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Abstract

We propose a new randomized method for solving systems of nonlinear equations,
which can find sparse solutions or solutions under certain simple constraints. The
scheme only takes gradients of component functions and uses Bregman projections
onto the solution space of a Newton equation. In the special case of euclidean pro-
jections, the method is known as nonlinear Kaczmarz method. Furthermore if the
component functions are nonnegative, we are in the setting of optimization under the
interpolation assumption and the method reduces to SGD with the recently proposed
stochastic Polyak step size. For general Bregman projections, our method is a stochas-
tic mirror descent with a novel adaptive step size. We prove that in the convex setting
each iteration of our method results in a smaller Bregman distance to exact solutions
as compared to the standard Polyak step. Our generalization to Bregman projections
comes with the price that a convex one-dimensional optimization problem needs to be
solved in each iteration. This can typically be done with globalized Newton iterations.
Convergence is proved in two classical settings of nonlinearity: for convex nonnegative
functions and locally for functions which fulfill the tangential cone condition. Finally,
we show examples in which the proposed method outperforms similar methods with
the same memory requirements.
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1 Introduction

We consider a constrained nonlinear system of equations
f(x)=0 stxeC, @))

where f: D ¢ R? — R” is a nonlinear differentiable function and C ¢ D C R? is
a nonempty closed convex set. Let S C C be the set of solutions of (1). Our aim is to
design an iterative method which approximates a solution of (1) and in each step uses
first-order information of just a single component function f;.

The idea of our method is as follows. Given an appropriate convex function
¢: RY - R U {+o0} with

dom 3¢ = C, (2)
our method computes the Bregman projection w.r.t. ¢ onto the solution set of the

local linearization of a component function f; around the current iterate xj. Here, the
underlying distance is the Bregman distance defined by

DY (x,y) = ¢(y) — p(x) — (x*, y — x),

where x™* is a subgradient of ¢ at x. That is, the method we study is given by

Xk+1 = arg min D(;k (xk,x)  st.x € Hy, 3)
xeRd
with
Hi = {x e R : fi, (x0) + (V £, (). x — xz) =0}, )
where iy € {1,...,n}and x,f is in the subgradient d¢ (xj). Since one can show that

Bregman projections are always contained in dom d¢, the condition (2) guarantees
that x; € C holds for all k£ and hence, if the x; converge, they converge to a point in
C.

In order for the Bregman projection xj to exist, we need that the hyperplanes
Hj have nonempty intersection with dom ¢. Proposition 2.3 below will show that the
slightly stronger condition

HyNridom ¢ £ @ ©)

is sufficient for existence and uniqueness of the Bregman projection under regularity
assumptions on ¢.

If (5) is violated, we propose to compute a relaxed projection, which is always
defined and inspired by the recently proposed mSPS method [23].
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1.1 Related work and our contributions
1.1.1 Nonlinear Kaczmarz method and Sparse Kaczmarz

In the pioneering work by Stefan Kaczmarz [35], the idea of solving systems of
equations by cycling through the separate equations and solving them incrementally
was first executed on linear systems in finite dimensional spaces, an approach which
is known henceforth as Kaczmarz method. In this conceptually simple method, an
update is computed by selecting one equation of the system according to a rule that
may be random, cyclic or adaptive, and computing an orthogonal projection onto its
solution space, which is given by a hyperplane.

Recently, two completely different extensions of the Kaczmarz method have been
developed. One idea was to transfer the method to systems with nonlinear differentiable
functions by considering its local linearizations: In each step k, an equation iy is chosen
and the update x; is defined as the orthogonal projection

X1 = argmin [|x — x¢|3 st fi (k) 4+ (V fi (), x — x5) = 0.
It is easy to check that this update can be computed by

fik (xx)

T g ).
1 G2 O

Xk41 = Xk —

This method was studied under the names Sketched Newton-Raphson [62] or Nonlinear
Kaczmarz method [58]. Convergence was shown for two kinds of mild nonlinearities,
namely star convex functions [62] and functions which obey a local tangential cone
condition [58].

A different kind of extension of the Kaczmarz method has been proposed by [39].
Here, the notion of projection was replaced by the (more general) Bregman projection,
giving rise to the ‘sparse’ Kaczmarz method, which can find sparse solutions of the
system. The method has been further extended to inconsistent systems [54], accelerated
by block averaging [57] and investigated as a regularization method in Banach spaces
[33]. But so far only linear systems have been addressed.

The present article unifies these two generalizations, that is, we study the case of
nonlinearity and general Bregman projections onto linearizations and derive conver-
gence rates in the two aforementioned nonlinear settings. We also demonstrate that
instead of sparsity, the proposed method is able to handle simple constraints such as
simplex constraints as well.

1.1.2 Stochastic Polyak step size (SPS)

One popular method for solving the finite-sum problem min % Y Li(x)isstochastic
gradient descent (SGD), which is defined by the update xx 11 = xx — ¥ V&€, (xx). Itis
still a challenging question if there exist good choices of step sizes which are adaptive
in the sense that no hyperparameter tuning is necessary. In this context, the stochastic
Polyak step size (SPS)
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_ Zik (Xk) - Elk - (6)
c- Ve, (x5

was proposed in [38], where ¢ > 0 is a fixed constant and ¢; = inf ¢;. It was shown that
the iterates of this method converge for convex lower bounded functions f; for which
the interpolation condition holds, meaning that there exists X € R? with £; (%) = 6
for alli = 1, ..., n. This assumption is strong, but can be fulfilled e.g. by modern
machine learning applications such as non-parametric regression or over-parametrized
deep neural networks [40, 64]. We cover these assumptions with our framework as a
special case by requiring that the functions f; in (1) are nonnegative, which is clear
by setting f; = £; — ¢;. The SPS method applied to ¢, ..., £, then coincides with the
Nonlinear Kaczmarz method applied to fi, ..., f5.

1.1.3 Mirror descent and SPS

For incorporating additional constraints or attraction to sparse solutions into SGD,
a well-known alternative to projected SGD is the stochastic mirror descent method
(SMD) [3, 44, 65], which is defined by the update

Xpy1 € argmin v (V fi, (xx), ¥ — xx) + Dy (xg, x).
xeRd

Here, ¢ is a convex function with additional properties which will be refined later
on, which is then called the distance generating function (DGF), x is a subgradient
of ¢ at x; and D, is the Bregman distance associated to ¢. We demonstrate that our
proposed method can be reinterpreted as mirror descent with a novel adaptive step size
in case that the f; are nonnegative. Moreover, for ¢(x) = %Hx ||§, we obtain back the
SGD method with the stochastic Polyak step size. For general ¢, computing the step
size requires the solution of a convex one-dimensional minimization problem. This
is a similar situation as in the update of the stochastic dual coordinate ascent method
[56], a popular stochastic variance reduced method for minimizing regularized general
linear models.

The two recent independent works [23] and [60] propose to use the stochastic Polyak
step size from SGD in mirror descent. This update has the advantage that it is relatively
cheap to compute. However, we prove that for convex functions, our proposed method
takes bigger steps in terms of Bregman distance towards the solution of (1).

We generalize the step size from [23] to the case in which the functions f; are not
necessarily nonnegative and employ this update as a relaxed projection whenever our
iteration is not defined. We compare our proposed method with the method which
always performs relaxed projections in our convergence analysis and experiments. As
an additional contribution, we improve the analysis for the method in [23] for the case
of smooth strongly convex functions f; (Theorem 4.16).

Finally, our method is by definition scaling-invariant in the sense that a multiplica-
tive change ¢ — «a @ of the DGF ¢ with a constant & > 0 does not affect the method.
To the best of our knowledge, this is the first mirror descent method which has this

property.
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1.1.4 Bregman projection methods

The idea of using Bregman projections algorithmically dates back to the seminal paper
[11], which proposed to solve the feasibility problem

n
find % e ﬂ C;
i=1

for convex sets C; by iterated Bregman projections onto the sets C;. This idea initiated
an active line of research [1, 4-6, 15-18, 36, 50] with applications in fields such
as matrix theory [21], image processing [19, 20, 46] and optimal transport [9, 37].
We can view problem (1) as a feasibility problem by setting C; = {x | fi(x) =
0}. Our approach to compute Bregman projections onto linearizations has already
been proposed for the case of convex inequalities C; = {x | fj(x) < 0} under the
name outer Bregman projections [13, 14]. Convergence of this method was studied in
general Banach spaces. Obviously, the two problems coincide for convex nonnegative
functions f;. However, to the best of our knowledge, convergence rates have been
given recently only in the case that the C; are hyperplanes [36]. In this paper, we
derive rates in the space R?. Also, we extend our analysis to the nonconvex setting for
equality constraints.

1.1.5 Bregman-Landweber methods

There are a couple of works in inverse problems, typically studied in Banach spaces,
which already incorporate Bregman projections into first-order methods with the aim
of finding sparse solutions. Bregman projections were combined with the nonlinear
Landweber iteration the first time in [55]. Later, [10] employed Bregman projections
for L1- and TV-regularization. A different nonlinear Landweber iteration with Breg-
man projections for sparse solutions of inverse problems was investigated in [41]. All
of these methods use the full Jacobian D f (x) in each iteration. In [32, 34], a determin-
istic Kaczmarz method incorporating convex penalties was proposed which performs
a similar mirror update as our method, but with a different step size which does not
originate from a Bregman projection. The apparently closest related method to our
proposed one was recently suggested in [28], where the step size was calculated as
the solution of a quite similar optimization problem, which is still different and also
does not come with the motivation of a Bregman projection.

1.1.6 Sparse and Bregman—-Newton methods

Finally, since our proposed method can be seen as a stochastic first-order Newton
iteration, we briefly point out that a link of Newton’s method to topics like Bregman
distances and sparsity has already been established in the literature. [usem and Solodov
[30] introduced a regularization of Newton’s method by a Bregman distance. Nesterov
and Doikov [22] continued this work by introducing an additional nonsmooth convex
regularizer. Polyak and Tremba [48] proposed a sparse Newton method which solves

@ Springer



1064 R. Gower et al.

a minimum norm problem subject to the full Newton equation in each iteration, and
presented an application in control theory [49].

1.2 Notation

For a set S C RY, we write its interior as S°, its closure as S and its relative interior
as ri(S). The Cartesian product of sets S; C RY, i =1, ..., m, is written as ><f”=l S;.
The set span(S) is the linear space generated by all elements of S. We denote by 1,4
the vector in R with constant entries 1. For two vectors x, y € R?, we express the
componentwise (Hadamard) product as x - y and the componentwise logarithm and
exponential as log(x) and exp(x). For a given norm || - || on R4, by || - ||« we denote
the corresponding dual norm, which is given as

Ixlls = sup (x,y), xeR
Iyl=1

2 Basic notions and assumptions

We collect some basic notions and results as well as our standing assumptions for
problem (1).

2.1 Convex analysis and standing assumptions
Letp: RY — R := R U {+o0} be convex with
dom ¢ = {x ERd:go(x) < oo} # 0.

We also assume that ¢ is lower semicontinuous, i.e. ¢(x) < liminfy_, ¢(y) holds
for all x € RY, and supercoercive, meaning that

plx)

NE T

The subdifferential at a point x € dom g is defined as
dp(x) = {x* eRY: o)+ (x*, y —x) < p(y) forall y € dom (p}.

An element x* € d¢(x) is called a subgradient of ¢ at x. The set of all points x
with d¢(x) # ¢ is denoted by dom d¢. Note that the relative interior of dom ¢ is a
convex set, while dom d¢ may not be convex, for a counterexample see [52, p.218].
In general, convexity of ¢ guarantees the inclusions ri dom ¢ C dom d¢ C dom g.
For later purposes, we require that dom d¢ = ri dom ¢, which will be fulfilled in
all our examples. We further assume that ¢ is essentially strictly convex, i.e. strictly
convex on ri dom ¢. (In general, this property only means strict convexity on every
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convex subset of dom d¢.). The convex conjugate (or Fenchel-Moreau-conjugate) of
@ is defined by

P*(x*) = supd(x*,x) —o(x), x*eR%
xeR

The function ¢* is convex and lower semicontinuous. Moreover, the essential strict
convexity and supercoercivity imply that dom ¢* = R? and ¢* is differentiable, since
@ is essentially strictly convex and supercoercive, see [7, Proposition 14.15] and [52,
Theorem 26.3].

The Bregman distance D(’;* (x,y) between x, y € dom ¢ with respect to ¢ and a
subgradient x* € d¢(x) is defined as

Dy (x,y) = p(y) — 9(x) — (x*, y — x).

Using Fenchel’s equality ¢*(x*) = (x*, x) — ¢(x) for x* € d¢(x), one can rewrite
the Bregman distance with the conjugate function as

DY (x,y) = ¢*(x") — (x*, 3) + 0 (y). @

If ¢ is differentiable at x, then the subdifferential d¢(x) contains the single element
V@(x) and we can write

Dy(x,y) = Dy (x, y) = ¢(y) — p(x) — (Vo(x), y — x).

The function ¢ is called o -strongly convex w.r.t. a norm || - || for some o > 0, if
forall x, y € dom g it holds that $||x — y[|> < D} (x, y).
In conclusion, we require the following standing assumptions for problem (1):

Assumption1 (i) The set C is nonempty, convex and closed.
(i) It holds that ¢: R? — R is essentially strictly convex, lower semicontinuous
and supercoercive.
(iii) The function ¢ fulfills that dom d¢ = C and dom d¢ = ri dom ¢.
(iv) For each x € dom ¢ and each sequence x; € dom d¢ with x; € d¢(x;) and

Xt — x it holds that D;" (xk, x) — 0.
(v) The function f: D — R”" is continuously differentiable with D > C.
(vi) The set of solutions S of (1) is non-empty, thatis S := C N f~1(0) # ¢.

2.2 Bregman projections
Definition 2.1 Let £ C R? be a nonempty convex set, x € dom d¢ and x* € dg(x).

Assume that E N dom ¢ # (. The Bregman projection of x onto E with respect to ¢
and x™* is the point I"I;“)_’ g(x) € ENdom ¢ such that
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DY (x, T (x)) = 1;1612 DY (x,y).

Existence and uniqueness of the Bregman projection is guaranteed if ENdom ¢ # )
by our standing assumptions due to the fact that the function y — Dg* (x, y) is lower
bounded by zero, coercive, lower semicontinuous and strictly convex. For the standard
quadratic ¢ = %H . ||%, the Bregman projection is just the orthogonal projection. Note

that if £ N dom ¢ = @, then for all y € E it holds that D;* (x,y) = +o0.
The Bregman projection can be characterized by variational inequalities, as the
following lemma shows.

Lemma 2.2 ([39])A point z € E is the Bregman projection of x onto E with respect to

@ and x* € dp(x) if and only if there exists z* € d¢(z) such that one of the following
conditions is fulfilled:

() (¥ —x*z—y) <0 forally € E,
(ii) Dé:(& y) < D;‘,*(X, y) — D;* (x,z) forally € E.

We consider Bregman projections onto hyperplanes
H(@p):={xeR':(ax)=p), «cR’ BekR,
and halfspaces
H(a.p)={x eR": (@ x) =B}, aecR! ek,
and analoguously we define H=(a, B).

The following proposition shows that the Bregman projection onto a hyperplane
can be computed by solving a one-dimensional dual problem under a qualification
constraint. We formulate this one-dimensional dual problem under slightly more gen-
eral assumptions than previous versions, e.g. we neither assume smoothness of ¢ (as
e.g. [5,6, 11,17, 21]) nor strong convexity of ¢ (as in [39]).

Proposition 2.3 Let ¢ fulfill Assumption 1(ii). Let o € RY \ {0} and B € R such that
H(wa, B) Nridom ¢ # @.

Then, for all x € dom d¢ and x* € d¢(x), the Bregman projection H)(:)*H(a )
exists and is unique. Moreover, the Bregman projection is given by

X4 = H;,H(a,ﬁ)(x) = VQU*(xi),
where x§ = x* — fa € d¢(xy) and t is a solution to

min ¢*(x* — ta) + Bt. 8)
teR
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Proof The assumptions guarantee that ¢™* is finite and differentiable on the full space
R?. We already know that the Bregman projection x. exists and is unique. Fermat’s
condition applied to the projection problem miny ey (q, g) Dj; (x, y) states that

0€ (DY (x. ) + tr.p)) (xX4),
where the indicator function ¢, : RY — R is defined by

0, xeM,

ty(x) = i
+00, otherwise.

Applying subdifferential calculus [52, Theorem 23.8], where we make use of the fact
that H («, B) is a polyhedral set, we conclude that x; € dom d¢ and

0 € dp(x4) — x* + span({a}),

where we used the fact that it holds 9tz «,g) = span({a}) on H («, B). Using subgra-
dient inversion (3¢)~! = V¢*, we arrive at the identity

xp = Vo*(x* —ta)
with some 7 € R. Inserting this equation into the constraint (x, &) = B, we conclude
that 7 minimizes (8). O
3 Realizations of the method
To solve problem (1), we propose the following method. In each step, we randomly
pick a component equation f;, (x) = 0 and consider the set of zeros of its linearization
around the current iterate x. This set is just the hyperplane
Hi = {x e R : fiy (o) + (V fi (x0), x — xi) = 0} = H(V fi, (x2), Br).

where

B = (V fip (xk), xi) — fiy (xi0). ©))
For later purposes, we also consider the halfspace

HE = {x e R fi, () + (i, (00), x — x0) < 0}

As the update xy4 1, we now propose to take the Bregman projection of x; onto the set
Hj using Proposition 2.3, which is possible if

Hi Ndom d¢ # 2. (10)
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The update is then given by x;', | = x;' — 1oV fi, (xk) and xx41 = V™ (x;, ;) with
Ik,p € argmin @* (x; — 1V fi, (xx)) + Brt. (11)
teR

Note that, although the Bregman projection x4 is unique, #,, might not be unique.
If (10) is not fulfilled, we define an update inspired from [23] by setting xx4+1 =
Vo™ (x; — tr,o V fi, (xx)) with the Polyak-like step size!

Sir (xx)
lho =0 —a——— (12)
IV fi (i) Il
with some norm || - ||« and some constant o > 0. We will refer to the resulting

update as the relaxed projection. We note that it is always defined and gives a new
point x;4+1 € dom d¢. However, x;41 does not lie in Hy: Indeed, if it would lie in
Hy N dom d¢, this would contradict the assumption that (10) is not fulfilled. In [23],
fiy Ce)—infy fiy
cllV fiy, Gaol12
for minimization with mirror descent under the name mirror-stochastic Polyak step
size (mSPS). Both the projection and relaxed projection guarantee that x;1 € dom ¢
and deliver a new subgradient x, ; for the next update. The steps are summarized in
Algorithm 1 below.

the similar step size t = o with some constant ¢ > 0 was proposed

Algorithm 1 Nonlinear Bregman—Kaczmarz (NBK) method
1: Input: & > 0 and probabilities p; > Ofori =1, ...,n

2: Initialization: xa‘ eRY, X0 = Vgo*(x(’)‘)

3:fork=0,1,...do

4:  choose iy € {1, ..., n} according to the probabilities py, ..., pn
5. if f (xx) #0and Vfj (x) # 0 then
6: > otherwise, the component equation is solved already, or Hy = ¢
7. set Br = (V fi, (xp), xx) — fif, (k)
8: if Hy Ndom d¢ # ¢ then
9: Find g 1 € argmin,ep 0™ (xf — 1V fi, () + 15k
10: elsesetry = o L’(z
IV fiy, i)l
11: update x| = x; — %V fiy (xp)
12: update x;4| = Vgo*(x,’:H)

As an alternative method, we also consider the method which always chooses the
step size t , from (12).

Note that the problem (11) is convex and one-dimensional and can be solved with
the bisection method, if p* isa C !_function, or (globalized) Newton methods, if ¢* is
a C2-function, see Appendix A. In Examples 3.2, 3.3, 3.4 and 3.5, we show how to
implement the steps of Algorithm 1 for typical constraints.

! The typical setting in convergence analysis will be that ¢ is o-strongly convex with respect to a norm
Il - II, and || - ||« will be its dual norm.
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Algorithm 2 Relaxed Nonlinear Bregman—Kaczmarz (rNBK) method
1: Input: & > 0 and probabilities p; > Ofori =1, ...,n

2: Initialization: x € RY, xg = V* (x§)

3:fork=0,1,...do

update x| = x; — %V fi, (%)
update x4 = Vo™ (x[ )

4:  choose i; € {1, ..., n} according to the probabilities pq, ..., pn
50 if fj (x) #0and Vfj (x) # O then
6: setty =0 Lk)z
IV fip il
7:
8:

Remark 3.1 (Choice of ¢ in Algorithm 1 and Algorithm 2) In this paper, we focus on
the case that ¢ is a strongly convex function. In this setting, we propose to choose
the parameter o in Algorithm 1 and Algorithm 2 as the modulus of strong convexity,
since in this case our theorems in Sect. 3 guarantee convergence.

Example 3.2 (Unconstrained case and sparse Kaczmarz) In the unconstrained case
dom ¢ = R?, condition (10) is always fulfilled whenever V f;, (xi) # 0.
For ¢p(x) = %Hx ||%, we obtain back the nonlinear Kaczmarz method [43, 58, 62]

fik(xk)
Xptl = X — —————= V fi, (Xp).
IV fi ol
For the function
1 2
o(x) = Allxll + EIIXIIZ, (13)

Assumptions 1(i-iv) are fulfilled and it holds that ¢*(x) = %HS 5 (x) ||% with the soft-
shrinkage function

X+A, x<—A,
Si(x) =10, x| <A,
X—A, X>A

Hence, in this case lines 9, 11 and 12 of Algorithm 1 read

. 1
find 7, € argmin St + §||S;L()c;{k —tVfi (xk))||%,
teR

update x; | = x; — &V fi, (xp),
update xg1 = Sx(x;, ).

For affine functions f;(x) = (a®, x) — b; with a) € R?, b; € R, Algorithm 1
has been studied under the name Sparse Kaczmarz method and converges to a sparse
solution of the linear system f(x) = 0, see [39, 53]. The update with #; from (11)
is also called the Exact step Sparse Kaczmarz method. The linesearch problem can
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be solved exactly with reasonable effort, as ¢* is a continuous piecewise quadratic
function with at most 2d discontinuities. The corresponding solver is based on a sorting
procedure and has complexity O(d log(d)), see [39] for details.

Example 3.3 (Simplex constraints) We consider the probability simplex
C=nA": x € R le = 1
The restriction of the negative entropy function

4y . d-1
px) = {Zi—ﬂfz log(x;), x e A, 0

+00, otherwise.

fulfills Assumption 1(i-iv) and is 1-strongly convex withrespectto ||-||; due to Pinsker’s
inequality, see [25, 47] and [8, Example 5.27]. We have that

d0m8<p—r1Ad I = xeR le—l :Ai_l.

We can characterize condition (10) easily as follows: The hyperplane H («, 8) inter-
sects dom d¢p = A‘fr_l if and only if

e o =pf1,o0r
e thereexistr,s € {1, ...,d} witha, < 8 < ay.

This condition is quickly established by the intermediate value theorem and can be
easily checked during the method. When verifying the condition in practice, in case
of instabilities one may consider the restricted index set

{i=1,...,n||xi| > 8}
for some positive §.

The Bregman distance induced by ¢ is the Kullback-Leibler divergence for prob-
ability vectors

d
vi . .
Dy(x.y) =) yilog ()., xeaf yeat
. I

d
The convex conjugate of ¢ is the log-sum-exp-function ¢*(p) = log ( )" e”'). Since
i=1

¢ is differentiable, the steps of Algorithm 1 can be rewritten by subst_ituting x; by
Vo (xr) = 1+1og(xx). Denoting the ith component of an iterate x; by x; ;, lines 9, 11
and 12 of Algorithm 1 read
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d
find ;. € argmin it + log ( Zxk,,-e”a"f"k ("k)), (15)
teR i=1
—tV fi, (xx)
Xi - e k
Xk+1 = (16)

o - e~V

where multiplication and exponentiation of vectors are understood componentwise.
The method (16) is known with the name exponentiated gradient descent or entropic
mirror descent, provided that #; is nonnegative. We claim that our proposed step size
I,y 18 new. Note that some convex polyhedra, such as ¢!-balls, can be transformed to
AY =1 for some d’ € N by writing a point as a convex combination of certain extreme
points [23].

Example 3.4 (Cartesian products of constraints) Fori € {1, ..., m}, let ¢; be a DGF
for C; ¢ D; c R% fulfilling Assumption 1(i-iv) and let f: D := X, D - R"
fulfill Assumption 1(v-vi). Then

m
p(x) =Y @i(x)), x=(x1,....x) with x; € R?
i=1

isa DGF for C = X ., C; fulfilling Assumption 1(i-iv) with

m m
dom d¢p = X dom d¢; and dp(x) = X d¢;(x;) forall x; € dom d¢;.
i=1 i=1
Denoting the ith component of an iterate xl(*) by xl(j’;), the lines 9, 11 and 12 of
Algorithm 1 fori € {1, ..., m} read as follows:

m
find # € argmin By + Z of (68 i — 1Vi fi (),
teR i=1
'x;(k+1,l' = x,il- —4Vifi,(xx) fori=1,..,m,

Xkt = Vo () fori=1,...m,

where V; stands for the gradient w.r.t. the ith block of variables.

Finally, we give a suggestion which constant o and norm || - || should be used in
Algorithm 2/ line 10 in Algorithm 1. Let us assume that ¢ is o;-strongly convex w.r.t. a
norm || -||;y on R% . Then, the function ¢ is o-strongly convex with o = min;—
w.r.t. the mixed norm

m Oj

.....

m
D luill%).
i=1
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1072 R. Gower et al.

Indeed, for all x, y with x;, y; € R4 it holds that
o o m m «
X *
Sl =312 =2 Dl = illgy = 3 Dy (i, yi) = Dy (x, 3).
i=1 i=1

A quick calculation using Cauchy-Schwarz’ inequality shows that the dual norm of

I - || is given by
m
Nl i= | D ufli% ), (17)
i=1
where || - ||« is the dual norm of || - ||; on R% . Hence, we recommend to use
Algorithm 2 with (17) and o = rlnin o;, if @; is o;-strongly convex w.r.t. || - [|;).
i=1,....m

Example 3.5 (Two-fold Cartesian product of simplex constraints) As a particular
instance of Example 3.4 we consider the 2-fold product of the probability simplex
C; = A1 i € {1,2} with ¢; = ¢ from Example 3.3. The properties from Assump-
tion 1 are inherited from the ¢;. We denote the iterates of Algorithm 1 by x, yx € A4~
and address its components by xi ;, yx,; fori =1, ..., d. Similar to Example 3.3, the
steps of the method can be rewritten as

d d

find # € argmin Bt + log (Zxk’left(%ﬁk (Xk))l) + log (Z yk’left(Vyfik (Xk))l)’
teR I=1 I=1
Xk - e~ Va fiy (i) Vi - e~ Vy iy k)

Xk+1 = oV f ’ Yk+1 = —tV. i ’
A | i - e "V R0,

(18)

where V, stands for the gradient w.r.t. x and V, for the gradient w.r.t. y. Also here,
we can give a characterization of condition (10): For @ = (a1, a2) with ay, ap € R?
and g € R, the hyperplane H («, f) intersects dom d¢ = AL x AZ*!if and only
if for (i, j) = (1,2) or (i, j) = (2, 1) one of the following conditions is fulfilled:

o o; =cly withsomec € Randa; = (B — )1y,

e «; = cly with some ¢ € R and there exist r, s € {l, ..., d} with

aj, <p—c<ajgor

e |mina;, maxa;[ N | —maxa;, p —mina;[ # 0.

To prove this condition, we can invoke Proposition 2.3 which states that (10) is fulfilled

if and only if the objective function g from (8) has a minimizer. Next, we note that,
for each ¢ € R, the objective in (18) can be rewritten as

d d
g(r) =log (Z Xk,zef(“‘*’fc)t> + log (Z yk,ze(‘gfc*a“)’)

=1 =1
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d d
— log (Z yk’le—m,[—m) +log (ZXk,le(,s_c_al,,),)

=1 =1

and a case-by-case analysis shows that g has a minimizer if and only if one of the
above assertions is fulfilled. Note that also the here discussed condition can be easily
checked during the method. We remind that, in case of instabilities one may consider
the restricted index set

{i=1,...,n||xij| > §and |y;| > §}

for some positive §. As derived in Example 3.4, in Algorithm 2/ line 10 of Algorithm 1

we use o = 1 and |lu*|l, = /lluillZ, + llud ).

4 Convergence

In this section we do the convergence analysis of Algorithm 1.

At first, we characterize fixed points of Algorithm 1 and Algorithm 2 and provide
necessary lemmas for the subsequent analysis. In Sect. 4.1, we prove that for nonneg-
ative star-convex functions f;, condition (10) is always fulfilled and the step size (11)
is better than the relaxed step size (12) in the sense that it results in an iterate with
a smaller Bregman distance to all solutions of (1). Finally, we present convergence
results for Algorithm 1 for this setting. In Sect. 4.2, we prove convergence in a second
setting, namely in the case that the functions f; fulfill a local tangential cone condition
as in [34, 41, 58].

As afirstresult, we determine the fixed points of Algorithm 1. The proposition states
in particular that, in the unconstrained case dom ¢ = R?, fixed points are exactly the
stationary points of the least-squares function || f (x) ||%.

Proposition 4.1 Let Assumption 1 hold and let x € dom d¢ and x* € d¢(x). The pair
(x, x*) is a fixed point of Algorithm 1 if and only if for all i € {1, ..., n} it holds that
filx) =00rVfi(x) =0.

Proof If f;(x) = 0or Vf;(x) = 0 holds for all i € {1, ..., n}, then (x, x*) is a fixed
point by definition of the steps.

Next, we assume that x € dom d¢ is a fixed point of Algorithm 1 and V f; (x) # 0.
First, assume that condition (10) is not fulfilled, then the update for x* shows that ty , =
0, since V f;j(x) # 0, and hence, f;(x) = 0. Finally, we assume that condition (10)
holds. Then, from Proposition 2.3 we know that Algorithm 1 computes the Bregman
projection x = l'[;‘: p (x) with

H={yeR: fi(x)+(Vfi(x),y —x) =0}.
But this means that x € H and hence, f;(x) = 0 holds also in this case. ]
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The following fact will be useful in the convergence analysis. It shows that Algo-
rithm 1 performs a mirror descent step whenever f;(x) > 0, and a mirror ascent step
whenever f;(x) < 0.

Lemma 4.2 Consider the kth iterate xj of Algorithm 1 and consider the case that
fi,(xx) # 0 and V f; (xx) # 0. Let Assumption 1 hold. Then, the step size ty in
Algorithm 1 fulfills

sign(t) = sign( fi, (xx)).

Proof If condition (10) is not fulfilled, the assertion is clear by definition of the step
size. Next, we assume that (10) holds. Then, the function

Sipo; (1) = @ =1V fi, ) + 1 ((V fi, (), xk) — fir, (x0) 19)

is minimized by # ,,. (Note that the expression is indeed fully determined by i; and
x; by the fact that x; = Vg™ (x})). We compute

g,{k,x; (0) = —(V fi, (), V@ (xp)) +(V fir 1), xx) — fi () = — fiy, (xi). (20)

Since g;, s convex, its derivative is monotonically increasing and it vanishes at #¢ .
Since it holds f;, (xx) # 0 by assumption, we conclude that #; , and f;, (x;) have the
same sign. O

To exploit strong convexity and smoothness, we will use the following.

Lemma4.3 If ¢: R? — R is proper, convex and lower semicontinuous, then the
following statements are equivalent:

(i) @ is o-strongly convex w.r.t. || - ||.
(ii) Forall x,y € R? and x* € 3¢ (x), y* € dp(y),
(F =y x = y) = ol -yl

1

(iii) The function ¢* is —-smooth w.r.t. | - ||«

Proof See [63, Corollary 3.5.11 and Remark 3.5.3]. O

Lemma4.4 If ¢: RY — R is convex and lower semicontinuous, then the following
statements are equivalent:

(i) ¢ is L-smooth w.r.t. a norm || - ||,
(ii) p(y) < @(x) + (Vo(x),y —x) + 5llx — y|* forall x, y € RY,
(iii) (Vo(y) — Vo(x),y —x) < Lllx — y|| forall x, y € R%.

Proof See [63, Corollary 3.5.11 and Remark 3.5.3]. O
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4.1 Convergence for nonnegative star-convex functions

In this subsection we assume in addition that the functions f; are either nonnegative
and star-convex or affine.

Definition 4.5 ([45]) Let f: D — R be differentiable. We say that f is called star-
convex, if the set argmin f is nonempty and for all x € D and X € argmin f it holds
that

JE)+(Vfx), X —x) = f(D).

Moreover, we call f strictly star-convex, if the above inequality is strict, and u-
strongly star-convex relative to ¢, if for all x € D, x* € d¢(x) and X € argmin f it
holds that

fO) + (V@)% —x)+uD} (x,. %) < f(R).

We recall that the first assumption of nonnegativity and star-convexity covers two
settings:
e Minimizing a sum-of-terms

1
min — Zf,-(x) st.x eC, 1)

under the interpolation assumption

n

dx: x¢€ margminf,-k;, (22)
i=1

where f; is a star-convex function with known optimal value f, on C. Under the
interpolation assumption every point in the intersection on the right hand side
of (22) is a solution to (21).

Furthermore, we will construct a sequence which converges to this intersection
point by applying Algorithm 1 to the nonnegative function f where f, filc— f,
When n = 1, we cover the setting of mirror descent for the problem

min f(x) s.t.x €C (23)

with known optimal value f .
e Systems of nonlinear equations

fx) =0 stxeC

with star-convex component functions f;, where we apply Algorithm 1 to fi"' =
max( fj, 0). Note that fiJr is not differentiable only at points x with f;(x) = 0,
which is anyway checked during the method.
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Precisely, we will use the following assumption.

Assumption 2 For each f; one of the following conditions is fulfilled:

(i) f; is nonnegative and star-convex and it holds that fl._l (0) Ndom dp # @,
(i1) f; is nonnegative and strictly star-convex or
(iii) f; is affine.

The first theorem states that Algorithm 1 always computes nonrelaxed Bregman
projections under Assumption 2 outside of the fixed points.

Theorem 4.6 Let (xk, x,f) be given by Algorithm I and consider the case that f; (x) #
0 and V f;, (x) # 0. Let Assumptions 1 and 2 hold true. Then, the hyperplane H

separates xj and () , the condition
D i

Hi Ndom d¢ # ¥

holds and the Bregman projection of xj onto Hy is defined, namely it holds that

*

X
Xt = TSy ().
In particular, Algorithm I always chooses the step size ty = ty o from (11).

Proof For x € D we define the affine function

() = iy () £V fi (x), y — x).

We consider the cases (i) and (ii) from Assumption 2 first. Here we have that £, (x;) =
fir(xx) > Oand forall X € f”:] (0), star-convexity of f;, shows that £, (*) < 0. This
means that the hyperplane Hj separates x; and fl;l (0). By the intermediate value
theorem there exists x* = Axx + (1 — A)% for some A € [0, 1] such that £, (x*) = 0.
Now let us assume that Assumption 2(i) holds, so we can choose x € dom d¢ with
fir (¥) = 0. By Assumption 1(iii) it holds that dom d¢ = ri dom ¢, which is a convex
setand hence, x* € dom d¢. This proves that the claimed condition (10) is fulfilled and
the update in Algorithm 1 computes a Bregman projection onto Hj by Proposition 2.3.
In case of Assumption 2(ii) we have that £, (*) < 0 and therefore it even holds that
A €]0, 1[. Assumption 1(iii) guarantees that x € dom ¢ and x; € dom d¢ = ri dom .
Hence, we have x* € ri dom ¢ by [52, Theorem 6.1], which again implies that
x* € dom d¢ by Assumption 1(iii). This proves that condition (10) is fulfilled in this
case, t0o.

Under Assumption 2(iii) it holds that £, = f;, for all x € D. This already implies
that Hj separates x; and flk_l (0). Condition (10) is fulfilled by the assumption that

fik_l (0) # ¥ and so, the update computes the claimed Bregman projection by Propo-
sition 2.3 also in this case. O

As animmediate consequence, we see that Algorithm 1 is stable in terms of Bregman
distance.
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Corollary 4.7 If x € S is a solution to (1) and the assumptions from Theorem 4.6 hold
true, then it holds that

Gl A s s s
Dy (xk41, %) < Dy (xg, X) — Dy (xg, Xk 41)-

Proof By Theorem 4.6, x; is the Bregman projection of x; onto Hj with respect to
x; If fi, () = 0, then x; is a fixed point by Proposition 4.1and the statement holds
trivially. Next, assume that f;, (xx) > 0. Then by Lemma 4.2, we have that 7 > 0. As
Xk+1 € H, we have that (V f;, (xx), xk+1 — xk) = 0. We conclude forall y € ka that

(X1 = X0 X1 — ) = — 1 (V fi, k), X1 — ¥)
=tV fi k), ¥ — xk) — t(V fir (k)5 Xke1 — Xg)
< =t fir ()
<0,

which by Lemma 2.2 shows that xz4| = H;" = (k). As X € H, =, the claim follows
Tk

from Lemma 2.2(ii). An analoguous argument shows the claim in the case f;, (xx) < 0.
O

Next, we prove that the exact Bregman projection moves the iterates closer to
solutions of (1) than the relaxed projections, where the distance is in the sense of the
used Bregman distance (see Theorem 4.11). To that end, for (x, x ,j) from Algorithm 1
we define an update with variable step size

i) =xf =tV i (), x() = Ve (1), teR. (24
Lemma 4.8 Let (xk, x,’:) be given by Algorithm 1 and consider (xy+1(t), x{ (1))

from (24) for some t € R. Let Assumption 1 hold true. Then, for all x € R? it holds
that

Df“(”(xkﬂ(t), x) = @*(xf =tV fi, (x0) + 1 Br + 1(V fi, (xx), x — xi)
+ tfi, (k) — (x5, x) + @(x).

Proof Rewriting the Bregman distance as in (7) shows that

DI (1 (0, 3) = ¢* (f oy (0) — (xF 41 (0, x) + 0(x)
= (5} — 1V fi,(50)) + HV fi (xa), x) — (6, %) + 9 (x)
= Q" (5} — 1V fi, (0)) + 1Bx + £(V i, (x2), X — x1)
Ftfi () — (1 X) + 9 (0).

O
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Proposition 4.9 Let (xk,x,’:) and tp be given by Algorithm 1 and consider
(xk+1(t),x,f +l(t)) from (24) for some t € R. Let Assumption 1 hold true. Then,
for all x € R it holds that

DI (g 1) < D G (00, 0) + (1 — 1) - (fin Go) + (9 fi (). x — ).

Proof Note that ; equals # , from (11), since condition (10) is fulfilled by Theo-
rem 4.6. Hence, the optimality property (11) shows that for any # we have that

@ (g — eV fiy () + tkePre < 0" (xp — 1V fiy (X)) + 1 B

Lemma 4.8 then shows that for any x it holds that

D;Z“ (Xkr1, %) < Q" =tV fi (x0) + 1B + 6 (V fiy (x0), x — x) + 1 fir (X)
— (x5, x) + @(x).

We use the definitions of B, x¢+1() and x;, ; () and get

D;Z“ (X1, X) < @*(f — 1V fi (i) + B + e (V fi, (x), x — xie) + t fi (Xi)
— (x5, x) + o(x)
= " (xf =tV fi () + 1V fi, (x), x) — (6, x) + 0(x)
+ (e — 1) - (fir () + (V f (), X — xi0))

= D 1 (0.0 + (1 — 1) - (fiy 01+ (Y fiy ()2 x — 32)).

O

In order to draw a conclusion from Proposition 4.9, we relate the step sizes # 4
from (11) and # » from (12). We already know by Lemma 4.2 that both step sizes have
the same sign. The next lemma gives upper and lower bounds for #; , with respect to
1o under additional assumptions on ¢.

Lemma4.10 Let (xk, x,’c") be the iterates from Algorithm 1 and let Assumption 1 hold
true. We consider ty o, and ty  from (11) and (12) and the function 8ix.x} from (19).

v fi 2
M—smooth and

(1) If ¢ is o-strongly convex w.r.t. | - ||, then 8iyxp 18

| fir (i)

|t p| > 0 ——E=
IV fir (xi0) 1|2

= kol (25)

Vfi 2
%—strongly convex and

(1) If ¢ is M-smooth w.r.t. || - ||, then 8iyxp 18

Ut M (26)

ltg gl < M——220_ —
v IV i oll2 o
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Proof For s,t € R with s < ¢ it holds that

Bhour (0= 8], ) = (V4™ =1V 5, () = Vo™ () = sV fiy (50)). =V fy ()

(Vo™ (xf =1V fi, (1) — Vo™ (xff — 5V i, (x0)).

xXp =1V fip () = (e = 5V i, (6))- 27

D)

(i) If ¢ is o-strongly convex w.r.t. | - ||, then ¢* is 0—-sm00th wrt. || - ||« by
Lemma 4.3(iv). Hence, by Lemma 4.4(iii) we can estimate

16 = VS GolE _ VA @I}
o

/ /
0= 8 =8, ) = ———

. N\l
which proves by the same lemma that g; xp 18 ka-smooth. Hence, (25)

follows by choosing t = max(# ¢, 0), s = min(#,,, 0) and inserting (20).
(ii) Here by Lemma 4.3 and the Fenchel-Moreau-identity ¢ = ¢**, the function ¢*
is 37 —strongly convex w.r.t. || - ||. Using Lemma 4.3(ii) we can estimate

It =)V fi 12 IV fi 112
M- (t—s) - M

(=)

gl{k,xz (1) — g;k,xz(s) >

)12
I Vf'kA;” ' _strongly convex. Inequality (26) then follows

which shows that g;, X} is
as in (i).
O

Theorem 4.11 Let (xk, x,’f) and ty be given by Algorithm 1. Let t € [0, ty] and let
(xk+1(t),x,f+l(t)) be as in (24). Let Assumptions 1-2 hold true and assume that
fi (xx) > 0. Then for every solution X € S it holds that

xk N x () N
Dyt (X1, £) < Dt (xieq1 (1), %)

If ¢ is o-strongly convex, the inequality holds as well for t = ty ;.

Proof We recall that #; equals % , from (11), since condition (10) is fulfilled by The-
orem 4.6. By Lemma 4.2 we have that 7 > 0. Since f;, is star-convex and X € S, it
holds that

fir ) + (V fir (xx), £ — xx) < 0.

The statement now follows from Proposition 4.9. The theorem applies in particular to
t =ty o if @ is o-strongly convex, as Lemma 4.10(i) ensures that 0 < #; o < # . O

For mirror descent or stochastic mirror descent under interpolation, Theorem 4.11
tells that a choice of a smaller step size than ;. , results in a larger distance to solutions X
of problem (1) in Bregman distance.

The following lemma is the key element of our convergence analysis.
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Lemma4.12 Let (xk, x,f) be the iterates of either Algorithm 1 or Algorithm 2. Let
Assumptions 1 and 2 hold true and assume that ¢ is o -strongly convex w.r.t. a norm
Il - l. Then for every solution x € S it holds that

2
* R * R O’ . Xk
D (xig1, ) < Dyt (xg, £) — o _(fitw)

. 28
2 IV fi )12 28)

Proof We bound the right-hand side in Lemma 4.8 from above for ¢ € {tx ¢, tk.o }. As
@ is o -strongly convex, ¢* is Ul—smooth by Lemma 4.3(iii). Hence, by Lemma 4.4(ii),
for all # € R we can estimate that

O (F — 1V fi, (x) + 1Bk
= " (xf — 1V fi () + t((V fie (i), k) — fi (¥0))
1
< @*(xF) — (Vo™ (x}), V fi, (xp)) + thnvm (o) 112
+ t((V fir (x), xk) — fi (x0))

1
= " () = tfi, ) + 521V i G 2.

Ty tr.o and

Minimizing the right hand side over ¢ € R gives t = om =

$(xF) — T F Lowr 2w O (fiu 00))°
#00 = G o s IV Ja GOl = 9700 = g e o

By optimality of # , we have that
0" (xf — toV fiy 00) + tko B < @ (xf — 1V fi, (xx)) + 1Bk

for all + € R. Hence, we have shown that

* % * o % o (fik(xk))z
N e e AT =
ix *

holds for t € {tx o, t,o}. If Assumption 2(i) or 2(ii) are fulfilled, Lemma 4.2 and
star-convexity of f;, show that

e (fix (ui) + (V fiy (1), & — x)) < 0. (30)

Under Assumption 2(iii), we have equality in (30). Inserting this inequality into
Lemma 4.8, we obtain the claimed bound

2
Dy (i1, ) < ¥ (xf) — o ()

2V e~ e e
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o _gM
= D} (xk, %) 2|V fi, )12

where we used (7) in the last step.
m}

We can now establish almost sure (a.s.) convergence of Algorithm 1. The expec-
tations are always taken with respect to the random choice of the indices. Sometimes
we also take conditional expectations conditioned on choices of indices in previous
iterations, which we will indicate explicitly.

Theorem 4.13 Let Assumptions 1-2 hold true and assume that ¢ is o -strongly convex
w.r.t. a norm || - ||. Then it holds that

n
E[Zpi(fi(xk))z] -0 ask > o0
i=1
and we have the rate
n 2 c
E[,:f{{i‘?’k;pi(ﬁ(xz)) ]= prs

with some constant ¢ > 0. Moreover, the iterates xy of Algorithm 1 converge a.s. to a
random variable whose image is contained in the solution set S.

Proof By o-strong convexity of ¢ and Lemma 4.12, we have that
o <2 X X5
E”xk —x||” < Dy (xg, X) < Dy’ (x0, X)
holds for all k € N and x € S. Hence, the sequence x; is bounded and we have
IV fi Gll3 < M
with some constant M > 0. Inserting this into (28) gives that for all / € N it holds

fil (xl))2~

X N xF N o
D, (X141, ) < Dy (xq, %) — ﬁ(

Taking conditional expectation w.r.t. ig, ..., ij_1, we obtain

n
[ AL . i o o 2
E[D;Hl(xl-i-l»x) | i0y o if—1] < DZI (x1, X) — M z;p" (fi (D)™ (3D
1=
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By rearranging and using the tower property of conditional expectation, we conclude
that

M x* ~ x* A
Zpl fun)?] < —(B[Dy (1. D] = E[Dy"" (41, D)])

The convergence rate now follows with ¢ = 2 - M - D;C,O (x0, x) for any x € S by
averaging over [ = 0, ..., k and telescoping.
Next, we prove the a.s. iterate convergence. Using (31) gives that

o ~min,- Di

Il

X1 A . . x; A
E[ D™ (Xkg1, £) | 0, oos ik—1] < Dgf (x, %) —

The Robbins-Siegmund Lemma [51] proves that f'(x;) — 0 holds with probability 1.
Along any sample path in {f(xx) — 0}, due to boundedness of the sequence xi,
there exists a subsequence xy, converging to some point x. By contlnulty, we have that

fx)=0 and hence, x € S. Due to Assumption 1(iv), it holds that D "k, x) —> 0
and since D¢ (xk, X) is a decreasing sequence in k for x € S by Lemma 4.12, we

conclude that D;" (xg, x) — 0. Finally, strong convexity of ¢ implies that x; — x. O

If the functions f; have Lipschitz continuous gradient, we can derive a sublinear rate
for the €;-kind loss E[ minj—y,.. x Y;—, pi f;(x;)], which coincides with the rate in
[23, Theorem 4]. Note that without this assumption, Jensen’s inequality gives the
asymptotically slower rate

k n

rmn Zp,fl(xl) ]<E ;{ZZP:ﬁ(xl)

=1 i=1

-

for some constant ¢ > 0. We will need the following lemma.

Lemma 4.14 [38, Lemma 3] Let ¢ be o-strongly convex w.r.t. || - ||. Moreover, let the
functions f; be L-smooth w.r.t. || - ||. Then it holds that

1 >U
ko =or-

Theorem 4.15 Let Assumptions 1-2 hold true and assume that @ is o -strongly convex
w.r.t. anorm || - || and all functions f; are L-smooth w.r.t. || - ||. Then the iterates xj of
Algorithm 1 fulfill that

n
. 4L . x5 ~
Sl 2 pie0] = G- g Do O
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Proof Combining Lemma 4.12 and Lemma 4.14 yields that

* * 1 * o

K1 o X A Xk o

%) ) = @ ) i “lk, S (] ) - 7 .
Dy (xg+1, %) < Dy (xp, X) — Ef (x1) “ tr,o < Dy (X, X) 4Lf (xx)

The assertion now follows as in the proof of Theorem 4.13 by taking expectation and
telescoping. O

For strongly star-convex functions f;, we can prove a linear convergence rate,
where we recover the contraction factor from [23, Theorem 3]. Moreover, we can
even improve this factor for smooth ¢.

Theorem 4.16 Let Assumptions 1-2 hold true and assume that @ is o -strongly convex
w.r.t. anorm || - || and all functions f; are L-smooth w.r.t. || - ||. Moreover, assume that
f = Y iy pifi is u-strongly star-convex w.r.t. S relative to ¢. Then there exists an
element x € S such that the iterates xj. of Algorithm I converge to X at the rate

E[D(;ZH(Xk—H, D] =(1- %)E[D;Z(xk, 0] - %?(xk).

Moreover, if ¢ is M -smooth, it holds that
gl N 2 X A
E[Dy ™ (xpg1, B)] < (1 = = — —)E[ D! (xx, D)].
Proof By Lemma 4.14 we have that

i (Y fiy (), £ — x0) + fio (6) < ;—L(Wﬁk(xk), £ =) + fiy ().

Taking expectation and using the assumption of relative strong convexity, we obtain
that

E[te((V fi, (), & — x0) + fi ()] < —%E[M) — fr) = (V) £ — xi)]

no i N
—EE[D;A (xk, x)].

IA

The first convergence rate then follows by the steps in Lemma 4.12 and Theorem 4.15,
replacing (30) by the above inequality. Finally, let ¢ be additionally M-smooth. Using
that V f (X) = 0, we can further bound

fOx) = fox) — fR) — (VFE), xx — £)

R no n no _ xj A
> uDy(%, xi) = -l = =7 D e D).

O

Since the proofs of Theorems 4.13, 4.15 and 4.16 rely on Lemma 4.12, they also
hold for Algorithm 2.
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4.2 Convergence under the local tangential cone condition

Inspired by [58], we consider functions fulfilling the so-called tangential cone con-
dition, which was introduced in [29] as a sufficient condition for convergence of the
Landweber iteration for solving ill-posed nonlinear problems.

Definition 4.17 A differentiable function f: D — R fulfills the local tangential cone
condition (n-TCC) on U C D with constant 0 < 1 < 1, if for all x, y € U it holds
that

If )+ V), y = x) = fFODI = nlf ) = fFOI. (32)

Under this condition, we are able to formulate a variant of Lemma 4.12 and derive
corresponding convergence rates. Precisely, we will assume the following.

Assumption 3 There exist a point x € S and constants  €]0, 1[ and r > 0 such that
each function f; fulfills n-TCC w.r.t. n on

By (%) == {x eC: D;*(x,)?) <r forallx* ¢ B(p(x)}.

Lemma 4.18 Let Assumptions I and 3 hold true and assume that ¢ is o -strongly convex
w.r.t. anorm || - ||. Let x € S. Then, the iterates of Algorithm 1 fulfill

(fu(x0)’

X x;
Dy (g1, ) < Dyt (i, X) — 1S ——,
v v IV fi (o) 112
if one of the following conditions is fulfilled:

) o = teor N < %and‘[ = o‘(% _ 77),

(i) t = tx,p, @ is additionally M-smoothw.rt. || - ||, n < 55; and T = 0(% _ 71%)
In particular, if xo € By o(X), then in both cases we have that xy € B, ,(X) for all
keN

Proof For (i), by definition of # , and -TCC we have that

(fu ()’

Tk,o (flk (x) + (fig (), X - xk)) =no IV fi, (xk)Hi .

The first convergence rate then follows by the steps in Lemma 4.12, replacing (30)
by the above inequality. For (ii), using Lemma 4.10(ii) and the fact that f;, fulfills
n-TCC, we estimate

fi(0)?

tk,(p(fik () + (V fi (xp), X - xk)) =M IV fi, (x)”i ’

so that the assertion follows as in (i). O
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The condition on 7 in (i) is the classical condition for Landweber methods (see e.g.
[29, Theorem 3.8]) and is also required in the work [58], which studies Algorithm 1
for p(x) = %le“% under n-TCC. The constant 7 in (ii) can not be greater than t in
(i), as it holds that o < M.

Theorem 4.19 Let Assumption 1 hold and let ¢ be o-strongly convex. Moreover, let
Assumption 3 hold with some n > 0 and X € S and let xo € B, ,(%).

G) Ifn < %, then the iterates xj of Algorithm 2 converge a.s. to a random variable
whose image is contained in the solution set S N By ,(X) and it holds that

n Xy ~
. 2 C : D(po (X(), x)
B[ min 3 pi(fion)] = &P o)
1=1,....k P 0’(5 — n)k
(ii) Let ¢ be additionally M-smooth and n < 5%;. Assume that xy. are the iterates of
Algorithm I and the condition Hy N dom ¢ # @ is fulfilled for all k. Then the xj
converge a.s. to a random variable whose image is contained in the solution set
SN B, ,(X) and it holds that

.G Dy’ 0 (x9, )
min z pi(icn)) < 220D,
o3 —ng)k
Proof By Lemma 4.18, the x; stay in B, ,(X). The statements now follow as in The-
orem 4.13 by invoking Lemma 4.18 instead of Lemma 4.12. O

Finally, we can give a local linear convergence rate under the additional assumption
that the Jacobian has full column rank. For ¢(x) = %Hx ||%, in part (i) of the theorem
we recover the result from [58, Theorem 3.1] as a special case. In both Theorem 4.19
and Theorem 4.20, unfortunately we obtain a more pessimistic rate for Algorithm 1
compared to Algorithm 2, as the 7 in (ii) is upper bounded by the t in (i).

Theorem 4.20 Let Assumption 1 hold true and let ¢ be o-strongly convex and M-
smooth. Let Assumption 3 hold with some n > 0 and X € S and let xg € By ,(X).
Moreover, assume that the Jacobian Df (x) has full column rank for all x € B, 4(%)
and pmin = min;—1,._, pi > 0. We set

. IDf ) F
min mm ———.
x€By (&) lIylla=1 | Df (x)yll2

Kmin =

1) Ifn < %, then the iterates xy of Algorithm 2 fulfill that

o (3 = 1) Pmin \K

M(1+ n)% r%m> E{Dy (o0, )]
(33)

ZE[lIx — #131 < E[Dy(xr, £)] < (
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(ii) Let ¢ be additionally M-smooth and let n < 5%;. Assume that xy are the iterates
of Algorithm I and the condition Hy N dom ¢ # @ is fulfilled for all k. Then it
holds that

(3 = 1%) Pmin

k
B[l — £131 = B[Dy (9] = (1 - ) E[Dy(x0. 5)].

2 1+ 77)2’(1%1111
(34)
For the proof, as in [58] we use the following auxiliary lemma.
Lemma4.21 Letay, ...,a, > 0and by, ..., b, > 0. Then it holds that
Xn: di i i
- n .
=1 bi Zi:l bi
Proof Since a;, b; > 0 it holds that
n n a; n a; n a n
. ) = s P .
i=1 = i,j=1 i=1 i=1
O

Proof of Theorem 4.20 By Assumption 3 and the fact that f(x) = 0, we can estimate

KV fir ), X = xi0) | < | fir ) + (V fip, n) s X — xx) — fir, O+ | fip, (k) — fi (X)]
< (L + 0l fie k) = fi, D] = (A + )| fir (e

In all cases of the assumption, inserting the above estimate we respectively conclude

that

T UV i), & — )
(1+m)? IVAiGoly

D(/)(-xk-‘rl?-x,\) S D(p(-xka)e) -

Taking expectation and using Lemma 4.21 as well as the definition of «pjn, we
conclude that

n

T E[Z (V fi(xp), & — xk>|2]

E[D 9] <E[Dyx, §)] — —— ;
(Dot )] = B[ Dy o H] = 755 PV AR
. T Pmin IDf (xi) (& — xx) I3
E|D - -E
= B[Dy G D] = 75 [ IDf G2 ]
~ T Pmin ~
<E[Dy(x, )] - E[m ok — x||%]

2'L'pmin A
1—-—  )E|D .
Ty & LR

min

<
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5 Numerical experiments

In this section, we evaluate the performance of the NBK method. In the first experiment
we used NBK to find sparse solutions with the nonsmooth DGF ¢ (x) = % [lx ||%+A llx11
for unconstrained quadratic equations, that is, with C = R4, Next, we employed the
negative entropy DGF over the probability simplex C = A4~! to solve simplex-
constrained linear equations as well as the left-stochastic decomposition problem, a
quadratic problem over a product of probability simplices with applications in cluster-
ing [2]. All the methods were implemented in MATLAB on a macbook with 1,2 GHz
Quad-Core Intel Core i7 processor and 16 GB memory. Code is available at https://
github.com/MaxiWk/Bregman-Kaczmarz.

5.1 Sparse solutions of quadratic equations

As the first example, we considered multinomial quadratic equations
L A® 0) 0)
f,-(x):z(x,A x)y+ BV, x)+c =0

with AD e R¥*4 p) e R4, ) e Randi = 1, ..., n. We investigated if Algorithm 1
(NBK method) and Algorithm 2 (rNBK method) are capable of finding a sparse solu-
tion # € R by using the DGF ¢(x) = Alx|l; + %[lx[13 and tested both methods
against the euclidean nonlinear Kaczmarz method (NK). As it holds dom ¢ = R, it
is always possible to choose the step size # , from (11) in the NBK method. Moreover,
the step size can be computed exactly by a sorting procedure, as ¢* is a continuous
piecewise quadratic function, see Example 3.2. In order to guarantee existence of a
sparse solution, we chose a sparse vector £ € R?, sampled the data A), 5() randomly
with entries from the standard normal distribution and set

. 1 . .
O —_(Z (@) (@)
cV = (Z(X,A x)+ (b ,x)).

In all examples, the nonzero part of & and the initial subgradient x;j were sampled
from the standard normal distribution. The initial vector xo was computed by xo =
Vg (xg) = S.(x3).

From the updates it is evident that computational cost per iteration is cheapest for
the NK method, slightly more expensive for the INBK method and most expensive for
the NBK method. To examine the case d < n, we chose A® ~ A/(0, 1)700%300 forj =
1, ..., 1000, x with 25 nonzero entries and » = 10 and performed 20 random repeats.
Figure 1 shows that the NBK method clearly outperforms the other two methods in
this situation, even despite the higher cost per iteration.

Figure 2 illustrates that in the case d > n, both the NBK method and the INBK
method can fail to converge or converge very slowly.
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1 f(zr)ll2 lze — 22
A
109 100
104 1074
108
108
10712
10-12
60 time (s)
- NK -- rNBK — NBK

Fig. 1 Experiment with quadratic equations, (1, d) = (1000, 500), X with 50 nonzero entries, 20 random
repeats. Left: plot of residual || f (xg)]|2, right: plot of distance to solution %, both over computation time.
Thick line shows median over all trials, light area is between min and max, darker area indicates 25th and
75th quantile

1 ()2 1 ()2
R
\
\
10~4 R
\
\
10-8 108 R
3 \
10—12 10_12 \\- _________
e L S - T S R
5 time (s) 5 time (s)

-+ NK  -- rNBK — NBK

Fig. 2 Experiment with quadratic equations, (n,d) = (50, 100), X with 5 nonzero entries, 50 random
repeats, plot of residual || f (xg)|l2 against computation time. Left: A = 2, right: A = 5. Thick line shows
median over all trials, light area is between min and max, darker area indicates 25th and 75th quantile

5.2 Linear systems on the probability simplex

We tested our method on linear systems constrained to the probability simplex

findx e A1 Ax =b. (35)
That s, in problem (1) we chose f; = (a;, x) —b; with D = R? and viewed C = A9~!
as the additional constraint. For Algorithm 1, we used the simplex-restricted negative
entropy function from Example 3.3, i.e. we set

Y4 xilog(xi), x € A%

px) = oo,

otherwise.
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We know from Example 3.3 that ¢ is 1-strongly convex w.r.t. the 1-norm || - || ;. There-
fore, as the second method we considered the rNBK iteration given by Algorithm 2
witho = land | - ||« = || - |lco. As a benchmark, we considered a POCS (orthogonal
projection) method which computes an orthogonal projection onto a row equation,
followed by an orthogonal projection onto the probability simplex, see Algorithm 3
listed below. We note that in [36, Theorem 3.3] it has been proved that the distance of
the iterates of the POCS method and the NBK method to the set of solutions on Aifl
decays with an expected linear rate, if there exists a solution in Aff__l. Theorem 4.13
shows at least a.s. convergence of the iterates towards a solution for all three methods.

We note that it holds V f;, (x) = a;, for all x and By = b;, in the NBK method. If
problem (35) has a solution, then condition (10) is fulfilled in each step of the NBK
method, so the method takes always the step size #; = # , from the exact Bregman
projection. For the projection onto the simplex in Algorithm 3, we used the pseudocode
from [59], see also [12, 24, 26].

Algorithm 3 Alternating euclidean projections (POCS method) for (35)

1: Input: probabilities p; > Ofori =1, ....,n

2: Initialization: xg € A -1

3:fork=0,1,...do

4:  choose i; € {1, ..., n} according to the probabilities py, ..., pn

(ajy X ) =biy

oz %
laig 115

project yr1 = Mg (q; ;) (k) = Xk — X

5
6:  project xgy1 = I a-1(Vk41)

In our experiments we noticed that in large dimensions, such as d > 100, solving
the Bregman projection (11) up to a tolerance of € = 10~ takes less than half as much
computation time as the simplex projection. As these two are the dominant operations
in these methods, the NBK updates are computationally cheaper than the NK updates
in the high dimensional setting. However, the examples will show that convergence
quality of the methods depends on the distribution of the entries of A. All methods
were observed to converge linearly.

In the following experiments, we took different choices of A and set the right-hand
side to b = AXx with a point x drawn from the uniform distribution on the probability
simplex A9~1 All methods were initialized with the center point xg = (%, s é).

For our first experiment, we chose standard normal entries A ~ A/(0, 1)"*¢ with
(n,d) = (500, 200) and (n, d) = (200, 500). Figure 3 shows that in this setting, the
POCS method achieves much faster convergence in the overdetermined case (n, d) =
(500, 200) than the NBK method, whereas both methods perform roughly the same
in the underdetermined case (d, n) = (200, 500). The rNBK method is considerably
slower than the other two methods, which shows that the computation of the # , step
size for NBK pays off.

In our second experiment, we built up the matrix from uniformly distributed entries
A~ U0, 174 and A ~ U([0.9, 11)"*¢ with (n, d) = (200, 500). The results are
summarized in Fig. 4. For the Kaczmarz method it has been observed in practice that
so called 'redundant’ rows of the matrix A deteriorate the convergence of the method
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| Az, — bl2/|1b]]2 | Azi, — b|2/[[b]|2
100 ¢ 10° g

1075 1075 |
10710 - > 10-10 >
20,000 40,000 k 20,000 40,000 k
| Azs — bl|2/|1bll2 | Azi — bl|2/]/b]|2
100 ¢ 100 g

1075

1010 L 10-10 —= >
1 time (s) 1 time (s)

------- POCS --- INBK  — NBK

Fig.3 Experiment with linear equations on the probability simplex, plot of relative residuals averaged over
50 random examples against iterations (k) and computation time. Left column: A ~ A/(0, 1)300x200, right
column: A ~ N (0, I)ZOOXSOO. Thick line shows median over all trials, light area is between min and max,
darker area indicates 25th and 75th quantile

[31]. This effect can also occur with the POCS method, as it also relies on euclidean
projections. Remarkably, we can see that this is not the case for the NBK method and it
clearly outperforms the POCS method and the -INBK method. This in particular shows
that the multiplicative update used in both the INBK method and the NBK method is
not enough to overcome the difficulty of redundancy- to achieve fast convergence, it
must be combined with the appropriate step size which is used by the proposed NBK
method.

Finally, we illustrate the effect of the accuracy € in step size computation for the
NBK method. We chose A ~ U ([0, 1])"*¢ ande = 10~ and compared with the larger
tolerance € = 107>, Figure 5 shows that, with € = 107, the residual plateaus at a
certain threshold. In contrast with € = 1072, the residual does not plateau, and despite
the more costly computation of the step size, the NBK method is still competitive
with respect to time. Hence, for the problem of linear equations over the probability
simplex we recommend to solve the step size problem up to high precision.

5.3 Left stochastic decomposition
The left stochastic decomposition (LSD) problem can be formulated as follows:

findX eL™: Xx'x=aA, (36)
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| Azx — bl|2/]|b]|2 | Azk — bll2/|b]|2
1072 gos~ 1072 ¢

1074 ¢

1076 ¢

10—8 . . . - 10—8 : . - >
5,000 10,000 15,000 k 5,000 10,000 15,000 k
| Azx. — bll2/1|b]l2 | Azx. — bll2/1|b]l2
1072 g0, 1072 ¢
1074 1074
106 106
10-8 10-8 : >
1 time (s)
--- rNBK — NBK

Fig.4 Experiment with linear equations on the probability simplex, plot of relative residuals averaged over
50 random examples against iterations (k) and computation time. Left column: A ~ ([0, 17)200%3500
right column: A ~ U([0.9, 1])200X5°°. Thick line shows median over all trials, light area is between min
and max, darker area indicates 25th and 75th quantile

| Azx — bll2/1b]l2 [l Az — bll2/[b]l2
1072 1072
104 1 1071
1076 | 107° 1
1078 | 107% 1
1 time (s) 1 time (s)
------ POCS =--- INBK  — NBK

Fig.5 Experiment with linear equations on the probability simplex, plot of relative residuals averaged over
50 random examples against computation time. In both examples, A ~ U([0, 17)200x500 [ eft: ¢ = 1079,
right: € = 107> in NBK method. Thick line shows median over all trials, light area is between min and
max, darker area indicates 25th and 75th quantile
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where

L™ ={PeRy": P11, =1,)
is the set of left stochastic matrices and A € R"*" is a given nonnegative matrix. The
problem is equivalent to the so-called soft-K-means problem and hence has applica-
tions in clustering [2]. We can view (36) as an instance of problem (1) with component
equations

fi,j(X) = (X;)i,X;’j) — Ai,j =0 fori = 1, T, ] = 1, e, m

andC = L™ = (A’_l)m, where X. ; denotes the ith column of X. For Algorithm 1
we chose the DGF from Example 3.4 with the simplex-restricted negative entropy ¢; =
¢ from Example 3.3. Since f; ; depends on at most two columns of X, Algorithm 1
acts on A”~! or A”~! x A"~ in each step. Therefore, we applied the steps from
Example 3.3 in the first case, and from Example 3.5 in the second case.

We compared the performance of Algorithms 1 and 2 to a projected nonlinear
Kaczmarz method given by Algorithm 4. Here, by Xj .; we refer to the ith column
of the kth iterate matrix. In all examples, we set A = XTx , where the columns of X
were sampled according to the uniform distribution on A"~

Algorithm 4 Projected nonlinear Kaczmarz method (PNK) for (36)
1: Input: 0 > 0 and probabilities p;; fori =1,..,rand j =1,...m

2: Initialization: X € L"*™

3:fork=0,1,..do

4 choose iy € {1, ...,r} and ji € {1, ..., m} according to pi,, ..., Prm
50 set B = (VY fi, k) xie) — Siy Ok) = (X i s Xk ji) + Aig e
6: if i = ji then
7~
8
9

project Yiy1 i, = Mgy, ) Xk,nip With o =2Xp - 5
project Xgy1,:ip = M am—1Yit1,51,)
if iy # ji then

10: set ty =
e X 31Xk, 13
L1 set Yir1,nip = Yinip = ¥k, e
12: set Yir1: ji = Yiooji — Yk, g
13: project Xgt 1 - ip = Iy r—1 (Vg 1,1,0p)
14: project Xg41,:,j, = Mar—1 Vt1,:,53)

We observed that Algorithm 1 (NBK method) gives the fastest convergence, if 7 is
not much smaller than m, see Fig.6 and Fig.7. In both experiments, we noticed that
condition (10) was actually fulfilled in each step, but checking did not show a notable
difference in performance. The most interesting setting for clustering is that r is very
small and m is large, as r is the number of clusters [2]. However, it appears unclear if
the NBK or the PNK method is a better choice for this problem size, as Fig. 8 shows.
In this experiment, condition (10) was not always fulfilled in the NBK method and we
needed to employ the globalized Newton method together with an additional condition
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1f(Xe)l2 1 (Xk)ll2

A A
10—2 1072
10~4 1074
10~ 10~
1078 | 1078 1

1- i05 2. i05 ] k 5 ti;ne (s)
------ PNK --- rNBK — NBK

Fig.6 Experiment "Left stochastic decomposition problem’ with r = 100, m = 50. Residuals || f (X ®))||5
averaged over 50 random examples against outer iterations k (left) and computation time (right). Thick line
shows median over all trials, light area is between min and max, darker area indicates 25th and 75th quantile

1 (Xx)ll2 1 (Xi)ll2

A A

1072

10— 4 1 > 10~4 ‘ >
5-10% k 20 time (s)

------ PNK --- 'NBK — NBK

Fig. 7 Experiment "Left stochastic decomposition problem’ with » = 50, m = 100, plot of residuals
I f(X (k))”2 averaged over 50 random examples against iterations (left) and computation time (right).
Thick line shows median over all trials, light area is between min and max, darker area indicates 25th and
75th quantile

to the step size approximation, see Appendix for details. Finally, we can again see that
Algorithm 2 is clearly outperformed by the other two methods in all experiments.

6 Conclusions and further research

We provided a general Bregman projection method for solving nonlinear equations,
where each iteration needs only to sample one equation to make progress towards
the solution. As such, the cost of one iteration scales independently of the number
of equations. Our method is also a generalization of the nonlinear Kaczmarz method
which allows for additional simple constraints or sparsity inducing regularizers. We
provide two global convergence theorems under different settings and find a number
of relevant experimental settings where instantiations of our method are efficient.
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£ (Xk)ll2 I1£(Xk)ll2

A A

. >
+ >

20 time (s)

...... PNK  --- rNBK — NBK

Fig. 8 Experiment ’Left stochastic decomposition problem’ with r = 3, m = 100, residuals || f(X¢)l2
against computation time. Left and right: Two random examples with different convergence behavior. Thick
line shows median over all trials, light area is between min and max, darker area indicates 25th and 75th
quantile

Convergence for non-strongly convex distance generating functions ¢, as well as a
suitable scope of o in this setting, has so far not been explored.

Our work also opens up the possibility of incorporating more structure into SGD
type methods in the interpolation setting as has been done in [33] for the linear case. In
this setting each f;(x) is a positive loss function over the ith data point. If we knew in
addition that some of the coordinates of x are meant to be positive, or that x is a discrete
probability measure, then our nonlinear Bregman projection methods applied to the
interpolation equations would provide new adaptive step sizes for stochastic mirror
descent. Further venues for exploring would be to relax the interpolation equations, say
into inequalities [27], and applying an analogous Bregman projections to incorporate
more structure. We will leave this to future work.

Data availability We do not analyze or generate any datasets, because our work proceeds within a theoretical
and mathematical approach. However, the code that generates the figures in this article can be found at https://
github.com/MaxiWk/Bregman-Kaczmarz.
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Appendix A: Newton’s method for line search problem (11)

We compute the Newton update for problem (11) for general ¢ with C?-smooth con-
jugate ¢*. The function g;, X from (19) has first derivative

8l () = (Vo (< = 1V fi, (), =V fi, (x0) + B
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= (xx — Vo (xf =tV fi,(x0), V fir (i) — fir (%)
and second derivative
g,{,/c,x;:(t) = (V2<p*(x;f — tV i )V fir (x), Y fiy () = 0.

If it holds g;f. +() > 0, Newton’s method for (11) reads
ik

gz{k,x; (t.1)

g+l =tg — —————~-
g,{;’xzf (k1)

As an initial value we use the step size #; o := fi (xk) from the ¢,-projection of xj

Vi @0l
onto Hy. We propose to stop the method if | glfk’X; ]((tk,l)| < €. Typical values we used
for our numerical examples were € € {10_5, 107%,1072, 10_15}.
It may happen that problem (11) is ill-conditioned, in which case the Newton iterates
1,1 may diverge quickly to oo or alternate between two values. We have observed this
can e.g. happen for the problem on left stochastic decomposition in Subsection 5.3, if
the number m of rows of the matrix X in the problem is small.

In case that the Newton method diverges, we used the recently proposed globalized
Newton method from [42], which reads

g,{k’x; (t.1)

Tk i+1 = Ikl —
H - ,/|gfk,x;: ()| + gf,’{,xz (t.1)

with a fixed constant H > 0. Also here, we stop if | glfk (k1| < €. Convergence of the
X

ty 1 forl — oo is guaranteed, if ¢* is strongly convex, i.e. if ¢ is everywhere finite with
Lipschitz continuous gradient and the values 8ixx; (k1) are guaranteed to converge to
the minimum value if ¢* has Lipschitz continuous Hessian [42]. We have also observed
good convergence for the negative entropy function on R‘io with this method when
Newton’s method is unstable. For problems constrained to the probability simplex
A%~ the globalized Newton method converged more slowly than the vanilla Newton
method. For the problem in subsection 5.3 with (r, m) = (3, 100) we chose H = 0.1.
In addition, we performed a relaxed Bregman projection (line 10 of Algorithm 1) with
step size (12) if |# /| > 100.
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