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Abstract
We propose a modified BFGS algorithm for multiobjective optimization problems
with global convergence, even in the absence of convexity assumptions on the objec-
tive functions. Furthermore, we establish a local superlinear rate of convergence of the
method under usual conditions. Our approach employs Wolfe step sizes and ensures
that the Hessian approximations are updated and corrected at each iteration to address
the lack of convexity assumption. Numerical results shows that the introduced modi-
fications preserve the practical efficiency of the BFGS method.

Keywords Multiobjective optimization · Pareto optimality · Quasi-Newton
methods · BFGS · Wolfe line search · Global convergence · Rate of convergence

Mathematics Subject Classification 49M15 · 65K05 · 90C29 · 90C30 · 90C53

1 Introduction

Multiobjective optimization problems involve the simultaneous minimization of mul-
tiple objectives that may be conflicting. The goal is to find a set of solutions that offer
different trade-offs between these objectives, helping decision makers in identifying
themost satisfactory solution.Pareto optimality is a fundamental concept used to char-
acterize such solutions. A solution is said to be Pareto optimal if none of the objectives
can be improved without deterioration to at least one of the other objectives.

Over the last 2 decades, significant research has focused on extending iterative
methods originally developed for single-criterion optimization to the domain of
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multiobjective optimization, providing an alternative to scalarization methods [19,
41]. This line of research was initiated by Fliege and Svaiter in 2000 with the exten-
sion of the steepest descent method [23] (see also [32]). Since then, several methods
have been studied, including Newton [12, 22, 28, 31, 51], quasi-Newton [1, 33, 34, 39,
42, 44, 46–48], conjugate gradient [27, 29, 37], conditional gradient [2, 10], projected
gradient [3, 20, 24, 25, 30], and proximal methods [5, 8, 9, 11, 13].

Proposed independently by Broyden [6], Fletcher [21], Goldfarb [26], and Shanno
[49] in 1970, the BFGS is the most widely used quasi-Newton method for solving
unconstrained scalar-valued optimization problems. As a quasi-Newton method, it
computes the search direction using a quadratic model of the objective function, where
the Hessian is approximated based on first-order information. Powell [45] was the first
to prove the global convergence of the BFGSmethod for convex functions, employing
a line search that satisfies theWolfe conditions. Some time later, Byrd and Nocedal [7]
introduced additional tools that simplified the global convergence analysis, enabling
the inclusion of backtracking strategies. For over 3 decades, the convergence of the
BFGS method for nonconvex optimization remained an open question until Dai [15],
in the early 2000s, provided a counterexample showing that the method can fail in
such cases (see also [16, 40]). Another research direction focuses on proposing suitable
modifications to theBFGSalgorithm that enable achievingglobal convergence for non-
convex general functions while preserving its desirable properties, such as efficiency
and simplicity. Notable works in this area include those by Li and Fukushima [35, 36].

The BFGS method for multiobjective optimization was studied in [33, 34, 39, 42,
44, 46–48]. However, it is important to note that, except for [46, 47], the algorithms
proposed in these papers are specifically designed for convex problems. The assump-
tion of convexity is crucial to ensure that the Hessian approximations remain positive
definite over the iterations, guaranteeing the well-definedness of these methods. In
[47], Qu et al. proposed a cautious BFGS update scheme based on the work [36]. This
approach updates the Hessian approximations only when a given safeguard criterion is
satisfied, resulting in a globally convergent algorithm for nonconvex problems. In [46],
Prudente and Souza proposed a BFGSmethod withWolfe line searches which exactly
mimics the classical BFGS method for single-criterion optimization. This variant is
well defined even for general nonconvex problems, although global convergence can-
not be guaranteed in this general case. Despite this, it has been shown to be globally
convergent for strongly convex problems.

In the present paper, inspired by the work [35], we go a step further than [46] and
introduce amodifiedBFGS algorithm formultiobjective optimizationwhich possesses
a global convergence property even without convexity assumption on the objective
functions. Furthermore, we establish the local superlinear convergence of the method
under certain conditions. Our approach employs Wolfe step sizes and ensures that the
Hessian approximations are updated and corrected at each iteration to overcome the
lack of convexity assumption. Numerical results comparing the proposed algorithm
with the methods introduced in [46, 47] are discussed. Overall, the modifications
made to the BFGS method to ensure global convergence for nonconvex problems do
not compromise its practical performance.

The paper is organized as follows: Sect. 2 presents the concepts and preliminary
results, Sect. 3 introduces the proposed modified BFGS algorithm and discusses its
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global convergence, Sect. 4 focuses on the local convergence analysis with superlinear
convergence rate, Sect. 5 presents the numerical experiments, and Sect. 6 concludes the
paperwith some remarks. Throughout themain text,we have chosen to omit proofs that
can be easily derived from existing literature to enhance overall readability. However,
these proofs are provided in the Appendix for self-contained completeness.
Notation. R and R++ denote the set of real numbers and the set of positive real
numbers, respectively. As usual, Rn and R

n×p denote the set of n-dimensional real
column vectors and the set of n × p real matrices, respectively. The identity matrix of
size n is denoted by In . ‖ · ‖ is the Euclidean norm. If u, v ∈ R

n , then u � v (or ≺) is
to be understood in a componentwise sense, i.e., ui ≤ vi (or <) for all i = 1, . . . , n.
For B ∈ R

n×n , B � 0 means that B is positive definite. In this case, 〈·, ·〉B and
‖ · ‖B denote the B-energy inner product and the B-energy norm, respectively, i.e.,
for u, v ∈ R

n , 〈u, v〉B := u
Bv and ‖u‖B := √〈u, u〉B . If K = {k1, k2, . . .} ⊆ N,
with k j < k j+1 for all j ∈ N, then we denote K ⊂∞N.

2 Preliminaries

In this paper, we focus on the problem of finding a Pareto optimal point of a con-
tinuously differentiable function F : R

n → R
m . This problem can be denoted as

follows:
min
x∈Rn

F(x). (1)

A point x∗ ∈ R
n is Pareto optimal (or weak Pareto optimal) of F if there is no other

point x ∈ R
n such that F(x) � F(x∗) and F(x) �= F(x∗) (or F(x) ≺ F(x∗)). These

concepts can also be defined locally. We say that x∗ ∈ R
n is a local Pareto optimal (or

local weak Pareto optimal) point if there exists a neighborhood U ⊂ R
n of x∗ such

that x∗ is Pareto optimal (or weak Pareto optimal) for F restricted to U . A necessary
condition (but not always sufficient) for the local weak Pareto optimality of x∗ is given
by:

− (Rm++) ∩ Image(J F(x∗)) = ∅, (2)

where J F(x∗) denotes the Jacobian of F at x∗. A point x∗ that satisfies (2) is referred
to as a Pareto critical point. It should be noted that if x ∈ R

n is not Pareto critical,
then there exists a direction d ∈ R

n such that ∇Fj (x)
d < 0 for all j = 1, . . . ,m.
This implies that d is a descent direction for F at x , meaning that there exists ε > 0
such that F(x + αd) ≺ F(x) for all α ∈ (0, ε]. Let D : Rn × R

n → R be defined as
follows:

D(x, d):= max
j=1,...,m

∇Fj (x)

d.

The function D characterizes the descent directions for F at a given point x . Specifi-
cally, ifD(x, d) < 0, thend is a descent direction for F at x . Conversely, ifD(x, d) ≥ 0
for all d ∈ R

n , then x is a Pareto critical point.
We define F : Rn → R

m as convex (or strictly convex) if each component Fj :
R
n → R is convex (or strictly convex) for all j = 1, . . . ,m, i.e., for all x, y ∈ R

n and
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t ∈ [0, 1] (or t ∈ (0, 1)),

F((1− t)x + t y) � (1− t)F(x) + t F(y) (or ≺). (3)

The following result establishes a relationship between the concepts of criticality,
optimality, and convexity.

Lemma 2.1 [22, Theorem 3.1] The following statements hold:

(i) if x∗ is local weak Pareto optimal, then x∗ is a Pareto critical point for F;
(ii) if F is convex and x∗ is Pareto critical for F, then x∗ is weak Pareto optimal;
(iii) if F is strictly convex and x∗ is Pareto critical for F, then x∗ is Pareto optimal.

The class of quasi-Newton methods used to solve (1) consists of algorithms that
compute the search direction d(x) at a given point x ∈ R

n by solving the optimization
problem:

min
d∈Rn

max
j=1,...,m

∇Fj (x)

d + 1

2
d
Bjd, (4)

where Bj ∈ R
n×n serves as an approximation of ∇2Fj (x) for all j = 1, . . . ,m. If

Bj � 0 for all j = 1, . . . ,m, then the objective function of (4) is strongly convex,
ensuring a unique solution for this problem. We denote the optimal value of (4) by
θ(x), i.e.,

d(x):=argmin
d∈Rn

max
j=1,...,m

∇Fj (x)

d + 1

2
d
Bjd, (5)

and

θ(x) := max
j=1,...,m

∇Fj (x)

d(x) + 1

2
d(x)
Bjd(x). (6)

One natural approach is to use aBFGS–type formula,which updates the approximation
Bj in a way that preserves positive definiteness. In the case where Bj = In for all
j = 1, . . . ,m, d(x) represents the steepest descent direction (see [23]). Similarly, if
Bj = ∇2Fj (x) for all j = 1, . . . ,m, d(x) corresponds to the Newton direction (see
[22]).

In the following discussion, we assume that Bj � 0 for all j = 1, . . . ,m. In this
scenario, (4) is equivalent to the convex quadratic optimization problem:

min
(t,d)∈R×Rn

t

s. t. ∇Fj (x)
d + 1

2
d
Bjd ≤ t, ∀ j = 1, . . . ,m.

(7)

The unique solution to (7) is given by (t, d) := (θ(x), d(x)). Since (7) is convex and
has a Slater point (e.g., (1, 0) ∈ R × R

n), there exists a multiplier λ(x) ∈ R
m such

that the triple (t, d, λ) := (θ(x), d(x), λ(x)) ∈ R × R
n × R

m satisfies its Karush-
Kuhn-Tucker system given by:

m∑

j=1

λ j = 1,
m∑

j=1

λ j
[∇Fj (x) + Bjd

] = 0, (8)
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λ j ≥ 0, ∇Fj (x)

d + 1

2
d
Bjd ≤ t, ∀ j = 1, . . . ,m, (9)

λ j

[
∇Fj (x)


d + 1

2
d
Bjd − t

]
= 0, ∀ j = 1, . . . ,m. (10)

In particular, (8) and (9) imply that

d(x) = −
⎡

⎣
m∑

j=1

λ j (x)Bj

⎤

⎦
−1

m∑

j=1

λ j (x)∇Fj (x) (11)

and
λ(x) ∈ �m, (12)

where �m represents the m-dimensional simplex defined as:

�m := {λ ∈ R
m |

m∑

j=1

λ j = 1, λ � 0}.

Now, by summing (10) over j = 1, . . . ,m and using (11)–(12), we obtain

θ(x) =
⎡

⎣
m∑

j=1

λ j∇Fj (x)

⎤

⎦


d(x) + 1

2
d(x)


⎡

⎣
m∑

j=1

λ j (x)Bj

⎤

⎦ d(x)

= −d(x)

⎡

⎣
m∑

j=1

λ j (x)Bj

⎤

⎦ d(x) + 1

2
d(x)


⎡

⎣
m∑

j=1

λ j (x)Bj

⎤

⎦ d(x)

= −1

2
d(x)


⎡

⎣
m∑

j=1

λ j (x)Bj

⎤

⎦ d(x). (13)

Lemma 2.2 Let d : Rn → R
n and θ : Rn → R given by (5) and (6), respectively.

Assume that B j � 0 for all j = 1, . . . ,m. Then, we have:

(i) x is Pareto critical if and only if d(x) = 0 and θ(x) = 0;
(ii) if x is not Pareto critical, then d(x) �= 0 andD(x, d(x)) < θ(x) < 0 (in particular,

d(x) is a descent direction for F at x).

Proof See [22, Lemma 3.2] and [44, Lemma 2]. ��
As previously mentioned, if Bj = In for all j = 1, . . . ,m, the solution of (4)

corresponds to the steepest descent direction, denoted by dSD(x):

dSD(x):=argmin
d∈Rn

max
j=1,...,m

∇Fj (x)

d + 1

2
‖d‖2. (14)

123



724 L. F. Prudente, D. R. Souza

Taking the above discussion into account, we can observe that there exists

λSD(x) ∈ �m (15)

such that

dSD(x) = −
m∑

j=1

λSD
j (x)∇Fj (x). (16)

Next, we will review some useful properties related to dSD(·).
Lemma 2.3 Let dSD : Rn → R

n be given by (14). Then:

(i) x is Pareto critical if and only if dSD(x) = 0;
(ii) if x is not Pareto critical, then we have dSD(x) �= 0 and D(x, dSD(x)) <

−(1/2)‖dSD(x)‖2 < 0 (in particular, dSD(x) is a descent direction for F at x);
(iii) the mapping dSD(·) is continuous;
(iv) for any x ∈ R

n, −dSD(x) is the minimal norm element of the set

{u ∈ R
n | u =

m∑

j=1

λ j∇Fj (x), λ ∈ �m},

i.e., in the convex hull of {∇F1(x), . . . ,∇Fm(x)};
(v) if ∇Fj , j = 1, . . . ,m, are L-Lipschitz continuous on a nonempty set U ⊂ R

n,
i.e.,

‖∇Fj (x) − ∇Fj (y)‖ ≤ L‖x − y‖, ∀x, y ∈ U , ∀ j = 1, . . . ,m,

then the mapping x �→ ‖dSD(x)‖ is also L-Lipschitz continuous on U.

Proof For items (i), (ii), and (iii), see [32, Lemma 3.3]. For items (iv) and (v), see [50,
Corollary 2.3] and [50, Theorem 3.1], respectively. ��

We end this section by presenting an auxiliary result.

Lemma 2.4 The following statements are true.

(i) The function h(t) := 1− t + ln(t) is nonpositive for all t > 0.
(ii) For any t̄ < 1, we have ln(1− t̄) ≥ −t̄/(1− t̄).

Proof For item (i), see [43, Exercise 6.8]. For item (ii), consider t̄ < 1. By applying
item (i) with t = 1/(1− t̄), we obtain

0 ≥ h
( 1

1− t̄

)
= 1− 1

1− t̄
+ ln

( 1

1− t̄

)
= − t̄

1− t̄
− ln(1− t̄).

��
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3 The algorithm and its global convergence

In this section, we define the main algorithm employed in this paper and study its
global convergence, with a particular focus on nonconvex multiobjective optimization
problems. Let us suppose that the following usual assumptions are satisfied.

Assumption 3.1 (i) F is continuously differentiable.
(ii) The level set L := {x ∈ R

n | F(x) � F(x0)} is bounded, where x0 ∈ R
n is

the given starting point.
(iii) There exists an open setN containingL such that∇Fj is L-Lipschitz continuous

on N for all j = 1, . . . ,m, i.e.,

‖∇Fj (x) − ∇Fj (y)‖ ≤ L‖x − y‖, ∀x, y ∈ N , ∀ j = 1, . . . ,m.

The algorithm is formally described as follows.

Algorithm 1 A BFGS-type algorithm for nonconvex problems

Let ρ ∈ (0, 1/2), σ ∈ (ρ, 1), 0 < ϑ ≤ ϑ̄ , x0 ∈ R
n , and B0

j � 0 for all j = 1, . . . ,m be given. Initialize
k ← 0.

Step 1. Compute the search direction
Compute dk :=d(xk ) as in (5).

Step 2. Stopping criterion
If xk is Pareto critical, then STOP.

Step 3. Line search procedure
Compute a step size αk > 0 (trying first αk = 1) such that

Fj (x
k + αkd

k ) ≤ Fj (x
k ) + ραkD(xk , dk ), ∀ j = 1, . . . ,m, (17)

D(xk + αkd
k , dk ) ≥ σD(xk , dk ), (18)

and set xk+1:=xk + αkd
k .

Step 4. Prepare the next iteration
Compute

ηkj =
(ykj )


sk

‖sk‖2 , ∀ j = 1, . . . ,m, (19)

where sk :=xk+1− xk and ykj :=∇Fj (x
k+1)−∇Fj (x

k ). Choose μk ∈ �m and ϑk ∈ (ϑ, ϑ̄), and
define

rkj := max{−ηkj , 0} + ϑk‖
m∑

i=1

μk
i ∇Fi (x

k )‖, ∀ j = 1, . . . ,m, (20)

and
γ k
j :=ykj + rkj s

k , ∀ j = 1, . . . ,m. (21)

Step 5. Update the BFGS-type matrices
Define

Bk+1
j :=Bk

j −
Bk
j s

k (sk )
Bk
j

(sk )
Bk
j s

k
+

γ k
j (γ

k
j )




(γ k
j )


sk
, ∀ j = 1, . . . ,m. (22)

Set k ← k + 1 and go to Step 1.
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Some comments are in order. First, by expressing the search direction subproblem
(4) as the convex quadratic optimization problem (7), we can apply well-established
techniques and solvers to find its solution at Step 1. Second, some practical stopping
criteria can be considered at Step 2. It is usual to use the gap function θ(xk) in
(6) or the norm of dSD(xk) in (14) to measure criticality, see Lemmas 2.2 and 2.3,
respectively. Third, at Step3, we require that αk satisfies (17)–(18), which corresponds
to the multiobjective standard Wolfe conditions originally introduced in [37]. Under
Assumption 3.1(i)–(ii), given dk ∈ R

n a descent direction for F at xk , it is possible
to show that there are intervals of positive step sizes satisfying (17)–(18), see [37,
Proposition 3.2]. As we will see, under suitable assumptions, the unit step size αk = 1
is eventually accepted, which is essential to obtain fast convergence. Furthermore, an
algorithm to calculate Wolfe step sizes for vector-valued problems was proposed in
[38]. Fourth, the usual BFGS scheme for Fj consists of the update formula given in
(22) with ykj in place of γ

k
j . In this case, the product (y

k
j )


sk in the denominator of the
third term on the right-hand side of (22) can be nonpositive for some j ∈ {1, . . . ,m},
evenwhen the step size satisfies theWolfe conditions (17)–(18), see [46, Example 3.3].
This implies that update scheme (with ykj in place of γ k

j ) may fail to preserve positive

definiteness of Bk
j . Fifth, note that B

k+1
j sk = ykj + rkj s

k for each j = 1, . . . ,m. Thus,

if rkj is small, this relation can be seen as an approximation of the well-known secant

equation Bk+1
j sk = ykj for Fj , see [35].

Theorem 3.1 Algorithm 1 is well-defined.

Proof The proof is by induction. We start by assuming that Bk
j � 0 for all j =

1, . . . ,m, which is trivially true for k = 0. This makes subproblem (5) in Step 1
solvable. If xk is Pareto critical, Algorithm 1 stops at Step 2, thereby concluding the
proof. Otherwise, Lemma 2.2(ii) implies that dk is a descent direction of F at xk .
Thus, taking into account Assumption 3.1(i)–(ii), there exist intervals of positive step
sizes satisfying conditions (17)–(18), as shown in [37, Proposition 3.2]. As a result,
xk+1 can be properly defined in Step 3. To complete the proof, let us show that Bk+1

j

remains positive definite for all j = 1, . . . ,m. By the definitions of γ k
j and ηkj in (21)

and (19), respectively, we have

(γ k
j )


sk = (ykj )

sk + rkj ‖sk‖2 =

(
(ykj )


sk

‖sk‖2 + rkj

)
‖sk‖2

= (ηkj + rkj )‖sk‖2, ∀ j = 1, . . . ,m.

Therefore, by the definition of rkj in (20), Lemma 2.3(iv), and Lemma 2.3(ii), it follows
that

(γ k
j )


sk ≥ ϑk‖
m∑

i=1

μk
i ∇Fi (x

k)‖‖sk‖2 ≥ ϑ‖dSD(xk)‖‖sk‖2 > 0, ∀ j = 1, . . . ,m.

(23)
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Thus, the updating formulas (22) are well-defined. Now, for each j ∈ {1, . . . ,m} and
any nonzero vector z, we have

z
Bk+1
j z = ‖z‖2

Bk
j
−

〈z, sk〉2
Bk
j

‖sk‖2
Bk
j

+ (z
γ k
j )

2

(γ k
j )


sk
≥ (z
γ k

j )
2

(γ k
j )


sk
≥ 0, (24)

where the first inequality is a direct consequence of the Cauchy-Schwarz inequal-
ity, which gives 〈z, sk〉2

Bk
j

≤ ‖z‖2
Bk
j
‖sk‖2

Bk
j
. Finally, assume by contradiction that

z
Bk+1
j z = 0. In this case, it follows from (24) that

z
γ k
j = 0 and ‖z‖2

Bk
j
−

〈z, sk〉2
Bk
j

‖sk‖2
Bk
j

= 0. (25)

The second equation in (25) implies that |〈z, sk〉Bk
j
| = ‖z‖Bk

j
‖sk‖Bk

j
, so there exists

τ ∈ R such that z = τ sk . Combining this with the first equation in (25), we obtain
τ(γ k

j )

sk = 0. Taking into account (23), we can deduce that τ = 0, which contradicts

the fact that z is a nonzero vector. ��

Hereafter, we assume that xk is not Pareto critical for all k ≥ 0. Thus, Algo-
rithm 1 generates an infinite sequence of iterates. The following result establishes that
the sequence {xk, dk} satisfies a Zoutendijk-type condition, which will be crucial in
our analysis. Its proof is based on [37, Proposition 3.3] and will be provided in the
Appendix.

Proposition 3.2 Consider the sequence {xk, dk} generated by Algorithm 1. Then,

∑

k≥0

D(xk, dk)2

‖dk‖2 < ∞. (26)

Our analysis also exploits insights developed by Byrd and Nocedal [7] in their
analysis of the classical BFGSmethod for single-valued optimization (i.e., form = 1).
They provided sufficient conditions that ensure that the angle between sk and Bk

1 s
k

(which coincides with the angle between dk and−∇F1(xk) in the scalar case) remains
far from0 for an arbitrary fraction of the iterates. Recently, this result was studied in the
multiobjective setting in [46]. Under some mild conditions, similar to the approach
taken in [46], we establish that the angles between sk and Bk

j s
k remain far from

0, simultaneously for all objectives, for an arbitrary fraction p of the iterates. The
proof of this result can be constructed as a combination of [7, Theorem 2.1] and [46,
Lemma 4.2] and will therefore be postponed to the Appendix.
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Proposition 3.3 Consider the sequence {xk} generated by Algorithm 1. Let βk
j be the

angle between the vectors sk and Bk
j s

k , for all k ≥ 0 and j = 1, . . . ,m. Assume that

(γ k
j )


sk

‖sk‖2 ≥ C1 and
‖γ k

j ‖2
(γ k

j )

sk

≤ C2, ∀ j = 1, . . . ,m, ∀k ≥ 0, (27)

for some positive constants C1,C2 > 0. Then, given p ∈ (0, 1), there exists a constant
δ > 0 such that, for all k ≥ 1, the relation

cosβ�
j ≥ δ, ∀ j = 1, . . . ,m,

holds for at least �p(k+ 1)� values of � ∈ {0, 1, . . . , k}, where �·� denotes the ceiling
function.

The following technical result forms the basis for applying Proposition 3.3.

Lemma 3.4 Let {xk} be a sequence generated by Algorithm 1. Then, for each j =
1,…,m and all k ≥ 0, there exist positive constants c1, c2 > 0 such that:

(i)
(γ k

j )

sk

‖sk‖2 ≥ c1‖dSD(xk)‖;

(ii)
‖γ k

j ‖2
(γ k

j )

sk

≤ c2
‖dSD(xk)‖ .

Proof Let k ≥ 0 and j ∈ {1, . . . ,m} be given. As in (23), we have

(γ k
j )


sk

‖sk‖2 ≥ ϑ‖dSD(xk)‖, ∀ j = 1, . . . ,m.

Thus, taking c1 := ϑ , we conclude item (i). Now consider item (ii). By the Cauchy–
Schwarz inequality and Assumption 3.1(iii), it follows that

|ηkj | =
|(ykj )
sk |
‖sk‖2 ≤ ‖ykj ‖

‖sk‖ = ‖∇Fj (xk+1) −∇Fj (xk)‖
‖xk+1 − xk‖ ≤ L.

On the other hand, since {xk} ⊂ L and μk ∈ �m , by Assumption 3.1(i)–(ii), there
exists a constant c̄ > 0, independent of k, such that ‖∑m

i=1 μk
i ∇Fi (xk)‖ ≤ c̄. The

definition of rkj together with the last two inequalities yields

rkj ≤ |ηkj | + ϑk‖
m∑

i=1

μk
i ∇Fi (x

k)‖ ≤ L + ϑ̄ c̄,

and hence

‖γ k
j ‖ ≤ ‖ykj ‖ + rkj ‖sk‖ =

(‖ykj ‖
‖sk‖ + rkj

)
‖sk‖ ≤ (2L + ϑ̄ c̄)‖sk‖.
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By squaring the latter inequality and using item(i), we obtain

‖γ k
j ‖2

(γ k
j )


sk
≤ (2L + ϑ̄ c̄)2

‖sk‖2
(γ k

j )

sk

≤ (2L + ϑ̄ c̄)2

c1‖dSD(xk)‖ .

Thus, taking c2 := (2L + ϑ̄ c̄)2/c1, we conclude the proof. ��
From now on, let λk := λ(xk) ∈ R

m be the Lagrange multiplier associated with xk

satisfying (11)–(12).We are now able to prove the main result of this section.We show
that Algorithm 1 finds a Pareto critical point of F , without imposing any convexity
assumptions.

Theorem 3.5 Let {xk} be a sequence generated by Algorithm 1. Then

lim inf
k→∞ ‖dSD(xk)‖ = 0. (28)

As a consequence, {xk} has a limit point that is Pareto critical.

Proof Assume by contradiction that there is a constant ε > 0 such that

‖dSD(xk)‖ ≥ ε, ∀k ≥ 0. (29)

From Lemma 3.4, taking C1 := c1ε and C2 := c2/ε, we have

(γ k
j )


sk

‖sk‖2 ≥ C1 and
‖γ k

j ‖2
(γ k

j )

sk

≤ C2, ∀ j = 1, . . . ,m, ∀k ≥ 0,

showing that the assumptions of Proposition 3.3 are satisfied. Thus, there exist a
constant δ > 0 and K⊂∞N such that

cosβk
j ≥ δ, ∀ j = 1, . . . ,m, ∀k ∈ K.

Hence, by the definitions of cosβk
j and sk , we have, for all j = 1, . . . ,m,

δ ≤ cosβk
j = (sk)
Bk

j s
k

‖sk‖‖Bk
j s

k‖ = (dk)
Bk
j d

k

‖dk‖‖Bk
j d

k‖ , ∀k ∈ K,

which implies

(dk)
Bk
j d

k ≥ δ‖dk‖‖Bk
j d

k‖, ∀k ∈ K.

Therefore, from Lemma 2.2(ii) and (13), it follows that

−D(xk, dk) > −θ(xk) = 1

2

m∑

j=1

λkj (d
k)
Bk

j d
k ≥ δ

2
‖dk‖

m∑

j=1

λkj‖Bk
j d

k‖, ∀k ∈ K.
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Thus, from the triangle inequality, (11), (12), Lemma 2.3(iv), and (29), we obtain

−D(xk, dk)

‖dk‖ ≥ δ

2
‖

m∑

j=1

λkj B
k
j d

k‖ = δ

2
‖

m∑

j=1

λkj∇Fj (x
k)‖

≥ δ

2
‖dSD(xk)‖ ≥ δε

2
, ∀k ∈ K.

Hence,

∑

k≥0

D(xk, dk)2

‖dk‖2 ≥
∑

k∈K

D(xk, dk)2

‖dk‖2 ≥
∑

k∈K

δ2ε2

4
= ∞,

which contradicts the Zoutendijk condition (26). Therefore, we conclude that (28)
holds.

Now, (28) implies that there exists K1 ⊂∞N such that limk∈K1 ‖dSD(xk)‖ = 0. On

the other hand, given that {xk} ⊂ L and L is compact, we can establish the existence
of K2 ⊆ K1 and x∗ ∈ L such that limk∈K2 x

k = x∗. Thus, from Lemma 2.3(iii), we
deduce that dSD(x∗) = 0. Consequently, based on Lemma 2.3(i), we conclude that x∗
is Pareto critical. ��

Even though theprimary focus of this article is onnonconvexproblems,we conclude
this section by establishing full convergence of the sequence generated byAlgorithm 1
in the case of strict convexity of F . Note that, under Assumption 3.1(i)–(ii), the exis-
tence of at least one Pareto optimal point is assured in this particular case.

Theorem 3.6 Let {xk} be a sequence generated by Algorithm 1. If F is strictly convex,
then {xk} converges to a Pareto optimal point of F.

Proof According toTheorem3.5 andTheorem2.1(iii), there exists a limit point x∗ ∈ L
of {xk} that is Pareto optimal. Let K1 ⊂∞N be such that limk∈K1 x

k = x∗. To show the

convergence of {xk} to x∗, let us suppose by contradiction that there exist x̄ ∈ L, where
x̄ �= x∗, and K2 ⊂∞N such that limk∈K2 x

k = x̄ . We first claim that F(x̄) �= F(x∗). In
fact, if F(x̄) = F(x∗), based on (3), for all t ∈ (0, 1), we would have

F((1− t)x∗ + t x̄) ≺ (1− t)F(x∗) + t F(x̄) = F(x∗),

which contradicts the fact that x∗ is a Pareto optimal point. Hence, F(x̄) �= F(x∗), as
we claimed. Now, since x∗ is Pareto optimal, there exists j∗ ∈ {1, . . . ,m} such that
Fj∗(x

∗) < Fj∗(x̄). Therefore, considering that limk∈K1 x
k = x∗ and limk∈K2 x

k = x̄ ,
we can choose k1 ∈ K1 and k2 ∈ K2 such that k1 < k2 and Fj∗(x

k1) < Fj∗(x
k2). This

contradicts (17) which implies, in particular, that {Fj∗(x
k)} is decreasing. Thus, we

can conclude that limk→∞ xk = x∗, completing the proof. ��
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4 Local convergence analysis

In this section, we analyze the local convergence properties of Algorithm 1. The
findings presented here are applicable to both convex and nonconvex problems. We
will assume that the sequence {xk} converges to a local Pareto optimal point x∗ and
show, under appropriate assumptions, that the convergence rate is superlinear.

4.1 Superlinear rate of convergence

Throughout this section, we make the following assumptions.

Assumption 4.1 (i) F is twice continuously differentiable.
(ii) The sequence {xk} generated by Algorithm 1 converges to a local Pareto optimal

point x∗ where ∇2Fj (x∗) is positive definite for all j = 1, . . . ,m.
(iii) For each j = 1, . . . ,m, ∇2Fj (x) is Hölder continuous at x∗, i.e., there exist

constants ν ∈ (0, 1] and M > 0 such that

‖∇2Fj (x) −∇2Fj (x
∗)‖ ≤ M‖x − x∗‖ν, ∀ j = 1, . . . ,m, (30)

for all x in a neighborhood of x∗.

Under Assumption 4.1(ii), there exist a neighborhoodU of x∗ and constants L > 0
and L > 0 such that

L‖z‖2 ≤ z
∇2Fj (x)z ≤ L‖z‖2, ∀ j = 1, . . . ,m, (31)

for all z ∈ R
n and x ∈ U . In particular, (31) implies that Fj is strongly convex and

has Lipschitz continuous gradients on U . Note that constant L in (31) aligns with the
L defined in Assumption 3.1(iii) as part of the L-Lipschitz continuity condition for
∇Fj , maintaining consistent notation for the Lipschitz constant across our analysis.
Throughout this section, we assume, without loss of generality, that {xk} ⊂ U and
that Assumption 4.1(iii) holds in U , i.e., (30) and (31) hold at xk for all k ≥ 0.

We also introduce the following additional assumption about {rkj }, which will be
considered only when explicitly mentioned. In Sect. 4.2, we will explore practical
choices for {rkj } that satisfy such an assumption.

Assumption 4.2 For each j = 1, . . . ,m, {rkj } satisfies
∑

k≥0 r
k
j < ∞.

The following result, which is related to the linear convergence of the sequence
{xk} and is based on [46, Theorem 4.6], has its proof in the Appendix.

Proposition 4.1 Suppose that Assumption 4.1(i)–(ii) holds. Let {xk} be a sequence
generated by Algorithm 1. Then, for all ν > 0, we have

∑

k≥0

‖xk − x∗‖ν < ∞. (32)
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As usual in quasi-Newton methods, our analysis relies on the Dennis–Moré [17]
characterization of superlinear convergence. To accomplish this, we use a set of tools
developed in [7] (see also [45]). For every k ≥ 0, we define the average Hessian as:

Ḡk
j :=

∫ 1

0
∇2Fj (x

k + τ sk)dτ, ∀ j = 1, . . . ,m.

This leads to the relationship:

Ḡk
j s

k = ykj , ∀ j = 1, . . . ,m. (33)

We also introduce, for each j = 1, . . . ,m and k ≥ 0, the following quantities:

s̃kj := ∇2Fj (x
∗)1/2sk, ỹkj := ∇2Fj (x

∗)−1/2ykj , γ̃ k
j := ∇2Fj (x

∗)−1/2γ k
j ,

and

B̃k
j := ∇2Fj (x

∗)−1/2Bk
j∇2Fj (x

∗)−1/2.

Note that

B̃k+1
j = B̃k

j −
B̃k
j s̃

k
j (s̃

k
j )


 B̃k
j

(s̃kj )

 B̃k

j s̃
k
j

+ γ̃ k
j (γ̃

k
j )




(γ̃ k
j )


s̃kj
, ∀ j = 1, . . . ,m,

and

(γ̃ k
j )


s̃kj
‖sk‖2 = (γ k

j )

sk

‖sk‖2 = (ykj )

sk

‖sk‖2 + rkj = (sk)
Ḡk
j s

k

‖sk‖2 + rkj

≥ L + rkj ≥ L, ∀ j = 1, . . . ,m, (34)

where the first inequality follows from the left hand side of (31). Considering that
B̃k
j � 0 and, based on (34), it follows that (γ̃ k

j )

s̃kj > 0, we can follow the same

arguments as in the proof of Theorem 3.1 to show that B̃k+1
j � 0 for all j = 1, . . . ,m

and all k ≥ 0. In connection with Proposition 3.3 and Lemma 3.4, we additionally
define the following quantities:

ãkj :=
(γ̃ k

j )

s̃kj

‖s̃kj ‖2
, b̃kj :=

‖γ̃ k
j ‖2

(γ̃ k
j )


s̃kj
, cos β̃k

j := (s̃kj )

 B̃k

j s̃
k
j

‖s̃kj ‖‖B̃k
j s̃

k
j ‖

, and q̃kj := (s̃kj )

 B̃k

j s̃
k
j

‖s̃kj ‖2
.

Another useful tool combines the trace and the determinant of a given positive
definite matrix B, through the following function:

ψ(B) := trace(B) − ln(det(B)). (35)
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Given that, for all j = 1, . . . ,m,

trace(B̃k+1
j ) = trace(B̃k

j ) −
‖B̃k

j s̃
k
j ‖2

(s̃kj )

 B̃k

j s̃
k
j

+ ‖γ̃ k
j ‖2

(γ̃ k
j )


s̃kj
= trace(B̃k

j ) −
q̃kj

cos2 β̃k
j

+ b̃kj

and

det(B̃k+1
j ) = det(B̃k

j )
(γ̃ k

j )

s̃kj

(s̃kj )

 B̃k

j s̃
k
j

= det(B̃k
j )
ãkj
q̃kj

,

we can perform some algebraic manipulations to obtain:

ψ(B̃k+1
j ) = ψ(B̃k

j ) +
(
b̃kj − ln(ãkj ) − 1

)
+
[
1− q̃kj

cos2 β̃k
j

+ ln

( q̃kj

cos2 β̃k
j

)]

+ ln(cos2 β̃k
j ). (36)

We are now ready to prove the central result of the superlinear convergence analysis:
We establish that the Dennis–Moré condition holds individually for each objective
function Fj . A similar result in the scalar case was given in [35, Theorem 3.8].

Theorem 4.2 Suppose that Assumptions 4.1 and 4.2 hold. Let {xk} be a sequence
generated by Algorithm 1. Then, for each j = 1, . . . ,m, we have

lim
k→∞

(sk)
Bk
j s

k

(sk)
∇2Fj (x∗)sk
= 1, (37)

and

lim
k→∞

‖(Bk
j −∇2Fj (x∗))dk‖

‖dk‖ = 0. (38)

Proof Let j ∈ {1, . . . ,m} be an arbitrary index. From (33), we obtain

ykj −∇2Fj (x
∗)sk = [Ḡk

j − ∇2Fj (x
∗)]sk,

and hence

ỹkj − s̃kj = ∇2Fj (x
∗)−1/2[Ḡk

j − ∇2Fj (x
∗)]∇2Fj (x

∗)−1/2s̃kj ,

for all k ≥ 0. Therefore, by the definition of Ḡk
j and (30), we obtain

‖ỹkj − s̃kj ‖ ≤ ‖∇2Fj (x
∗)−1/2‖2‖s̃kj ‖‖Ḡk

j − ∇2Fj (x
∗)‖

≤ M‖∇2Fj (x
∗)−1/2‖2‖s̃kj ‖

∫ 1

0
‖xk + τ sk − x∗‖νdτ
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≤c̄ jεk‖s̃kj ‖, ∀k ≥ 0, (39)

where c̄ j := M‖∇2Fj (x∗)−1/2‖2 and εk := max{‖xk+1 − x∗‖ν, ‖xk − x∗‖ν}. Now,
since |‖ỹkj ‖ − ‖s̃kj ‖| ≤ ‖ỹkj − s̃kj ‖, it follows from (39) that

(1− c̄ jεk)‖s̃kj ‖ ≤ ‖ỹkj ‖ ≤ (1+ c̄ jεk)‖s̃kj ‖. (40)

Without loss of generality, let us assume that 1− c̄ jεk > 0, for all k ≥ 0. Therefore,
the left hand side of (40) together with (39) yields

(1− c̄ jεk)
2‖s̃kj ‖2 − 2(ỹkj )


s̃kj + ‖s̃kj ‖2 ≤ ‖ỹkj ‖2 − 2(ỹkj )

s̃kj + ‖s̃kj ‖2 ≤ c̄2jε

2
k‖s̃kj ‖2,

so that

2(ỹkj )

s̃kj ≥ (1− c̄ jεk)

2‖s̃kj ‖2 + ‖s̃kj ‖2 − c̄2jε
2
k‖s̃kj ‖2 = 2(1− c̄ jεk)‖s̃kj ‖2. (41)

By the definition of ãkj , we have

ãkj =
(ỹkj + rkj∇2Fj (x∗)−1s̃kj )


s̃kj
‖s̃kj ‖2

= (ỹkj )

s̃kj

‖s̃kj ‖2
+ rkj

(s̃kj )

∇2Fj (x∗)−1s̃kj

‖s̃kj ‖2
.

Thus, by (31) and (41), we obtain

ãkj ≥ 1− c̄ jεk + rkj
L

≥ 1− c̄ jεk . (42)

From the definition of b̃kj , (34), the right hand side of (40), and (42), by performing
some manipulations, we also obtain

b̃kj = ‖ỹkj ‖2
ãkj‖s̃kj ‖2

+ 2rkj
(ỹkj )


∇2Fj (x∗)−1s̃kj
(γ̃ k

j )

s̃kj

+ (rkj )
2
(s̃kj )


∇2Fj (x∗)−2s̃kj
(γ̃ k

j )

s̃kj

≤ (1+ c̄ jεk)2

1− c̄ jεk
+ 2rkj

‖∇2Fj (x∗)−1/2‖‖ykj ‖‖∇2Fj (x∗)−1‖‖∇2Fj (x∗)1/2‖‖sk‖
L‖sk‖2
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+ (rkj )
2
‖∇2Fj (x∗)−2‖‖s̃kj ‖2

L‖sk‖2

≤ 1+ 3c̄ j + c̄2jεk

1− c̄ jεk
εk + 2LC1

L
rkj +

C2

L
(rkj )

2, (43)

where C1 := ‖∇2Fj (x∗)−1/2‖‖∇2Fj (x∗)−1‖‖∇2Fj (x∗)1/2‖ and C2 := ‖∇2

Fj (x∗)−2‖‖∇2Fj (x∗)‖. Assumptions 4.1(ii) and 4.2 imply that εk → 0 and rkj → 0,
respectively. Thus, by using (42) and (43), for all sufficiently large k, we have
c̄ jεk < 1/2, (rkj )

2 ≤ rkj , and there exists a constant C > max{3c̄ j , (2LC1 + C2)/L}
such that

ln(ãkj ) ≥ ln(1− c̄ jεk) ≥ − c̄ jεk
1− c̄ jεk

≥ −2c̄ jεk > −2Cεk,

where the second inequality follows from Lemma 2.4 (ii) (with t̄ = c̄ jεk), and

b̃kj ≤ 1+ Cεk + Crkj .

Let k0 ∈ N be such that the latter two inequalities hold for all k ≥ k0. Therefore, by
(36), we obtain

ln
( 1

cos2 β̃k
j

)
−
[
1− q̃kj

cos2 β̃k
j

+ ln

( q̃kj

cos2 β̃k
j

)]
<ψ(B̃k

j ) − ψ(B̃k+1
j ) + 3Cεk + Crkj ,

for all k ≥ k0. By summing this expression andmaking use of (32) andAssumption 4.2,
we have

∑

�≥k0

{
ln
( 1

cos2 β̃�
j

)
−
[
1− q̃�

j

cos2 β̃�
j

+ ln

( q̃�
j

cos2 β̃�
j

)]}

≤ ψ(B̃k0
j ) + 3C

∑

�≥k0

εk + C
∑

�≥k0

r�
j < ∞.

Since ln(1/ cos2 β̃�
j ) > 0 for all � ≥ k0 and, by Lemma 2.4 (i), the term in the square

brackets is nonpositive, we have

lim
�→∞ ln

( 1

cos2 β̃�
j

)
= 0 and lim

�→∞

[
1− q̃�

j

cos2 β̃�
j

+ ln

( q̃�
j

cos2 β̃�
j

)]
= 0,

and hence
lim

�→∞ cos2 β̃�
j = 1 and lim

�→∞ q̃�
j = 1. (44)
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Note that the second limit in (44) is equivalent to (37). Now, it follows that

lim
k→∞

‖∇2Fj (x∗)−1/2(Bk
j −∇2Fj (x∗))sk‖2

‖∇2Fj (x∗)1/2sk‖2

= lim
k→∞

‖(B̃k
j − In)s̃kj ‖2
‖s̃kj ‖2

= lim
k→∞

‖B̃k
j s̃

k
j ‖2 − 2(s̃kj )


 B̃k
j s̃

k
j + ‖s̃kj ‖2

‖s̃kj ‖2

= lim
k→∞

[
(q̃kj )

2

cos2 β̃k
j

− 2q̃kj + 1

]
= 0,

where the last equality follows from (44). The above limit trivially implies (38), con-
cluding the proof. ��

Based on the Dennis–Moré characterization established in Theorem 4.2, we can
easily replicate the proofs presented in [46, Theorem 5.5] and [46, Theorem 5.7] to
show that unit step size eventually satisfies the Wolfe conditions (17)–(18) and the
rate of convergence is superlinear, as detailed in the Appendix. We formally state the
results as follows.

Theorem 4.3 Suppose that Assumptions 4.1 and 4.2 hold. Let {xk} be a sequence
generated by Algorithm 1. Then, the step size αk = 1 is admissible for all sufficiently
large k and {xk} converges to x∗ at a superlinear rate.

4.2 Suitable choices for rkj

Aswe have seen, Algorithm 1 is globally convergent regardless of the particular choice
of rkj . On the other hand, the superlinear convergence rate depends on whether rkj
satisfiesAssumption 4.2. Next, we explore suitable choices for themultiplierμk ∈ �m

in (20) to ensure that rkj satisfies the aforementioned assumption. In what follows, we

will assume that Assumption 4.1 holds. First note that, as in (34), we have ηkj =
(ykj )


sk/‖sk‖2 ≥ L > 0 and hence

rkj = max{−ηkj , 0} + ϑk‖
m∑

i=1

μk
i ∇Fi (x

k)‖

= ϑk‖
m∑

i=1

μk
i ∇Fi (x

k)‖, ∀ j = 1, . . . ,m, ∀k ≥ 0.

Choice 1: One natural choice is to set μk := λSD(xk) ∈ �m for all k ≥ 0, where
λSD(xk) is the steepest descent Lagrange multiplier associated with xk as in (16). In
this case, by Lemma 2.3(i) and Lemma 2.3(v), we have
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rkj = ϑk‖dSD(xk)‖ = ϑk(‖dSD(xk)‖ − ‖dSD(x∗)‖)
≤ ϑ̄L‖xk − x∗‖, ∀ j = 1, . . . ,m, ∀k ≥ 0.

By summing this expression and making use of (32), we conclude that rkj satisfies
Assumption 4.2 for all j = 1, . . . ,m. One potential drawback of this approach is the
need to compute the multipliers λSD(xk), which involves solving the subproblem in
(14).
Choice 2: Another natural choice is to setμk := λk ∈ �m for all k ≥ 0, where λk is the
Lagrange multiplier corresponding to the search direction dk , see (11). Since the sub-
problem in Step 2 is typically solved in the form of (7) using a primal-dual algorithm,
this approachdoes not require any additional computational cost. Let us assume that the
sequences {Bk

j } and {(Bk
j )

−1} are bounded for all j = 1, . . . ,m. In this case, using [28,

Lemma 6], there exists a constant δ > 0 such that ‖∑m
i=1 λki ∇Fi (xk)‖ ≤ δ‖dSD(xk)‖

for all k ≥ 0. Therefore, for all j = 1, . . . ,m and k ≥ 0, similarly to the previous
choice, we have

rkj = ϑk‖
m∑

i=1

λki ∇Fi (x
k)‖ ≤ δϑ̄‖dSD(xk)‖

= δϑ̄(‖dSD(xk)‖ − ‖dSD(x∗)‖) ≤ δϑ̄L‖xk − x∗‖,

and hence rkj satisfies Assumption 4.2 for all j = 1, . . . ,m.

5 Numerical experiments

In this section, we present some numerical experiments to evaluate the effectiveness
of the proposed scheme.We are particularly interested in verifying how the introduced
modifications affect the numerical performance of the method. Toward this goal, we
considered the following methods in our tests.

• Algorithm 1 (Global BFGS): our globally convergent algorithm with rkj chosen
according to Choice 2 (see Sect. 4.2) and ϑk = 0.1 for all k ≥ 0. It is worth noting
that preliminary numerical tests demonstrated the superior efficiency of Choice 2
over Choice 1.

• BFGS-Wolfe [46]: a BFGS algorithm in which the Hessian approximations are
updated, for each j = 1, . . . ,m, by

Bk+1
j :=Bk

j −
(ρk

j )
−1Bk

j s
k(sk)
Bk

j + [(sk)
Bk
j s

k]ykj (ykj )

[
(ρk

j )
−1 − (ykj )


sk
]2 + (ρk

j )
−1(sk)
Bk

j s
k

+
[
(ρk

j )
−1 − (ykj )


sk
] ykj (s

k)
Bk
j + Bk

j s
k(ykj )



[
(ρk

j )
−1 − (ykj )


sk
]2 + (ρk

j )
−1(sk)
Bk

j s
k
,
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where

ρk
j :=

{
1/

(
(ykj )


sk
)

, if (ykj )

sk > 0

1/
(D(xk+1, sk) −∇Fj (xk)
sk

)
, otherwise.

and the step sizes are calculated satisfying the Wolfe conditions (17)–(18). We
point out that this algorithm is well-defined for nonconvex problems, although it
is not possible to establish global convergence in this general case. Additionally,
in the case of scalar optimization (m = 1), it retrieves the classical scalar BFGS
algorithm.

• Cautious BFGS-Armijo [47]: a BFGS algorithm in which the Hessian approxima-
tions are updated, for each j = 1, . . . ,m, by

Bk+1
j :=

⎧
⎪⎨

⎪⎩
Bk
j −

Bk
j s

k(sk)
Bk
j

(sk)
Bk
j s

k
+ ykj (y

k
j )




(ykj )

sk

, if (ykj )

sk ≥ εmin{1, |θ(xk)|},

Bk
j , otherwise,

where ε > 0 is an algorithmic parameter and the step sizes are calculated satisfying
the Armijo-type condition given in (17). In our experiments, we set ε = 10−6.
This combination also leads to a globally convergent scheme, see [47].

We implemented the algorithms using Fortran 90. The search directions d(xk) (see
(5)) and optimal values θ(xk) (see (6)) were obtained by solving subproblem (7)
using the software Algencan [4]. To compute step sizes satisfying the Wolfe condi-
tions (17)–(18), we employed the algorithm proposed in [38]. This algorithm utilizes
quadratic/cubic polynomial interpolations of the objective functions, combining back-
tracking and extrapolation strategies, and is capable of finding step sizes in a finite
number of iterations. Interpolation techniques were also used to calculate step sizes
satisfying only the Armijo-type condition. We set ρ = 10−4, σ = 0.1, and initial-
ized B0

j as the identity matrix for all j = 1, . . . ,m. Convergence was reported when

|θ(xk)| ≤ 5 × eps1/2, where eps = 2−52 ≈ 2.22 × 10−16 represents the machine
precision. When this criterion is met, we consider the problem successfully solved.
The maximum number of allowed iterations was set to 2000. If this limit is reached,
it means an unsuccessful termination. Our codes are freely available at https://github.
com/lfprudente/GlobalBFGS.

The chosen set of test problems consists of both convex and nonconvex multiob-
jective problems commonly found in the literature and coincides with the one used
in [46]. Table 1 presents their main characteristics: The first column contains the
problem name, while the “n” and “m” columns provide the number of variables and
objectives, respectively. The column “Conv.” indicates whether the problem is con-
vex or not. For each problem, the starting points were chosen within a box defined
as {x ∈ R

n | � ≤ x ≤ u}, where the lower and upper bounds, denoted by � and
u ∈ R

n , are presented in the last two columns of Table 1. It is important to note that
the boxes specified in the table were used solely for defining starting points and were
not employed as constraints during the algorithmic processes. For detailed information
regarding the references and corresponding formulations of each problem, we refer
the reader to [46].
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Table 1 List of test problems

Problem n m Conv � u

AP1 2 3 Y (−10,−10) (10, 10)

AP2 1 2 Y −100 100

AP3 2 2 N (−100,−100) (100, 100)

AP4 3 3 Y (−10,−10,−10) (10, 10, 10)

BK1 2 2 Y (−5,−5) (10, 10)

DD1 5 2 N (−20, . . . ,−20) (20, . . . , 20)

DGO1 1 2 N −10 13

DGO2 1 2 Y −9 9

DTLZ1 7 3 N (0, . . . , 0) (1, . . . , 1)

DTLZ2 7 3 N (0, . . . , 0) (1, . . . , 1)

DTLZ3 7 3 N (0, . . . , 0) (1, . . . , 1)

DTLZ4 7 3 N (0, . . . , 0) (1, . . . , 1)

FA1 3 3 N (0.01, 0.01, 0.01) (1, 1, 1)

Far1 2 2 N (−1,−1) (1, 1)

FDS 5 3 Y (−2, . . . ,−2) (2, . . . , 2)

FF1 2 2 N (−1,−1) (1, 1)

Hil1 2 2 N (0, 0) (1, 1)

IKK1 2 3 Y (−50,−50) (50, 50)

IM1 2 2 N (1, 1) (4, 2)

JOS1 2 2 Y (−100, . . . ,−100) (100, . . . , 100)

JOS4 20 2 N (−100, . . . ,−100) (100, . . . , 100)

KW2 2 2 N (−3,−3) (3, 3)

LE1 2 2 N (1, 1) (10, 10)

Lov1 2 2 Y (−10,−10) (10, 10)

Lov2 2 2 N (−0.75,−0.75) (0.75, 0.75)

Lov3 2 2 N (−20,−20) (20, 20)

Lov4 2 2 N (−20,−20) (20, 20)

Lov5 3 2 N (−2,−2,−2) (2, 2, 2)

Lov6 6 2 N (0.1,−0.16, . . . ,−0.16) (0.425, 0.16, . . . , 0.16)

LTDZ 3 3 N (0, 0, 0) (1, 1, 1)

MGH9 3 15 N (−2,−2,−2) (2, 2, 2)

MGH16 4 5 N (−25,−5,−5,−1) (25, 5, 5, 1)

MGH26 4 4 N (−1,−1,−1− 1) (1, 1, 1, 1)

MGH33 10 10 Y (−1, . . . ,−1) (1, . . . , 1)

MHHM2 2 3 Y (0, 0) (1, 1)

MLF1 1 2 N 0 20

MLF2 2 2 N (−100,−100) (100, 100)

MMR1 2 2 N (0.1, 0) (1, 1)

MMR2 2 2 N (0, 0) (1, 1)

MMR3 2 2 N (−π,−π) (π, π)
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Table 1 continued

Problem n m Conv � u

MMR4 3 2 N (0, 0, 0) (4, 4, 4)

MOP2 2 2 N (−4,−4) (4, 4)

MOP3 2 2 N (−π,−π) (π, π)

MOP5 2 3 N (−30,−30) (30, 30)

MOP6 2 2 N (0, 0) (1, 1)

MOP7 2 3 Y (−400,−400) (400, 400)

PNR 2 2 Y (−2,−2) (2, 2)

QV1 10 2 N (0.01, . . . , 0.01) (5, . . . , 5)

SD 4 2 Y (1,
√
2,

√
2, 1) (3, 3, 3, 3)

SK1 1 2 N −100 100

SK2 4 2 N (−10,−10,−10,−10) (10, 10, 10, 10)

SLCDT1 2 2 N (−1.5,−1.5) (1.5, 1.5)

SLCDT2 10 3 Y (−1, . . . ,−1) (1, . . . , 1)

SP1 2 2 Y (−100,−100) (100, 100)

SSFYY2 1 2 N −100 100

TKLY1 4 2 N (0.1, 0, 0, 0) (1, 1, 1, 1)

Toi4 4 2 Y (−2,−2,−2,−2) (5, 5, 5, 5)

Toi8 3 3 Y (−1,−1,−1,−1) (1, 1, 1, 1)

Toi9 4 4 N (−1,−1,−1,−1) (1, 1, 1, 1)

Toi10 4 3 N (−2,−2,−2,−2) (2, 2, 2, 2)

VU1 2 2 N (−3,−3) (3, 3)

VU2 2 2 Y (−3,−3) (3, 3)

ZDT1 30 2 Y (0, . . . , 0) (1, . . . , 1)

ZDT2 30 2 N (0.01, . . . , 0.01) (1, . . . , 1)

ZDT3 30 2 N (0.01, . . . , 0.01) (1, . . . , 1)

ZDT4 30 2 N (0.01,−5, . . . ,−5) (1, 5, . . . , 5)

ZDT6 10 2 N (0.01, . . . , 0.01) (1, . . . , 1)

ZLT1 10 5 Y (−1000, . . . ,−1000) (1000, . . . , 1000)

In multiobjective optimization, the primary objective is to estimate the Pareto fron-
tier of a given problem. A commonly used strategy is to execute the algorithm from
multiple distinct starting points and collect the Pareto optimal points found. Thus,
each problem listed in Table 1 was addressed by running all algorithms from 300 ran-
domly generated starting points within their respective boxes. In this first stage, each
problem/starting point was considered an independent instance and a run was consid-
ered successful if an approximate critical point was found, regardless of the objective
functions values. Figure1 presents the comparison of the algorithms in terms of CPU
time using a performance profile [18]. As can be seen, Algorithm 1 and the BFGS-
Wolfe algorithmexhibited virtually identical performance, outperforming theCautious
BFGS-Armijo algorithm. All methods proved to be robust, successfully solving more
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Fig. 1 Performance profiles
considering 300 starting points
for each test problem using the
CPU time as performance
measurement
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Fig. 2 Metric performance profiles: a Purity; b �-Spread; c �-Spread

than 98% of the problem instances. It is worth noting that although the BFGS-Wolfe
algorithm enjoys (theoretical) global convergence only under convexity assumptions,
it also performs exceptionally well for nonconvex problems, which is consistent with
observations in the scalar case.

In the following, we evaluate the algorithms based on their ability to properly
generate Pareto frontiers. To assess this, we employ the widely recognized Purity
and (� and �) Spread metrics. In summary, the Purity metric measures the solver’s
ability to identify points on the Pareto frontier, while the Spread metric evaluates the
distribution quality of the obtained Pareto frontier. For a detailed explanation of these
metrics and their application together with performance profiles, we refer the reader
to [14]. It is important to note that, at this stage, data referring to all starting points are
combined for each problem, taking into account the objective function values found.
The results in Fig. 2 indicate that Algorithm 1 performed slightly better in terms of the
Purity and�-Spread metrics, with no significant difference observed for the�-Spread
metric among the three algorithms.

The numerical results allow us to conclude that themodificationsmade to the BFGS
method to ensure global convergence for nonconvex problems do not compromise its
practical performance.

6 Final remarks

Based on the work of Li and Fukushima [35], we presented a modified BFGS scheme
that achieves global convergence without relying on convexity assumptions for the
objective function F . The global convergence analysis depends only on the require-
ment of F having continuous Lipschitz gradients. Furthermore, we showed that by
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742 L. F. Prudente, D. R. Souza

appropriately selecting rkj to satisfy Assumption 4.2 and under suitable conditions, the
rate of convergence becomes superlinear. We also discussed some practical choices
for rkj . The introduced modifications preserve the simplicity and practical efficiency
of the BFGS method. It is worth emphasizing that the assumptions considered in
our approach are natural extensions of those commonly employed in the context of
scalar-valued optimization.

Data availibility The codes supporting the numerical experiments are freely available in the Github repos-
itory, https://github.com/lfprudente/GlobalBFGS.
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A Appendix

In the main body of the article, we have chosen to exclude proofs that can be readily
derived from existing sources in order to enhance the overall readability of the text.
However, in this appendix, we provide these proofs to ensure self-contained complete-
ness.
Notation. The cardinality of a set C is denoted by |C |. The ceiling and floor functions
are denoted by �·� and  ·!, respectively; i.e., if x ∈ R, then �x� is the least integer
greater than or equal to x and  x! is the greatest integer less than or equal to x . The
notation ϕ(t) := o(t) for t > 0 means that limt→0 ϕ(t)/t = 0.

A.1 Proofs of Sect. 3

Throughout this section, we assume that Assumption 3.1 holds.

Proof of Proposition 3.2 It follows from (18), the definition of D(·, ·), the Cauchy-
Schwarz inequality, and Assumption 3.1(iii) that

−(1− σ)D(xk, dk) ≤ D(xk+1, dk) −D(xk, dk)

≤ max
j=1,...,m

(
∇Fj (x

k+1) −∇Fj (x
k)
)


dk

≤ max
j=1,...,m

‖∇Fj (x
k+1) −∇Fj (x

k)‖‖dk‖ ≤ Lαk‖dk‖2,

where the second inequality follows from the fact that, for any u, v ∈ R
m , we have

max j (u j − v j ) ≥ max j u j −max j v j . Hence,

D(xk, dk)2

‖dk‖2 ≤ − L

(1− σ)
αkD(xk, dk). (45)
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Now, since {xk} ⊂ L, Assumption 3.1(i)–(ii) implies the existence of F ∈ R such
that Fj (xk) ≥ F for all k ≥ 0 and j = 1, . . . ,m. Therefore, by (17), we have

F ≤ Fj (x
k+1) ≤ Fj (x

0) + ρ

k∑

�=0

α�D(x�, d�), ∀ j = 1, . . . ,m.

Some algebraic manipulations yields

− L

ρ(1− σ)
min

j=1,...,m

{
F − Fj (x

0)
}
≥ − L

(1− σ)

k∑

�=0

α�D(x�, d�) > 0.

Therefore,

− L

(1− σ)

∑

k≥0

αkD(xk, dk) < ∞,

which together with (45) gives (26). ��

To prove Proposition 3.3, we will make use of function (35). Let us define

qkj := (sk)
Bk
j s

k

(sk)
sk
, ∀ j = 1, . . . ,m.

Thus, from the same arguments that led to (36), we obtain

ψ(Bk+1
j ) = ψ(Bk

j ) +
[ ‖γ k

j ‖2
(γ k

j )

sk

− ln

(
(γ k

j )

sk

(sk)
sk

)
− 1

]
− ξ kj , (46)

where

ξ kj := − ln(cos2 βk
j ) −

[
1− qkj

cos2 βk
j

+ ln

( qkj
cos2 βk

j

)]
.

Note from Lemma 2.4(i) that ξ kj ≥ 0.

Proof of Proposition 3.3 Let k ≥ 1 and p ∈ (0, 1) be given and set ε:=1 − p and
p̄:=1− ε/m. Let j ∈ {1, . . . ,m} be an arbitrary index. From (46) and (27), we have

ψ(Bk+1
j ) ≤ ψ(B0

j ) + [C2 − ln(C1) − 1] (k + 1) −
k∑

�=0

ξ�
j .
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Therefore, since ψ(Bk+1
j ) > 0, we obtain

1

k + 1

k∑

�=0

ξ�
j ≤ ψ(B0

j )

k + 1
+ [C2 − ln(C1) − 1] .

Let J k
j be the set consisting of the � p̄(k+1)� indices corresponding to the � p̄(k+1)�

smallest values of ξ�
j , for � ≤ k, and define ξ̄ kj := max�∈J k

j
ξ�
j . Then,

1

k + 1

k∑

�=0

ξ�
j ≥ 1

k + 1

⎡

⎢⎣ξ̄ kj +
k∑

�=0,�/∈J k
j

ξ�
j

⎤

⎥⎦ ≥ 1

k + 1

[
ξ̄ kj +ξ̄ kj (k + 1− � p̄(k + 1)�)

]

≥ ξ̄ kj (1− p̄),

where the last inequality is due to � p̄(k + 1)� ≤ p̄(k + 1) + 1. By combining the
above two inequalities, we get, for all � ∈ J k

j ,

ξ�
j ≤ ξ̄ kj ≤ 1

1− p̄

[
ψ(B0

j ) + C2 − ln(C1) − 1
]
=: ζ j .

Therefore, by the definition of ξ�
j , we obtain, for all � ∈ J k

j ,

− ln(cos2 β�
j ) ≤ ξ�

j ≤ ζ j ,

and hence

cosβ�
j ≥ e−ζ j /2 =: δ j .

This means that cosβ�
j ≥ δ j for at least � p̄(k + 1)� values of � ∈ {0, 1, . . . , k}.

Now, let us define δ:=min j=1,...,m δ j and, for all j = 1, . . . ,m,

Gk
j :={� ∈ {0, 1, . . . , k} | cosβ�

j ≥ δ} and Bk
j :={� ∈ {0, 1, . . . , k} | cosβ�

j < δ}.

It is easy to see that J k
j ⊂ Gk

j , Gk
j ∩ Bk

j = ∅ and |Gk
j | + |Bk

j | = k + 1. Therefore, by
the definition of p̄ and using some properties of the ceiling and floor functions, we
have, for all j = 1, . . . ,m,

|Gk
j | ≥ |J k

j | = � p̄(k + 1)� = (k + 1) + �− ε

m
(k + 1)� = (k + 1) −  ε

m
(k + 1)!,

and hence |Bk
j | ≤  ε

m (k + 1)!. Thus,

| m∪
j=1

Bk
j | ≤ m ε

m
(k + 1)! ≤ ε(k + 1).
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As consequence, since we also have | ∩m
j=1 Gk

j | + | ∪m
j=1 Bk

j | = k + 1, by using the
definition of ε, it follows that

| m∩
j=1

Gk
j | ≥ (k + 1) − ε(k + 1) = (1− ε)(k + 1) = p(k + 1),

which concludes the proof. ��

A.2 Proofs of Sect. 4

In this section, we make use of Assumption 4.1. In particular, and without loss of
generality, we assume that {xk} ⊂ U , whereU is a neighborhood of x∗ such that (30)
and (31) hold.

A.2.1 Proof of Proposition 4.1

We start with some auxiliary technical results.

Lemma A.1 Suppose that Assumption 4.1 holds. Let βk
j be the angle between the

vectors sk and Bk
j s

k , for all k ≥ 0 and j = 1, . . . ,m. Then, for all k ≥ 0,

D(xk, dk) ≤ −δk

2
‖dk‖‖dSD(xk)‖,

where δk :=min j=1,...,m cosβk
j .

Proof For a given k ≥ 0, by using the definitions of δk , cosβk
j , and sk , we obtain

δk ≤ cosβk
j = (sk)
Bk

j s
k

‖sk‖‖Bk
j s

k‖ = (dk)
Bk
j d

k

‖dk‖‖Bk
j d

k‖ , ∀ j = 1, . . . ,m.

Therefore, from Lemma 2.2(ii) and (13), we have

−D(xk, dk) > −θ(xk) = 1

2

m∑

j=1

λkj (d
k)
Bk

j d
k ≥ δk

2
‖dk‖

m∑

j=1

λkj‖Bk
j d

k‖.

Applying the triangle inequality, together with (11), (12), and Lemma 2.3(iv), we
obtain:

−D(xk, dk) ≥ δk

2
‖dk‖‖

m∑

j=1

λkj B
k
j d

k‖ = δk

2
‖dk‖‖

m∑

j=1

λkj∇Fj (x
k)‖

≥ δk

2
‖dk‖‖dSD(xk)‖.

��
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Lemma A.2 Suppose that Assumption 4.1 holds. Then, for all k ≥ 0, we have:

(i) ‖xk − x∗‖ ≤ 2

L
‖dSD(xk)‖;

(ii) ‖sk‖ ≥ (1− σ)

2 L
δk‖dSD(xk)‖, where δk is given as in Lemma A.1;

(iii)
(γ k

j )

sk

‖sk‖2 ≥ L, for all j = 1, . . . ,m;

(iv)
‖γ k

j ‖2
(γ k

j )

sk

≤ (2 L + ϑ̄ c̄)2

L
, for all j = 1, . . . ,m and some constant c̄ > 0.

Proof Consider part (i). For a given value of k ≥ 0, consider λSD(xk) ∈ R
m as in

(15)–(16), and define the scalar-valued function FSD : Rn → R as follows:

FSD(x):=
m∑

j=1

λSD
j (xk)Fj (x).

Therefore, by taking z:=x∗ − xk , it follows from (15) and (31) that

∫ 1

0
(1− τ)z
∇2FSD(xk + τ z)zdτ ≥ L

2
‖z‖2.

Evaluating this integral (which can be done by integration by parts), and considering
that dSD(xk) = −∇FSD(xk), we obtain

FSD(x∗) − FSD(xk) + dSD(xk)
(x∗ − xk) ≥ L

2
‖x∗ − xk‖2.

Given that Fj (x∗) ≤ Fj (xk) for all j = 1, . . . ,m, we have FSD(x∗) − FSD(xk) ≤ 0
and thus

L

2
‖x∗ − xk‖2 ≤ dSD(xk)
(x∗ − xk) ≤ ‖dSD(xk)‖‖x∗ − xk‖,

which proves part (i).
Consider part (ii). By using (18) and the definitions of D(·, ·) and ykj , we obtain

−(1− σ)D(xk, dk) ≤ D(xk+1, dk) −D(xk, dk) ≤ max
j=1,...,m

(ykj )

dk,

which, together with (33), yields

−(1− σ)D(xk, dk) ≤ max
j=1,...,m

(sk)
Ḡk
j d

k = αk max
j=1,...,m

(dk)
Ḡk
j d

k

≤ Lαk‖dk‖2 = L‖sk‖‖dk‖,

123



Global convergence of a BFGS-type algorithm for nonconvex… 747

where the latter inequality comes from (31). Therefore, taking into account that σ < 1,
by Lemma A.1, we obtain

(1− σ)
δk

2
‖dk‖‖dSD(xk)‖ ≤ L‖sk‖‖dk‖,

which gives the desired inequality.
Part (iii) is a direct consequence of (34). Finally, consider part (iv). From (19) and

(31), we have

|ηkj | ≤
‖ykj ‖
‖sk‖ = ‖∇Fj (xk+1) −∇Fj (xk)‖

‖xk+1 − xk‖ ≤ L.

Furthermore, since {xk} ⊂ U , by (20) and using continuity arguments, there exists a
constant c̄ > 0 such that

0 ≤ rkj ≤ |ηkj | + ϑk‖
m∑

i=1

μk
i ∇Fi (x

k)‖ ≤ L + ϑ̄ c̄,

and hence, by (21),

‖γ k
j ‖ ≤ ‖ykj ‖ + rkj ‖sk‖ =

(‖ykj ‖
‖sk‖ + rkj

)
‖sk‖ ≤ (2L + ϑ̄ c̄)‖sk‖.

Therefore, using the inequality in part (iii), we obtain

‖γ k
j ‖2

(γ k
j )


sk
= ‖γ k

j ‖2
‖sk‖2

‖sk‖2
(γ k

j )

sk

≤ (2L + ϑ̄ c̄)2

L
, ∀ j = 1, . . . ,m,

concluding the proof. ��

We are now able to prove Proposition 4.1

Proof of Proposition 4.1 Let λSD(x∗) ∈ R
m be a steepest descent multiplier associated

with x∗ as in (15)–(16), and define the scalar-valued function F∗ : Rn → R as follows:

F∗(x):=
m∑

j=1

λSD
j (x∗)Fj (x).

Note that

∇F∗(x∗) =
m∑

j=1

λSD
j (x∗)∇Fj (x

∗) = −dSD(x∗) = 0, (47)
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where the last equality comes from Lemma 2.3(i). Now, by using (31), we obtain

∇Fj (x
∗)
(xk − x∗) + L

2
‖xk − x∗‖2 ≤ Fj (x

k) − Fj (x
∗)

≤ ∇Fj (x
∗)
(xk − x∗) + L

2
‖xk − x∗‖2,

for all j = 1, . . . ,m and for all k ≥ 0. By multiplying this expression by λSD
j (x∗),

summing over all indices j = 1, . . . ,m, and taking into account (15) and (47), we
obtain

L

2
‖xk − x∗‖2 ≤ F∗(xk) − F∗(x∗) ≤ L

2
‖xk − x∗‖2, ∀k ≥ 0. (48)

From the right hand side of (48) and Lemma A.2(i), we obtain

F∗(xk) − F∗(x∗) ≤ 2L

L2 ‖dSD(xk)‖2, ∀k ≥ 0. (49)

On the other hand, (17) gives

F∗(xk+1) ≤ F∗(xk) + ραkD(xk, dk), ∀k ≥ 0.

Therefore, from Lemma A.1 and Lemma A.2(ii), we have

F∗(xk+1) ≤ F∗(xk) − ρ

2
δk‖sk‖‖dSD(xk)‖

≤ F∗(xk) − ρ(1− σ)

4L
δ2k‖dSD(xk)‖2, ∀k ≥ 0.

Hence, by subtracting the term F∗(x∗) in both sides of the latter inequality, and using
(49), we obtain

F∗(xk+1) − F∗(x∗) ≤
(
1− ρ(1− σ)L2

8L2 δ2k

)(
F∗(xk) − F∗(x∗)

)
, ∀k ≥ 0.

(50)

For each k ≥ 0, define r̄k :=1−ρ(1−σ)L2δ2k/(8 L
2). It is easy to see that r̄k ∈ (0, 1],

for all k ≥ 0.
Now, given p ∈ (0, 1), we can invoke LemmaA.2(iii)–(iv) to apply Proposition3.3.

This implies that there exists a constant δ > 0 such that, for any k ≥ 1, the number
of elements � ∈ {0, 1, . . . , k} for which δ� ≥ δ is at least �p(k + 1)�. By defining
Gk :={� ∈ {0, 1, . . . , k} | δ� ≥ δ}, we have |Gk | ≥ �p(k + 1)� and

r̄� ≤ 1− ρ(1− σ)L2δ2

8L2 :=r̄ < 1, ∀� ∈ Gk .
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Thus, from (50) and considering that F∗(x0) − F∗(x∗) > 0, we obtain, for all k ≥ 1,

F∗(xk+1) − F∗(x∗) ≤
[

k∏

�=0

r̄�

](
F∗(x0) − F∗(x∗)

)
≤
⎡

⎣
∏

�∈Gk

r̄�

⎤

⎦
(
F∗(x0)−F∗(x∗)

)

≤
⎡

⎣
∏

�∈Gk

r̄

⎤

⎦
(
F∗(x0)−F∗(x∗)

)
≤ r̄ �p(k+1)� (F∗(x0)−F∗(x∗)

)
,

where the second inequality follows from the fact that r̄� ≤ 1 for all � /∈ Gk . Therefore,
by taking r := r̄ p, we obtain

F∗(xk+1) − F∗(x∗) ≤ rk+1
(
F∗(x0) − F∗(x∗)

)
, ∀k ≥ 1.

Combining this with the left hand side of (48), we find

‖xk+1 − x∗‖ν ≤
[
2

L

(
F∗(x0) − F∗(x∗)

)]ν/2

(rν/2)k+1.

Finally, by summing this expression and taking into account that r < 1, we conclude
that (32) holds. ��

A.2.2 Proof of Theorem 4.3

We start by introducing an auxiliary result.

Lemma A.3 Suppose that Assumptions 4.1 and 4.2 hold. Then, there exists ā > 0 such
that

|θ(xk)| ≥ ā‖dk‖2, (51)

for all k sufficiently large. Moreover,

lim
k→∞‖dk‖ = 0. (52)

Proof By choosing γ ∈ (0, 1) and recalling that sk = αkdk , it follows from (37) that

(dk)
Bk
j d

k

(dk)
∇2Fj (x∗)dk
≥ 1− γ, ∀ j = 1, . . . ,m,

for all k sufficiently large. Thus, by (31), we obtain

(dk)
Bk
j d

k ≥ L(1− γ )‖dk‖2, ∀ j = 1, . . . ,m,
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for all k sufficiently large. Therefore, using (12) and (13), we have

|θ(xk)| = 1

2

m∑

j=1

λkj (d
k)
Bk

j d
k ≥ L(1− γ )

2
‖dk‖2,

for all k sufficiently large. Defining ā:=L(1 − γ )/2, we establish (51). Finally, by
combining (51), Lemma 2.2(ii), and Proposition 3.2, we obtain

0 ≤ lim
k→∞ ā‖dk‖ ≤ lim

k→∞
|θ(xk)|
‖dk‖ ≤ lim

k→∞
|D(xk, dk)|

‖dk‖ = 0,

which concludes the proof. ��
Recalling that λk ∈ R

m is the Lagrange multiplier associated to xk of problem (7)
fulfilling (11)–(12), let us define

Fk
λ (x):=

m∑

j=1

λkj Fj (x) and Bk
λ :=

m∑

j=1

λkj B
k
j , ∀k ≥ 0. (53)

Next, we show that the sequence of functions {Fk
λ (x)}k≥0 fulfills a Dennis–Moré-type

condition.

Theorem A.4 Suppose that Assumptions 4.1 and 4.2 hold. For each k ≥ 0, consider
Fk

λ : Rn → R and Bk
λ as in (53). Then,

lim
k→∞

‖(Bk
λ −∇2Fk

λ (x∗))dk‖
‖dk‖ = 0 (54)

or, equivalently,

lim
k→∞

‖∇Fk
λ (xk) +∇2Fk

λ (xk)dk‖
‖dk‖ = 0. (55)

Proof By (53) and taking into account (12), we have

lim
k→∞

‖(Bk
λ − ∇2Fk

λ (x∗))dk‖
‖dk‖ ≤ lim

k→∞

m∑

j=1

λkj

‖(Bk
j −∇2Fj (x∗))dk‖

‖dk‖

≤ lim
k→∞ max

j=1,...,m

‖(Bk
j − ∇2Fj (x∗))dk‖

‖dk‖ ,

which, combined with (38), yields (54). We proceed to show that (54) implies (55).
Firstly, considering (11), since Bk

λd
k = −∇Fk

λ (xk), it follows that (55) is equivalent
to

lim
k→∞

‖(Bk
λ −∇2Fk

λ (xk))dk‖
‖dk‖ = 0. (56)
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Note that

lim
k→∞

‖(Bk
λ −∇2Fk

λ (xk))dk‖
‖dk‖

≤ lim
k→∞

‖(Bk
λ −∇2Fk

λ (x∗))dk‖
‖dk‖ + lim

k→∞‖∇2Fk
λ (x∗) −∇2Fk

λ (xk)‖

and, by using continuity arguments,

lim
k→∞‖∇2Fk

λ (x∗) − ∇2Fk
λ (xk)‖ ≤ lim

k→∞

m∑

j=1

λkj‖∇2Fj (x
∗) −∇2Fj (x

k)‖

≤ lim
k→∞ max

j=1,...,m
‖∇2Fj (x

∗) − ∇2Fj (x
k)‖ = 0.

Therefore, combining the two latter inequalities, we obtain (56). The proof that (55)
implies (54) can be obtained similarly. ��

The following result shows that the unit step size eventually satisfies the Wolfe
conditions (17)–(18).

Theorem A.5 Suppose that Assumptions 4.1 and 4.2 hold. Then, the step size αk = 1
is admissible for all k sufficiently large.

Proof Let j ∈ {1, . . . ,m} be an arbitrary index. It is easy to see that (38) is equivalent
to

lim
k→∞

‖(Bk
j −∇2Fj (xk))dk‖

‖dk‖ = 0.

Thus, by Taylor’s theorem, it follows that

Fj (x
k + dk) =Fj (x

k) + ∇Fj (x
k)
dk + 1

2
(dk)
Bk

j d
k

+ 1

2
(dk)


(
∇2Fj (x

k) − Bk
j

)
dk + o(‖dk‖2)

=Fj (x
k) + ∇Fj (x

k)
dk + 1

2
(dk)
Bk

j d
k + o(‖dk‖2),

Therefore, by using (6) and setting t :=2ρ < 1, we have

Fj (x
k + dk) ≤ Fj (x

k) + tθ(xk) + (1− t)θ(xk) + o(‖dk‖2).

Consequently, according to (51), for sufficiently large k,

Fj (x
k + dk) ≤ Fj (x

k) + tθ(xk) +
[
−ā(1− t) + o(‖dk‖2)

‖dk‖2
]
‖dk‖2.
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As the term in square brackets is negative for k large enough, we conclude that

Fj (x
k + dk) ≤ Fj (x

k) + tθ(xk).

On the other hand, combining (11)–(13), we find

θ(xk) = 1

2

m∑

j=1

λkj∇Fj (x
k)
dk ≤ 1

2
D(xk, dk). (57)

Hence, from the last two inequalities and the definition of t , we obtain

Fj (x
k + dk) ≤ Fj (x

k) + ρD(xk, dk),

for all k sufficiently large. Given the arbitrary choice of j ∈ {1, . . . ,m}, we conclude
that the step size αk = 1 satisfies (17) for all sufficiently large k.

Consider the curvature condition (18). From the definition of Fk
λ in (53), we have

−
m∑

j=1

λkj∇Fj (x
k)
dk =

m∑

j=1

λkj (d
k)
∇2Fj (x

k)dk

−
m∑

j=1

λkj

[
∇2Fj (x

k)dk +∇Fj (x
k)
]


dk

=
m∑

j=1

λkj (d
k)
∇2Fj (x

k)dk−
[
∇Fk

λ (xk)+∇2Fk
λ (xk)dk

]

dk .

Thus, by (12), (31), and (55), we obtain

−
m∑

j=1

λkj∇Fj (x
k)
dk ≥ L‖dk‖2 + o(‖dk‖2) = ‖dk‖2

[
L + o(‖dk‖2)

‖dk‖2
]

.

Hence, taking into account (52) and (57), for k sufficiently large, it follows that

− 2θ(xk) = −
m∑

j=1

λkj∇Fj (x
k)
dk ≥ L

2
‖dk‖2. (58)

On the other hand, applying the Mean Value Theorem to the scalar function
∇Fk

λ (·)
dk , there exists vk :=xk + tkdk for some tk ∈ (0, 1) such that

∇Fk
λ (xk + dk)
dk = ∇Fk

λ (xk)
dk + (dk)
∇2Fk
λ (vk)dk .
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Therefore,

|∇Fk
λ (xk + dk)
dk |

‖dk‖2 ≤ ‖∇Fk
λ (xk) +∇2Fk

λ (xk)dk‖
‖dk‖ + ‖∇2Fk

λ (vk) −∇2Fk
λ (xk)‖.

Now, by the definitions of Fk
λ and vk , and considering (12) and (52), we obtain

lim
k→∞‖∇2Fk

λ (vk) − ∇2Fk
λ (xk)‖ ≤ lim

k→∞

m∑

j=1

λkj‖∇2Fj (x
k + tkd

k) −∇2Fj (x
k)‖

≤ lim
k→∞ max

j=1,...,m
‖∇2Fj (x

k + tkd
k) − ∇2Fj (x

k)‖
= 0.

Thus, combining the latter two inequalities with (55), we have

lim
k→∞

|∇Fk
λ (xk + dk)
dk |

‖dk‖2 = 0.

Hence, for k large enough, we have

|∇Fk
λ (xk + dk)
dk | ≤ σ

L

4
‖dk‖2,

which, together with (58), yields

m∑

j=1

λkj∇Fj (x
k + dk)
dk = ∇Fk

λ (xk + dk)
dk ≥ −σ
L

4
‖dk‖2 ≥ σθ(xk).

Therefore, by the definition of D(·, ·), (12), and Lemma 2.2(ii), we obtain

D(xk + dk, dk) ≥
m∑

j=1

λkj∇Fj (x
k + dk)
dk ≥ σθ(xk) ≥ σD(xk, dk),

for all k sufficiently large, concluding the proof. ��
We require an additional auxiliary result.

Lemma A.6 Suppose that Assumption 4.1 holds. Then,

‖∇Fk
λ (xk+1) − ∇Fk

λ (xk) − ∇2Fk
λ (x∗)(xk+1 − xk)‖ ≤ M‖xk+1 − xk‖εk,

where εk := max{‖xk+1 − x∗‖ν, ‖xk − x∗‖ν}.
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Proof By the definition of Fk
λ in (53) and taking into account (12), we obtain

‖∇Fk
λ (xk+1) − ∇Fk

λ (xk) − ∇2Fk
λ (x∗)(xk+1 − xk)‖

≤ max
j=1,...,m

‖∇Fj (x
k+1) − ∇Fj (x

k) − ∇2Fj (x
∗)(xk+1 − xk)‖.

On the other hand, for each j ∈ {1, . . . ,m}, using (33) and (30), we have

‖∇Fj (x
k+1) −∇Fj (x

k) −∇2Fj (x
∗)(xk+1 − xk)‖

≤
∫ 1

0
‖
(
∇2Fj (x

k + τ sk) −∇2Fj (x
∗)
)
sk‖dτ

≤ M‖sk‖
∫ 1

0
‖xk + τ sk − x∗‖νdτ ≤ M‖sk‖max{‖xk+1 − x∗‖ν, ‖xk − x∗‖ν}.

By combining the last two inequalities, we obtain the desired result. ��
Now, we can establish the superlinear convergence of Algorithm 1.

Theorem A.7 Suppose that Assumptions 4.1 and 4.2 hold. Then, {xk} converges to x∗
superlinearly.

Proof According to Theorem A.5, dk = xk+1 − xk for all k sufficiently large. Conse-
quently, Bk

λ(xk+1 − xk) = −∇Fk
λ (xk) (see (11)), and hence

(Bk
λ − ∇2Fk

λ (x∗))(xk+1 − xk) = ∇Fk
λ (xk+1) − ∇Fk

λ (xk) −∇2Fk
λ (x∗)(xk+1 − xk)

−∇Fk
λ (xk+1),

for all k sufficiently large. Therefore,

‖∇Fk
λ (xk+1)‖

‖xk+1 − xk‖ ≤ ‖(Bk
λ −∇2Fk

λ (x∗))(xk+1 − xk)‖
‖xk+1 − xk‖

+‖∇Fk
λ (xk+1) −∇Fk

λ (xk) −∇2Fk
λ (x∗)(xk+1 − xk)‖

‖xk+1 − xk‖ ,

for all k sufficiently large. Taking limits on both sides of the latter inequality, using
(54) and Lemma A.6, we get

lim
k→∞

‖∇Fk
λ (xk+1)‖

‖xk+1 − xk‖ = 0. (59)

On the other hand, considering the definition of Fk
λ in (53), Lemma 2.3(iv), and

Lemma A.2(i), we find that

‖∇Fk
λ (xk+1)‖

‖xk+1 − xk‖ ≥ ‖∑m
j=1 λkj∇Fj (xk+1)‖

‖xk+1 − x∗‖ + ‖xk − x∗‖ ≥ ‖dSD(xk+1)‖
‖xk+1 − x∗‖ + ‖xk − x∗‖
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≥ L

2

‖xk+1 − x∗‖
‖xk+1 − x∗‖ + ‖xk − x∗‖ = L

2

1

1+ ‖xk−x∗‖
‖xk+1−x∗‖

.

Therefore, by using (59), we conclude that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0,

which completes the proof. ��
Proof of Theorem 4.3 The proof follows straightforwardly from Theorems A.5 and
A.7. ��
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