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Abstract
Chance constraints are a valuable tool for the design of safe decisions in uncertain envi-
ronments; they are used to model satisfaction of a constraint with a target probability.
However, because of possible non-convexity and non-smoothness, optimizing over a
chance constrained set is challenging. In this paper, we consider chance constrained
programs where the objective function and the constraints are convex with respect to
the decision parameter. We establish an exact reformulation of such a problem as a
bilevel problem with a convex lower-level. Then we leverage this bilevel formulation
to propose a tractable penalty approach, in the setting of finitely supported random
variables. The penalized objective is a difference-of-convex function that we mini-
mize with a suitable bundle algorithm. We release an easy-to-use open-source python
toolbox implementing the approach, with a special emphasis on fast computational
subroutines.
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1 Introduction

Chance constraints appear as a versatile way to model the exposure to uncertainty
in optimization. Introduced in [6], they have been used in many applications, such
as in energy management [31, 39], in telecommunications [26] or for reinforcement
learning [7], to name of few of them. We refer to the seminal book [32], the book
chapter [11] for introduction to the theory and to the recent article [37] for a discussion
covering recent developments.

We consider a chance-constrained optimization problem of the following form. For
a fixed safety probability level p ∈ [0, 1), we write

min
x∈X

f (x)

s.t. P[g(x, ξ) ≤ 0] ≥ p,
(1)

where f : R
d → R and g : R

d ×R
m → R are two given functions, ξ is a random

vector valued in R
m and X ⊂ R

d is a closed constraint set. We make the following
blanket assumptions:
(A1) f and g are convex with respect to x ,
(A2) for all x ∈ X , |E(g(x, ξ))| < ∞.

We consider the case of underlying convexity: we assume that f and g are convex
(with respect to x). Even with this underlying convexity, uncertainty may make the
chance constrained set non-convex (see e.g. [15]) Though solving chance-constrained
problems is difficult, several computational methods have been proposed, regardless
of any considerations of convexity and smoothness, and under various assumptions on
uncertainty. Let us mention: sample average approximation [24, 29], scenario approx-
imation [5], convex approximation [18, 27], p-efficient points [12], quantile-based
reformulation [30] or computation of the efficient frontier [19]; see e.g. [37] for an
overview.

In this paper, we propose an original approach for solving chance-constrained
optimization problems. First, we present an exact reformulation of (nonconvex)
chance-constrained problems as (convex) bilevel optimization problems. This refor-
mulation is simple and natural, involving superquantiles (also called conditional
value-at-risk); see e.g., the tutorial [33]. Second, exploiting this bilevel reformula-
tion, we propose a general algorithm for solving chance-constrained problems, and
we release an open-source python toolbox implementing it. In the case where wemake
no assumption on the underlying uncertainty and have only samples of ξ , we propose
and analyze a double penalization method, leading to an unconstrained single level
DC (Difference of Convex) program. Thus our work mixes a variety of techniques
coming from different subdomains of optimization: penalization, error bounds, DC
programming, bundle algorithm, Nesterov’s smoothing; relevant references are given
along the presentation. The resulting algorithm enables to deal with a fairly large sam-
ple of data-points in comparison with state-of-the-art methods based on mixed-integer
reformulations, e.g. [1].

This paper is structured as follows. In Sect. 2, we leverage the known link with
(super)quantiles and chance-constraint to establish a novel bilevel reformulation of
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general chance constrained problems. In Sect. 3, we propose and analyze a penalty
approach revealing the underlying DC structure. In Sect. 4, we discuss the implemen-
tation of this approach in a publicly available toolbox. In Sect. 5, we provide illustrative
numerical experiments, as a proof of concept, showing the interest of the method.
Technical details on secondary theoretical points and on implementation issues are
postponed to appendices.

2 Chance constrained problems seen as bilevel problems

In this section, we derive the reformulation of a chance constraint as a bilevel program
wherein both the upper and lower level problems, when taken individually, are convex.
We first recall in Sect. 2.1 useful definitions. Our terminology and notations closely
follow those of [33].

2.1 Recalls: cumulative distributions functions, quantiles, and superquantiles

In what follows,We consider a probability space and integrable real random variables.
Given a random variable X, its cumulative distribution function is

FX(t) = P[X ≤ t] ∀t ∈ R . (2)

This function is known to be non-decreasing and right-continuous. Its jumps occur
exactly at the values t ∈ R at which P[X = t] > 0. These properties allow one to
define the quantile function p 	→ Qp(X) as the generalized inverse:

Qp(X) = inf{t ∈ R : FX(t) ≥ p}, ∀p ∈ [0, 1). (3)

If X is assumed to belong to L1, we can additionally define for any p ∈ [0, 1) its
p-superquantile (also called conditional value-at-risk), Q̄ p(X) as follows:

Q̄ p(X) = 1

1 − p

∫ 1

p′=p
Q p′(X)dp′. (4)

As a consequence of [34, Th. 2], one can get from FX, both the p-quantile and
the p-superquantile functions as functions of p and reciprocally, knowing either the
p-quantile (or the p-superquantile) for all p ∈ [0, 1] suffices to recover FX.

From a statistical viewpoint, these three objects are also equally consistent [33, Th.
4] in the sense that convergence in distribution for a sequence of random variables
(Xn)n≥0 is equivalent to the pointwise convergence of the two sequences of functions
p 	→ Qp(Xn), p 	→ Q̄ p(Xn). This result is particularly relevant when the distri-
butions are observed through data sampling. We can use the empirical cumulative
distribution functions, quantiles and super-quantiles all while upholding asymptotic
convergence as the sample size grows.

From an optimization viewpoint though, these three objects are very different. In
contrast with the two others, the superquantile has several good properties (including
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convexity [3, 14, 36]), useful with respect to numerical computation and optimization.
In our developments, we use the following key result [35, Th. 1] linking quantiles and
superquantile through a one-dimensional problem.

Lemma 1 For an integrable random variable X and a probability level p, the
superquantile Q̄ p(X) is the optimal value of the convex problem

inf
η∈R η + 1

1 − p
E[max(X−η, 0)]. (5)

Moreover, the quantile Q p(X) is the left end-point of the solution interval.

Note finally that we consider in this paper with a single inequality system, but the
generality of our approach allows to capture several constraint functions with the usual
trick formalized in the next remark.

Remark 1 (Joint chance constraints) The extension of our approach to joint chance-
constrained problems is straightforward with the usual trick: a chance constraint with
h : Rd ×R

m → R
k such that all its components hi (1 ≤ i ≤ k) are convex with

respect to x can be written with convex function g(x, ξ) = max1≤i≤k hi (x, ξ), since

P [h(x, ξ) ≤ 0] ≥ p ⇐⇒ P

[
max
1≤i≤k

hi (x, ξ) ≤ 0

]
≥ p.

2.2 Reformulation as a bilevel problem

Bydefinition, the chance constraint in (1) involves the cumulative distribution function:
wehave, for x ∈ R

d,P[g(x, ξ) ≤ 0] ≥ p ↔ Fg(x,ξ)(0) ≥ p. Following the discussion
of the previous section, we easily rewrite this constraint using quantiles, as formalized
in the next lemma. This result is well known (see e.g. [27]) and has been used recently
in e.g. [30]. We provide here a short proof for completeness.

Lemma 2 For any x ∈ R
d and p ∈ [0, 1), we have:

P[g(x, ξ) ≤ 0] ≥ p ⇐⇒ Qp(g(x, ξ)) ≤ 0.

Proof By definition of the quantile and the right-continuity of the cumulative function,
we have p ≤ P[g(x, ξ) ≤ Qp(g(x, ξ))]. Since the cumulative function is increasing,
Qp(g(x, ξ)) ≤ 0 implies P[g(x, ξ) ≤ Qp(g(x, ξ))] ≤ P[g(x, ξ) ≤ 0] which implies
in turn p ≤ P[g(x, ξ) ≤ 0].

Conversely, since Qp(g(x, ξ)) is the infimum of {t ∈ R : P[g(x, ξ) ≤ t] ≥ p}, if
Qp(g(x, ξ)) > 0, then it holds P[g(x, ξ) ≤ 0] < p. ��

Compared to the empirical cumulative distribution function, the p-quantile function
x 	→ Qp(g(x, ξ)) is continuous with respect to x , whenever g is. However, it remains
non-convex and non-smooth in general. Sowepropose to use yet another reformulation
in terms of superquantiles, as follows.
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Together with (5), we obtain from the previous lemma a bilevel formulation of the
general chance-constrained problem (7). The idea is simple: introducing an auxiliary
variable η ∈ R

d to recast the potentially non-convex chance constraint of (1) as two
constraints, a simple bound constraint and a difficult optimality constraint, forming a
lower subproblem. Introducing the jointly convex function G : X ×R → R

G(x, s) = s + 1

1 − p
E[max(g(x, ξ) − s, 0)], (6)

we indeed have the following exact reformulation.

Theorem 1 Under assumptions (A1) and (A2), Problem (1) is equivalent to the bilevel
problem:

⎧⎨
⎩
minx∈X ,η∈R f (x)
s.t. η ≤ 0

η ∈ S(x) = argmins∈R G(x, s).
(7)

More precisely, if x� is an optimal solution of (1), then (x�, Qp(g(x�, ξ))) is an
optimal solution of the above bilevel problem, and conversely.

Proof By Lemma 2, we have that (1) is equivalent to

⎧⎪⎨
⎪⎩

min
x∈X ,η∈R

f (x)

s.t. η ≤ 0
η = Qp(g(x, ξ)).

(8)

By Lemma 1, Qp(g(x, ξ)) ∈ S(x) for any x ∈ R
d . Hence, any solution (x, η) of (8)

is feasible for (7). Conversely, any solution (x�, η�) of (7) satisfies: Qp(g(x�, ξ)) ≤
η� ≤ 0 which implies that (x�, Qp(g(x�, ξ)) is a feasible point of (8). Since both
problems have the same objective, they are equivalent. ��

The first constraint η ≤ 0 is an easy one-dimensional bound constraint which does
not involve the decision variable x . The second constraint, which constitutes the lower
level problem is more difficult; when this constraint is satisfied, η is an upper-bound
on the p-quantile of g(x, ξ).

This bilevel reformulation is nice, natural, and seemingly new; we believe that
it opens the door to new approaches for solving chance-constrained problems with
underlying convexity. We propose such an approach, in the next section.

Remark 2 Bilevel formulation vs sampled approximation Let us emphasize that The-
orem 1 provides an exact reformulation of the problem (1). This is in contrast with
sampling methods, such as [5], which approximate the chance constraint through
sampling. Note also that, though [5] provides theoretical guarantees, it also presents
limitations when the sampled constraint remains infeasible, as explained in [5, Sec-
tion 4.2]. This infeasibility for the sampled problem occurs frequently in practice (see
e.g. [38]), as well as in the illustrative examples of Sect. 5.
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Remark 3 (Bilevel formulation vs bilevel approximation) Our bilevel formulation is
exact, as opposed to the recent bilevel approach of [18]. This paper proposes indeed a
reformulation that approximates the chance constraint with better guarantees than the
CVaR approximation from [27]. In contrast, we leverage here the variational properties
of the CVaR to enforce exactly the probabilistic constraint.

3 A double penalization scheme for chance constrained problems

In this section, we explore one possibility offered by the bilevel formulation of
chance-constrained problems, presented in the previous section.Wepropose a (double)
penalization approach for solving the bilevel optimization problem, with a different
treatment of the two constraints: a basic penalization of the easy constraint together
with an exact penalization of the hard constraint formalized as the lower problem.

We first derive in Sect. 3.1, some growth properties of the lower problem. We then
show in Sect. 3.2 to what extent these properties help to provide an exact penalization
of the “hard” constraint. We finally present the double penalty scheme in Sect. 3.3.

From the bilevel problem (7), we derive the two following penalized problems,
associated with two penalization parameters μ, λ > 0 and

(Pμ)

{
min

(x,η)∈X ×R

f (x) + μmax(η, 0)

s.t. η ∈ argmins∈R G(x, s)
(9)

and

(Pλ,μ) min
(x,η)∈X ×R

f (x) + λ

(
G(x, η) − min

s∈R G(x, s)

)
+ μmax(η, 0). (10)

We consider a general data-driven situation where the uncertainty ξ is just known
through a sample (or, said alternatively, follows an equiprobable discrete distribution
over arbitrary values):
(A3) We assume that there exists n ∈ N

∗ and n different scenarios

ξ1, ξ2, . . . , ξn ∈ R
m such that P[ξ = ξi ] = 1

n
for all i ∈ {1, . . . , n}. (11)

Under this assumption, the objective (6) of the lower level problem writes:

G(x, s) = s + 1

n(1 − p)

n∑
i=1

max(g(x, ξi ) − s, 0). (12)

We then define the set In = { i
n , i ∈ {0, ..., n − 1}} which will play a special

role in our developments. In particular, we denote the distance to In by dIn (p) =
inf{|p − i

m |, 0 ≤ i ≤ n − 1}, and we define the key quantity
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δ =

⎧⎪⎨
⎪⎩

1

n(1 − p)
if p ∈ In

dIn (p)
(1 − p)

otherwise,
(13)

which depends implicitly on the number of samples n and the fixed safety parameter
p.

Remark 4 (Penalization choice)We study in this paper a double penalization approach
with a penalization of the easy constraint (which is proved to be exact in forthcom-
ing Proposition 1) followed by a penalization of the difficult constraint, which thus
gives (Pλ,μ) in (10). Other approaches to solve the bilevel problem could be worth
investigating as well, and are left for future research in this direction. Note that the
alternative penalization that would consist in penalizing only the difficult constraint
η ∈ argmins∈RG(x, s) and leave the easy bound constraint η ≤ 0 would suffer from
the objective function not being Lipschitz. This extra difficulty might be tackled
by more advanced penalization techniques, as e.g. [2] and [13] (in a framework of
Nash Equilibrium). We use here the standard approach and focus on analyzing it and
showing how it leads to an efficient algorithm.

3.1 Analysis of the value function

In view of the forthcoming exact penalization, we study here the value function h :
X ×R → R defined, from G in (12), as

h(x, η) = G(x, η) − min
s∈R G(x, s). (14)

Observe that, for a fixed x , the function h(x, ·) is a polyedral, in the data-driven
situation (11). Similarly, the solution set S(x) of the lower level problems in (7) is
polyedral as well. This yields that there is a steep increase of the value function with
respect to η outside of S(x). In accordance with the terminology of [4], the set S(x)
is said to be a weak sharp minima for the lower-level problem. In terms of function
values, this declines as h being lower-bounded by dS(x)(·), the distance function to
S(x). In the next result, we establish this property by a direct proof, providing, as a
by-product, a specific estimation of the lower-bound.

Theorem 2 Let p ∈ [0, 1) be fixed but arbitrary. Under assumptions (A1), (A2),
and (A3), the function h defined in (14) satisfies for any (x, η) ∈ X ×R:

h(x, η) ≥ δ dS(x)(η) (15)

with δ and S(x) respectively defined by (13) and (7).

Proof Let us fix x ∈ X . Note first that, the function ψ : s 	→ h(x, s) is continuous
and convex, since so is G, as defined in 12. As a result S(x) is a closed interval.
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Since h is non-negative, (15) is immediate if S(x) = (−∞,+∞). Furthermore it
clearly appears that h(x, s) = 0 for all s ∈ S(x). We thus assume that S(x) is lower-
bounded or upper-bounded. Let us introduce q+

p = sup S(x), and assume q+
p < ∞.

By standard subdifferential calculus [16, 4.4.2], we have

∂ψ(s) =
{
1 − 1

n(1 − p)

n∑
i=1

1s<g(x,ξi ) + αi1s=g(x,ξi ), s.t.(αi , . . . , αn) ∈ [0, 1]n
}

=
[
1 − 1

1 − p
P[g(x, ξ) ≥ s], 1 − 1

1 − p
P[g(x, ξ) > s]

]

=
[
P[g(x, ξ) < s]

1 − p
,
P[g(x, ξ) ≤ s]

1 − p

]
− p

1 − p
. (16)

Therefore,

0 ∈ ∂ψ(s) ↔ p ∈ [P[g(x, ξ) < s],P[g(x, ξ) ≤ s]] ↔ s ∈ S(x).

By the convexity of ψ , for any s, u and gu ∈ ∂ψ(u):

h(x, s) − h(x, u) ≥ g�
u (s − u). (17)

As a consequence for any u /∈ S(x), since 0 /∈ ∂ψ(u), we obtain from (16) that
P(g(x, ξ) ≤ u) �= p. Moreover, since P(g(x, ξ) ≤ u) ∈ In , we necessarily have

|P(g(x, ξ) ≤ u) − p| ≥
∣∣∣∣∣
1

n
if p ∈ In

dIn (p) otherwise.

Hence, for any s > u > q+
p , we use the subgradient inequality (17) with gu =

P(g(x,ξ)≤u)−p
1−p to obtain:

h(x, s) − h(x, u) ≥ P(g(x, ξ) ≤ u) − p

1 − p
(s − u) ≥ δ(s − u),

where we have used gu > 0, since u > q+
p . Now, by letting u approach q

+
p from above,

upon using continuity of h(x, ·) in u, together with h(x, q+
p ) = 0 (since q+

p ∈ S(x)),
we derive h(x, s) ≥ δ(s − q+

p ). Since clearly (s − q+
p ) ≥ dS(x)(s) the result follows.

Similarly, if qp � inf S(x) > −∞, then for any s < u < qp, we may leverage the
subgradient inequality to derive:

h(x, s) − h(x, u) ≥ P(g(x, ξ) ≤ u) − p

1 − p
(s − u)

= p − P(g(x, ξ) ≤ u)

1 − p
(u − s) = |P(g(x, ξ) ≤ u) − p|

1 − p
(u − s)

≥ δ(u − s)
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since u < qp �⇒ P(g(x, ξ) ≤ u) < p.
Now lettingu approachqp frombelow, using continuity of h in the second argument,

qp ∈ S(x), h(x, qp) = 0 and (qp − s) ≥ dS(x)(s), we get h(x, s) ≥ δdS(x)(s) as
desired. ��

Following the terminologyof [41], this theoremshows that h is a uniformparametric
error bound and provides the modulus of uniformity. We note here that the quality of
the lower bound depends on the number n of data points considered, as δ depends on
d. This dependence is a drawback which turns out to “pass to the limit”, in the sense
that the lower bound of fails to be a uniform parametric error bound when ξ follows
a continuous distribution; this is an interesting but secondary result that we prove in
Appendix 1.

3.2 Exact penalization for the hard constraint

We show here that (Pλ,μ) is an exact penalization of (Pμ), when λ is large enough.
The proof of this result follows usual rationale (see e.g., [8, Prop. 2.4.3]); the main
technicality is the sharp growth of h established in Theorem 2.

Proposition 1 Let μ > 0 be given and assume that there is a solution to (Pμ) defined
in (9). Then, under assumptions (A1), (A2), and (A3), for any λ > μ/δ with δ defined
in (13), the solution set of (Pμ) coincides with the one of (Pλ,μ) defined in (10).

Proof Take μ > 0, define λμ = μ/δ, and take λ > λμ arbitrary but fixed. Let us
first take a solution (x�, η�) ∈ X ×R of (Pμ) and show by contradiction that it is
also a solution of (Pλ,μ). Indeed, to the contrary, assume there exists some ε > 0 and
(x ′, η′) ∈ X ×R such that:

f (x ′) + μmax(0, η′) + λhx ′(η′) ≤ f (x�) + μmax(0, η�) + λ hx� (η�) − ε.

Let then η′
p ∈ S(x ′) be such that: |η′

p−η′| ≤ dS(x ′)(η′)+ ε
2μ . Then the point (x

′, η′
p)

is a feasible for Pμ (recall η′
p ∈ S(x ′)) and since η 	→ μmax(0, η) is μ-Lipschitz, we

first have

f (x ′) + μmax(0, η′
p) ≤ f (x ′) + μmax(η′, 0) + μ|η′

p − η′|
≤ f (x ′) + μmax(η′, 0) + μ

(
dS(x ′)(η

′) + ε

2μ

)
.

Using Theorem 2, we then have

f (x ′) + μmax(0, η′
p) ≤ f (x ′) + μmax(η′, 0) + μ

(
1

δ
h(x ′, η′) + ε

2μ

)

≤ f (x ′) + μmax(η′, 0) + λμ h(x ′, η′) + ε

2

≤ f (x�) + μmax(η�, 0) − ε

2
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828 Y. Laguel et al.

which gives the contradiction. Hence any solution of (Pμ) is also a solution to problem
(Pλ,μ).

Let now (x̄, η̄) be a solution of (Pλ,μ) and let us show that it is actually a solution
for Pμ. Let again (x�, η�) be an arbitrary solution of (Pμ). We first note that, by the
optimality result of (x̄, η̄) for (Pλ,μ), we have:

f (x̄) + μmax(0, η̄) + λ h(x̄, η̄)︸ ︷︷ ︸
≥0

≤ f (x�) + μmax(0, η�) + λ h(x�, η�)︸ ︷︷ ︸
=0

,

which by positivity of the function h and feasibility for (Pμ), i.e., h(x�, η�) = 0 of
(x�, η�) yields:

f (x̄) + μmax(0, η̄) ≤ f (x�) + μmax(0, η�).

It remains to show that (x̄, η̄) is a feasible point for (Pμ). By the first point, (x�, η�)

is both a solution of (Pλ,μ) and (Pλ+λμ
2 ,μ

). Hence, we have:

f (x̄) + μmax(0, η̄) + λh(x̄, η̄) ≤ f (x�) + μmax(0, η�)

= f (x�) + μmax(0, η�) + λ + λμ

2
h(x�, η�)

≤ f (x̄) + μmax(0, η̄) + λ + λμ

2
h(x̄, η̄)

But since λ > λμ we necessarily have: h(x̄, η̄) = 0 which implies by the properties
of the value function that (x̄, η̄) is a feasible point for (Pμ). ��

We note that the above result is a consequence, in our specific case, of [41, Theorem
2.6] which ismeant for generalized bilevel programs. Based on the terminology of [41]
and references therein, we have that Pμ satisfies the partial calmness property, as the
value function h is a uniform parametric error bound.

3.3 Double penalization scheme

From the previous results, we get that solving the sequence of penalized problems
gives approximations of the solution of the initial problem. We formalize this in the
next proposition suited for our context of double penalization. The proof of this result
follows standard arguments; see e.g. [25, Ch. 13.1].

Proposition 2 Assume (A1), (A2), and (A3) are satisfied, and Problem (7) has a non-
empty feasible set. Let (μk)k≥0 be an increasing sequence such that μk ↗ ∞, and
(λk)k≥0 be taken such that λk >

μk
δ
with δ as defined in (13). If, for all k, there exists

a solution of (Pλk ,μk ) (denoted by (xk, ηk)), then any cluster point of the sequence
(xk, ηk) is an optimal solution of (1).

Proof The fact that (xk, ηk) is an optimal solution of (Pλk ,μk ) implies that

f (xk) + μk max(0, ηk) + λkh(xk, ηk) (18)
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≤ f (xk+1) + μk max(0, ηk+1) + λkh(xk+1, ηk+1)

Similarly for (xk+1, ηk+1), we get

f (xk+1) + μk+1 max(0, ηk+1) + λk+1h(xk+1, ηk+1) (19)

≤ f (xk) + μk+1 max(0, ηk) + λk+1h(xk, ηk).

By Proposition 1, ηk (resp. ηk+1) is feasible for (Pμk ) (resp. (Pμk+1)); in other words,
we have h(xk, ηk) = h(xk+1, ηk+1) = 0. Hence summing up these two inequalities
yields

max(ηk, 0) ≥ max(ηk+1, 0).

Using this last inequality with (18) gives:

f (xk) − f (xk+1) ≤ μk (max(ηk+1, 0) − max(ηk, 0)) ≤ 0,

and as a consequence the sequence { f (xk)}k≥0 increases. Let (x ′, η′) be an arbitrary
feasible solution for (P). By definition of the sequence (xk, ηk), for any k ∈ N, we
have:

f (xk) ≤ f (xk) + μk max(ηk, 0) ≤ f (x ′) + μk max(η′, 0) ≤ f (x ′). (20)

Therefore for any cluster point (x̄, η̄) of the sequence {(xk, ηk)}k≥0, we have f (x̄) ≤
f (x ′). In order to show that (x̄, η̄) is a a solution of (7), it remains to show its feasibility.
With the right hand side inequality of (20), we obtain

max(ηk, 0) ≤ f (x ′) − f (xk)

μk
≤ f (x ′) − f (x0)

μk
−−−→
k→∞ 0,

so that we may deduce that, η̄ ≤ 0. Moreover, continuity of h ensures that h(x̄, η̄) = 0
which completes the proof. ��

In words, cluster points of a sequence of solutions obtained as μ grows to +∞
are feasible solutions of the initial chance-constrained problem. In practice though,
we have observed that taking a fixed μ is enough for reaching good approximations
of the solution with increasing λ’s; see the numerical experiments of Sect. 5. In the
next section, we discuss further the practical implementation of the conceptual double
penalization scheme.

We finish this section by a note about the assumption of existence of a solution to
(Pλ,μ), in Proposition 2. Asserting the existence of a (global) solution for a difference
of convex program is obviously difficult in general. For our doubly penalized problem,
we can still get a specific result, under standard “compactness” assumptions giving
existence of a solution for the problem without the chance-constraint.
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Proposition 3 Assume that the constraint function g(·, z) is continuous for all z ∈ R
m.

Assume also that the objective function f is coercive or that the constraint set X is
compact. Then, for any λ,μ > 0, the penalized problem (Pλ,μ) admits a global
solution.

Proof For λ,μ ≥ 0 fixed, introduce ϕ the DC objective function of (Pλ,μ)

ϕ(x, η) = f (x) + λh(x, η) + μmax(η, 0) as well as ϕ� = inf
x∈X ,η∈R

ϕ(x, η),

and observe that we have

ϕ(x, η) ≥ f (x) + μmax(η, 0) ≥ f (x). (21)

Consider (xn, ηn)n≥0 to be such that ϕ(xn, ηn) ↙ ϕ�. By either the compactness ofX
or (21) combined with the coercivity of f , we have that (xn) necessarily admits a finite
cluster point x̄ . We assume without loss of generality that xn → x̄ . Let us show the
existence of some η̄ such that (x̄, η̄) is a solution of (Pλ,μ). Note that, if ηn is bounded,
then the proof is done. So the interesting cases are ηn → +∞ and ηn → −∞ (up to
a subsequence extraction)

– If ηn → +∞, then, by (21)

ϕ(xn, ηn) ≥ f (xn) + μmax(0, ηn) ≥ min
x

f (x) + μmax(0, ηn) → +∞

which is absurd.
– If ηn → −∞, the sequence becomes eventually negative, and we can write

ϕ(xn, ηn) = f (xn) + λh(xn, ηn) ≥ f (xn) + λh(xn, Qp(g(xn, ξ))) ≥ ϕ�.

By continuity of g(·, ξ) and Qp we have convergence of Qp(g(xn, ξ)) toward
η̃ = Qp(g(x̄, ξ)). We conclude that (x̄, η̃) is a minimum of ϕ. ��

4 Double penalization in practice

In this section, we propose a practical version of the double penalization scheme for
solving chance-constrained optimization problems. First, we present in Sect. 4.1 how
to tackle the inner penalized problem (Pλ,μ) by leveraging its difference-of-convex
(DC) structure. Then we quickly describe, in Sect. 4.2, the python toolbox that we
release, implementing this bundle algorithm and efficient oracles within the double
penalization method.
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4.1 Solving penalized problems by a bundle algorithm

We discuss an algorithm for solving (Pλ,μ) by revealing the DC structure of the
objective function. Notice indeed that, introducing the convex functions

ϕ1(x, η) = f (x) + λG(x, η) + μmax(η, 0) and ϕ2(x, η) = λmin
s∈R G(x, s)

we can write (Pλ,μ) as the DC problem

min
(x,η)∈X ×R

ϕ(x, η) = ϕ1(x, η) − ϕ2(x, η). (22)

We then propose to solve this problem by the bundle algorithm of [9], which has shown
to be a method of choice for DC problems. This bundle algorithm interacts with first-
order oracles for ϕ1 and ϕ2; in our situation, there exist computational procedures to
compute subgradients of ϕ1 and ϕ2 from output of oracles of f and g, as formalized
in the next proposition. The proof of this proposition is deferred to Appendix 1. Note
that at the price of more heavy expressions, we could derive the whole subdifferential.

Proposition 4 Let (x, η) ∈ X ×R be fixed. Let s f be a subgradient of f at x and
sg1, . . . , sgn be respective subgradients of g(·, ξ1), . . . , g(·, ξn)at x. For a given t ∈ R,
denote by I>t the set of indices such that g(x, ξi ) > t and by I=t the set of indices

such that g(x, ξi ) = t . Let finally α = P[g(x,ξ)≤Qp(g(x,ξ)]−p
#(I=Qp (g(x,ξ)))

. Then, sϕ1 and sϕ2 defined
as:

sϕ1 =
⎛
⎝s f + λ

n(1 − p)

n∑
i∈I>η

sgi , 1 + μ1η>0 − λ
#(I>η)

n(1 − p)

⎞
⎠

sϕ2 =
⎛
⎝ λ

n(1 − p)

⎛
⎝ ∑

i∈I>Qp (g(x,ξ))

sgi + α
∑

i∈I=Qp (g(x,ξ))

sgi

⎞
⎠ , 0

⎞
⎠

are respectively subgradients of ϕ1 and ϕ2 at (x, η).

Thus we can use the bundle algorithm to tackle (Pλ,μ) written as (22). Notice,
though, that this algorithm is not guaranteed to converge towards optimal solutions:
the convergence result [9, Th. 1] establishes convergence towards a point ū = (x̄, η̄)
satisfying

∂ϕ2(ū) ∩ ∂ϕ1(ū) �= ∅, (23)

which is a weak notion of criticality. We then follow the suggestion of [10] to replace
ϕ2 in (22) by a smooth approximation of it, denoted by ϕ̃2. The reason is that the bundle
method minimizing ϕ̃ = ϕ1 − ϕ̃2 then reaches a Clarke-stationary point: indeed, (23)
reads ∇ϕ̃2(ū) ⊂ ∂ϕ1(ū), which in turn gives that

0 ∈ ∂ϕ(ū) = ∂ϕ1(ū) − ∇ϕ̃2(ū),
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i.e., that ū is Clarke-stationary (for the smoothed problem). Quantifying the approx-
imation of the true optimal solutions by the obtained points is completely out of the
scope of this paper; we refer to preliminary discussions in [9, 10]. In particular, [10]
mentions that this smoothing technique helps in computing (approximate) critical
points of good quality.

In practice, to smooth ϕ2, we use the efficient smoothing procedure of [21]
for superquantile-based functions (implementing the Nesterov’s smoothing tech-
nique [28]). More precisely, [21, Prop. 2.2] reads as follows.

Proposition 5 Assume that g is differentiable. For a smoothing parameter ρ > 0, the
function

ϕ̃2(x, η) = λ sup
0≤qi≤ 1

n(1−p)
q1+···+qn=1

n∑
i=1

{
qi g(x, ξi ) − ρ

2
(qi − 1

n )2
}

(24)

is a global approximation of ϕ2, such that ϕ̃2(x, η) ≤ ϕ2(x, η) ≤ ϕ̃2(x, η)+ λρ
2 for all

(x, η) ∈ R
d+1. Moreover, the function is differentiable and its gradient writes, with

S = (sgi )1≤i≤n the Jacobian of x 	→ (g(x, ξ1), . . . , g(x, ξn)), as

∇ϕ̃2(x, η) = (λ S q̃, 0)

where q̃ is the (unique) optimal solution.1 of (24).

Let us conclude about our approach to tackle (Pλ,μ). We implement an existing
advanced bundle algorithm, together with efficient subroutines, to solve a smooth
approximation of (Pλ,μ). There is a convergence result of this algorithm towards a
critical point of the approximated problem, but no convergence guarantee towards the
optimal solution of the approximated problem or of (Pλ,μ) itself. In practice, though,
we observe satisfying empirical convergence to near optimal solutions, confirming the
good results presented in [9, Sec. 6]. We illustrate the correct empirical convergence
of the resulting algorithm in Sect. 5.2 on problems for which we have explicit optimal
solutions.

4.2 A python toolbox for chance constrained optimization

We release TACO, an open-source python toolbox for solving chance constrained opti-
mization problems (1). The toolbox implements the penalization approach outlined in
Sect. 3 together with the bundlemethod [9] for the inner penalized subproblems.TACO
routines rely on just-in-time compilation supported by Numba [23]. The routines are
optimized to provide fast performances on reasonably large datasets. Documentation
is available at: https://yassine-laguel.github.io/taco We provide here basic informa-
tion on TACO; for further information, we refer to Sect. 2 in appendix and the online
documentation.

1 The computation of q̃ is performed with the fast computational procedures of [21].
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The python class Problem wraps up all information about the problem to be
solved. This class possesses an attribute data which contains the values of ξ and is
formatted as a numpy array in 64-bit float precision. The class also implements two
methods giving first-order oracles: objective_func and objective_grad for
the objective function f , and constraint_func and constraint_grad for
the constraint function g.

Let us take a simple quadratic problem in R
2 to illustrate the instantiation of a

problem. We consider

min
x∈R2

‖x − a‖2 a = [1.0, 2.0]�

s.t. P[x�ξ ≤ 0] ≥ 0.9, with 1000 samples of ξ ∼ N (0, 1).

The instance of Problem is in this case:

import numpy as np
class Problem:

def __init__(self, dim=2, sample_size=1000):
self.data = np.random.normal(size=(sample_size, dim), dtype=np.float64)
self.a = np.array([1.0, 2.0], dtypte=np.float64)

def objective_fun(self,x):
return np.dot(x−self.a,x−self.a)

def objective_grad(self, x):
return x

def constraint_func(self, x, z):
return np.dot(x,z)

def constraint_grad(self, x, z)
return z

problem = Problem()

TACO handles the optimization process with a python class named Optimizer.
Given an instance of Problem and hyper-parameters provided by the user, the class
Optimizer runs an implementation of the bundle method of [9] on the penalized prob-
lem (10). The toolbox gives the option to update the penalization parameters μ, λ

along the running process to escape possible stationary points for the DC objective
that are non-feasible for the chance constraint.

from taco import Optimizer
problem = Problem()
optimizer = Optimizer(problem, p=0.9, starting_point

=np.zeros(2, dtype=np.float64), pen1=1.0, pen2=10.0)
sol = optimizer.run()

Customizable parameters are stored in a python dictionary, called params, and
designed as an attribute of the class Optimizer. The main parameters to tune are:
the safety level of probability p, the starting penalization parameters μ = pen1 and
λ = pen2, the starting point of the algorithm and the starting value for the proximal
parameter of the bundle method. We underline in particular the importance of the two
starting penalization parameters: an initial tuning of μ = pen1 and λ = pen2 is
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often required to get a satisfying solutions for the problem considered. See for instance
the experimental setup of our numerical illustrations in 3 and codes on the toolbox
website for the specific tuning used there. Others parameters are filled with default
values when instantiating an Optimizer; for instance:

custom_options = {
’p’: 0.9,
’pen1’: 1.0,
’pen2’: 10.0,
’bund_mu_start’: 50.0,
’bund_max_size_bundle_set’: 30,

}
custom_optimizer = Optimizer(problem, params=custom_options)

Some important parameters (such as the safety probability level, or the starting
penalization parameters) may also be given directly to the constructor of the class
Optimizer, when instantiating the object; as in the first example.

5 Numerical illustrations

We illustrate our double penalisation approach implemented in the toolbox TACO
on three problems: a 2-dimensional quadratic problem with a non-convex chance
constraint (in Sect. 5.1), a family of problems with explicit solutions (in Sect. 5.2),
and a case study from [27] (in Sect. 5.3). These proof-of-concept experiments are not
meant to be extensive but to show that our approach is viable. These experiments are
reproducible: the experimental framework is available on the toolbox’s website.

5.1 Visualization of convergence on a 2d problem

Weconsider a two-dimensional toy quadratic problem in order to track the convergence
of the iterates on the sublevel sets. We take [22, Ex. 4.1] which considers an instance
of problem (1) with

f (x) = 1

2
(x − a)�Q(x − a) with a =

(
2.
2.

)
, Q =

(
5.5 4.5
4.5 5.5

)

g(x, z) = z�W (x)z + w�z with W(x)=
(
x21 + 0.5 0.

0. |x2 − 1|3+1

)

ξ ∼ N (μ,) 104 samplings withμ =
(
1.
1.

)
,  =

(
20. 0.
0. 20.

)
.

(25)

For this example, [22] shows that the chance constraint is convex for large enough
probability levels, but here we take a low probability level p = 0.008 to have a
non-convex chance-constraint. We can see this on Fig. 1, ploting the level sets of
the objective function and the constraint function: the chance-constrained region for
p = 0.008 is delimited by a black dashed line; the optimal value of this problem is
located at the star.
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Fig. 1 Trajectory of the iterates (in blue) on the plot of the level sets of the chance-constraint and the
objective for the 2d problem with data (25)

We apply our double penalization method to solve this problem, with the setting
described in Appendix 3 and available on the TACO website. We plot on the sublevel
sets of Fig. 1 the path (in deep blue) taken by the sequence of iterates starting from
the point [0.5, 1.5] moving towards the solution. We observe that the sequence of
iterates, after a exploration of the functions landscape, gets rapidly close to the optimal
solution. At the end of the convergence, we also see a zigzag behaviour around the
frontier of the chance constraint. This can be explained by the penalization termwhich
is activated asymptotically whenever the sequence leaves the feasible region of the
chance constraint.

5.2 Experiments on a family of problems with explicit solutions

We consider the family of d-dimensional problems of [17, section 5.1]. For a given
dimension d, the problem writes as an instance of (1) with
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f (x) = −
d∑

i=1

xi , X = R
d+, g(x, Z) = max

i∈{1,...,10}

d∑
j=1

Z2
i, j x

2
j − 100 (26)

and ξ is random 10 × d-matrix satisfying for all i, j , ξi, j ∼ N (0, 1). The interest of
this family of problems is that they have explicit solutions: for given d, the optimal
value is

f � = − 10 d√
F (−1)

χ2
d

(p
1
10 )

where Fχ2
d
is χ2 cumulative distribution with d degrees of freedom. We consider

four instances of this problem with dimension d from 2 to 200 and the safety prob-
ability threshold p set to 0.8. We consider a rich information on uncertainty: ξ is
sampled 10000 times. In this case, a direct approach consisting in solving the standard
mixed-integer quadratic reformulations (see e.g. [1]) with efficientMINLP solvers (we
used Juniper [20]) does not provide reasonable solutions; see basic information in
Appendix 3.

We solve these instances with our double penalization approach, parameterized as
described in Appendix 3. Figure2 plots the relative suboptimality ( f (xk) − f �)/| f �|
along iterations. The green (resp. red) regions represent iterates that, respectively,
satisfy (resp. do not satisfy) the chance constraint.

In the four instances, we take an initial iterate well inside the feasible region. We
then observe an initial decrease of the objective function down to global optimal value.
The chance constraint starts to be violated later, only when the threshold is reached,
and therefore the last part of convergence deals with local improvement of precision
and feasibility. Let us underline that the convergence to the global optimal solution,
observed here, is specific to this particular situation, and not guaranteed in the general
setting.

Table 1 reports the final suboptimality and satisfaction of the probabilistic con-
straint. The probability constraint is evaluated for 100 sampled points out of the total
N = 10000 points. We give the resulting probability; the standard deviation is 0.004
for the four instances.

We observe that the algorithm reaches an accuracy of order of 10−3. Regarding
satisfaction of the constraint P[g(x, ξ) ≤ 0] ≥ 0.8, it is achieved to a 10−4 precision
for d = 2 but it slightly degrades as the dimension grows.

5.3 Experiments on a classic case study

We consider the chance-constrained portfolio optimization problem from [27]. The
problem writes as maximizing the superquantile/value-at-risk of a portfolio over d =
65 assets (with respective random returns ri ):
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Fig. 2 Convergence of the algorithm on four problems (26) with d = 2, 10, 50, 200

Table 1 Final suboptimality and feasibility for (26) (where p = 0.8)

Dimension Suboptimality P[g(x, ξ) ≤ 0] Computation time (s)

d = 2 8.9 × 10−4 0.8005 59.67

d = 10 5.0 × 10−3 0.7960 12.51

d = 50 5.6 × 10−3 0.7776 16.54

d = 200 1.8 × 10−3 0.7696 96.61

⎧⎪⎨
⎪⎩
maxx≥0,t∈R t − 1
s.t. P[∑d

j=0 r j x j ≤ t] ≥ 0.95∑d
j=1 x j = 1.

(27)

We follow [27] for the modeling of randomness and the generation of instances of this
problem; see details in Appendix 3. We consider several samplings of the ri , yielding
several instances of the problem.
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Fig. 3 Convergence, trade-off quality, and out-of-sample performance of our algorithm for various param-
eters solving (27) with different sample size

Our reference instance uses a sampling of n = 14684 points; this sample
size corresponds to the theoretical size for which the solution obtained by a sce-
nario approximation satisfies the intrinsic chance constraint in (27) with probability
1 − 10−3; see [5, 27]. We also generate instances with smaller sample sizes (n ∈
{500, 1000, 2000, 5000, 10000}) to illustrate the out-of-sample performance of solu-
tions computed by our algorithm.

We report the computational results in Fig. 3, highlighting three aspects. In the left-
hand plot, we illustrate the empirical convergence of our algorithm on the reference
instance. We report the values of the DC objective (22) along the iterations of our
algorithm. Vertical lines correspond to updates of the penalty parameters. Between
two such updates, the DC objective decreases along the iterates of the inner bundle
algorithm. In contrast, at each update, there is an increase, as expected in theory
(see (19) in the proof of Proposition 2). After approximately 1600 iterations, no more
updates on the penalization parameter occur andwe observe an empirical convergence.

In the middle plot in Fig. 3, we illustrate the trade-off between maximization of the
objective and satisfaction of the approximated chance-constraint. More precisely, here
is the set-up of this experiment. For each sample size, we generate independently 5
instances of the approximated problem, that we solve several times with our algorithm
using different penalization parameters2. For each sample size (that has an associated
color) and each run of the algorithm, we report the averages over the 5 instances
of the final objective values and the chance-constraint satisfaction.3 We observe, on
the figure, a better satisfaction of the chance constraint as n grows, which comes at
the price of lower objective values. We also note a bigger sensitivity to penalization
parameters for the instances with small n (as cloud of colors points aremore scattered).

Finally, in the right-hand plot of Fig. 3, we illustrate fluctuations on the out-of-
sample performances of computed solutions. More precisely, in the same set-up as
above, we select the couple of starting penalization parameters providing the best
average4 As in the previous illustration, we observe that the constraint satisfaction

2 We run our algorithm with penalization parameters μ and λ (respectively in {3.0, 3.5, 4.0, 4.5, 5} and
{0.3, 0.4, 0.5, 0.6, 0.7}).
3 Chance-constraint computed on a separate test set of maximal size, generated independently from the
training sets.
4 averaged performance of the computed solutions, averaged over the 5 different training sets of the same
sample size n.

123



Chance-constrained programs with convex underlying... 839

improves when the sample size grows. We also see that the variance of the constraint
satisfaction significantly improve as n grows.

6 Conclusions, perspectives

In this paper, we bring to light a nice bilevel reformulation of chance-constrained
optimization problems.We then leverage it to propose a double penalization algorithm,
discuss its theoretical properties, and illustrate it on three non-convex case studies.
We also release an open-source python toolbox implementing the algorithm and the
numerical experiments.

This work opens the door to various possible extensions. First, the applicability
of the approach can be widened. For instance, we consider here a convex objective
function, but the approach generalizes to difference-of-convex functions,with the same
algorithm. Further theoretical guarantees as well as numerical illustrations would then
be necessary. Second, note that all ingredients of the algorithm could be improved.
For instance, we could try another approach or a better tuning of hyper-parameters,
with the help of Lagrangian duality. We could also investigate the use of specific
first-order methods, rather than a generic bundle method, to solve the inner penalized
problems. Finally, beyond the preliminary computational experiments (illustrating the
ease-of-use of the toolbox, the heuristic convergence of the algorithm, and the out-of-
sample performance of the approach), a study of the sensitivity of the algorithm to the
parameters, the adaptivity to special instances, and the comparison to other approaches
(other than MINLP) would be of interest. All this is out of the scope of this paper and
deserves thorough investigations.
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A Proofs of complementary results

A.1 Uniform bound at the limit

We show here that the uniform error bound derived in Sect. 3.1 vanishes at the limiting
case of continuous distributions. We assume that, for a fixed x ∈ R

d, the random
variable g(x, ξ) has a continuous density fx,ξ : R → R denoted by fx,ξ : we have, for
all a ≤ b,

P[a ≤ g(x, ξ) ≤ b] =
∫ b

a
fx,ξ (t) d t .
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Proposition A.1 Fix x ∈ R
d and denote by qp the p-quantile of the distribution

followed by the random variable g(x, ξ). If g(x, ξ) has a continuous density, then
the value function η 	→ h(x, η) defined in (14) is differentiable at η = qp (with
h′(x, qp) = 0).

Proof We first note that the existence of a density ensures the continuity of the cumu-
lative distribution function of g(x, ξ), which in turns implies P[g(x, ξ) ≤ qp] = p.

Let us now observe that for any arbitrary fixed η ∈ R, we have:

h(x, η) = η + 1

1 − p
E[max(g(x, ξ) − η, 0)] −

(
qp + 1

1 − p
E

[
max

(
g(x, ξ) − qp, 0

)])

= (
η − qp

) + 1

1 − p
E

[
max(g(x, ξ), η) − η − (

max
(
g(x, ξ), qp

) − qp
)]

= (
η − qp

) (
1 − 1

1 − p

)
+ 1

1 − p
E

[
max(g(x, ξ), η) − max

(
g(x, ξ), qp

)]
.

Hence, for any η > qp, we have

h(x, η) = (
η − qp

) (
1 − 1

1 − p

)

+ 1

1 − p
E

[
(η − g(x, ξ))1qp<g(x,ξ)≤η + (

η − qp
)
1g(x,ξ)≤qp

]

= (
η − qp

) (
1 − 1

1 − p
+ 1

1 − p
P
[
g(x, ξ) ≤ qp

])

+ 1

1 − p
E

[
(η − g(x, ξ))1qp<g(x,ξ)≤η

]

=
(
η − qp

)
1 − p

(
P
[
g(x, ξ) ≤ qp

] − p + E

[
η − g(x, ξ)

η − q
1qp<g(x,ξ)≤η

])
.

Consequently,

h(x, η) = (η − qp)
1

1 − p

(
P[g(x, ξ) ≤ qp] − p + E

[
η − g(x, ξ)

η − qp
1qp<g(x,ξ)≤η

])

= 1

1 − p
E

[
(η − g(x, ξ))1qp<g(x,ξ)≤η

] = 1

1 − p

∫ η

qp
(η − t) fx,ξ (t) d t

= 1

1 − p

(
η

∫ η

qp
fx,ξ (t) d t −

∫ η

qp
t fx,ξ (t) d t

)
.

(28)
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By continuity of the above integrands, we can use the fundamental theorem of calculus
to get that h(x, ·) admits a right derivative at η = qp such that

h′+(x, η) = lim
η→qp
η>qp

h(x, η) − h(x, qp)

η − qp

= lim
η→qp
η>qp

1

1 − p

(
η

∫ η

qp
fx,ξ (t) d t

η − qp
−

∫ η

qp
t fx,ξ (t) d t

η − qp

)

= lim
η→qp
η>qp

1

1 − p

(
η fx,ξ (qp) − qp fx,ξ (qp)

) = 0.

For the case η < qp, we observe from (28), that

h(x, η) = (
η − qp

) (
1 − 1

1 − p

)

+ 1

1 − p
E

[(
g(x, ξ) − qp

)
1η<g(x,ξ)≤qp + (

η − qp
)
1g(x,ξ)≤η

]

= (
η − qp

) (
1 − 1

1 − p
+ 1

1 − p
P[g(x, ξ) ≤ η]

)

+ 1

1 − p
E

[(
g(x, ξ) − qp

)
1η<g(x,ξ)≤qp

]

=
(
qp − η

)
1 − p

(
p − P[g(x, ξ) ≤ η] − E

[
qp − g(x, ξ)

qp − η
1η<g(x,ξ)≤qp

])
.

Since P[g(x, ξ) = qp] = 0, we obtain

h(x, η) = (qp − η)
1

1 − p

(
E

[
1 − (qp − g(x, ξ))

qp − η
1η<g(x,ξ)<qp

]
+ P[g(x, ξ) = qp]

)

= 1

1 − p

(
(η − qp)

∫ qp

η

fx,ξ (t) d t −
∫ qp

η

(qp − t) fx,ξ (t)) d t

)
.

Using again the fundamental theorem of calculus, we get that h(x, ·) admits a left
derivative at η = qp with:

h′−(x, η) = lim
η→qp
η<qp

h(x, η) − h(x, qp)

η − qp

= lim
η→qp
η<qp

1

1 − p

(
(η − qp)

∫ qp
η

fx,ξ (t) d t

η − qp
−

∫ qp
η

(qp − t) fx,ξ (t) d t

η − qp

)
= 0.

We can conclude that h(x, ·) is differentiable at qp with zero as derivative. ��
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A.2 Proof of the explicit subgradient expressions

We provide here a direct proof of the subgradient expressions of Proposition 4. Let
(x, η) ∈ X ×R be fixed, and consider first the case of ϕ1. For i ∈ {1, . . . , n}, by suc-
cessive applications of Theorems 4.1.1 and 4.4.2 from [16, Chap. D] to the functions

ϕ
(i)
1 : (x, η) 	→ 1

n

[
f (x) + μmax(η, 0) + λ

(
η + 1

1 − p
max(g(x, ξi ) − η, 0)

)]

we get for any i ∈ {1, . . . , n}

1

n
s f + λ

n(1 − p)
1g(x,ξi )>ηsg ∈ ∂xϕ

i
1(x, η)

μ

n
1η>0 + λ

n
− λ

n(1 − p)
1g(x,ξi )>η ∈ ∂ηϕ

i
1(x, η).

Since ϕ1 = ∑n
i=1 ϕ

(i)
1 , we thus have

⎛
⎝s f + λ

n(1 − p)

∑
i∈I>η

sgi , μ1η>0 + λ − λ
#(I>η)

n(1 − p)

⎞
⎠ ∈ ∂ϕ1(x, η)

For ϕ2 we need first the whole subdifferential of the function G, which, using above
mentioned properties, writes

∂G(x, η) =
{(

1

1 − p

n∑
i=1

sgi
n

(1g(x,ξi )>η + βi1g(x,ξi )=η),

1 − 1

1 − p

n∑
i=1

1

n
(1g(x,ξi )>η + βi1g(x,ξi )=η)

)
, βi ∈ [0, 1], ∀i ∈ {1, . . . , n}

}
.

By taking βi = α (for all i ∈ {1, . . . , n}) with the specific α given in the state-
ment, we can zero the second term in the above expression. Now since ϕ2(x, η) =
λmins∈R G(x, s) with Qp(g(x, ξ)) ∈ argmins∈R G(x, s), we apply Corollary 4.5.3
of [16, Chap. D] to obtain a subgradient of ϕ2:

sϕ2 =
⎛
⎝ λ

n(1 − p)

⎛
⎝ ∑

i∈I>Qp (g(x,ξ)

sgi + α
∑

i∈I=Qp (g(x,ξ))

sgi

⎞
⎠ , 0

⎞
⎠

which completes the proof.
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B Implementation details on TACO

B.1 Further customization

TACO relies on a set of hyperparameters to be provided by the user and specified in
a single dictionnary passed as an argument of the class Optimizer. There are two
families of parameters to be specified. First, the parameters concerning the oracles
ϕ1 and ϕ2. These are the starting penalization parameters λ and μ, the multiplicative
factors to increment them along the penalization process, and the smoothing parameter
of ϕ̃2. The second family of parameters concerns the bundle method. It gathers the
proximal parameters of the bundle method, the precision targeted, the starting point
of the algorithm, the maximal size of the bundle information, and parameters related
used when restarting the bundle method (see more in the following section). Overall
the most important parameters to specify are the starting penalization parameters μ

and λ with respective keys ‘pen1’ and ‘pen2’ and the starting proximal param-
eter of the bundle algorithm. In the toolbox, we provide the set of parameters used
in our numerical experiments. In addition of the final solution, it is possible to log
the iterates, function values and time values, by calling the method with the option
logs=True. The verbose=True option also allows the user to observe in real
time the progression of the algorithm along the iterations.

Finally we underline that TACO subroutines rely on just-in-time compilation
supported by Numba, which consistently improves the running time. Further improve-
ments can be achieved when the instance considered can be cast as a Numba
jitclass. The parameter ’numba’ in the input dictionnary of the associated
Optimizer object should then be set to True.

B.2 On the bundle algorithm

Here are some information on our implementation of the bundle algorithm of [9] to
tackle the double penalized problem (Pλ,μ) written as a DC problem. We discuss the
parameters used at various steps of the procedure. We refer to [9] for more details.

– Overall run: The starting point, the maximum number of iterations as well as the
precision tolerance for termination may be set by the user.

– Subproblems: Each iteration of the bundle algorithm requires solving a quadratic
subproblem (see [9, Eq. (9)]), for which we use the solver cvxopt [40] by sim-
plicity.

– Stabilization center: Whenever the solution of a subproblem satisfies a sufficient
decrease in terms a function value, it is considered as a new stability center. The
condition to qualify sufficient decrease is given in [9, Eq. (12)]. It involves a
constant κ which may be tuned by the user.

– Proximal parameters: The initial value of the proximal parameter involved in
quadratic subproblems can be set by the user. The user can also specify upper
and lower acceptance bounds for it. After each iteration, the prox-parameter is
updated: it is increased by a constant factor in case of serious step, and decreased
otherwise. Both factors can be tuned by the user.

123



844 Y. Laguel et al.

– Bundle information: The bundle of cutting-planes is augmented after each null step
with new linearization, and emptied after each serious step. We fix a maximum
size for the bundle: above this parameter, the bundle is emptied and proximal
parameter is restarted to a specified restarting value. When the bundle is emptied,
we have the chance of a specific improvement: if the stability center is feasible
in the chance-constraint, we replace the coordinate playing the role of η by the
p-quantile of g(x, ξ), thus decrease the objective function.

– Termination Criteria: We use a simple stopping criteria: we stop when the
euclidean distance between the current iterate and the current stability center falls
below a certain threshold specified by the user.

B.3 Experimental settings

Setting of section 5.1

For this 2d problem,weuse the starting point x = (0.5, 1.5) (andη = 0.01)well-inside
the chance-constraint. The initial penalization parameters μ and λ are respectively
initialized to 400 and 600. The initial proximal parameter is fixed to 38.0 with lower
and upper acceptance bounds set to 10−3 and 103. Increasing and decreasing factors
for this parameter are fixed to 1.05 and 0.95. The classification rule parameter is set
to 10−4. The maximal size of the information bundle is set to 20 and the threshold of
the termination criteria is set to 10−7. Running time of our algorithm on this problem
is appoximately a minute.

Setting for section 5.2

For any fixed dimension d comprised in {2, 10, 50, 200}, the algorithm is run from the
starting point (0.1, . . . , 0.1) ∈ R

d+1. The starting penalization parameter μ, constant
for the 4 instances, is set to μ = 10.0. We tuned the second penalization parameter λ

along problems: we observed that λ = {1.75, 1.25, 1.5, 2.0} give good performances
for the considered problems. The starting proximal parameters is fixed to 60.0 with
lower and upper acceptance bounds set to 10−4 and 105 respectively. Increasing and
decreasing factors for the proximal parameter are fixed to 1.01 and 0.99. The classi-
fication rule parameter is set to 10−4. The maximal size of the information bundle is
set to 300.

Setting for section 5.3

We follow the portfolio optimization model of [27]. We consider 64 risky assets
(for 1 ≤ i ≤ 64) and one deterministic one (with r0 = 1). We sample the returns
ri , (1 ≤ i ≤ 64) from distributions modeled as:

ri = ηi +
8∑

k=1

γi,kζk
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where ηi ∼ LogNormal(μi , σ
2
i ), ζk ∼ LogNormal(0, 0.1) and γi,k are deterministic

constants. We used μi = σi and took the constants μi and γi such that:

E[
8∑

k=1

γi,kξk] = ρi/2 and E[ηi ] = 1 + ρi/2.

Specifically, γi,k is set as: γi,k = (1 + εk
4 )γ̄i with

γ̄i = ρi

16e0.005
, ρi = 0.1 × i

64
, εk =

∣∣∣∣ 1 if i ≤ 4
−1 if i ≥ 4

and μi is set as

μi = −1 +
√
1 + 2 log(1 + ρi

2
).

About the parameters of our algorithm. The first penalization parameter μ is taken
constant to μ = 10.0; the second penalization parameter λ is tuned over the grid
{0.3, 0.4, 0.5, 0.6, 0.7}. The starting proximal parameter is set to 38.0, with lower and
upper acceptance bounds set to 10−3 and 103 respectively. Increasing and decreasing
factors for the proximal parameter are set to 1.05 and 0.9. The computation time for
a single seed and a couple of starting parameters is approximately a minute for this
problem.

Limitations of MINLP approach

Mixed-integer reformulation approaches (see e.g. [1]) are often considered as the
state-of-the-art to solve chance constrained optimization problems by sample average
approximation. Applying directly such a reformulation to Problem (26) in Sect. 5.2
leads to the equivalent mixed integer quadratic program:

min
x∈Rd, z∈{0,1}N

−
d∑

i=1

xi

s.t.
d∑

k=1

(ξi )
2
j,k x

2
k − 100 ≤ M zi , ∀i ∈ [[1, N ]], ∀ j[[1, 10]]

N∑
i=1

zi ≤ pN , x ≥ 0.

where M is a large “big-M” constant. In our setting, such a formulation involves
10× N = 100000 quadratic constraints involving binary variables. We were not able
to solve the resulting mixed-integer problem in reasonable time using the MINLP
solver Juniper [20] (that is based on Ipopt and JuMP). This shows that a direct
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application of reformulation techniques combined with reliable software failed on
this problem.

References

1. Ahmed, S., Shapiro, A.: Solving chance-constrained stochastic programs via sampling and integer
programming. In: State-of-the-art decision-making tools in the information-intensive age, pp. 261–
269. Informs (2008)

2. Ba, Q., Pang, J.S.: Exact penalization of generalized nash equilibrium problems. Oper. Res. 70(3),
1448–1464 (2022)

3. Ben-Tal, A., Teboulle, M.: An old-new concept of convex risk measures: the optimized certainty
equivalent. Math. Financ. 17(3), 449–476 (2007)

4. Burke, J.V., Ferris, M.C.:Weak sharp minima in mathematical programming. SIAM J. Control. Optim.
31(5), 1340–1359 (1993)

5. Calafiore, G.C., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Autom.
Control 51(5), 742–753 (2006)

6. Charnes, A., Cooper, W.W.: Chance-constrained programming. Manag. Sci. 6(1), 73–79 (1959)
7. Chow, Y., Ghavamzadeh, M., Janson, L., Pavone, M.: Risk-constrained reinforcement learning with

percentile risk criteria. J. Mach. Learn. Res. 18(1), 6070–6120 (2017)
8. Clarke, F.H.: Optimization and nonsmooth analysis, vol. 5. Siam (1990)
9. de Oliveira, W.: Proximal bundle methods for nonsmooth dc programming. J. Glob. Optim. 75, 523

(2019)
10. de Oliveira, W.: The abc of dc programming. Set-Valued Variational Anal. 28(4), 679–706 (2020)
11. Dentcheva, D.: Optimization models with probabilistic constraints. In: Probabilistic and randomized

methods for design under uncertainty, pp. 49–97. Springer (2006)
12. Dentcheva, D., Prékopa, A., Ruszczynski, A.: Concavity and efficient points of discrete distributions

in probabilistic programming. Math. Programm. 89(1), 55 (2000)
13. Facchinei, F., Lampariello, L.: Partial penalization for the solution of generalized nash equilibrium

problems. J. Global Optim. 50, 39–57 (2011)
14. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Financ. Stochast. 6(4),

429–447 (2002)
15. Henrion, R., Strugarek, C.: Convexity of chance constraints with independent random variables. Com-

put. Optim. Appl. 41, 263–276 (2008)
16. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex analysis and minimization algorithms I: fundamentals.

Springer (2013)
17. Hong, L.J., Yang, Y., Zhang, L.: Sequential convex approximations to joint chance constrained pro-

grams: a monte carlo approach. Oper. Res. 59(3), 617 (2011)
18. Jiang, N., Xie,W.: Also-x and also-x+: better convex approximations for chance constrained programs.

Oper. Res. 70(6), 3581–3600 (2022)
19. Kannan, R., Luedtke, J.: A stochastic approximation method for approximating the efficient frontier

of chance-constrained nonlinear programs (2020)
20. Kröger, O., Coffrin, C., Hijazi, H., Nagarajan, H.: Juniper: An open-source nonlinear branch-and-

bound solver in julia. In: Integration of Constraint Programming, Artificial Intelligence, andOperations
Research. Springer International Publishing (2018)

21. Laguel, Y., Malick, J., Harchaoui, Z.: First-order optimization for superquantile-based supervised
learning. In: 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing
(MLSP), pp. 1–6. IEEE (2020)

22. Laguel, Y., van Ackooij, W., Malick, J., Matiussi Ramalho, G.: On the convexity of level-sets of
probability functions. J. Convex Anal. 29(2), 1–32 (2022)

23. Lam, S.K., Pitrou, A., Seibert, S.: Numba: A llvm-based python jit compiler. In: Proceedings of
the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15. Association for
Computing Machinery, New York, NY, USA (2015)

24. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic con-
straints. SIAM J. Optim. 19, 674–699 (2008)

25. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer (1984)

123



Chance-constrained programs with convex underlying... 847

26. Medova, E.: Chance-constrained stochastic programming forintegrated services networkmanagement.
Ann. Oper. Res. 81, 213–230 (1998)

27. Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim.
17(4), 969–996 (2006)

28. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)
29. Pagnoncelli, B.K., Ahmed, S., Shapiro, A.: Sample average approximation method for chance con-

strained programming: theory and applications. J. Optim. Theory Appl. 142(2), 399–416 (2009)
30. Peña-Ordieres, A., Luedtke, J.R., Wächter, A.: Solving chance-constrained problems via a smooth

sample-based nonlinear approximation. SIAM J. Optim. 30(3), 2221–2250 (2020)
31. Prékopa, A., Szántai, T.: Flood control reservoir system design using stochastic programming. In:

Mathematical programming in use, pp. 138–151. Springer (1978)
32. Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995). https://doi.org/10.1007/978-94-

017-3087-7
33. Rockafellar, R.T., Royset, J.O.: Superquantiles and their applications to risk, random variables, and

regression. In: Theory driven by influential applications. INFORMS (2013)
34. Rockafellar, R.T., Royset, J.O.: Random variables, monotone relations, and convex analysis. Math.

Program. 148(1–2), 297–331 (2014)
35. Rockafellar, R.T., Uryasev, S.: Optimization of conditional value-at-risk. J. Risk 2, 21–42 (2000)
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