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Abstract
Composite minimization involves a collection of functions which are aggregated in
a nonsmooth manner. It covers, as a particular case, smooth approximation of mini-
max games, minimization of max-type functions, and simple composite minimization
problems, where the objective function has a nonsmooth component. We design
a higher-order majorization algorithmic framework for fully composite problems
(possibly nonconvex). Our framework replaces each component with a higher-order
surrogate such that the corresponding error function has a higher-order Lipschitz
continuous derivative. We present convergence guarantees for our method for com-
posite optimization problems with (non)convex and (non)smooth objective function.
In particular, we prove stationary point convergence guarantees for general noncon-
vex (possibly nonsmooth) problems and under Kurdyka–Lojasiewicz (KL) property
of the objective function we derive improved rates depending on the KL parameter.
For convex (possibly nonsmooth) problems we also provide sublinear convergence
rates.
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1 Introduction

In this work, we consider the class of general composite optimization problems:

min
x∈dom f

f (x) := g
(
F(x)

) + h(x), (1)

where h : E → R̄, with R̄ = R ∪ {+∞}, and F : E → R̄
m are general proper

lower semicontinuous functions on their closed domains and g : R
m → R is a

proper closed convex function defined everywhere. Here, E is a finite-dimensional
real vector space and F = (F1, · · · , Fm). Note that dom f = g(domF) ∩ dom h.
This formulation unifies many particular cases, such as smooth approximation of
minimax games, max-type minimization problems or exact penalty formulations of
nonlinear programs, while recent instances include robust phase retrieval and matrix
factorization problems [5, 8, 9, 15].Note that the settingwhere g is the identity function
was intensively investigated in large-scale optimization [1, 16, 19, 26]. In this paper,
we call this formulation simple composite optimization. When g is restricted to be a
Lipschitz convex function and F smooth, a natural approach to this problem consists
in linearizing the smooth part, leaving the nonsmooth term unchanged and adding an
appropriate quadratic regularization term. This is the approach considered e.g., in [8,
27], leading to a proximal Gauss-Newton method, i.e. given the current point x̄ and a
regularization parameter t > 0, solve at each iteration the subproblem:

x+ = argmin
x

g
(
F(x̄) + ∇F(x̄)(x − x̄)

)
+ 1

2t
‖x − x̄‖2 + h(x).

For such a method it was proved in [8] that dist(0, ∂ f (x)) converges to 0 at a sublinear

rate of order O(1/k
1
2 ), where k is the iteration counter, while convergence of the

iterates under KL inequality was recently shown in [27]. Note that the case where g
is (Lipschitz) convex, F is smooth and h = 0 has been also analysed in ( [29]) [10].
In [5] a flexible method is proposed, where the smooth part F is replaced by its
quadratic approximation, i.e., given x̄ , solve:

x+ = argmin
x

g

(
F(x̄) + ∇F(x̄)(x − x̄) + L

2
‖x − x̄‖2

)
+ h(x),

where L = (L1, · · · , Lm)T , with Li being the Lipschitz constant of the gradient of
Fi , for i = 1 : m. Assuming F , g and h are convex functions, and g additionally is
componentwise nondecreasing and Lipschitz, [5] derives sublinear convergence rate
of orderO(1/k) in function values. Finally, in the recent paper [9], a general composite
minimization problem of the form:

min
x∈E g

(
x, F(x)

)
,

is considered, where F = (F1, · · · , Fm), with Fi ’s being convex and p-smooth func-
tions onE and having the p-derivativeLipschitz,with p ≥ 1 an integer constant.Under
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these settings, [9] replaces the smooth part by its Taylor approximation of order p plus
a proper regularization term, i.e., given x̄ , solve the following subproblem:

x+ = argmin
x

g

(
x, T F

p (x;x̄) + L

(p + 1)! ‖x − x̄‖p+1
)

,

where L = (L1, · · · , Lm)T , with Li being related to the Lipchitz constant of the
p-derivative of Fi and T F

p (x;x̄) is the p-Taylor approximation of F around the current
point x̄ . For such a higher-order method, in the convex settings and assuming that g
has full domain in the second argument, [9] derives a sublinear convergence rate in
function values of order O (1/k p).
Note that the optimization scheme in [9] belongs to the class of higher-order methods.
Such methods are popular due to their performance in dealing with ill conditioning
and fast rates of convergence, see e.g., [2, 7, 13, 20, 24, 25]. For example, first-order
methods achieve convergence rates of order O(1/k) for smooth convex optimization
[16, 26], while higher-order methods of order p > 1 have converge rates O(1/k p)
for minimizing p smooth convex objective functions [13, 20, 24, 25]. Accelerated
variants of higher-order methods were also developed e.g., in [11, 24, 25]. Recently,
[20] provided a unified framework for the convergence analysis of higher-order opti-
mization algorithms for solving simple composite optimization problems using the
majorization-minimization approach. This is a technique that approximate an objec-
tive function by a majorization function, which can be minimized in closed form or its
solution computed fast, yielding a solution or some acceptable improvement. Note that
papers such as [5, 16] use a first-order majorization-minimization approach to build
a model (i.e., use only gradient information), while [20] uses higher-order derivatives
to build such a model. However, global complexity bounds for higher-order methods
based on the majorization-minimization principle for solving composite problem (1)
are not yet given. This is the goal of this work.
Contributions In this paper, we provide an algorithmic framework based on the notion
of higher-order upper bound approximation of the composite problem (1). Note that
in this optimization formulation we consider general properties for our objects, e.g.,
the functions F and h can be smooth or nonsmooh, convex or nonconvex and g is con-
vex, nondecreasing and has full domain. Our framework consists of replacing F by a
higher-order surrogate, leading to a General Composite Higher-Order minimization
algorithm, which we call GCHO. This majorization minimization approach is rele-
vant as it yields an array of algorithms, each of which is associated with the specific
properties of F and the corresponding surrogate, and it provides a unified convergence
analysis. Note that most of our variants of GCHO for p > 1 were not explicitly con-
sidered in the literature before (at least in the nonconvex settings). Moreover, our new
first-, second-, and third-order methods can be implemented in practice using existing
efficient techniques from e.g., [25, 28].
We derive convergence guarantees for the GCHO algorithm when the upper bound
approximate F from the objective function up to an error that is p ≥ 1 times dif-
ferentiable and has a Lipschitz continuous p derivative; we call such upper bounds
composite higher-order surrogate functions. More precisely, on composite (possibly
nonsmooth) nonconvex problemswe prove for GCHO,with the help of a new auxiliary
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Table 1 Convergence results for GCHO algorithm

Nonconvex case Ass. 1 and 2 Convergence rate: ∃(yk )k≥0 close to (xk )k≥0 s.t Theorem 2

min
j=0:k dist(0, ∂ f (y j )) ≤ O

(
k
− p

p+1

)

Ass. 1, 2, 3 & KL Convergence rate: f (xk ) → f∗ sublinear or linear Theorem 3

Convex case Ass. 1 & f convex Convergence rate: f (xk ) − f ∗ ≤ O (
k−p) Theorem 4

sequence, convergence ratesO
(

1
k p/(p+1)

)
in terms of first-order optimality conditions.

We also characterize the convergence rate of GCHO algorithm locally, in terms of
function values, under the Kurdyka–Lojasiewicz (KL) property. Our result show that
the convergence behavior of GCHO ranges from sublinear to linear depending on the
parameter of the underlyingKL geometry.Moreover, on general (possibly nonsmooth)
composite convex problems (i.e., f is convex function) our algorithm achieves global
sublinear convergence rate of order O (1/k p) in function values. We summaries our
convergence results in Table 1. Finally, for p = 2, g(·) = max(·) and h = 0, we
show that the subproblem, even in the nonconvex case, is equivalent to minimizing an
explicitly written convex function over a convex set that can be solve using efficient
convex optimization tools.
Besides providing a general framework for the design and analysis of composite
higher-order methods, in special cases, where complexity bounds are known for some
particular algorithms, our convergence results recover the existing bounds. For exam-
ple, from our convergence analysis one can easily recover the convergence bounds of
higher-order algorithms from [24] for unconstrained minimization and from [20, 24,
25] for simple composite minimization. Furthermore, in the composite convex case
we recover the convergence bounds from [5] for p = 1 and particular choices of g and
from [9] for p ≥ 1. To the best of our knowledge, this is the first complete work deal-
ing with composite problems in the nonconvex and nonsmooth settings, and explicitly
deriving convergence bounds for higher-order majorization-minimization algorithms
(including convergence under KL).

2 Notations and preliminaries

We use the standard notations from [24, 25]. We denote a finite-dimensional real
vector space with E and E

∗ its dual space composed of linear functions on E. For
any linear function s ∈ E

∗, the value of s at point x ∈ E is denoted by 〈s, x〉. Using
a self-adjoint positive-definite operator B : E → E

∗, we endow these spaces with
conjugate Euclidean norms:

‖x‖ = 〈Bx, x〉 1
2 , x ∈ E, ‖g‖∗ = 〈g, B−1g〉 1

2 , g ∈ E
∗.

For a twice differentiable function φ on a convex and open domain dom φ ⊆ E,
we denote by ∇φ(x) and ∇2φ(x) its gradient and hessian evaluated at x ∈ dom φ,
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respectively. Then, ∇φ(x) ∈ E
∗ and ∇2φ(x)h ∈ E

∗ for all x ∈ dom φ, h ∈ E.
Throughout the paper, we consider p a positive integer. In what follows, we often
work with directional derivatives of function φ at x along directions hi ∈ E of order
p, Dpφ(x)[h1, · · · , h p], with i = 1 : p. If all the directions h1, · · · , h p are the same,
we use the notation Dpφ(x)[h], for h ∈ E. Note that Dpφ(x) is a symmetric p-linear
form. Then, its norm is defined as:

‖Dpφ(x)‖ = max
h∈E

{
Dpφ(x)[h]p : ‖h‖ ≤ 1

}
.

Further, the Taylor approximation of order p of φ at x ∈ dom φ is denoted:

T φ
p (y;x) = φ(x) +

p∑

i=1

1

i !D
iφ(x)[y − x]i ∀y ∈ E.

Ifφ : E → R̄ is p differentiable function on dom φ, then the pth derivative is Lipschitz
continuous if there exist a constant Lφ

p > 0 such that:

‖Dpφ(x) − Dpφ(y)‖ ≤ Lφ
p‖x − y‖ ∀x, y ∈ dom φ. (2)

It is known that if (2) holds, then the residual between the function and its Taylor
approximation can be bounded [24]:

|φ(y) − T φ
p (y;x)| ≤ Lφ

p

(p + 1)! ‖y − x‖p+1 ∀x, y ∈ dom φ. (3)

If p ≥ 2, we also have the following inequalities valid for all x, y ∈ dom φ:

‖∇φ(y) − ∇T φ
p (y;x)‖∗ ≤ Lφ

p

p! ‖y − x‖p, (4)

‖∇2φ(y) − ∇2T φ
p (y;x)‖ ≤ Lφ

p

(p − 1)! ‖y − x‖p−1. (5)

For theHessian, the normdefined in (5) corresponds to the spectral normof self-adjoint
linear operator (maximal module of all eigenvalues computed w.r.t. B). A function
g : Rm → R is said to be nondecreasing if for all i = 1 : m, g is nondecreasing in its
i th argument, i.e., the univariate function:

z �→ g(z1, · · · , zi−1, z, zi+1, · · · , zm),

is nondecreasing. In what follows, if x and y are inRm , then x ≥ y means that xi ≥ yi
for all i = 1 : m. Similarly, we define x > y. Since g is nondecreasing, then for all
x, y ∈ R

m such that x ≤ y we have g(x) ≤ g(y). Next, we provide few definitions
and properties concerning subdifferential calculs (see [17]).
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Definition 1 (Subdifferential): Let f : E → R̄ be a proper lower semicontinuous
function. For a given x ∈ dom f , the Fréchet subdifferential of f at x , written ∂̂ f (x),
is the set of all vectors gx ∈ E

∗ satisfying:

lim
x �=y

inf
y→x

f (y) − f (x) − 〈gx , y − x〉
‖x − y‖ ≥ 0.

When x /∈ dom f , we set ∂̂ f (x) = ∅. The limiting-subdifferential, or simply the
subdifferential, of f at x ∈ dom f , written ∂ f (x), is defined as [17]:

∂ f (x) :=
{
gx ∈E

∗: ∃xk → x, f (xk)→ f (x) and ∃gkx ∈ ∂̂ f (xk) such that gkx →gx
}

.

Note that we have ∂̂ f (x) ⊆ ∂ f (x) for each x ∈ dom f . In the previous inclusion,
the first set is closed and convex while the second one is closed, see e.g., [17]. Let us
recall the following chain rule for the composite problem g(F):

∂(g ◦ F)(x) = co

{
m∑

i=1

uivi | u ∈ ∂g
(
F(x)

)
, vi ∈ ∂Fi (x), i = 1 : m

}

, (6)

where F can be nondifferentiable and u = (u1, · · · , um), which is valid provided
that, e.g., F = (F1, · · · , Fm) and g are locally Lipschitz, Fi ’s are regular at x , g is
regular at F(x) and ∂g(F(x)) ⊆ R

m+ (see Theorem 6 in [14] for more details). As a
consequence, if g is the identity function and m = 2, then:

∂(F1 + F2)(x) = ∂F1(x) + ∂F2(x).

For any x ∈ dom f let us define:

S f (x) = dist
(
0, ∂ f (x)

) := inf
gx∈∂ f (x)

‖gx‖.

If ∂ f (x) = ∅, we set S f (x) = ∞.

3 General composite higher-order algorithm

In this section, we propose a higher-order algorithm for solving the general composite
problem (1) and analyse its convergence.

Assumption 1 We consider the following assumptions for optimization problem (1):

1. The functions Fi , with i = 1 :m, g and h are proper lower semicontinuous on their
domains, satisfy the chain rule (6) and dom h ⊆ g(dom F).

2. Additionally, g is convex nondecreasing and has full domain, satisfying the fol-
lowing subhomogeneity property:

g(αx) ≤ αg(x) ∀x ∈ R
m ∀α ≥ 1. (7)
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3. Problem (1) has a solution and thus f ∗ := inf x∈dom f f (x)>−∞.

From Assumption 1.1, it follows that dom f = dom h. Moreover, if Assumption 1.2
holds, then from [9](Theorem 4) it follows that:

g(x + t y) ≤ g(x) + tg(y) ∀t ≥ 0. (8)

Next, we provide several examples of optimization problems that can be written as (1)
and satisfy our Assumption 1.

Example 1 (Minimax strategies for nonlinear games) Let us consider the problem:

min
x∈�n

{
f (x) := max

u∈�m
〈F(x), u〉

}
,

where �n , �m are the standard simplexes in R
n and R

m , respectively. The smooth
approximation for this problem using the entropy distance is as follows [22]:

min
x∈�n

⎧
⎨

⎩
fμ(x) := max

u∈�m

{
〈F(x), u〉 − μ

m∑

j=1

u j ln(u j ) − μ ln(m)
}
⎫
⎬

⎭
,

for some μ > 0. Using Lemma 4 in [22], we get:

fμ(x) = μ ln

⎛

⎝
m∑

j=1

e
Fi (x)

μ

⎞

⎠ .

Hence, considering g(y) = μ ln
(∑m

j=1 e
yi
μ

)
, then the original minimax problem can

be approximated, for sufficiently small μ, with minx∈�n fμ(x) := g(F(x)). Note that
g satisfies Assumption 1.2.

Example 2 (Min-max problems) Let us consider the following min-max problem:

min
x∈Q max

i=1:m Fi (x).

This type of problem is classical in optimization. Note that if we define g(y) =
maxi=1:m yi and h = 1Q , then, the previous min-max problem can be written as
problem (1) and g satisfies Assumption 1.2.

Example 3 (Simple composite problems) Let us consider the following simple com-
posite minimization problem:

min
x∈Rn

F0(x) + h(x).

Taking F(x) = F0(x) and g the identity function, we can clearly see that g
(
F(x)

) +
h(x) = F0(x) + h(x).
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Further, let us introduce the notion of a higher-order surrogate, see also [20].

Definition 2 Let φ : E → R̄ be a proper lower semicontinuous function and x ∈
dom φ. We call the function s(· ;x) : E → R̄, with dom s(· ;x) = dom φ, a p
higher-order surrogate of φ at x if it has the following properties:

(i) the error function

e(y;x) = s(y;x) − φ(y), (9)

with dom e open such that dom φ ⊆ dom e, is p differentiable and the p derivative
is smooth with Lipschitz constant Le

p.
(ii) the derivatives of the error function e satisfy

∇ i e(x;x) = 0 ∀i = 0 : p, x ∈ dom φ, (10)

and there exist a positive constant Re
p > 0 such that

e(y;x) ≥ Re
p

(p + 1)! ‖y − x‖p+1 ∀x, y ∈ dom φ. (11)

Note that dom φ may not be equal to dom e (see examples below) and from (11) we
have s(y; x) ≥ φ(y) for all x, y ∈ dom φ. Next, we give two nontrivial examples of
higher-order surrogate functions, see [20] for more examples.

Example 4 (Composite functions) Let F1 : E → R be p times differentiable and the
p derivative be Lipschitz with constant LF1

p and let F2 : E → R̄ be a proper closed
function. Then, for the composite function F = F1 + F2, where dom F = dom F2,
one can consider the following p higher-order surrogate function:

s(y;x) = T F1
p (y;x) + Mp

(p + 1)! ‖x − y‖p+1 + F2(y) ∀ x, y ∈ dom F,

where Mp > LF1
p . Indeed, from the definition of the error function, we get:

e(y; x) = T F1
p (y; x) − F1(y) + Mp

(p + 1)! ‖x − y‖p+1. (12)

Thus e(·;x), with dom e = E and dom F ⊆ dom e, has the p derivative Lipschitz
with constant LF1

p + Mp. Further, from the definition of the error function e, we have:

∇ i e(x;x) = ∇T F1
p (x;x) − ∇ i F1(x) = ∇ i F1(x) − ∇ i F(x) = 0 ∀i = 1 : p.

Moreover, since F1 has the p derivative Lipschitz, it follows from (3) that:

T F1
p (y;x) − F1(y) ≥ −LF1

p

(p + 1)! ‖x − y‖p+1.
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Combining this inequality with (12), we get:

e(y;x) ≥ Mp − LF1
p

(p + 1)! ‖x − y‖p+1. (13)

Hence, the error function e has Le
p = Mp + LF1

p and Re
p = Mp − LF1

p .

Example 5 (proximal higher-order) Let F : E → R̄ be a proper lower semicontinuous
function. Then, we can consider the following higher-order surrogate function:

s(y;x) = F(y) + Mr

(r + 1)! ‖y − x‖r+1,

where r is a positive integer. Indeed, the error function is:

e(y;x) = s(y;x) − F(x) = Mr

(r + 1)! ‖y − x‖r+1,

where dom F ⊆ dom e = E. In this case, the error function e has the r derivative
Lipschitz with Le

r = Mr and Rr = Mr .

In the following, we assume for problem (1) that each function Fi , with i = 1 : m,
admits a p higher-order surrogate as in Definition 2. Then, we propose the following
General Composite Higher-Order algorithm, called GCHO.

Algorithm GCHO
Given x0 ∈ dom f . For k ≥ 1 do:

1. Compute surrogate s(x;xk) :=
(
s1(x;xk), · · · , sm(x;xk)

)
of F near xk .

2. Compute xk+1 satisfying the following descent:

g
(
s(xk+1;xk)

) + h(xk+1) ≤ f (xk). (14)

Although our algorithm requires that the next iterate xk+1 only to satisfy the descent
(14), we usually generate xk+1 by solving the following subproblem:

min
x

g
(
s(x;xk)

) + h(x). (15)

If F and h are convex functions, then the subproblem (15) can be also convex. Indeed,
for Example 4, ifMp ≥ pLF1

p and F2 is convex, then the surrogate function s is convex
and hence the problem (15) is convex (see Theorem 1 [24]), while for Example 5, the
surrogate is convex if Mp ≥ 0. Hence, in the convex case we assume that xk+1 is the
global optimum of the subproblem (15). However, in the nonconvex case, we cannot
guarantee the convexity of the subproblem. In this case, we either assume that we can
compute a stationary point of the subproblem (15) if g is the identity function or we
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can compute an inexact solution as defined in (25) if g is a general function. Note
that our algorithmic framework is quite general and yields an array of algorithms,
each of which is associated with the specific properties of F and the corresponding
surrogate. For example, if F is a sum between a smooth term and a nonsmooth one we
can use a surrogate as in Example 4; if F is fully nonsmooth we can use a surrogate
as in Example 5. This is the first time such an analysis is performed, and most of our
variants of GCHOwere not explicitly considered in the literature before (especially in
the nonconvex settings). Note that in both Examples 4 and 5, xk+1 can be computed
inexactly, as detailed in the next sections.

3.1 Nonconvex convergence analysis

In this section we consider that each Fi , with i = 1 : m, and h are nonconvex functions
(possible nonsmooth). Then, problem (1) becomes a pure nonconvex optimization
problem. Now we are ready to analyze the convergence behavior of GCHO algorithm
under these general settings. In the sequel,we assume that g(−Re

p) < 0.Note that since
the vector Re

p > 0, then for all the optimization problems considered in Examples 1,
2 and 3 this assumption holds provided that Mp is large enough.

Theorem 1 Let F, g and h satisfy Assumption 1 and additionally each Fi admits a p
higher-order surrogate si as in Definition 2 with the constants Le

p(i) and Re
p(i),

for i = 1 : m. Let (xk)k≥0 be the sequence generated by Algorithm GCHO,
Re
p = (

Re
p(1), · · · , Re

p(m)
)
and Le

p = (
Le
p(1), · · · , Le

p(m)
)
. Then, the sequence

( f (xk))k≥0 is nonincreasing and satisfies the following descent relation:

f (xk+1) ≤ f (xk) + g(−Re
p)

(p + 1)! ‖xk+1 − xk‖p+1 ∀k ≥ 0. (16)

Proof Denote e(xk+1;xk) = (
e1(xk+1;xk), · · · , em(xk+1;xk)

)
. Then, from the defini-

tion of the error function e and (11), we have:

Re
p

(p + 1)! ‖xk+1 − xk‖p+1 ≤ e(xk+1; xk) = s(xk+1; xk) − F(xk+1).

This implies that:

F(xk+1) ≤ s(xk+1; xk) − Re
p

(p + 1)! ‖xk+1 − xk‖p+1.

Since g is nondecreasing, we get:

g(F(xk+1)) ≤ g

(
s(xk+1; xk) − Re

p

(p + 1)! ‖xk+1 − xk‖p+1
)

(8)≤ g
(
(s(xk+1; xk)

) + g(−Re
p)

(p + 1)! ‖xk+1 − xk‖p+1.
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Finally, we obtain that:

f (xk+1) ≤ g
(
s(xk+1; xk)) + h(xk+1) + g(−Re

p)

(p + 1)! ‖xk+1 − xk‖p+1

(14)≤ f (xk) + g(−Re
p)

(p + 1)! ‖xk+1 − xk‖p+1,

which yields our statement. ��
Summing (16) from j = 0 to k, we get:

k∑

j=0

− g(−Re
p)

(p + 1)! ‖x j+1 − x j‖p+1 ≤
k∑

j=0

f (x j ) − f (x j+1)

= f (x0) − f (xk+1) ≤ f (x0) − f ∗.

Taking the limit as k → +∞, we obtain:

+∞∑

k=0

‖xk − xk+1‖p+1 < +∞. (17)

Hence limk �→+∞‖xk − xk+1‖ = 0. In our convergence analysis, we also consider
the following additional assumption which requires the existence of some auxiliary
sequence that must be closed to the sequence generated by GCHO algorithm and some
first-order relation holds:

Assumption 2 Given the sequence
(
xk

)
k≥0 generated by GCHO algorithm, there exist

two constants L1
p, L

2
p > 0 and a sequence (yk)k≥0 such that:

‖yk+1 − xk‖≤ L1
p‖xk+1 − xk‖ and S f (yk+1)≤ L2

p‖yk+1 − xk‖p ∀k ≥ 0. (18)

In the next section, we provide concrete examples for the sequence (yk)k≥0 satisfying
Assumption 2, and the corresponding expressions for L1

p and L2
p.

3.2 Approaching the set of stationary points

Before continuing with the convergence analysis of GCHO algorithm, let us ana-
lyze the relation between ‖xk+1 − xk‖p and S f (xk+1) and also give examples when
Assumption 2 is satisfied. For simplicity, consider the following simple composite
minimization problem:

min
x

f (x) := F(x) + h(x),

where F is p times differentiable function, having the p derivative LF
p -Lipschitz and

h is proper lower semicontinuous function. In this case g is the identity function and
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we can take as a surrogate s(y;x) = T F
p (y;x) + Mp

(p+1)! ‖x − y‖p+1 + h(y), with the

positive constant Mp satisfying Mp > LF
p and g(−Re

p) < 0. The following lemma
gives an example when Assumption 2 holds.

Lemma 1 Assume g is the identity function, F has the p derivative Lipschitz and xk+1
is a stationary point of the following subproblem:

xk+1 ∈ argmin
x

T F
p (x;xk) + Mp

(p + 1)! ‖x − xk‖p+1 + h(x). (19)

Then, Assumption 2 holds with yk+1 = xk+1, L1
p = 1 and L2

p = Mp+LF
p

p! .

Proof Since xk+1 is a stationary point of subproblem (19), using (6), we get:

Mp

p! ‖xk+1 − xk‖p−1B(xk − xk+1) − ∇T F
p (xk+1;xk) ∈ ∂h(xk+1),

or equivalently

Mp

p! ‖xk+1 − xk‖p−1B(xk − xk+1) +
(
∇F(xk+1) − ∇T F

p (xk+1;xk)
)

∈ ∇F(xk+1) + ∂h(xk+1) = ∂ f (xk+1).

Taking into account that F is p-smooth, we further get:

S f (xk+1) ≤ Mp

p! ‖xk+1 − xk‖p + ‖∇F(xk+1) − ∇T F
p (xk+1, xk)‖∗ (20)

(5)≤ Mp + LF
p

p! ‖xk+1 − xk‖p.

Hence, Assumption 2 holds with yk+1 = xk+1, L1
p = 1 and L2

p = Mp+LF
p

p! . ��

The algorithm GCHO which generates a sequence (xk)k≥0 satisfying the descent (14)
and the stationary condition (19) has been also considered e.g., in the recent papers
[20, 25], with h assumed to be a convex function. Here we remove this assumption on
h. Combining (20) and (16), we further obtain:

S f (xk+1)
p+1
p ≤

(
Mp + LF

p

p!

) p+1
p

(p + 1)!
Mp − LF

p

(
f (xk) − f (xk+1)

)

= CMp,LF
p

(
f (xk) − f (xk+1)

)
,
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where CMp,LF
p

=
(
Mp + LF

p

p!

) p+1
p

(p + 1)!
Mp − LF

p
. Summing the last inequality from

j = 0 : k − 1, and using that f is bounded from bellow by f ∗, we get:

k−1∑

j=0

S f (x j )
p+1
p ≤ CMp,LF

p

(
f (x0) − f (xk)

)
≤ CMp,LF

p

(
f (x0) − f ∗).

Hence:

min
j=0:k−1

S f (x j ) ≤
(
CMp,LF

p
( f (x0) − f ∗)

) p
p+1

k
p

p+1
.

Thus, we have proved convergence for the simple composite problem under slightly
more general assumptions than in [20, 25], i.e., F and h are possibly nonconvex
functions. Finally, if we have ‖xk+1 − xk‖p ≤ p!

LF
p +Mp

ε, then from (20) it follows that

S f (xk+1) ≤ ε, i.e., xk+1 is nearly stationary for f . Note that in the previous Lemma 1,
we assume xk+1 to be a stationary point of the following subproblem (see (19)):

xk+1 ∈ argmin
x

s(x;xk). (21)

However, our stationary condition for xk+1 can be relaxed to the following inexact
optimality criterion (see also [2]):

‖gxk+1‖ ≤ θ‖xk+1 − xk‖p, (22)

where gxk+1 ∈ ∂s(xk+1;xk) and θ > 0. For simplicity of the exposition, in our con-
vergence analysis below for this particular case (i.e., g identity function) we assume
however that xk+1 satisfies the exact stationary condition (21), although our results
can be extended to the inexact stationary condition from above. The situation is dra-
matically different for the general composite problem (1). When g is nonsmooth, the
distance dist

(
0, ∂ f (xk+1)

)
will typically not even tend to zero in the limit, although

we have seen that ‖xk+1 − xk‖p converges to zero. Indeed, consider the minimization
of the following function:

f (x) = max
(
x2 − 1, 1 − x2

)
.

For p = 1, we have LF
1 (1) = LF

1 (2) = 2. Taking x0 > 1 and M1 = M2 = 4, GCHO
algorithm becomes:

xk+1 = argmin
x

Q(x, xk)
(

:= max
(
Q1(x, xk), Q1(x, xk) − 4xxk + 2x2k + 2

))
,
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where Q1(x, xk) = 2x2 − 2xxk + x2k − 1. Let us prove by induction that xk > 1
for all k ≥ 0. Assume that xk > 1 for some k ≥ 0. We notice that the polynomials
Q2(x, xk) := Q1(x, xk) − 4xxk + 2x2k + 2 and Q1(x, xk) are 2-strongly convex

functions and they intersect in a unique point x̄ = x2k+1
2xk

. Also, the minimum of

Q2 is x̄2 = 3
2 xk and the minimum of Q1 is x̄1 := 1

2 xk , satisfying x̄1 ≤ x̄ ≤ x̄2.
Let us prove that xk+1 = x̄ . Indeed, if x ≤ x̄ , then Q(x, xk) = Q2(x, xk) and it
is nonincreasing on (−∞, x̄]. Hence, Q(x, xk) ≥ Q(x̄, xk) for all x ≤ x̄ . Further, if
x ≥ x̄ , then Q(x, xk) = Q1(x, xk) and it is nondecreasing on [x̄,+∞). In conclusion,
Q(x, xk) ≥ Q(x̄, xk) for all x ≤ x̄ . Finally, we have that: Q(x, xk) ≥ Q(x̄, xk) for

all x ∈ R. Since xk > 1, we also get that xk+1 = x2k+1
2xk

> 1. Since xk > 1, then
∂ f (xk) = 2xk > 2 and S f (xk) ≥ 2 > 0. Moreover, xk+1 < xk and bounded below
by 1, thus (xk)k≥0 is convergent and its limit is 1. Indeed, assume that xk → x̂ as

k → ∞. Then, we get x̂ = x̂2+1
2x̂ and thus x̂ = 1 (recall that x̂ ≥ 1). Consequently,

‖xk+1 − xk‖ also converges to 0. Therefore, we must look elsewhere for a connection
between S f (·) and ‖xk+1 − xk‖p.
Let us now consider the following subproblem:

P(xk) = argmin
y

Mp(y, x) := f (y) + μp

(p + 1)! ‖y − xk‖p+1, (23)

whereμp > g(Le
p). Since f is assumed bounded from bellow, then for any fixed x , the

function y �→ Mp(y, x) is coercive and hence the optimal valueM∗
p = inf

y
Mp(y, x)

is finite. Then, the subproblem (23) is equivalent to:

inf
y∈Bk

f (y) + μp

(p + 1)! ‖y − xk‖p+1,

for some compact set Bk . Since Mp is proper lower semicontinuous function in the
first argument and Bk is compact set, then from Weierstrass theorem we have that the
infimum M∗

p is attained, i.e., there exists ȳk+1 ∈ P(xk) such that Mp(ȳk+1, xk) =
M∗

p. Since the level sets of y �→ Mp(x, y) are compact, thenP(xk) is nonempty and
compact and one can consider the following point:

yk+1 = argmin
y∈P(xk )

‖y − xk‖. (24)

Let us assume that Fi admits a higher-order surrogate as in Definition 2, where the
error functions ei are p smooth with Lipschitz constants Le

p(i) for all i = 1 : m.

Denote Le
p = (

Le
p(1), · · · , Le

p(m)
)
and define the following positive constant C

μp
Le
p

=
μp

μp − g(Le
p)

(recall thatμp is chosen such thatμp > g(Le
p)). Next lemma shows that

Assumption 2 holds provided that we compute xk+1 as an approximate local solution
of subproblem (15) (hence, xk+1 doesn’t need to be global optimum) and yk+1 as in
(24).
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Lemma 2 Let the assumptions of Theorem 1 hold and additionally there exists δ > 0
such that xk+1 satisfies the following inexact optimality condition:

g
(
s(xk+1;xk)

) + h(xk+1) − min
x : ‖x−xk‖≤Dk

(
g
(
s(x;xk)

) + h(x)
)

(25)

≤ δ‖xk+1 − xk‖p+1,

where Dk :=
(

(p+1)!
μp

( f (xk) − f ∗)
) 1

p+1
. Then, Assumption 2 holds with yk+1 given

in (24), L1
p =

(
C

μp
Le
p

+ δ(p+1)!
μp−g(Le

p)

)1/(p+1)
and L2

p = μp
p! .

Proof From the definition of yk+1 in (24), we have:

f (yk+1) + μp

(p + 1)! ‖yk+1 − xk‖p+1 = min
y

f (y) + μp

(p + 1)! ‖y − xk‖p+1 (26)

≤ f (xk+1) + μp

(p + 1)! ‖xk+1 − xk‖p+1.

Further, taking y = xk in (26) we also have:

f (yk+1) + μp

(p + 1)! ‖yk+1 − xk‖p+1 ≤ f (xk),

which implies that:

‖yk+1 − xk‖ ≤
(

(p + 1)!
μp

( f (xk) − f ∗)
) 1

p+1 = Dk . (27)

Note that since the error functions ei ’s have the p derivative Lipschitz with constants
Le
p(i)’s, then using (3), we get:

|ei (y;xk) − T ei
p (y;xk)| ≤ Le

p(i)

(p + 1)! ‖y − xk‖p+1 ∀i = 1 : m, ∀y ∈ dom ei .

From (10), the Taylor approximations of ei ’s of order p at xk , T e
p (y;xk), are zero.

Hence we get:

|si (y;xk) − Fi (y)| = |ei (y;xk)| ≤ Le
p(i)

(p + 1)! ‖y − xk‖p+1 ∀i = 1 : m. (28)
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Further, since F(xk+1) ≤ s(xk+1;xk) (see (11)) and g is a nondecreasing function, we
have:

f (xk+1) ≤ g
(
s(xk+1;xk)

)
+ h(xk+1)

(25)≤ min
y: ‖y−xk‖≤Dk

g
(
s(y;xk)

)
+ h(y) + δ‖xk+1 − xk‖p+1

(28)≤ min
y: ‖y−xk‖≤Dk

g

(
F(y) + Le

p

p + 1! ‖y − xk‖p+1
)

+ h(y) + δ‖xk+1 − xk‖p+1

(8)≤ min
y: ‖y−xk‖≤Dk

f (y) + g(Le
p)

(p + 1)! ‖y − xk‖p+1 + δ‖xk+1 − xk‖p+1

(27)≤ f (yk+1) + g(Le
p)

(p + 1)! ‖yk+1 − xk‖p+1 + δ‖xk+1 − xk‖p+1.

Then, combining the last inequality with (26), we get:

‖yk+1 − xk‖p+1 ≤ μp + δ(p + 1)!
μp − g(Le

p)
‖xk+1 − xk‖p+1,

which is the first statement of Assumption 2. Further, using (6) and optimality condi-
tions for yk+1, we obtain:

0 ∈ ∂ f (yk+1) + μp

p! ‖yk+1 − xk‖p−1B(yk+1 − xk).

It follows that:

S f (yk+1) ≤ μp

p! ‖yk+1 − xk‖p.

Hence, Assumption 2 holds with yk+1 given in (24), L1
p =

(
C

μp
Le
p

+ δ(p+1)!
μp−g(Le

p)

)1/(p+1)

and L2
p = μp

p! . ��
Finally, we provide a third (practical) example satisfying Assumption 2 when p = 2,
h(·) = 0 and g(·) = max(·) function.
Lemma 3 Let the assumptions of Theorem 1 hold and additionally assume that p = 2,
g(·) = max(·) and the surrogate function s(·; ·) is given in Example 4 with F2 = 0.
Then, the global solution of the subproblem (15) with h = 0, denoted xk+1, can be
computed efficiently and consequently Assumption 2 holds with yk+1 given in (24),

L1
p =

(
C

μp
Le
p

)1/3
and L2

p = μp
2 .

Proof See appendix. ��
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From the proof of Lemma 3 one can see that the global minimum of subproblem (15)
can be computed as:

xk+1 = xk − Hk(u, w)−1gk(u),

where Hk(u, w) = ∑m
i=1 ui∇2Fi (xk) + w

2 I , gk(u) = ∑m
i=1 ui∇Fi (xk) and lk(u) =∑m

i=1 ui Fi (xk), with (u, w) the solution of the following dual problem:

max
(u,w)∈D lk(u) − 1

2

〈
Hk(u, w)−1gk(u), gk(u)

〉
− 1

12(
∑m

i=1 ui Mi )2
w3, (29)

with D = {(u, w) ∈ �m × R+ : s.t. Hk(u, w) � 0}, i.e., a maximization of a con-
cave function over a convex set D. Hence, ifm is not too large, this convex dual problem
can be solved efficiently by interior point methods [21]. In conclusion, GCHO algo-
rithm can be implementable for p = 2 even for nonconvex problems, since we can
effectively compute the global minimum xk+1 of subproblem (15) using the powerful
tools from convex optimization.

Define the following constant: DRe
p,L

1,2
p

=
(
L1
p

(
L2
p

)p) p+1
p

(p+1)!
−g(−Re

p)
. Then, we derive the

following convergence result for GCHO algorithm in the nonconvex case.

Theorem 2 Let the assumptions of Theorem 1 hold. Additionally, Assumption 2 holds.
Then, for the sequence (xk)k≥0 generated by Algorithm GCHO we have the following
sublinear convergence rate:

min
j=0:k−1

S f (y j ) ≤
(
DRe

p,L
1,2
p

( f (x0) − f ∗)
) p

p+1

k
p

p+1
.

Proof From Assumption 2, we have:

S f (yk+1) ≤ L2
p‖yk+1 − xk‖p ≤ L2

p

(
L1
p

)p ‖xk+1 − xk‖p.

Using the descent (16), we get:

S f (yk+1)
p+1
p ≤

(
L2
p

(
L1
p

)p) p+1
p

(p + 1)!
−g(−Re

p)
( f (xk) − f (xk+1)) .

Summing the last inequality from j = 0 : k − 1 and taking the minimum, we get:

min
j=0:k−1

S f (y j ) ≤
(
DRe

p,L
1,2
p

( f (x0) − f ∗)
) p

p+1

k
p

p+1
,

which proves the statement of the theorem. ��
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Theorem 2 requires that xk+1 satisfies the descent (14) and Assumption 2. However
Assumption 2, according to Lemmas 1 and 2, holds if xk+1 is an (inexact) stationary
point or an inexact solution of the subproblem (15), respectively.

Remark 1 To this end, Assumption 2 requires an auxiliary sequence yk+1 satisfying:

⎧
⎪⎨

⎪⎩

‖yk+1 − xk‖ ≤ L1
p‖xk+1 − xk‖

S f (yk+1) ≤ L2
p‖xk+1 − xk‖p.

(30)

If ‖xk+1−xk‖ is small, the point xk is near yk+1, which is nearly stationary for f (recall
that ‖xk+1 − xk‖ converges to 0). Hence, we do not have approximate stationarity for
the original sequence xk but for the auxiliary sequence yk , which is close to the original
sequence. Note that in practice, yk+1 does not need to be computed. The purpose of
yk+1 is to certify that xk is approximately stationary in the sense of (30). For p = 1
a similar conclusion was derived in [8]. For a better understanding of the behavior of
the sequence yk+1, let us come back to our example f (x) = max

(
x2 − 1, 1 − x2

)

and p = 1. Recall that we have proved xk > 1 and choosing μp = 4, then yk+1 is the
solution of the following subproblem:

yk+1 = argmin
y

max
(
y2 − 1, 1 − y2

) + 2(y − xk)
2.

Then, it follows immediately that:

yk+1 =
{ 2

3 xk if xk > 3
2

1 if 1 ≤ xk ≤ 3
2 .

Since we have already proved that xk → 1, we conclude that |yk+1 − xk | → 0 and
consequently dist(0, ∂ f (yk+1)) → 0 for k → ∞, as predicted by our theory.

3.3 Better rates for GCHO under KL

In this section, we show that improved rates can be derived for GCHO algorithm
if the objective function satisfies the KL property. This is the first time when such
convergence analysis is derived for the GCHO algorithm on the composite problem
(1).We believe that this lack of analysis comes from the fact that, when g is nonsmooth
and different from the identity function, one can’t bound directly the distance S f (xk+1)

by ‖xk+1 − xk‖. However, using the newly introduced (artificial) point yk+1, we can
now overcome this difficulty. Let us recall the definition of a function satisfying the
Kurdyka–Lojasiewicz (KL) property (see [4] for more details).

Definition 3 A proper lower semicontinuous function f : E → R̄ satisfies Kurdyka–
Lojasiewicz (KL) property on the compact set	 ⊆ dom f onwhich f takes a constant
value f∗ if there exist δ, ε > 0 such that one has:

κ ′( f (x) − f∗) · S f (x) ≥ 1 ∀x : dist(x,	) ≤ δ, f∗ < f (x) < f∗ + ε,
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where κ : [0, ε] → R is concave differentiable function satisfying κ(0) = 0 and
κ ′ > 0.

When κ takes the form κ(t) = σ
1
q
q

q
q−1 t

q−1
q , with q > 1 and σq > 0 (which is

our interest here), the KL property establishes the following local geometry of the
nonconvex function f around a compact set 	:

f (x) − f∗ ≤ σq S f (x)
q ∀x : dist(x,	) ≤ δ, f∗ < f (x) < f∗ + ε. (31)

Note that the relevant aspect of the KL property is when 	 is a subset of stationary
points for f , i.e. 	 ⊆ {x : 0 ∈ ∂ f (x)}, since it is easy to establish the KL property
when 	 is not related to stationary points. The KL property holds for a large class of
functions including semi-algebraic functions (e.g., real polynomial functions), vector
or matrix (semi)norms (e.g., ‖ · ‖p with p ≥ 0 rational number), logarithm functions,
exponential functions and uniformly convex functions, see [4] for a comprehensive list.
In particular, the max (sup) of semi-algebraic functions is a semi-algebraic function,
see [6] (Example 2). Let us show that if (xk)k≥0 is bounded, then also (yk)k≥0 is
bounded and they have the same limit points.

Lemma 4 Let (xk)k≥0 generatedbyAlgorithmGCHObeboundedand (yk)k≥0 satisfies
Assumption 2. Then, (yk)k≥0 is bounded and the set of limit points of the sequence
(yk)k≥0 coincides with the set of limit points of (xk)k≥0.

Proof Indeed, since (xk)k≥0 is bounded, then it has limit points. Let x∗ be a limit point
of the sequence (xk)k≥0. Then, there exists a subsequence (xkt )t≥0 such that xkt → x∗
for t → ∞. We have:

‖ykt − xkt ‖ ≤ ‖ykt − xkt−1‖ + ‖xkt − xkt−1‖ (32)
(18)≤

(
L1
p + 1

)
‖xkt − xkt−1‖ ∀k ≥ 0,

Since (xk)k≥0 is bounded and ‖xk+1 − xk‖ → 0, then (yk)k≥0 is also bounded.
This implies that ykt → x∗. Hence, x∗ is also a limit point of the sequence (yk)k≥0.
Further, let y∗ be a limit point of the bounded sequence (yk)k≥0. Then, there exists a
subsequence (yk̄t )t≥0 such that yk̄t → y∗ for t → ∞. Taking t → ∞ in an inequality
similar to (32) and using limt→∞ ‖xk̄t − xk̄t−1‖ = 0 and boundedness of (xk)k≥0, we
get that xk̄t → y∗, i.e., y∗ is also a limit point of the sequence (xk)k≥0. ��
Note that usually for deriving convergence rates under KL condition, we need to
assume that the sequence generated by the algorithm is bounded (see e.g., Theorem 1
in [6]). Let us denote the set of limit points of (xk)k≥0 by:

	(x0) = {x̄ ∈ E : ∃ an increasing sequence of integers (kt )t≥0,

such that xkt → x̄ as t → ∞},

and the set of stationary points of problem (1) by crit f .
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Lemma 5 Let the assumptions of Theorem 1 hold. Additionally, assume that (xk)k≥0
is bounded, (yk)k≥0 satisfies Assumption 2 and f is continuous. Then, we have: ∅ �=
	(x0) ⊆ crit f ,	(x0) is compact and connected set, and f is constant on	(x0), i.e.,
f (	(x0)) = f∗.

Proof First let us show that f (	(x0)) is constant. From (16) we have that ( f (xk))k≥0
ismonotonically decreasing and since f is assumed bounded from below, it converges,
let us say to f∗ > −∞, i.e. f (xk) → f∗ as k → ∞. On the other hand let x∗ be a limit
point of the sequence (xk)k≥0. This means that there exist a subsequence

(
xkt

)
t≥0 such

that xkt → x∗. Since f is continuous, then f (xkt ) → f (x∗) = f∗. In conclusion, we
have f (	(x0)) = f∗. The closeness property of ∂ f implies that S f (x∗) = 0, and thus
0 ∈ ∂ f (x∗). This proves that x∗ is a stationary point of f and thus	(x0) is nonempty.
By observing that 	(x0) can be viewed as an intersection of compact sets:

	(x0) = ∩q≥0∪k≥q{xk},

so it is also compact. This completes our proof. ��
Note that f∗ from Lemma 5 is usually different from f ∗ = inf x∈dom f f (x) defined
in Assumption 1. In addition, let us consider the following assumption:

Assumption 3 For the sequence
(
xk

)
k≥0 generated by GCHO algorithm, there exist

positive constants θ1,p, θ2,p > 0 such that:

f (xk+1) ≤ f (yk+1) + θ1,p‖yk+1 − xk‖p+1 + θ2,p‖xk+1 − xk‖p+1 ∀k ≥ 0. (33)

Remark 2 Note that Assumption 3 holds when e.g., g is the identity function or when
(yk)k≥0 is given in (24) and xk+1 satisfies (25) (seeLemmas 2 and3). For completeness,
we provide a proof for this statement in Appendix.

Let us also recall the following lemma,whose proof is similar to the one in [1](Theorem
2). For completeness, we give the proof in Appendix.

Lemma 6 Let θ > 0, C1,C2 ≥ 0 and (λk)k≥0 be a nonnegative, nonincreasing
sequence, satisfying the following recurrence:

λk+1 ≤ C1 (λk − λk+1)
1
θ + C2 (λk − λk+1) . (34)

If θ ≤ 1, then there exists an integer k0 such that:

λk ≤
(

C1 + C2

1 + C1 + C2

)k−k0
λ0 ∀k ≥ k0.

If θ > 1, then there exists α > 0 and integer k0 such that:

λk ≤ α

(k − k0)
1

θ−1

∀k ≥ k0.
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From previous lemmas, all the conditions of the KL property from Definition 3 are
satisfied. Then, we can derive the following convergence rates depending on the KL
parameter.

Theorem 3 Let the assumptions of Lemma 5 hold. Additionally, assume that f sat-
isfies the KL property (31) on 	(x0) and Assumption 3 is valid. Then, the following
convergence rates hold for the sequence (xk)k≥0 generated by GCHO algorithm:

• If q ≥ p+1
p , then f (xk) converges to f∗ linearly for k sufficiently large.

• If q <
p+1
p , then f (xk) converges to f∗ at sublinear rate of order O

(
1

k
pq

p+1−pq

)

for k sufficiently large.

Proof Since (xk)k≥0 and (yk)k≥0 have the same limit points, we get:

f (xk+1) − f∗
(33)≤ f (yk+1) − f∗ + θ1,p‖yk+1 − xk‖p+1 + θ2,p‖xk+1 − xk‖p+1

(31)+(18)≤ σq S f (yk+1)
q +

(
θ1,p(L

1
p)

p+1 + θ2,p

)
‖xk+1 − xk‖p+1

(18)≤ σq

(
L2
p(L

1
p)

p
)q ‖xk+1 − xk‖qp

+
(
θ1,p(L

1
p)

p+1 + θ2,p

)
‖xk+1 − xk‖p+1.

If we define �k = f (xk) − f∗, then combining the last inequality with (16), we get
the following recurrence:

�k+1 ≤ C1 (�k − �k+1)
qp
p+1 + C2 (�k − �k+1) ,

whereC1 = σq(L2
p(L

1
p)

p)q
(

(p+1)!
−g(−Re

p)

) pq
p+1

andC2 =
(
θ1,p(L1

p)
p+1 + θ2,p

)
(p+1)!

−g(−Re
p)

.

Using Lemma 6, with θ = p+1
pq we get our statements. ��

Remark 3 Contrary to Theorem 2, under KL we prove in Theorem 3 that the original
sequence (xk)k≥0 converge in function values. When the objective function f is uni-
formly convex of order p+1 and g not necessarily with full domain, [9] proves linear
convergence for their algorithm in function values. Our results are different, i.e., we
provide convergence rates for GCHO algorithm for possibly nonconvex objective f .

3.4 Convex convergence analysis

In this section, we assume that the objective function f in (1) is convex. Since the
problem (1) is convex, we assume that xk+1 is a global minimum of the subproblem
(15), which is convex provided that Mp is sufficiently large (see Theorem 1 in [24]).
Below, we also assume that the level sets of f are bounded. Since GCHO algorithm is
a descent method, this implies that there exist a constant R0 > 0 such that ‖xk −x∗‖ ≤
R0 for all k ≥ 0, where x∗ is an optimal solution of (1). Then, we get the following
sublinear rate for GCHO algorithm.
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Theorem 4 Let F, g and h satisfy Assumption 1 and additionally each Fi admits a
p higher-order surrogate si as in Definition 2 with the constants Le

p(i) and Re
p(i),

for i = 1 : m. Additionally, f is a convex function and has bounded level sets. Let
(xk)k≥0 be the sequence generated by Algorithm GCHO, Re

p = (
Re
p(1), · · · , Re

p(m)
)

and Le
p = (

Le
p(1), · · · , Le

p(m)
)
. Then, we have the following convergence rate:

f (xk) − f (x∗) ≤ g(Le
p)R

p+1
0 (p + 1)p

p!k p .

Proof Since F(xk+1) ≤ S(xk+1;xk) (see (11)) and g is nondecreasing, we have:

f (xk+1) ≤ g
(
s(xk+1;xk)

) + h(xk+1)

(21)= min
x

g
(
s(x;xk)

) + h(x)

(28)≤ min
x

g

(
F(x) + Le

p

(p + 1)! ‖x − xk‖p+1
)

+ h(x).

Hence we get:

f (xk+1)
(8)≤ min

x
g
(
F(x)

) + g(Le
p)

(p + 1)! ‖x − xk‖p+1 + h(x)

= min
x

f (x) + g(Le
p)

(p + 1)! ‖x − xk‖p+1

≤ min
α∈[0,1] f (xk) + α

[
( f (x∗) − f (xk)

] + α p+1 Rp+1
0

(p + 1)!g
(
Le
p

)
,

where the last inequality follows from the convexity of f and the boundness of the
level sets of f . The minimum in α ≥ 0 is achieved at:

α∗ =
(

f (xk) − f (x∗)p!
g(Le

p)R
p+1
0

) 1
p

.

We have 0 ≤ α∗ < 1. Indeed, since
(
f (xk)

)
k≥0 is decreasing, we have:

f (xk) ≤ f (x1) ≤ g
(
s(x1;x0)

) + h(x1)

= min
x

g
(
s(x;x0)

) + h(x)

(28)≤ min
x

g

(
F(x) + Le

p

(p + 1)! ‖x − x0‖p+1
)

+ h(x)

≤ g

(
F(x∗) + Le

p

(p + 1)! ‖x
∗ − x0‖p+1

)
+ h(x∗)

≤ f (x∗) + g(Le
p)R

p+1
0

(p + 1)! .
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Hence:

0 ≤ α∗ ≤
((

f (x1) − f (x∗)
)
p!

g(Le
p)R

p+1
0

) 1
p

≤
(

g(Le
p)R

p+1
0 p!

g(Le
p)R

p+1
0 (p + 1)!

) 1
p

=
(

p!
(p + 1)!

) 1
p =

(
1

p + 1

) 1
p

< 1.

Thus, we conclude:

f (xk+1) ≤ f (xk) − α∗
(

f (xk) − f (x∗) − g(Le
p)R

p+1
0

(p + 1)! (α∗)p
)

= f (xk) − pα∗

p + 1

[
f (xk) − f (x∗)

]
.

Denoting δk = f (xk) − f (x∗), we get the following estimate:

δk − δk+1 ≥ Cδ

p+1
p

k ,

where C = p
p+1

(
p!

g(Le
p)R

p+1
0

) 1
p

. Thus, for μk = C pδk we get the following

recurence:

μk − μk+1 ≥ μ

p+1
p

k .

Following the same proof as in [24](Theorem 4), we get:

1

μk
≥

⎛

⎝ 1

μ
1
p
1

+ k − 1

p

⎞

⎠

p

.

Since

1

μ
1
p
1

= 1

Cδ1
1
p

= p + 1

p

(
g(Le

p)R
p+1
0

p!( f (x1) − f ∗)

) 1
p

≥ 1

p
(p + 1)

p + 1

p ,
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then

δk = C−pμk =
(
p + 1

p

)p g(Le
p)R

p+1
0

p! μk

≤
(
p + 1

p

)p g(Le
p)R

p+1
0

p!
(
1

p
(p + 1)

p+1
p + k − 1

p

)−p

= g(Le
p)R

p+1
0

p!
(

(p + 1)
1
p + k − 1

p + 1

)−p

≤ (p + 1)pg(Le
p)R

p+1
0

p!k p .

This proves the statement of the theorem. ��

Note that in the convex case the convergence results from [5, 8, 9] assume Lipschitz
continuity of the p derivative of the object function F , which may be too restrictive.
However, Theorem 4 assumes Lipschitz continuity of the p derivative of the error
function e(·) (note that we may have the error function e(·) p times differentiable
and with the p derivative Lipschitz, while the objective function F may not be even
differentiable, see Examples 4 and 5). Hence, our proof is different and more general
than [5, 8, 9]. Moreover, our convergence rate from the previous theorem covers the
usual convergence rates O( 1

k p ) of higher-order Taylor-based methods in the convex
unconstrained case [24], simple composite case [24, 25] and composite case for p ≥ 1
[5, 9]. Therefore, Theorem 4 provides a unified convergence analysis for general
composite higher-order algorithms, that covers in particular, minimax strategies for
nonlinear games, min-max problems and simple composite problems, under possibly
more general assumptions.

3.5 Adaptive GCHO algorithm

In this section, we propose an adaptive variant of GCHO algorithm. Since the surro-
gate functions in all the examples given in this paper depend on a given constant M
(see Examples 4 and 5, where M = Mp), below we consider the following notation
s(·; ·) := sM (·; ·). Note that the convergence results from Theorems 1, 2 and 3 are
derived provided that Assumption 2 and 3 and the following properties of the sequence
(xk)k≥0 generated by GCHO hold:

g
(
sM (xk+1;xk)

) + h(xk+1) ≤ f (xk), (35)

g(sM (xk+1;xk)) − g(F(xk+1)) ≥ Ce
p

(p + 1)! ‖xk+1 − xk‖p+1, (36)

where Ce
p := −g(−Re

p) is a given constant depending on the choice of the surrogate
sM (xk+1; xk), which may be difficult to find in practice. Hence, in the following we
propose an adaptive general composite higher-order algorithm, called (A-GCHO):
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Algorithm A-GCHO
Given x0 ∈ dom f , i = 0 and Rp, M0 > 0. For k ≥ 0 do:

While some criterion is not satisfied

1. Compute a p higher-order surrogate s2i Mk
(·;xk) of F near xk

2. Compute xk+1 satisfying the descent (35) with M = 2i Mk .
If (36) holds with Ce

p = −g(−Rp) and M = 2i Mk , then go to step 3.
Else set i = i + 1 and go to Step 1.
End If

3. set k = k + 1, Mk+1 = 2i−1Mk and i = 0.

End While

For a better understanding of this process, let us consider Example 4, where F = F1+
F2, having the p derivative of F1 L

F1
p -Lipschitz and F2 proper closed convex function.

Then, in this case the surrogate is sM (y;x) = T F1

p (y;x) + M
(p+1)! ‖y − x‖p+1 + F2(y).

Let Rp, M0 > 0 be fixed. Then, the step 1 in A-GCHO algorithm can be seen as a
line search procedure (see for example [13]): that is at each step k ≥ 0 we choose
Mk ≥ M0, then build sMk (y;xk) = T F1

p (y;xk) + Mk
(p+1)! ‖y − xk‖p+1 + F2(y) and

compute xk+1 satisfying (35). If (36) doesn’t hold, then we increase Mk ← 2 · Mk ,
recompute sMk (y;xk) using the new Mk and go to step 2. We repeat this process
until condition (36) is satisfied. Note that this line search procedure finishes in a
finite number of steps. Indeed, if Mk ≥ Rp + LF1

p , then from inequality (13), we

get sMk (y;xk) − F(y) ≥ Rp
(p+1)! ‖y − xk‖p+1 for all y and thus for y = xk+1 and g

increasing function (36) holds. Note also that in this case the error function e satisfies
Definition 2 (i) with Le

p = 2(Rp + LF1

p ). Hence, using the same convergence analysis
as in the previous sections, we can derive similar convergence rates as in Theorems
1, 2 and 3 for A-GCHO algorithm under Assumption 2 and 3, since the sequence
(xk)k≥0 generated by A-GCHO automatically satisfies (35) and (36). For the convex
case, as in Sect. 3.4, in A-GCHO algorithm we require that xk+1 is the global solution
of the corresponding subproblem and consequently similar convergence results as in
Theorem 4 can be derived for this adaptive algorithm.

4 Numerical simulations

In this section we present some preliminary numerical results for GCHO algorithm.
For simulations, we consider the tests set from [18]. In [18], one can find systems
of nonlinear equations, where one searches for x∗ such that Fi (x∗) = 0 for all i =
1, · · · ,m. For solving these problems, we implement our GCHO algorithm for p =
1, 2.We consider two formulations:min-max and least-squares problems, respectively.
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The min-max formulation has the form:

min
x∈Rn

f (x) := max(F2
1 (x), · · · , F2

m(x)). (37)

Similarly, the least-squares formulation can be written as a simple composite mini-
mization problem:

min
x∈Rn

f (x) :=
m∑

i=0

F2
i (x). (38)

Note that both formulation fit into our general problem (1). We consider the following
2 implementations. First, for problem (37) we compare GCHO algorithm for p = 1, 2
with IPOPT (the results are given in Table 2). Secondly, for problem (38) we compare
GCHOalgorithm for p = 1, 2with IPOPTand themethod proposed in [12] (the results
are given in Table 3). At each iteration of GCHO algorithm we replace each function
Fi by its Taylor approximation of order p, with p = 1, 2, and a quadratic/cubic
regularization and solve the corresponding subproblem (15) using IPOPT [28]. In the
numerical simulationswehave noticed that for p = 2 IPOPTwas able to detect a global
minimizer of the subproblem at each iteration, i.e., the solution of IPOPT coincided
with the solution obtained by solving the dual problem as described in the proof
of Lemma 3 given in the appendix. Since it is difficult to compute the corresponding
Lipschitz constants for the gradient/hessian,we use the line search procedure described
in Sect. 3.5. Note that since in practice it is difficult to compute the sequence (yk)k≥1,
then we cannot consider dist(0, ∂ f (yk)) ≤ ε as a stooping criterion for the proposed
algorithm. Thus the stopping criterion considered in this paper is the same as in [3]:

f (xk) − fbest
max(1, fbest)

≤ 10−4,

where fbest = f ∗ ≈ 0, but positive, and the starting point x0 are taken from [18].
In Tables 2 and 3, we summarize our numerical results in terms of cpu time and
number of iterations for GCHO algorithm p = 1, 2, IPOPT and [12]. Note that the
test functions we consider in the two tables are nonconvex andmost of them satisfy the
KL condition (as semi-algrabraic functions). From the tables, we observe that GCHO
algorithm (p = 1 or p = 2) applied to the min-max formulation performs better than
the GCHO algorithm (p = 1 or p = 2) applied to the the least-squares problem, both
in cpu time and number of iterations. This is due to the fact that the regularization
constants for the min-max problem (37), Mmax

p = (
Mmax

p (1), · · · , Mmax
p (m)

)
, are

much smaller than the one for the least-squares formulation (38), M ls
p , i.e., M

ls
p ≈∑m

i=1 M
max
p (i). Moreover, from the tables we observe that increasing the order of

the Taylor approximation is beneficial for the GCHO algorithm: e.g., in the min-max
formulation, GCHO with p = 2 is at least twice faster than GCHO with p = 1. We
also observe from Table 3 that GCHO algorithm applied to min-max formulation for
p = 2 has a better behavior (in both cpu time and number of iterations) than the
method proposed in [12] for the least-squares formulation. Finally, GCHO algorithm
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Table 2 Behaviour of GCHO for p = 1, 2 and IPOPT for the min-max formulation (37). Here "*" means
that IPOPT didn’t find x∗/ f ∗ reported in [18]

Min-max formulation test functions GCHO(p = 1) GCHO(p = 2) IPOPT for (37)
Iter Cpu Iter Cpu iter Cpu

(2) Fre 32 0.78 5 0.18 85 0.01

(7) Hel 33 0.74 11 0.4 29 0.02

(8) Bar 19 0.69 8 0.42 27 0.06∗
(9) Gau 9 0.33 2 0.15 16 0.04∗
(12) Box 23 0.9 9 0.5 36 0.08∗
(15) Kow (m = 11, n = 4) 48 0.7 7 0.35 5000 7.8∗
(17) Osb-1(m = 33, n = 5) 57 3.8 9 1.7 40 0.9

(18) Big (m = 13, n = 6) 149 7.73 14 0.6 593 1.5∗
(19) Osb-2 (m = 65, n = 11) 67 18.75 20 12.1 55 3.7∗
(20) Wat (m=31,n=9) 23 2.56 7 2.63 5000 50.5∗
(21) E-Ros (n = m = 6) 21 0.63 3 0.21 379 0.72

(21) E-Ros (n = m = 20) 26 1.7 3 0.53 124 3.8

(21) E-Ros (n = m = 100) 25 102.5 5 40.1 119 133.9

(24) Pen II (n = 10) 61 6.4 3 0.32 64 0.9∗
(26) Tri (n = 10) 20 0.53 3 0.22 45 0.2∗
(30) Bro (n = 10) 44 0.88 3 0.25 118 0.3∗

Table 3 Behaviour of GCHO algorithm for p = 1, 2, algorithm [12] and IPOPT for the least-squares
problem (38). Here "*" means that IPOPT didn’t find x∗/ f ∗ reported in [18]

L.S formulation test functions GCHO(p=1) GCHO(p=2) [12] IPOPT for (38)
Iter Cpu iter Cpu Iter Cpu Iter Cpu

(2) Fre 562 7.2 23 0.48 7 0.19 85 0.06

(7) Hel 59 1.2 25 0.95 15 0.55 12 0.02

(8) Bar 88 1.3 13 0.5 12 0.48 26 0.04

(9) Gau 71 1.25 13 0.65 5 0.17 8 0.03∗
(12) Box 719 12.1 51 2.05 13 0.68 34 0.05

(15) Kow 534 13.1 14 0.67 10 0.49 825 1.98∗
(17) Osb-1 815 45.8 101 9.6 18 3.6 103 1.9

(18) Big 968 18.5 44 2.19 17 0.79 44 0.15∗
(19) Osb-2 365 45.9 82 35.6 29 15.3 329 11.5∗
(20) Wat 161 50.6 21 7.6 10 3.66 794 8.16∗
(21) E-Ros 2563 38.7 12 0.93 4 0.28 83 0.33

(21) E-Ros 3040 82.3 28 9.4 5 1.53 233 1.8

(21) E-Ros 530 253 33 288.2 7 71.5 223 162.4

(24) Pen II 147 10.2 7 0.8 3 0.35 22 0.08∗
(26) Tri 28 0.55 5 0.3 3 0.22 26 0.05∗
(30) Bro 56 0.9 12 0.59 4 0.35 36 0.07∗
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(p = 1, 2) for both formulations is able to identify the global optimal points/values
given in [18], while IPOPT directly applied to the formulations (38) or (37) may fail
to identify the global optimal points/values (see Tables 2 and 3).

Acknowledgements The research leading to these results has received funding from: ITN-ETN project
TraDE-OPT funded by the EU, H2020 Research and Innovation Programme under theMarie Skolodowska-
Curie grant agreement No. 861137; NO Grants 2014-2021, under project ELO-Hyp, contract no. 24/2020;
UEFISCDI PN-III-P4-PCE-2021-0720, under project L2O-MOC, nr. 70/2022.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

5 Appendix

Proof of Lemma 3 Let us first prove that for p = 2, g(·) = max(·) and h(·) = 0, one
can compute efficiently the global solution xk+1 of the subproblem (15). Indeed, in
this particular case (15) is equivalent to the following subproblem:

min
x∈Rn

max
i=1:m

{
Fi (xk) + 〈∇Fi (xk), x − xk〉 + 1

2

〈
∇2Fi (xk)(x − xk), x − xk

〉
(39)

+ Mi

6
‖x − xk‖3

}
.

Further, this is equivalent to:

min
x∈Rn

max
u∈�m

m∑

i=1

ui Fi (xk) +
〈

m∑

i=1

ui∇Fi (xk), x − xk

〉

+ 1

2

〈
m∑

i=1

ui∇2Fi (xk)(x − xk), x − xk

〉

+
∑m

i=1 ui Mi

6
‖x − xk‖3,

where u = (u1, · · · , um) and �m := {
u ≥ 0 : ∑m

i=1 ui = 1
}
is the standard simplex

in Rm . Further, this min−max problem can be written as follows:

min
x∈Rn

max
u∈�M

m∑

i=1

ui Fi (xk) +
〈

m∑

i=1

ui∇Fi (xk), x − xk

〉

+ 1

2

〈
m∑

i=1

ui∇2Fi (xk)(x − xk), (x − xk)

〉

+ max
w≥0

(
w

4
‖x − xk‖2 − 1

12(
∑m

i=1 ui Mi )2
w3

)
.

Denote for simplicityHk(u, w) = ∑m
i=1 ui∇2Fi (xk)+w

2 I , gk(u) = ∑m
i=1 ui∇Fi (xk),

lk(u) = ∑m
i=1 ui Fi (xk) and M̃(u) = ∑m

i=1 ui Mi . Then, the dual formulation of this

123



Efficiency of higher-order algorithms for minimizing… 469

problem takes the form:

min
x∈Rn

max
u∈�m
w∈R+

lk(u) + 〈gk(u), x − xk〉 + 1

2
〈Hk(u, w)(x − xk), (x − xk)〉 − w3

12M̃(u)2
.

Consider the following notations:

θ(x, u) = lk(u) + 〈gk(u), x − xk〉 + 1

2

〈(
m∑

i=1

ui∇2Fi (xk)

)

(x − xk), x − xk

〉

+ M̃(u)

6
‖x − xk‖3,

β(u, w) = lk(u) − 1

2

〈
Hk(u, w)−1g(u), g(u)

〉
− 1

12M̃(u)2
w3,

D =
{

(u, w) ∈ �m × R+ : s.t.
m∑

i=1

ui∇2Fi (xk) + w

2
I � 0

}

.

Below, we prove that if there exists an Mi > 0, for some i = 1 : m, then we have the
following relation:

θ∗ := min
x∈Rn

max
u∈�m

θ(x, u) = max
(u,w)∈D β(u, w) = β∗.

Additionally, for any (u, w) ∈ D the direction xk+1 = xk−Hk(u, w)−1gk(u) satisfies:

0 ≤ θ(xk+1, u) − β(u, w) = M̃(u)

12

(
w

M̃(u)
+ 2rk

)(
rk − w

M̃(u)

)2

, (40)

where rk := ‖xk+1 − xk‖. Indeed, let us first show that θ∗ ≥ β∗. Using a similar
reasoning as in [23], we have:

θ∗ = min
x∈Rn

max
u∈�m
w∈R+

lk(u) + 〈gk(u), x − xk〉 + 1

2
〈Hk(u, w)(x − xk), x − xk〉 − w3

12M̃(u)2

≥ max
u∈�m
w∈R+

min
x∈Rn

lk(u) + 〈gk(u), x − xk〉 + 1

2
〈Hk(u, w)(x − xk), x − xk〉 − w3

12M̃(u)2

≥ max
(u,w)∈D min

x∈Rn
lk(u) + 〈gk(u), x − xk〉 + 1

2
〈Hk(u, w)(x − xk), x − xk〉 − w3

12M̃(u)2

= max
(u,w)∈D lk(u) − 1

2

〈
Hk(u, w)−1gk(u), gk(u)

〉 − 1

12M̃(u)2
w3 = β∗.
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Let (u, w) ∈ D. Then, we have gk(u) = −Hk(u, w)(xk+1 − xk) and thus:

θ(xk+1, u) = lk(u) + 〈gk(u), xk+1 − xk〉

+ 1

2

〈(
m∑

i=1

ui∇2Fi (xk)

)

(xk+1 − xk), xk+1 − xk

〉

+ M̃(u)

6
r3k

= lk(u) − 〈Hk(u, w)(xk+1 − xk), xk+1 − xk〉

+ 1

2

〈(
m∑

i=1

ui∇2Fi (xk)

)

(xk+1 − xk), xk+1 − xk

〉

+ M̃(u)

6
r3k

= lk(u) − 1

2

〈(
m∑

i=1

ui∇2Fi (xk) + w

2
I

)

(xk+1 − xk), xk+1 − xk

〉

− w

4
r2k + M̃(u)

6
r3k

= β(u, w) + 1

12M̃(u)2
w3 − w

4
r2k + M̃(u)

6
r3k

= β(u, w) + M̃(u)

12

(
w

M̃(u)

)3

− M̃(u)

4

(
w

M̃(u)

)
r2k + M̃(u)

6
r3k

= β(u, w) + M̃(u)

12

(
w

M̃(u)
+ 2rk

)(
rk − w

M̃(u)

)2

,

which proves (40). Note that we have [23]:

∇wβ(u, w) = 1

4
‖xk+1 − xk‖2 − 1

4M̃(u)2
w2 = 1

4

(
rk + w

M̃(u)

)(
rk − w

M̃(u)

)
.

Therefore, if β∗ is attained at some (u∗, w∗) ∈ D, then we have ∇β(u∗, w∗) = 0.
This implies w∗

M̃(u∗) = rk and by (40) we conclude that θ∗ = β∗.
Finally, if xk+1 is a global solution of the subproblem (15) (or equivalently (39)),
then it satisfies the inexact condition (25) with δ = 0. Hence, using the proof of
Lemma 2 with δ = 0 we can conclude that Assumption 2 holds with yk+1 given in

(24), L1
p =

(
C

μp
Le
p

)1/3
and L2

p = μp
2 . ��

Proof of Remark 2 If g is the identity function, then taking yk+1 = xk+1 one can see
that Assumption 3 holds for any θ1,p and θ2,p nonnegative constants. If g is a general
function, then Assumption 3 holds, provided that xk+1 satisfies the inexact optimality
condition (25). Indeed, in this case, we have:

f (xk+1) ≤ g
(
s(xk+1;xk)

)
+ h(xk+1)

(25)≤ min
y: ‖y−xk‖≤Dk

g
(
s(y;xk)

)
+ h(y) + δ‖xk+1 − xk‖p+1
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(28),(8)≤ min
y: ‖y−xk‖≤Dk

g
(
F(y)

) + h(y) + g(Le
p)

(p + 1)! ‖y − xk‖p+1

+ δ‖xk+1 − xk‖p+1

≤ f (yk+1) + g(Le
p)

(p + 1)! ‖yk+1 − xk‖p+1 + δ‖xk+1 − xk‖p+1,

where the last inequality follows taking y = yk+1. Hence, Assumption 3 holds in this

case for θ1,p = g(Le
p)

(p + 1)! and θ2,p = δ. Finally, if p = 2 and g(·) = max(·), then
xk+1 is the global solution of the subproblem (15) and hence, using similar arguments
as above, we can prove that Assumption 3 also holds in this case. ��
Proof of Lemma 6 Note that the sequence λk is nonincreasing and nonnegative, thus it
is convergent. Let us consider first θ ≤ 1. Since λk − λk+1 converges to 0, then there
exists k0 such that λk − λk+1 ≤ 1 and λk+1 ≤ (C1 + C2) (λk − λk+1) for all k ≥ k0.
It follows that:

λk+1 ≤ C1 + C2

1 + C1 + C2
λk,

which proves the first statement. If 1 < θ ≤ 2, then there exists also an integer k0
such that λk − λk+1 ≤ 1 for all k ≥ k0. Then, we have:

λθ
k+1 ≤ (C1 + C2)

θ (λk − λk+1) .

Since 1 < θ ≤ 2, then taking 0 < β = θ − 1 ≤ 1, we have:

(
1

C1 + C2

)θ

λ
1+β
k+1 ≤ λk − λk+1,

for all k ≥ k0. From Lemma 11 in [25], we further have:

λk ≤ λk0

(1 + σ(k − k0))
1
β

for all k ≥ k0 and for some σ > 0. Finally, if θ > 2, then define h(s)=s−θ and let
R > 1 be fixed. Since 1/θ < 1, then there exists a k0 such that λk − λk+1 ≤ 1 for all

k ≥ k0. Then, we have λk+1 ≤ (C1 + C2) (λk − λk+1)
1
θ , or equivalently:

1 ≤ (C1 + C2)
θ (λk − λk+1)h(λk+1).

If we assume that h(λk+1) ≤ Rh(λk), then:

1 ≤ R(C1 + C2)
θ (λk − λk+1)h(λk) ≤ R(C1 + C2)

θ

−θ + 1

(
λ−θ+1
k − λ−θ+1

k+1

)
.
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Denote μ = −R(C1+C2)
θ

−θ+1 . Then:

0 < μ−1 ≤ λ1−θ
k+1 − λ1−θ

k . (41)

If we assume that h(λk+1) > Rh(λk) and set γ = R− 1
θ , then it follows immediately

that λk+1 ≤ γ λk . Since 1 − θ is negative, we get:

λ1−θ
k+1 ≥ γ 1−θλ1−θ

k ⇐⇒ λ1−θ
k+1 − λ1−θ

k ≥ (γ 1−θ − 1)λ1−θ
k .

Since 1 − θ < 0, γ 1−θ > 1 and λk has a nonnegative limit, then there exists μ̄ > 0
such that (γ 1−θ − 1)λ1−θ

k > μ̄ for all k ≥ k0. Therefore, in this case we also obtain:

0 < μ̄ ≤ λ1−θ
k+1 − λ1−θ

k . (42)

If we set μ̂ = min(μ−1, μ̄) and combine (41) and (42), we obtain:

0 < μ̂ ≤ λ1−θ
k+1 − λ1−θ

k .

Summing the last inequality from k0 to k, we obtain λ1−θ
k − λ1−θ

k0
≥ μ̂(k − k0), i.e.:

λk ≤ μ̂− 1
θ−1

(k − k0)
1

θ−1

for all k ≥ k0. This concludes our proof. ��
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