used for
computing the Steffensen learning rate:

ηSS
k = 1√

m
· ‖∇ f (xk)‖2
[∇ f (xk + ∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

. (11)

In the (t + 1)th iteration of the inner loop, we use ∇ f (xk) to generate the stochastic
gradient with lower variance

vk,t = ∇ fit (xk,t) − ∇ fit (xk) + ∇ f (xk),

with it ∈ {1, . . . , n} sampled uniformly. The updating rule takes the form

xk,t+1 = xk,t − ηSS
k vk,t

where the search direction is known as the variance-reduced stochastic gradient. Note
that the learning rate ηk given by (11) has an extra 1/

√
m factor to guarantee the linear

convergence. The 1/
√
m factor may be replaced by 1/mp for any p ∈ (0, 1), although

not p = 1, while preserving linear convergence. The optimal complexity, as measured
by the number of stochasic gradient evaluations, is achieved when p = 1/2, with
details to follow in Sect. 3.

Aside from variance reduction, we include another common enhancement called
minibatching. Minibatched SGD is a trade-off between SGD and gradient descent
(GD) where the cost function (and therefore its gradient) is averaged over a small
number of samples. SGD has a batch size of one whereas GD has a batch size that
includes all training samples. In each iteration, we sample aminibatch Sk ⊆ {1, . . . , n}
with |Sk | = b a small number and update

xk+1 = xk − ηk
1

|Sk |
∑

j∈Sk
∇ f j (xk)=:xk − ηk∇ fSk (xk).

Minibatched SGD smooths out some of the noise in SGD but maintains the ability
to escape local minima. The minibatch size b is kept small, thus preserving the cost-
saving benefits of SGD. As in the discussion after (11), the coefficient 1/

√
m may

123

14 M. Zhao et al.

Algorithm 1 Stochastic Steffensen Method (SSM)
1: Input: initial state x0, inner loop size m, data size n.
2: for k = 0, 1, . . . do
3: Compute full gradients ∇ f (xk) and ∇ f (xk + ∇ f (xk)).
4: Compute stochastic Steffensen learning rate

ηSSk = 1√
m

· ‖∇ f (xk)‖2
[∇ f (xk + ∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

.

5: Set xk,0 = xk .
6: for t = 0 to m − 1 do
7: Sample it ∈ {1, . . . , n} uniformly.
8: Compute variance-reduced stochastic gradient

vk,t = ∇ fit (xk,t) − ∇ fit (xk) + ∇ f (xk).

9: Update xk,t+1 = xk,t − ηSSk vk,t .
10: end for
11: Set xk+1 = xk,i for uniformly chosen i ∈ {0, . . . ,m − 1}.
12: end for

be replaced by 1/mp for any p ∈ (0, 1) while preserving linear convergence, but
p = 1/2 gives the minimum number of stochastic gradient evaluations, as we will see
in Sect. 3.

Upon incorporating (i) a Barzilai–Borwein step size, (ii) variance reduction, and
(iii) minibatching, we arrive at the stochastic Steffensen–Barzilai–Borwein method
(SSBB) in Algorithm 2. This is our method of choice in this article.

Although we did not include minibatching in Algorithm 1’s pseudocode to avoid
clutter, we will henceforth assume that it is also minibatched. The randomiza-
tion, variance reduction, and minibatching all apply verbatim when the learning
rates in Algorithms 1 and 2 are replaced respectively by the quasi-Steffensen and
quasi-Steffensen–Barzilai–Borwein learning rates on p. 10. Nevertheless, as we have
mentioned, our numerical experiments do not show that the resulting algorithms differ
in performance from that of Algorithms 1 and 2.

2.4 Randomized Kaczmarz method as a special case

Given A ∈ R
m×n of full row rank with row vectors a1, . . . , am ∈ R

n and b ∈ R
m

in the image of A, the Kaczmarz method [21, 22] solves the consistent linear system
Ax = b via

xk+1 = xk + bi − aT
i xk

‖ai‖2 ai ,

with i = k mod m, i = 1, . . . ,m. The iterative method has remained relatively
obscure, almost unheard of in numerical linear algebra, until it was randomized in

123

Stochastic Steffensen method 15

Algorithm 2 Stochastic Steffensen–Barzilai–Borwein Method (SSBB)
1: Input: initial state x0, inner loop size m, minibatch size b, data size n, Barzilai-Borwein step size

β0 = −1.
2: for k = 0, 1, . . . do
3: Compute full gradient ∇ f (xk).
4: if k > 0 then
5: Set sk = xk − xk−1 and yk = ∇ f (xk) − ∇ f (xk−1).
6: Compute Barzilai–Borwein step size

βk = −‖sk‖2
sTk yk

.

7: end if
8: Compute the stochastic Steffensen–Barzilai–Borwein learning rate

ηSSBBk = 1√
m

· βk‖∇ f (xk)‖2
[∇ f (xk + βk∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

.

9: Set xk,0 = xk .
10: for t = 0 to m − 1 do
11: Sample minibatch Sk,t ⊆ {1, . . . , n} uniformly with |Sk,t | = b.
12: Compute variance-reduced stochastic gradient

vk,t = ∇ fSk,t (xk,t) − ∇ fSk,t (xk,t) + ∇ f (xk,t).

13: Update xk,t+1 = xk,t − ηSSBBk vk,t .
14: end for
15: Set xk+1 = xk,i for uniformly chosen i ∈ {0, . . . ,m − 1}.
16: end for

[23], which essentially does

xk+1 = xk + bik − aT
ik
xk

‖aik‖2
aik ,

where ik ∈ {1, . . . ,m} is now sampled with probability ‖aik‖2/‖A‖2.
We will see that randomized Kaczmarz method is equivalent to applying stochas-

tic Steffensen method, with or without Barzilai–Borwein step size, to minimize the
quadratic function f : Rn → R,

f (x):=1

2

m∑

i=1

fi (x) = 1

2

m∑

i=1

(aT
i x − bi)

2.

While it is sometimes claimed that SGDhas this property, this is not quite true. Suppose
ik ∈ {1, . . . ,m} is the random row index sampled at the kth step, the update rule in
SGD gives

xk+1 = xk − ηk(a
T
ik xk − bi)aik ,

123

16 M. Zhao et al.

and the update rule in SLBFGS is even further from this. So one needs to impose
further assumptions [43] on the learning rate to get randomized Kaczmarz method,
which requires that ηk = 1/‖a2ik‖. If we use the Steffensen method, we get from (10)
that

ηS
k = ‖∇ fik (xk)‖2

[∇ fik
(
xk + ∇ fik (xk)

) − ∇ fik (xk)]T∇ fik (xk)
= 1

‖aik‖2
;

and using Steffensen–Barzilai–Borwein method makes no difference:

ηSBB
k = βk‖∇ fik (xk)‖2

[∇ fik
(
xk + βk∇ fik (xk)

) − ∇ fik (xk)]T∇ fik (xk)
= 1

‖aik‖2
,

as βk = ‖xk − xk−1‖2/(xk − xk−1)
T[∇ fik (xk) − ∇ fik (xk−1)] = 1/‖aik‖2.

3 Convergence analysis

In this section, we establish the linear convergence of our stochastic Steffensen meth-
ods Algorithm 1 (SSM) and Algorithm 2 (SSBB) for solving (1) under standard
assumptions. We would like to stress that these convergence results are intended to
provide a minimal theoretical guarantee and do not really do justice to the actual per-
formance of SSBB. The experiments in Sect. 5 indicate that the convergence of SSBB
is often superior to other existing methods like SGD and SVRG, with or without
Barzilai–Borwein step size, or even SLBFGS. However, we are unable to prove this
theoretically, only that it is linearly convergent like the other methods.

For easy reference, we reproduce the minibatched SVRG algorithm in [44, Algo-
rithm 1] as Algorithm 3.

Algorithm 3Minibatched SVRG
1: Input: initial state x0, inner loop size m, minibatch size b, data size n.
2: for k = 0, 1, . . . do
3: Compute full gradient ∇ f (xk).
4: Set xk,0 = xk .
5: for t = 0 to m − 1 do
6: Sample minibatch Sk,t ⊆ {1, . . . , n} uniformly with |Sk,t | = b.
7: Compute variance-reduced stochastic gradient

vk,t = ∇ fSk,t (xk,t) − ∇ fSk,t (xk) + ∇ f (xk).

8: Update xk,t+1 = xk,t − ηkvk,t .
9: end for
10: Set xk+1 = xk,i for uniformly chosen i ∈ {0, . . . ,m − 1}.
11: end for

Weneed to establish the linear convergence ofAlgorithm3 for our own convergence
results in Sects. 3.1 and 3.2 but we are unable to find such a result in the literature. In

123

Stochastic Steffensen method 17

particular, the convergence results in [44, Propositions 2–4] and [45, Theorem 1] are
for more sophisticated variants of Algorithm 3. So we will provide a version following
the same line of arguments in [45, Theorem 1] but tailored to our own requirements.

Our linear convergence proofs for SSM and SSBB are a combination of the proofs
in [45, 46] adapted for our purpose. In particular, we quote [46, Lemma A] and prove
a simplied version of [45, Lemma 3] for easy reference.

Lemma 3 [Nitanda] Let ξ1, . . . , ξn ∈ R
d and ξ̄ := 1

n

∑n
i=1 ξi . Let S be a b-element

subset chosen uniform randomly from all b-element subsets of {1, 2, . . . , n}. Then

ES

∥∥∥
1

b

∑

i∈S ξi − ξ̄

∥∥∥
2 = n − b

b(n − 1)
Ei

∥∥ξi − ξ̄
∥∥2.

Here ES denotes expectation of the random subset S ⊆ {1, . . . , n} and Ei that of the
uniform random variable i ∈ {1, . . . , n}. More specifically, if S = {i1, . . . , ib}, then

ES

∥∥∥
1

b

∑

i∈S
ξi − ξ̄

∥∥∥
2 = b!(n − b)!

n!
∑

S⊆{1,...,n}

∥∥∥
1

b

b∑

j=1

ξi j − ξ̄

∥∥∥
2
,

Ei
∥∥ξi − ξ̄

∥∥2 = 1

n

n∑

j=1

∥∥ξ j − ξ̄
∥∥2.

For the rest of this section, we will need to assume, as is customary in such proofs
of linear convergence, that our objective f is μ-strongly convex, the gradient of each
additive component fi is L-Lipschitz continuous (and therefore so is ∇ f), and that
all iterates are well-defined (the denominators appearing in our learning rates ηk are
nonzero).

Assumption 1 Assume that the function f in (1) satisfies

f (w) ≥ f (v) + ∇ f (v)T(w − v) + μ

2
‖v − w‖2,

‖∇ fi (v) − ∇ fi (w)‖ ≤ L‖v − w‖

for any v,w ∈ R
d , i = 1, . . . , n.

Applying Lemma 3with ξi = v
k,t
i and [45, Corollary 3], wemay bound the variance

of a minibatched variance-reduced gradient as follows.

Lemma 4 Let f be as in Assumption 1 with x∗:= argminx f (x). Let

v
k,t
i = ∇ fi (xk,t) − ∇ fi (xk) + ∇ f (xk), vk,t = 1

b

∑

i∈Sk,t
v
k,t
i .

Then

E‖vk,t − ∇ f (xk,t)‖2 ≤ 4L

b

[
f (xk,t) − f (x∗) + f (xk) − f (x∗)

]
.

123

18 M. Zhao et al.

The next lemma, a simplified version of [45, Lemma 3], gives a lower bound of the
optimal value f (x∗) useful in our proof of linear convergence.

Lemma 5 Let �k,t :=vk,t − ∇ f (xk,t) and ηk be a learning rate with 0 < ηk ≤ 1/L.
Then with the same assumptions and notations in Lemma 4, we have

f (x∗) ≥ f (xk,t+1) + vT
k,t (x

∗ − xk,t) + ηk

2
‖vk,t‖2 + μ

2
‖x∗ − xk,t‖2 + �T

k,t (xk,t+1 − x∗).

Proof By the strong convexity of f , we have

f (x∗) ≥ f (xk,t) + ∇ f (xk,t)
T(x∗ − xk,t) + μ

2
‖x∗ − xk,t‖2.

By the smoothness of f , we have

f (xk,t) ≥ f (xk,t+1) − ∇ f (xk,t+1)
T(xk,t+1 − xk,t) − L

2
‖xk,t+1 − xk,t‖2.

Summing the two inequalities, we get

f (x∗) ≥ f (xk,t+1) + ∇ f (xk,t)
T(x∗ − xk,t+1) + μ

2
‖x∗ − xk,t‖2 − Lη2k

2
‖vk,t‖2.

The second term on the right simplifies as

∇ f (xk,t)
T(x∗ − xk,t+1) = ∇ f (xk,t)

T(x∗ − xk,t+1) + (vk,t − vk,t)
T(x∗ − xk,t+1)

= vT
k,t (x

∗ − xk,t+1) + (vk,t − ∇ f (xk,t))
T(xk,t+1 − x∗)

= vT
k,t (x

∗ − xk,t+1) + ηk‖vk,t‖2.

If the learning rate satisfies 0 < ηk ≤ 1/L , then

f (x∗) ≥ f (xk,t+1) + vT
k,t (x

∗ − xk,t) + ηk

2
(2 − Lηk)

∥∥vk,t
∥∥2

+ μ

2

∥
∥x∗ − xk,t

∥
∥2 + �T

k,t (xk,t+1 − x∗)

≥ f (xk,t+1) + vT
k,t (x

∗ − xk,t) + ηk

2

∥∥vk,t
∥∥2

+ μ

2

∥∥x∗ − xk,t
∥∥2 + �T

k,t (xk,t+1 − x∗),

as required. ��
Theorem 6 (Linear convergence of Algorithm 3) Let f be as in Assumption 1 with
x∗:= argminx f (x). For the (k + 1)th iteration of outer loop in Algorithm 3,

E[f (xk+1) − f (x∗)] ≤
[

b

mμηk(b − 4Lηk)
+ 4(m + 1)Lηk

m(b − 4Lηk)

]
[f (xk) − f (x∗)].

123

Stochastic Steffensen method 19

If m, ηk , and b are chosen so that

ρk = b

mμηk(b − 4Lηk)
+ 4(m + 1)Lηk

m(b − 4Lηk)
≤ ρ < 1, ηk < min

(b

4L
,
1

L

)
,

then Algorithm 3 converges linearly in expectation with

E[f (xk) − f (x∗)] ≤ ρk[f (x0) − f (x∗)].

Proof For the iteration in the inner loop, we apply Lemma 5 to get

∥∥xk,t+1 − x∗∥∥2 = ∥∥xk,t − x∗∥∥2 − 2ηkv
T
k,t (xk,t − x∗) + η2k

∥∥vk,t
∥∥2

≤ ∥∥xk,t − x∗∥∥2 + 2ηk[f (x∗) − f (xk,t+1)] − 2ηk�
T
k,t (xk,t+1 − x∗).

(12)
Lemma 5 requires that the learning rate ηk ≤ 1/L . Let x̄k,t+1:=xk,t − ηk∇ f (xk,t).
Then the last term in (12) may be written as

−2ηk�
T
k,t (xk,t+1 − x∗) = −2ηk�

T
k,t (xk,t+1 − x̄k,t+1) − 2ηk�

T
k,t (x̄k,t+1 − x∗)

= 2η2k
∥∥�k,t

∥∥2 − 2ηk�
T
k,t (x̄k,t+1 − x∗).

Plugging this into (12) and taking expectations on both sides conditioned on xk,t and
xk respectively, we get

E‖xk,t+1 − x∗‖2 ≤ ‖xk,t − x∗‖2 + 2ηk[ηkE‖�k,t‖2
− E[�T

k,t (x̄k,t+1 − x∗)] − (f (xk,t+1) − f (x∗))]
= ‖xk,t − x∗‖2 + 2ηk[ηkE‖�k,t‖2 − (f (xk,t+1) − f (x∗))],

where the last equality follows from E[�k,t] = 0. Set γ :=8Lη2k/b. By Lemma 4, we
have

E‖xk,t+1 − x∗‖2 ≤ ‖xk,t − x∗‖2 + γ [f (xk,t) − f (x∗) + f (xk) − f (x∗)]
− 2ηkE[f (xk,t+1) − f (x∗)].

For t = 0, . . . ,m − 1, we have

E
∥∥xk,t+1 − x∗∥∥2 + 2ηkE[f (xk,t+1) − f (x∗)]

≤ ‖xk,t − x∗‖2 + γ [f (xk,t) − f (x∗) + f (xk) − f (x∗)].

Summing this inequality over all t = 0, . . . ,m − 1, the left hand side becomes

LHS =
m−1∑

t=0

E
∥
∥xk,t+1 − x∗∥∥2 + 2ηk

m−1∑

t=0

E[f (xk,t+1) − f (x∗)],

123

20 M. Zhao et al.

and the right hand side becomes

RHS =
m−1∑

t=0

‖xk,t − x∗‖2 + γ

m−1∑

t=0

E[f (xk,t) − f (x∗)] + γmE[f (xk) − f (x∗)].

By the definition of xk+1 in Algorithm 3,

E[f (xk+1)] = 1

m

m∑

t=1

f (xk,t),

and so, bearing in mind that LHS ≤ RHS,

E‖xk,m − x∗‖2 + 2ηkmE[f (xk+1) − f (x∗)]

≤ E
∥
∥xk,0 − x∗∥

∥2 + γmE[f (xk) − f (x∗)] + γ

m−1∑

t=0

E[f (xk,t) − f (x∗)]

= E
∥
∥xk,0 − x∗∥

∥2 + γmE[f (xk) − f (x∗)] + γmE[f (xk+1) − f (x∗)]
+ γ [f (xk) − f (x∗)],

where the last step follows by replacing
∑m−1

t=0 with
∑m

t=0, which preserves inequality.
Thus

2ηkmE[f (xk+1) − f (x∗)] ≤ 2ηkmE[f (xk+1) − f (x∗)] + E
∥∥xk,m − x∗∥∥2

≤ E
∥∥xk − x∗∥∥2 + γ (m + 1)E[f (xk) − f (x∗)]

+ γmE[f (xk+1) − f (x∗)].

Rearranging terms and applying strong convexity of f , we have

(
2ηk − 8Lη2k

b

)
mE[f (xk+1) − f (x∗)]

≤ E
∥
∥xk − x∗∥∥2 + 8(m + 1)Lη2k

b
E[f (xk) − f (x∗)]

≤ 2

μ
[f (xk) − f (x∗)] + 8(m + 1)Lη2k

b
E[f (xk) − f (x∗)].

Here we require that 2ηk > 8Lη2k/b and thus ηk < b/(4 L), leading to

E[f (xk+1) − f (x∗)] ≤ ρk[f (xk) − f (x∗)]

with

ρk := b

mμηk(b − 4Lηk)
+ 4(m + 1)Lηk

m(b − 4Lηk)
.

123

Stochastic Steffensen method 21

Choose m, ηk so that ρk ≤ ρ < 1 and apply the last inequality recursively, we get

E[f (xk) − f (x∗)] ≤ ρk[f (x0) − f (x∗)]

as required. ��

3.1 Linear convergence of stochastic Steffensenmethod

With Theorem 6, we may deduce the linear convergence of Algorithm 1 as a special
case of Algorithm 3 with b = 1 (no minibatching) and ηk = ηSS

k (SSM learning rate).

Lemma 7 Let f be as in Assumption 1. Then the stochastic Steffensen learning rate

ηSS
k = 1√

m
· ‖∇ f (xk)‖2
∇ f (xk)T(∇ f (xk + ∇ f (xk)) − ∇ f (xk))

satisfies

1√
mL

≤ ηSS
k ≤ 1√

mμ
.

Proof Since ∇ f is L-Lipschitz, a lower bound is given by

ηSS
k ≥ 1√

m
· ‖∇ f (xk)‖2
L‖∇ f (xk)‖2 = 1√

mL
.

The required upper bound follows the μ-strong convexity of f . ��

Corollary 8 (Linear convergence of SSM) Let f be as in Assumption 1 with
x∗:= argminx f (x). If m is chosen so that

ρ:= (5 + 4/m)κ√
m − 4κ

< 1,

where κ = L/μ is the condition number, then Algorithm 1 converges linearly in
expectation with

E[f (xk) − f (x∗)] ≤ ρk[f (x0) − f (x∗)].

Proof By Theorem 6, we have

E[f (xk+1) − f (x∗)] ≤
[

1

mμηSS
k (1 − 4LηSS

k)
+ 4(m + 1)LηSS

k

m(1 − 4LηSS
k)

]
E[f (xk) − f (x∗)]

123

22 M. Zhao et al.

as long as ηSS
k < 1/(4L). Lemma 7 shows that this holds form > 16κ2, which follows

from ρ < 1. The upper and lower bounds in Lemma 7 also give

ρSS
k = 1

mμηSS
k (1 − 4LηSS

k)
+ 4(m + 1)LηSS

k

m(1 − 4LηSS
k)

≤ 1

mμ 1√
mL

(1 − 4L 1√
mμ

)
+

4(m + 1)L 1√
mμ

m(1 − 4L 1√
mμ

)
= (5 + 4/m)κ√

m − 4κ
.

Hence if m is chosen so that ρ < 1, we have

E[f (xk) − f (x∗)] ≤ ρk[f (x0) − f (x∗)]

as required. ��

3.2 Linear convergence of stochastic Steffensen–Barzilai–Borwein

The linear convergence of Algorithm 2 likewise follows from Theorem 6 with ηk =
ηSSBB
k .

Lemma 9 Let f be as in Assumption 1. Then the stochastic Steffensen–Barzilai–
Borwein learning rate

ηSSBB
k = 1√

m
· βk‖∇ f (xk)‖2
[∇ f (xk + βk∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

satisfies

1√
mL

≤ ηSSBB
k ≤ 1√

mμ
.

Proof Similar to that of Lemma 7. ��
Corollary 10 (Linear convergence of SSBB) Let f be as in Assumption 1 with
x∗:= argminx f (x). If m and b are chosen so that

ρ:= (b + 4/m + 4)κ√
mb − 4κ

< 1,

where κ = L/μ is the condition number, then Algorithm 2 converges linearly in
expectation with

E[f (xk) − f (x∗)] ≤ ρk[f (x0) − f (x∗)].

123

Stochastic Steffensen method 23

Proof Because SSBB is a special case of Algorithm 3, then we can easily get

E[f (xk+1) − f (x∗)] ≤
[

b

mμηSSBB
k (b − 4LηSSBB

k)
+ 4(m + 1)LηSSBB

k

m(b − 4LηSSBB
k)

]

E[f (xk) − f (x∗)]

when ηSSBB
k < b/(4 L) and ηSSBB

k < 1/L . From Lemma 9, this is valid for m >

max(κ2, 16κ2/b2), which holds because ρ < 1. Also, from Lemma 9, we have

ρSSBB
k = b

mμηSSBB
k (b − 4LηSSBB

k)
+ 4(m + 1)LηSSBB

k

m(b − 4LηSSBB
k)

≤ b

mμ 1√
mL

(b − 4L 1√
mμ

)
+

4(m + 1)L 1√
mμ

m(b − 4L 1√
mμ

)
= (b + 4/m + 4)κ√

mb − 4κ
.

Hence if m and b are chosen so that ρ < 1, we have

E[f (xk) − f (x∗)] ≤ ρk[f (x0) − f (x∗)]

as required. ��

3.3 Optimal number of stochastic gradient evaluations

Observe that in the proof of Corollary 8 and 10, we may replace 1/
√
m by 1/mp for

any p ∈ (0, 1)without affecting the linear convergence conclusion. More precisely, to
reach ε-accuracy, the proofs of Corollaries 8 and 10 show that when we set b = O(1)
and m = O

(
max(κ1/p, κ1/(1−p))

)
, then both SSM and SSBB require evaluation of

O
(
(n + max(κ1/p, κ1/(1−p))) log(1/ε)

)

stochastic gradients. Clearly, this is minimized when p = 1/2. It follows that for
p = 1/2, b = O(1), and m = O(κ2), both SSM and SSBB require evaluation of

O
(
(n + κ2) log(1/ε)

)
,

stochastic gradients to reduce to ε-accuracy.

3.4 Comparison with other methods

For a theoretical comparisonwith othermethods on equal footing, wewill have to limit
ourselves to the ones that do not leave the step size ηk unspecified. This automatically
excludes SGD and SVRG, which treat ηk as a hyperparameter to be tuned separately.
A standard choice is to choose ηk to be the Barzilai–Borwein step size, resulting in
the SVRG–BB method [47], which requires evaluation of

O
(
(n + κ3) log(1/ε)

)

123

24 M. Zhao et al.

stochastic gradients to achieve ε-accuracy when κ is sufficiently large. On the other
hand, the SLBFGS method [28] requires evaluation of

O
(
(n + κ2+2(d+h)) log(1/ε)

)
,

stochastic gradients where h is ‘history size’, the number of previous updates kept in
LBFGS. Evidently both SVRG–BB and SLBFGS are at least an order of magnitude
slower than SSM and SSBB as measured by the condition number κ . It is worth
noting that for a d-variate objective, the number of stochastic gradients required by
SLBFGS depends on d. Our methods, like SVRG–BB, are free of such dependence.
Note that the lower bound of O

(
n + √

nκ log(1/ε)
)
in [18] and upper bound of

O
(
(n + √

nκ) log(1/ε)
)
in [17] assume a constant multiple of the stochastic gradient

throughout. We restrict our comparison to adaptive methods where the stochastic
gradient is modified by a nonconstant (scalar or matrix) multiple of the stochastic
gradient that changes from step to step.

4 Proximal variant

As shown in [45], SGD and SVRG may be easily extended to cover nondifferentiable
objective functions of the form

F(x) = f (x) + R(x) = 1

n

n∑

i=1

fi (x) + R(x), (13)

where f satisfies Assumption 1 and R is a nondifferentiable function such as R(x) =
‖x‖1. In this section we will see that SSBB may likewise be extended, and the linear
convergence is preserved.

To solve (13), the proximal gradient method does

xk = proxηR

(
xk−1 − η∇ f (x)

)
,

with a proximal map defined by

proxR(y) = argmin
x∈Rd

{
1

2
‖x − y‖2 + R(x)

}
.

As in [45], we replace the update rule xk,t+1 = xk,t − ηSSBB
k vk,t in Algorithm 2 by

xk,t+1 = proxηSSBBk R

(
xk,t − ηSSBB

k vk,t
)
. (14)

We will see that the resulting algorithm, which we will call prox-SSBB, remains
linearly convergent as long as the following assumption holds for some μ > 0.

123

Stochastic Steffensen method 25

Algorithm4Proximal Stochastic Steffensen–Barzilai–BorweinMethod (prox-SSBB)
1: Input: initial state x0, inner loop size m, minibatch size b, data size n, Barzilai-Borwein step size

β0 = −1.
2: for k = 0, 1, . . . do
3: Compute full gradient ∇ f (xk).
4: if k > 0 then
5: Set sk = xk − xk−1 and yk = ∇ f (xk) − ∇ f (xk−1).
6: Compute Barzilai–Borwein step size

βk = −‖sk‖2
sTk yk

.

7: end if
8: Compute the stochastic Steffensen–Barzilai–Borwein learning rate

ηSSBBk = 1√
m

· βk‖∇ f (xk)‖2
[∇ f (xk + βk∇ f (xk)) − ∇ f (xk)]T∇ f (xk)

.

9: Set xk,0 = xk .
10: for t = 0 to m − 1 do
11: Sample minibatch Sk,t ⊆ {1, . . . , n} uniformly with |Sk,t | = b.
12: Compute variance-reduced stochastic gradient

vk,t = ∇ fSk,t (xk,t) − ∇ fSk,t (xk,t) + ∇ f (xk,t).

13: Update xk,t+1 = prox
ηSSBBk R

(
xk,t − ηSSBBk vk,t

)
.

14: end for
15: Set xk+1 = xk,i for uniformly chosen i ∈ {0, . . . ,m − 1}.
16: end for

Assumption 2 The function R is μ-strongly convex in the sense that

R(y) ≥ R(x) + g(x)T(y − x) + μ

2
‖y − x‖2

for all x ∈ dom(R), g(x) ∈ ∂R(x), y ∈ R
d , and R(y):=+∞whenever y /∈ dom(R).

Here ∂R(x) denotes subgradient at x .

It is a standard fact [48, p. 340] that if R is a closed convex function on R
d , then

‖proxR(x) − proxR(y)‖ ≤ ‖x − y‖ (15)

for all x, y ∈ dom(R). We will write μ f for the strong convexity parameter of f in
Assumption 1 and μR for that of R in Assumption 2. This implies that the overall
objective function F is strongly convex with μ ≥ μ f + μR .

To establish linear convergence for prox-SSBB, we need an analogue of Lemma 5,
which is provided by [45, Lemma 3], reproduced here for easy reference.

123

26 M. Zhao et al.

Lemma 11 (Xiao–Zhang) Let f be as in Assumption 1, R as in Assumptions 1, and
F = f + R with x∗:= argminx F(x). Let �k,t :=vk,t − ∇ f (xk,t) and

gk,t := 1

ηk
(xk,t − xk,t+1) = 1

ηk

(
xk,t − proxηk R(xk,t − ηkvk,t)

)
.

If 0 < ηk < 1/L, then

F(x∗) ≥ F(xk,t+1) + gT
k,t (x

∗ − xk,t) + ηk

2
‖gk,t‖2

+ μ f

2
‖xk,t − x∗‖2 + μR

2
‖xk,t+1 − x∗‖2 + �T

k,t (xk,t+1 − x∗).

Corollary 12 (Linear convergence of prox-SSBB) Let F and x∗ be as in Lemma 11
and ηk = ηSSBB

k . Then Corollary 10 holds verbatim with F in place of f .

Proof To apply Lemma 11, we need ηk ≤ 1/L and this holds as we have m ≥
(L/μ)2 = κ2 among the assumptions of Lemma 9. In the notations of Lemma 11, the
update (14) is equivalent to xk,t+1 = xk,t − ηkgk,t . So

‖xk,t+1 − x∗‖2 = ‖xk,t − x∗‖2 − 2ηkg
T
k,t (xk,t − x∗) + η2k‖gk,t‖2.

By Lemma 11, we have

− gTk,t (xk,t − x∗) + ηk

2
‖gk,t‖2

≤ F(x∗) − F(xk,t+1) − μ f

2
‖xk,t − x∗‖2 − μR

2
‖xk,t+1 − x∗‖2 − �T

k,t (xk,t+1 − x∗).

Therefore,

‖xk,t+1 − x∗‖2 ≤ ‖xk,t − x∗‖2 − 2ηk�
T
k,t (xk,t+1 − x∗) + 2ηk[F(x∗) − F(xk,t+1)].

We bound the middle term on the right. Let x̄k,t+1:= proxηk R(xk,t − ηk∇ f (xk,t)).
Then

−2ηk�
T
k,t (xk,t+1 − x∗) = −2ηk�

T
k,t (xk,t+1 − x̄k,t+1) − 2ηk�

T
k,t (x̄k,t+1 − x∗)

≤ 2ηk‖�k,t‖‖xk,t+1 − x̄k,t+1‖ − 2ηk�
T
k,t (x̄k,t+1 − x∗)

≤ 2ηk‖(xk,t − ηkvk,t) − (xk,t − ηk∇ f (xk,t))‖
− 2ηk�

T
k,t (x̄k,t+1 − x∗)

= 2η2k‖�k,t‖2 − 2ηk�
T
k,t (x̄k,t+1 − x∗),

where the first inequality is Cauchy–Schwarz and the second follows from Lemma 15.
The remaining steps are as in the proofs of Theorem 6 and Corollary 10 with F in
place of f . ��

123

Stochastic Steffensen method 27

Table 1 Sample size n, dimension d, batch size b, l2-regularization parameter λ2, l1-regularization param-
eter λ1

Data set Loss function n d m b λ2 λ1

synthetic Squared loss 10000 100 4n 4 10−5 0

w6a Logistic loss 17188 300 2n 16 10−4 0

a6a Squared hinge loss 11220 123 2n 16 10−3 0

w6a l1-regularized logistic loss 17188 300 2n 32 10−4 10−4

5 Numerical experiments

As mentioned earlier, for smooth objectives, our method of choice is Algorithm 2, the
stochastic Steffensen–Barzilai–Borwein method (SSBB) with minibatching. We will
compare it with several benchmarking algorithms: stochastic gradient descent (SGD),
stochastic variance reduced gradient (SVRG) [27], stochastic LBFGS [28], and the first
two with Barzilai–Borwein step size (SGD–BB and SVRG–BB) [47]. For nonsmooth
objectives, we compare Algorithm 4, the proximal stochastic Steffensen–Barzilai–
Borwein method (prox-SSBB), with proximal variants of the previously mentioned
algorithms: prox-SGD, prox-SVRG [45], prox-SLBFGS, and prox-SVRG–BB.

We test these algorithms on popular empirical risk minimization problems— ridge
regression, logistic regression, support vector machines with squared hinge loss, l1-
regularized logistic regression — on standard datasets in LIBSVM.2 The parameters
involved are summarized in Table 1. Our experiments show that SSBB and prox-SSBB
compare favorably with these benchmark algorithms. All our codes are available at
https://github.com/Minda-Zhao/stochastic-steffensen.

For a fair comparison, all algorithms are minibatched. We set a batch size of b = 4
for ridge regression, b = 16 for logistic loss and squared hinge loss, b = 32 for l1-
regularized logistic loss. The inner loop size is set atm = 2n or 4n. The learning rates in
SGD, SVRG, and SLBFGS are hyperparameters that require separate tuning; we pick
the best possible values with a grid search. SLBFGS requires more hyperparameters:
As suggested by the authors of [28], we set the Hessian update interval to be L = 10,
Hessian batch size to be bH = Lb, and history size to be h = 10. All experiments
are initialized with x0 = 0. We repeat every experiment ten times and report average
results.

In all figures, we present the convergence trajectory of each method. The vertical
axis represents in log scale the value f (xk) − f (x∗) where we estimate f (x∗) by
running full gradient descent or Newton method multiple times. The horizontal axis
represents computational cost as measured by either number of gradient computations
divided by n or the actual running time — we present both. In all experiments, we
note that the convergence trajectories of SSBB and prox-SSBB agree with the linear
convergence established in Sects. 3 and 4.

2 https://github.com/cjlin1/libsvm.

123

https://github.com/Minda-Zhao/stochastic-steffensen
https://github.com/cjlin1/libsvm

28 M. Zhao et al.

Fig. 1 Ridge regression on synthetic dataset regularized with λ2 = 10−5. Left: number of passes through
data. Right: running time

5.1 Ridge regression

Figure 1 shows a simple ridge regressionon a synthetic dataset generated in a controlled
way to give us the true global solution. We generate x∗ ∈ R

d with x∗
i ∼ N (0, 1) and

A ∈ R
n×d with row vectors a1, . . . , an ∈ R

d and entries ai j ∼ N (0, 1). We form
y = Ax∗ + b with b an n-dimensional standard normal variate. We then attempt to
recover x∗ from A and y by optimizing, with λ2 = 10−5,

min
x∈Rd

1

n

n∑

i=1

(yi − aT
i x)

2 + λ2

2
‖x‖22.

5.2 Logistic regression

Figure 2 shows the results of a binary classification problem on the w6a dataset from
LIBSVM using an l2-regularized binary logistic regression. The associated optimiza-
tion problem with regularization λ2 = 10−4 and labels yi ∈ {−1,+1} is

min
x∈Rd

1

n

n∑

i=1

log
(
1 + e−yi (aTi x)

) + λ2

2
‖x‖22.

5.3 Squared hinge loss

Figure 3 shows the results of a support vector machine classifier with l2-regularized
squared hinge loss andλ2 = 10−3 on thea6a dataset from LIBSVM. The optimization
problem in this case is

min
x∈Rd

1

n

n∑

i=1

[(1 − yia
T
i x)+]2 + λ2

2
‖x‖22.

123

Stochastic Steffensen method 29

Fig. 2 l2-regularized logistic regression on w6a dataset from LIBSVM regularized with λ2 = 10−4. Left:
number of passes through data. Right: running time

Fig. 3 l2-regularized squared hinge loss on a6a from LIBSVM regularized with λ2 = 10−3. Left: number
of passes through data. Right: running time

The results are clear: SSBB solves the problems to high levels of accuracy and is the
fastest, whether measured by running time or by number of passes through data, in all
experiments. When measured by running times, SLBFGS performs relatively poorly
because of the additional computational cost of its matrix–vector products that other
methods avoid.

5.4 Proximal variant

Figure 4 shows the results of a binary classification problem on the w6a dataset from
LIBSVM using a binary logistic regression with both l2- and l1-regularizations, a
problem considered in [45]:

min
x∈Rd

1

n

n∑

i=1

log
(
1 + e−yi (aTi x)

) + λ2

2
‖x‖22 + λ1‖x‖1.

We set regularization parameters to be λ2 = 10−4, λ1 = 10−4.
The results obtained are consistent with those in Sects. 5.1, 5.2 and 5.3, demonstrat-

ing that prox-SSBB solves the problem to high levels of accuracy and is the fastest

123

30 M. Zhao et al.

Fig. 4 Logistic regression with l2 and l1 regularizations on w6a dataset from LIBSVM regularized with
λ2 = 10−4 and λ1 = 10−4. Left: number of passes through data. Right: running time

among all algorithms compared, whether measured by running time or by the number
of passes through data.

6 Conclusion

The stochastic Steffensen methods introduced in this article are (i) simple to imple-
ment, (ii) efficient to compute, (iii) easy to incorporate, (iv) tailored for massive data
and high dimensions, have (v) minimal memory requirements and (vi) a negligible
number of hyperparameters to tune. The last point is in contrast to more sophisticated
methods involving moments [31, 32] or momentum [33–36], which require heavy
tuning of many more hyperparameters. SSM and SSBB require just two—minibatch
size b and inner loop size m.

The point (iii) also deserves special mention. Since SSM and SSBB are ultimately
encapsulated in the respective learning rates ηSS

k and ηSSBB
k , they are versatile enough

to be incorporated into other methods such as those in [31–36], assuming that we are
willing to pay the price in hyperparameters tuning. We hope to explore this in future
work.

Acknowledgements This work is partially supported by DARPA HR00112190040, NSF DMS-1854831,
NSF ECCS-2216912, ONR N000142312863, and the Eckhardt Faculty Fund. We thank Nati Srebro for his
exceptionally pertinent pointers and the two anonymous referees for their helpful comments. LHL thanks
Junjie Yue for helpful discussions.

Data availability We do not analyze or generate any datasets. The numerical experiments in Sect. 5 rely on
standard datasets in LIBSVM that is publicly available from https://github.com/cjlin1/libsvm. The authors
declare no conflict of interest.

References

1. Steffensen, J.F.: Remarks on iteration. Skand. Aktuarietidskr. 1, 64–72 (1933)
2. Steffensen, J.F.: Further remarks on iteration. Skand. Aktuarietidskr. 28, 44–55 (1945)
3. Amat, S., Ezquerro, J.A., Hernández-Verón, M.A.: On a Steffensen-like method for solving nonlinear

equations. Calcolo 53(2), 171–188 (2016)

123

https://github.com/cjlin1/libsvm

Stochastic Steffensen method 31

4. Ezquerro, J.A., Hernández-Verón, M.A., Rubio, M.J., Velasco, A.I.: An hybrid method that improves
the accessibility of Steffensen’s method. Numer. Algorithms 66(2), 241–267 (2014)

5. Henrici, P.: Elements of Numerical Analysis. John Wiley, New York (1964)
6. Huang, H.Y.: Unified approach to quadratically convergent algorithms for function minimization. J.

Optim. Theory Appl. 5, 405–423 (1970)
7. Johnson, L.W., Scholz, D.R.: On Steffensen’s method. SIAM J. Numer. Anal. 5, 296–302 (1968)
8. Nedzhibov, G.H.: An approach to accelerate iterativemethods for solving nonlinear operator equations.

In: Applications of Mathematics in Engineering and Economics (AMEE’11). AIP Conf. Proc., vol.
1410, pp. 76–82. Amer. Inst. Phys., Melville (2011)

9. Nievergelt, Y.: Aitken’s and Steffensen’s accelerations in several variables. Numer. Math. 59(3), 295–
310 (1991)

10. Nievergelt, Y.: The condition of Steffensen’s acceleration in several variables. J. Comput. Appl. Math.
58(3), 291–305 (1995)

11. Noda, T.: The Aitken-Steffensen method in the solution of simultaneous nonlinear equations. Sūgaku
33(4), 369–372 (1981)

12. Noda, T.: TheAitken-Steffensenmethod in the solution of simultaneous nonlinear equations. II. Sūgaku
38(1), 83–85 (1986)

13. Noda, T.: The Aitken-Steffensen method in the solution of simultaneous nonlinear equations. III. Proc.
Jpn. Acad. Ser. A Math. Sci. 62(5), 174–177 (1986)

14. Noda, T.: The Aitken-Steffensen formula for systems of nonlinear equations. IV. Proc. Jpn. Acad. Ser.
A Math. Sci. 66(8), 260–263 (1990)

15. Noda, T.: The Aitken-Steffensen formula for systems of nonlinear equations. V. Proc. Jpn. Acad. Ser.
A Math. Sci. 68(2), 37–40 (1992)

16. Gill, P.E.,Murray,W.,Wright,M.H.:Numerical linear algebra and optimization. In: Classics inApplied
Mathematics, vol. 83. Society for Industrial and Applied Mathematics, Philadelphia (2021)

17. Allen-Zhu, Z.: Katyusha: The first direct acceleration of stochastic gradient methods. In: Hatami, H.,
McKenzie, P., King, V. (eds.) STOC’17: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing. Annual ACM Symposium on Theory of Computing, pp. 1200–1205 (2017)

18. Woodworth, B., Srebro, N.: Tight complexity bounds for optimizing composite objectives. In: Lee, D.,
Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing
Systems (NIPS 2016). Advances in Neural Information Processing Systems, vol. 29 (2016)

19. Brezinski, C., Redivo-Zaglia, M.: Extrapolation and Rational Approximation–the Works of the Main
Contributors. Springer, Cham (2020)

20. Householder, A.S.: The Numerical Treatment of a Single Nonlinear Equation. International Series in
Pure and Applied Mathematics, McGraw-Hill, New York (1970)

21. Kaczmarz, S.: Angenäherte auflösung von systemen linearer gleichungen. Bull. Int. Acad. Polon. Sci.
A 57(6), 355–357 (1937)

22. Kaczmarz, S.: Approximate solution of systems of linear equations. Int. J. Control 57(6), 1269–1271
(1993)

23. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J.
Fourier Anal. Appl. 15(2), 262–278 (2009)

24. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)
25. Roux, N.L., Schmidt, M., Bach, F.R.: A stochastic gradient method with an exponential convergence

rate for finite training sets. In: Advances in Neural Information Processing Systems 25, pp. 2672–2680
(2012)

26. Defazio, A., Bach, F.R., Lacoste-Julien, S.: SAGA: a fast incremental gradient method with support for
non-strongly convex composite objectives. In: Advances in Neural Information Processing Systems
27, pp. 1646–1654 (2014)

27. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive variance reduction.
In: Advances in Neural Information Processing Systems 26, pp. 315–323 (2013)

28. Moritz, P., Nishihara, R., Jordan, M.I.: A linearly-convergent stochastic L-BFGS algorithm. In: Pro-
ceedings of the 19th International Conference onArtificial Intelligence and Statistics, AISTATS. JMLR
Workshop and Conference Proceedings, vol. 51, pp. 249–258 (2016)

29. Byrd, R.H., Hansen, S.L., Nocedal, J., Singer, Y.: A stochastic quasi-Newton method for large-scale
optimization. SIAM J. Optim. 26(2), 1008–1031 (2016)

30. Zhao, R., Haskell, W.B., Tan, V.Y.: Stochastic L-BFGS: improved convergence rates and practical
acceleration strategies. IEEE Trans. Signal Process. 66(5), 1155–1169 (2018)

123

32 M. Zhao et al.

31. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

32. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on
Learning Representations, ICLR (2015)

33. Nesterov,Y.E.:Amethod for solving the convexprogrammingproblemwith convergence rateO(1/k2).
Dokl. Akad. Nauk SSSR 269(3), 543–547 (1983)

34. Poljak, B.T.: Some methods of speeding up the convergence of iterative methods. Ž. Vyčisl. Mat i Mat.
Fiz. 4, 791–803 (1964)

35. Qian, N.: On themomentum term in gradient descent learning algorithms.Neural Netw. 12(1), 145–151
(1999)

36. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and beyond. arXiv:1904.09237 (2019)
37. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148

(1988)
38. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. II. The new

algorithm. J. Inst. Math. Appl. 6, 222–231 (1970)
39. Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13(3), 317–322 (1970)
40. Goldfarb, D.: A family of variable-metric methods derived by variational means. Math. Comput. 24,

23–26 (1970)
41. Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24,

647–656 (1970)
42. Potra, F.A.: On an iterative algorithm of order 1.839 · · · for solving nonlinear operator equations.

Numer. Funct. Anal. Optim. 7(1), 75–106 (1984/85)
43. Needell, D., Srebro, N., Ward, R.: Stochastic gradient descent, weighted sampling, and the randomized

Kaczmarz algorithm. Math. Program. 155(1–2, Ser. A), 549–573 (2016)
44. Babanezhad, R., Ahmed, M.O., Virani, A., Schmidt, M., Konečný, J., Sallinen, S.: Stopwasting my

gradients: practical SVRG. In: Advances in Neural Information Processing Systems 28, pp. 2251–2259
(2015)

45. Xiao, L., Zhang, T.: A proximal stochastic gradient method with progressive variance reduction. SIAM
J. Optim. 24(4), 2057–2075 (2014)

46. Nitanda, A.: Accelerated stochastic gradient descent for minimizing finite sums. In: Proceedings of
the 19th International Conference on Artificial Intelligence and Statistics, AISTATS. JMLRWorkshop
and Conference Proceedings, vol. 51, pp. 195–203 (2016)

47. Tan, C., Ma, S., Dai, Y., Qian, Y.: Barzilai-borwein step size for stochastic gradient descent. In:
Advances in Neural Information Processing Systems 29, pp. 685–693 (2016)

48. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks inMathematics, Princeton University Press,
Princeton (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1904.09237

	Stochastic Steffensen method
	Abstract
	1 Introduction
	Background
	Convention

	2 Stochastic multivariate Steffensen methods
	2.1 Deterministic univariate setting
	2.2 Deterministic multivariate setting
	2.3 Stochastic multivariate setting
	2.4 Randomized Kaczmarz method as a special case

	3 Convergence analysis
	3.1 Linear convergence of stochastic Steffensen method
	3.2 Linear convergence of stochastic Steffensen–Barzilai–Borwein
	3.3 Optimal number of stochastic gradient evaluations
	3.4 Comparison with other methods

	4 Proximal variant
	5 Numerical experiments
	5.1 Ridge regression
	5.2 Logistic regression
	5.3 Squared hinge loss
	5.4 Proximal variant

	6 Conclusion
	Acknowledgements
	References

