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Abstract
We consider an optimal control problem constrained by a parabolic partial differential
equation with Robin boundary conditions. We use a space–time variational formula-
tion in Lebesgue–Bochner spaces yielding a boundedly invertible solution operator.
The abstract formulation of the optimal control problem yields the Lagrange function
and Karush–Kuhn–Tucker conditions in a natural manner. This results in space–time
variational formulations of the adjoint and gradient equation in Lebesgue–Bochner
spaces, which are proven to be boundedly invertible. Necessary and sufficient opti-
mality conditions are formulated and the optimality system is shown to be boundedly
invertible. Next, we introduce a conforming uniformly stable simultaneous space–time
(tensorproduct) discretization of the optimality system in these Lebesgue–Bochner
spaces. Using finite elements of appropriate orders in space and time for trial and
test spaces, this setting is known to be equivalent to a Crank–Nicolson time-stepping
scheme for parabolic problems. Comparisons with existing methods are detailed. We
show numerical comparisons with time-stepping methods. The space–time method
shows good stability properties and requires fewer degrees of freedom in time to reach
the same accuracy.
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1 Introduction

The optimal control of partial differential equations (PDE) is an area of vast growing
significance e.g. in fluid flows, crystal growths or medicine, see, e.g. [1, 2]. This
explains the huge amount of literature concerning theoretical as well as numerical
aspects.

The abstract form of such problems relies on a cost function J : Y × U → R,
where Y and U are function spaces for the state y and the control u. The constrained
optimal control problem then takes the form

J (y, u) → min! s.t. e(y, u) = 0, (1.1)

where the constraint e(y, u) = 0 is often termed as state equation. At this point,
there is a bifurcation concerning the subsequent approach. On the one hand, the first-
discretize-then-optimize approach seeks for an appropriate discretization of (1.1) and
then derives optimality conditions for the discretized optimal control problem. On the
other hand, first-optimize-then-discretize means that optimality conditions are derived
directly w.r.t. (1.1) and then the arising optimality system is discretized. We shall
follow the second approach.

First-optimize-then-discretize
Within this approach, the first step is a suitable interpretation of the state equation. In
case of a PDE-constrained optimal control problem, the state equation is a PDE. Here,
we are interested in the case where the PDE is a parabolic problem in space and time.
This offers a variety of different formulations of the state equation, e.g.

• Strong form: e(y, u) = 0 is interpreted pointwise. This, however does often not
allow statements on the well-posedness of the state equation.

• Semi-variational: Using a variational form in either space or time yields either an
initial value problem of an ordinary differential equation or a system of elliptic
boundary value problems.

• Space-0time variational: Space and time are both treated as variables in a varia-
tional sense. In that case, the state equation is tested by space–time test functions
z ∈ Z , where Z is an appropriate Lebesgue–Bochner space, and takes the form,
for a right-hand side f (·; u) ∈ Z ′

find y ∈ Y : b(y, z) = f (z; u) for all z ∈ Z. (1.2)

Space–time variational formulations and adjoint problem
We follow the last-mentioned method in the above list. In the literature, this approach
has already been studied, see e.g. [3–8], but with some (partly subtle) differences to
our approach to be detailed below. The well-posedness theory for (1.2) dates back (at
least) to the 1970s, see e.g. [9–11]. In order to describe to which extent our approach
differs from the mentioned papers, we first note, that we understand well-posedness in
the sense of Hadamard as existence, uniqueness and stability, [12]. Following e.g. [13],
we can rephrase this as follows: By L(Y,Z ′) we denote the space of bounded linear
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mappings Y → Z ′ and by Lis(Y,Z ′) its subset of boundedly invertible mappings
Y → Z ′. We call a problem By = z′ in Z ′ well-posed if B ∈ Lis(Y,Z ′). Hence, we
need to detail the choices of the bilinear form b(·, ·) as well as the trial and test spaces
Y and Z . We shall see that our subsequent choice allows us to show that the solution
operator B : Y → Z ′ defined in (2.14) is in Lis(Y,Z ′). This necessarily implies that
Y �= Z and requires these spaces to satisfy an inf-sup condition

inf
y∈Y

sup
z∈Z

b(y, z)

‖y‖Y ‖z‖Z =: β > 0, (1.3)

which is known to hold, [14, 15]. We postpone a detailed comparison with other
space–time methods to Sect. 2.2 (in particular Remark 2.8) below.

Another difference of the known approaches from the literature and our proposed
framework is the derivation of an optimality system. For the details, we refer to Sect.
3.2, Remark 3.10 below. We use the variational form (1.2) to derive the reduced
problem (w.r.t. the control), which allows us to prove the existence of a unique optimal
solution. In a next step, we define the Lagrange function, again using the variational
form (1.2), from which we then derive the Karush–Kuhn–Tucker (KKT) conditions.
The adjoint problem arises in a natural variational form by the KKT system, see
Proposition 3.3 below.

Space–time discretization
In a final step, we propose a conforming space–time discretization, which amounts
to construct finite-dimensional spaces Yδ ⊂ Y and Zδ ⊂ Z for a Petrov–Galerkin
discretization of (1.2) and later also the control space Uδ ⊂ U . Since Y �= Z , the
discrete spaces Yδ and Zδ need to satisfy a discrete inf-sup condition, also known as
Ladyshenskaja–Babuška–Brezzi (LBB) condition, i.e.,

inf
yδ∈Yδ

sup
zδ∈Zδ

b(yδ, zδ)

‖yδ‖Y ‖zδ‖Z =: β̄ > 0 (1.4)

uniformly in δ (where β̄ is independent of δ).1 The discrete inf-sup constant β̄ is
particularly relevant as the Xu–Zikatanov lemma [16] yields an error/residual-relation
with the multiplicative factor β̄−1. In some cases, one can realize optimally stable
discretizations, i.e., β̄ = 1 (in particular, the constant is independent of the final time,
which is crucial for optimal control problems), [15, 17, 18]. This is a key motivation
for our approach. However, there are different stable discretizations described in the
literature. For example, in [14, 19, 20] wavelet methods have been used to derive an
LBB-stable discretization, [15, 17, 18] propose tensorproduct discretizations (some
of them reducing to time-stepping schemes) and [8, 21] introduce unstructured finite
element discretizations in space and time. Here, we use a tensorproduct discretization
since they allow for efficient numerical solvers and admit optimal stability, [22, 23];
of course, also other schemes could be used instead. Our approach leads to a different
discrete system as previous approaches, see Sect. 4.5, Remark 4.4 below.

1 We call β the inf-sup constant and β̄ the discrete inf-sup constant.
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Until recently it has been believed that a simultaneous discretization of time and
space variables would be way too costly since problems in n + 1 dimensions need to
be solved, where n denotes the space dimension. This has changed somehow since it
is nowadays known that space–time discretizations yield good stability properties, can
efficiently be used for model reduction and can also be treated by efficient numerical
solvers, see [14, 17, 22–28], just to name a few papers in that direction. However, the
issues of a suitable discretization and the question if the arising higher-dimensional
problem can efficiently be solved remain. Of course, also for space–time approaches
different from ours, there are also efficient numerical solvers known, see e.g. [2, 29,
30].

Model problem
We consider the following PDE-constrained optimal control problem.

Problem 1.1 (Model problem in classical form) Let I = (0, T ) ⊂ R, 0 < T < ∞
and � ⊂ R

n be a bounded Lipschitz domain. The outer unit normal vector of ∂�=:�
is denoted by ν(x) ∈ R

n for almost all x ∈ � w.r.t. the surface measure.
The state space Y consists of mappings y : I × � → R, the control space U of

functions u : I × � → R. We are interested in determining a control u ∈ U and a
corresponding state y ∈ Y that solve the following optimization problem:

min
(y,u)∈Y×U

J (y, u) := 1
2

∫

�

|y(T , x) − yd(x)|2 dx + λ
2

∫

I

∫

�

|u(t, x)|2 dx dt

s.t.
ẏ(t, x) − 	y(t, x) = Ru(t, x) in I × �,

∂ν y(t, x) + μ(x) · y(t, x) = η(t, x) in I × �,

y(0, x) = 0 in �,

(1.5)

where the functions μ : � → R, η : I × � → R and yd : � → R as well as a scalar
λ > 0 are given. Moreover, R is a linear operator, whose role will be described below.
We shall always assume that μ(x) > 02 for all x ∈ � a.e..

Remark 1.2 (a) We could easily extend to a cost function of the form

J (y, u) = ω1
2 ‖y − yd‖2L2(I ;L2(�)) + ω2

2 ‖y(T ) − yd(T )‖2L2(�) + ω3
2 ‖u‖2L2(I ;L2(�)),

with real constants ω1, ω2 ≥ 0, ω1 + ω2 > 0, ω3 > 0 and yd : I × � → R.
(b) The extension to inhomogeneous initial conditions y(0, x) = y0 and other types
of boundary conditions follows standard lines, e.g. [14] and Remark 2.7.
(c) In the first preprint version of this paper, we considered box constraints for the
control. In order to discuss the analysis concerning well-posedness and convergence
in full detail, we decided to devote control constraints to future research.

2 We note that we do not need strict positivity in order to ensure well-posedness. But it allows us to use
energy norms in the sequel.
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Main contributions
In this paper, we introduce a variational space–time approach which allows us to show
that the solution operator for the constraint as well as of the first order optimality
system is boundedly invertible. This yields a corresponding choice of the spaces Y ,Z
and U for state, co-state and control, in particular allowing Y �= Z . As we prove that
B ∈ Lis(Y,Z ′), which requires Y �= Z ′, there is a unique and stable solution for all
f (·; u) ∈ Z ′. Hence,Z ′ is the “largest” co-state space allowing for an isomorphism, in
particular allowing for minimal regularity (for the right-hand side and the initial state).
Moreover, we construct a uniformly stable simultaneous space–time discretization of
the optimality system in these arising spaces.

Even though Problem 1.1 is a simple model problem (and there are in fact several
articles in the literature covering more general problems), a consideration of more
general scenarios (e.g. think of control constraints) is expected to be done following
standard paths.

Organization of the paper
The remainder of this paper is organized as follows. In Sect. 2, we recall and collect
some preliminaries on PDE-constrained optimization problems in reflexive Banach
spaces and on space–time variational formulations of parabolic PDEs. The space–time
variational formulation of the optimal control problem under consideration is devel-
oped in Sect. 3. In particular, we derive necessary and sufficient optimality conditions.
Section4 is devoted to the space–time discretization of the PDE, the discretization
of the control as well as of the adjoint problem. The latter one turns out to be much
simpler in our space–time context than in the semi-variational setting as we obtain
a linear system whose matrix is just the transposed of the matrix appearing in the
primal problem. The fully discretized optimal control problem is then solved numeri-
cally. We report on our numerical experiments in Sect. 5 and conclude by a summary,
conclusions and an outlook in Sect. 6.

2 Preliminaries

Let us start by collecting some preliminaries that we will need in the sequel.

2.1 Optimal control problems

In this section, we recall the abstract functional analytic framework for optimal control
problems in reflexive Banach spaces3 which we will later apply within the space–
time setting. The consideration of control and/or state constraints is devoted to future
research.

Problem 2.1 Let Y , U , Z be some real reflexive Banach spaces. Given an objective
function J : Y × U → R and the state operator e : Y × U → Z ′, we consider the

3 Concerning the chosenmodel problemwewill deal with real Hilbert spaces. However, wewill not identify
these Hilbert spaces with their dual spaces, which is the reason why we describe the general optimal control
framework for reflexive Banach spaces.
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constrained optimization problem

min
(y,u)∈Y×U

J (y, u) subject to (s.t.) the constraint e(y, u) = 0,

where we assume J and e to be continuously Fréchet-differentiable.

Remark 2.2 Note, that e(y, u) = 0 is an equation in the dual space Z ′ of Z . Since
we consider reflexive Banach spaces, it holds Z ′′ ∼= Z . Therefore, the constraint is to
be interpreted as 〈e(y, u), z〉Z ′×Z = 0 for all z ∈ Z , where 〈·, ·〉Z ′×Z is the duality
pairing, and the adjoint state will be in Z .

A pair (y, u) ∈ {(y, u) ∈ Y × U : e(y, u) = 0} =: Xad is called local optimum of
Problem 2.1 if

J (y, u) ≤ J (y, u), ∀(y, u) ∈ N (y, u) ∩ Xad, (2.1)

for some neighborhood N (y, u) of (y, u); the pair is called global optimum of Prob-
lem 2.1 if (2.1) is satisfied for all (y, u) ∈ Xad.

We will be investigating the well-posedness of such optimal control problems in a
space–time variational setting. This requires first to study the well-posedness of the
state equation e(y, u) = 0, namely the question if a unique state can be assigned to
each admissible control. If so, one defines the control-to-state operator

S : U → Y , u �→ y(u) = Su, (2.2)

which allows one to consider the reduced objective function Ĵ : U → R, Ĵ (u) :=
J (Su, u) and the corresponding reduced problem

min
u∈U

Ĵ (u). (2.3)

We recall the following well-known result for later reference, [31, Thm. 3.1].

Theorem 2.3 Let U be a reflexive Banach space. Moreover, let Ĵ : U → R be weakly
lower semi-continuous and radially unbounded, i.e.,

lim‖u‖U→∞ Ĵ (u) = +∞. (2.4)

Then, (2.3) admits at least one solution.

Necessary first order optimality conditions for optimal control problems are based
upon the Euler–Lagrange equation Ĵ ′(u) = 0, e.g. [1]. This, however, involves
the derivative of Ĵ , which is often difficult to determine exactly. The well-known
way-out is through the adjoint problem. In fact, if ey(Su, u)[·] : Y → Z ′ (the
partial derivative of e(·, ·) w.r.t. y) is a bijection, then, Ĵ ′(u) = Ju(Su, u) −
eu(Su, u)∗

(
ey(Su, u)∗

)−1
Jy(Su, u), for any u ∈ U , where ey(Su, u)∗ and eu(Su, u)∗

123



A space–time variational method for optimal control problems… 773

denote the adjoint operators of ey(Su, u) and eu(Su, u), respectively. In order to avoid
the determination of the inverse of the adjoint ey(Su, u)∗, one considers the adjoint
equation

ey(y, u)∗z = −Jy(y, u), (2.5)

whose solution z ∈ Z is called adjoint state. Then,

Ĵ ′(u) = Ju(Su, u) + eu(Su, u)∗z. (2.6)

Theorem 2.4 (KKT system) Let u be a solution of (2.3) and y := Su the related state.
If ey(y, u)[·] : Y → Z ′ is a bijection, then, there exists an adjoint state z ∈ Z , such
that the following KKT system is satisfied:

e(y, u) = 0, (2.7a)

ey(y, u)∗z = −Jy(y, u), (2.7b)

eu(y, u)∗z = −Ju(y, u). (2.7c)

The Lagrange function L : Y × U × Z → R to Problem 2.1 reads

L(y, u, z) := J (y, u)+〈z, e(y, u)〉Z×Z ′ .

Then, (2.7) can equivalently be written as ∇L(y, u, z) = 0.

2.2 Space–time variational formulation of parabolic problems

In order to detail the setting in Sect. 2.1 for the specific Problem 2.1 at hand, we review
a variational formulation of the initial boundary value problem (1.5) in space and time,
which yields the specific form of the state operator e(·, ·). To this end, let H := L2(�),
G := L2(�), V := H1(�) and V ′ be the dual of V induced by the H -inner product.
Then, we denote the Lebesgue–Bochner spaces by H := L2(I ; H), G := L2(I ; G),
V := L2(I ; V ) and V ′ := L2(I ; V ′). Moreover, denoting by 〈·, ·〉V ′×V the duality
pairing in space only, we obtain inner products and duality pairing in time and space
as

(u, v)X :=
∫

I
(u(t), v(t))X dt, 〈u, v〉V ′×V :=

∫
I
〈u(t), v(t)〉V ′×V dt

for the respective u and v and X ∈ {V ′, H , V }, X ∈ {V ′,H,V}, respectively.
Then, we start by testing the first equation in (1.5) with functions z(t) ∈ V , t ∈ I

a.e., integrate over space, perform integration by parts in space and insert the Robin
boundary condition of (1.5). Denoting by a : V × V → R the bilinear form in space,
i.e., a(φ,ψ) := (∇φ,∇ψ)H + (μφ,ψ)G , we get

〈ẏ(t), z(t)〉V ′×V + a(y(t), z(t)) = 〈Ru(t), z(t)〉V ′×V + (η(t), z(t))G, (2.8)
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for t ∈ I a.e. To obtain a variational formulation in space and time we integrate (2.8)
over time and obtain

〈ẏ, z〉V ′×V +
∫

I

a(y(t), z(t)) dt = 〈Ru, z〉V ′×V + (η, z)G . (2.9)

The trial space for the state y is a Lebesgue–Bochner space defined as

Y := {y ∈ L2(I ; V ) : ẏ ∈ L2(I ; V ′), y(0) = 0} = L2(I ; V ) ∩ H1
(0)(I ; V ′). (2.10)

As in [15, 18], we choose the norms

‖y‖2Y := ‖ẏ‖2V ′ + ‖y‖2V + ‖y(T )‖2H and ‖φ‖2V := a(φ, φ),

but other equivalent norms can also be considered. The test space reads

Z := V = L2(I ; V ), ‖ · ‖Z := ‖ · ‖V . (2.11)

For the well-posedness of (2.9) (see [14]), we need Ru ∈ V ′ = L2(I ; V ′) = Z ′.
However, the definition of the cost function J in Problem 1.1 requires

U := H = L2(I ; H), ‖ · ‖U := ‖ · ‖H. (2.12)

Thus, we can now detail the role of the linear mapping R, namely R : H → V ′
(which could here also be just the canonical embedding). We introduce the bilinear
form b : Y × Z → R and the linear form h ∈ Z ′ by

b(y, z) := 〈ẏ, z〉V ′×V +
∫

I

a(y(t), z(t)) dt, h(z) := (η, z)G,

so that (2.9) equivalently can be written as

b(y, z) = 〈Ru, z〉V ′×V + h(z) ∀z ∈ Z. (2.13)

Obviously, (2.13) is a variational problem of the form (1.2), where the right-hand
side is a linear form in Z ′ for all u ∈ U . For later reference, it will be convenient to
reformulate (2.13) in operator form. To this end, we define

B : Y → Z ′, 〈By, z〉Z ′×Z := b(y, z), (2.14)

so that (2.13) reads By = Ru + h. If we define the differential operator in space as
Ax : V → V ′ by 〈Axφ,ψ〉V ′×V := a(φ,ψ) with its space–time extension A : V →
V ′ defined as 〈Ay, δy〉V ′×V := ∫

I a(y(t), δy(t)) dt , then we get the representation
By = ẏ + Ay.
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Well-posedness of the parabolic problem

The proof of the well-posedness of the variational form (2.13) for any given u ∈
U basically follows the lines of [11, 14, 15], namely by verifying the conditions
of the Banach–Nečas theorem. For the Robin data we make the usual assumptions
μ ∈ L∞(I × �) and η ∈ G = L2(I ; G). The surjectivity is shown by proving the
convergence of a Faedo–Galerkin approximation, [14, App. A]. Inf-sup-condition and
boundedness can be derived by detailing primal and dual supremizers.

Proposition 2.5 The problem (2.13) is well-posed, i.e., B ∈ Lis(Y,Z ′), with

β:= inf
y∈Y

sup
z∈Z

b(y, z)

‖y‖Y ‖z‖Z = inf
z∈Z

sup
y∈Y

b(y, z)

‖y‖Y ‖z‖Z
= γB := sup

y∈Y
sup
z∈Z

b(y, z)

‖y‖Y ‖z‖Z = sup
z∈Z

sup
y∈Y

b(y, z)

‖y‖Y ‖z‖Z = 1, (2.15)

in particular ‖B‖Y→Z ′ = ‖B∗‖Z→Y ′ = ‖B−1‖Z ′→Y = ‖B−∗‖Y ′→Z = 1.

Proof The proof closely follows the lines of [14, Thm. 5.1], [15, Prop. 1] and [18,
Prop. 2.6]. In fact, we can identify primal and dual supremizers for given z ∈ Z and
y ∈ Y , respectively, as follows

Z � sy := arg sup
δz∈Z

b(y, δz)

‖δz‖Z = A−1By = A−1 ẏ + y,

Y � sz := arg sup
δy∈Y

b(δy, z)

‖δy‖Y = B−1Az.

In addition, ‖sy‖2Z = ‖A−1 ẏ + y‖2V = ‖ẏ‖2V ′ + ‖y‖2V + ‖y(T )‖2H = ‖y‖2Y and
‖sz‖Y = ‖ṡz + Asz‖V ′ = ‖Az‖V ′ = ‖z‖Z , which completes the proof. ��
Remark 2.6 Even thoughwe have proven optimal stability and continuity, wewill later
also need the general case, in which we have

‖B‖Y→Z ′ = ‖B∗‖Z→Y ′=γB, ‖B−1‖Z ′→Y = ‖B−∗‖Y ′→Z = 1
β
. (2.16)

Remark 2.7 (Inhomogeneous initial conditions) As already mentioned in Remark 1.2,
we restrict ourselves to homogeneous initial conditions only for convenience of the
presentation. In fact, for y0 �= 0, we would set Y := L2(I ; V ) ∩ H1(I ; V ′), the test
space would be Z := L2(I ; V ) × H and bilinear and linear forms read for y ∈ Y ,
z = (z1, z2) ∈ Z

b(y, (z1, z2)) := 〈ẏ, z1〉V ′×V +
∫

I

a(y(t), z1(t)) dt + (y(0), z2)H ,

f ((z1, z2); u) := 〈Ru, z1〉V ′×V + h(z1) + (y0, z2)H ,

123



776 N. Beranek et al.

yielding a state equation of the form (1.2). Hence, inhomogeneous initial conditions
can be treated analogously, just the notation becomes a bit more heavy, [14].

Comparison with existing space–timemethods

As already mentioned in the introduction, our approach is somehow different as exist-
ing ones in the literature. We are now going to describe the differences concerning the
formulation of the state equation in more detail.

Remark 2.8 (Comparison with existing space–time methods)

(a) In [3–5], Meidner, Neitzel and Vexler use (almost) the same trial space Y as
in (2.10), namely Ỹ := L2(I ; V ) ∩ H1(I ; V ′), but impose the initial condition
y(0) = y04 in strong form. The arising problem is not of the form (1.2). In fact,
the well-posedness does not follow from the Banach–Nečas theorem but with
techniques from semigroup theory, [11]. This requires y0 ∈ V (but the problem is
alsowell-posed for y0 ∈ H ), [3, Prop. 2.1]. In fact, the right-hand side is required to
be in L2(I ; H) and the solution is in L2(I ; V ∩ H2(�))∩ H1(I ; H) ↪→ C( Ī ; V ),
which is significantly stronger than Y defined in (2.10).
Moreover, treating the initial condition as in [3–5] allows to use Ỹ also as test
space, which is another reason for the additional smoothness, but which yields a
Galerkin discretization instead of a Petrov–Galerkin one, see below.

(b) In [6, 7], von Daniels, Hinze and Vierling use the same trial space Ỹ for the state
equation as [3–5], but impose the initial condition in a weak sense, [6, (1.5)].
Moreover, Ỹ is chosen also as test space (in a Galerkin spirit).

(c) In the more recent paper, Langer, Steinbach, Tröltzsch and Yang use the same
variational formulation as we do with y0 = 0, [8]. In [21] (on which [8] is
based), non-homogeneous initial conditions are treated by means of reduction
to homogeneous initial conditions. Moreover, in [21] it is assumed that y0 ∈ V ,
whereas we choose y0 ∈ H .

In all cases, there are differences to our approach in the derivation/formulation of the
adjoint equation and the adjoint state to be described in the next section.

3 Space–time variational optimal control problem

Next, we formulate the optimal control problem in the variational space–time setting
by specifying the above abstract framework. To do so, we are now going to derive a
space–time variational formulation of Problem 1.1. The state space is determined by
the PDE, i.e., we choose Y defined in (2.10). In view of Remark 2.2 and recalling that
Z ′′ ∼= Z , we are now in position to formulate the constraint in space–time variational
form as follows

〈e(y, u), z〉Z ′×Z := b(y, z) − 〈Ru, z〉V ′×V − h(z), z ∈ Z, (3.1)

4 Recall, that we have chosen homogeneous initial conditions y0 = 0 only for simplicity of exposition, see
Remark 2.7.
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i.e., e(y, u) := By − Ru − h ∈ Z ′. Next, we can detail the control-to-state operator
S : U → Y as follows Su = B−1 (Ru + h). Finally, the objective function J :
Y×U → R in Problem1.1 can nowbewritten as J (y, u) = 1

2‖y(T )−yd‖2H + λ
2‖u‖2H,

where λ > 0 is the regularization parameter.

3.1 Existence of an optimal solution

Problem 3.1 (Reduced problem) Find a control ū ∈ U such that

ū = argmin
u∈U

Ĵ (u), Ĵ (u) := 1
2‖(Su)(T ) − yd‖2H + λ

2‖u‖2H. (3.2)

Proposition 3.2 Problem 3.1 admits a unique solution.

Proof Since Ĵ is easily seen to be strictly convex and continuous (by continuity of
S and the norms), it follows that Ĵ is weakly lower semi-continuous, see e.g. [32, p.
15]. In addition, it holds Ĵ (u) ≥ λ

2‖u‖2H, and, consequently, Ĵ is bounded from below
and is radially unbounded (i.e., fulfills (2.4)). Since U is reflexive as a Hilbert space,
Theorem 2.3 proves the claim. ��

3.2 First order necessary optimality conditions

Adopting the previous notation, we start by detailing the Lagrange function L :
Y × U × Z → R for Problem 1.1, namely

L(y, u, z) = 1
2‖y(T ) − yd‖2H + λ

2‖u‖2H + 〈z, By − Ru − h〉Z×Z ′ . (3.3)

The partial derivatives can easily be derived as follows: Lz(y, u, z) = By − Ru −
h, Ly(y, u, z) = Dy − g+B∗z, where we introduce the bilinear form d : Y ×
Y → R, d(y, δy) := (y(T ), δy(T ))H and the associated operator5 D : Y → Y ′,
〈Dy, δy〉Y ′×Y := d(y, δy) as well as the functional g ∈ Y ′, g(δy) := (yd , δy(T ))H .
Finally, for δu ∈ U , we haveLu(y, u, z)[δu] = λ (u, δu)H−〈z, Rδu〉V×V ′ . Hence,we
obtain the following first order optimality (KKT) system: Find (y, z, u) ∈ Y ×Z ×U
such that

b(y, δz) − 〈Ru, δz〉V ′×V = h(δz) ∀δz ∈ Z, (3.4a)

d(y, δy) + b(δy, z) = g(δy) ∀δy ∈ Y, (3.4b)

λ(u, δu)H − 〈Rδu, z〉V ′×V = 0 ∀δu ∈ U . (3.4c)

Let us further detail the gradient equation (3.4c). Denote by R∗ : V → H the adjoint
operator of R defined by (R∗v, h)H := 〈Rh, v〉V ′×V for v ∈ V and h ∈ H∼= H′.
Then, (3.4c) reads λ(u, δu)H − (R∗z, δu)H = 0, which means that we can derive a
relation of the optimal control ū and the optimal adjoint state z̄, namely

ū = λ−1 R∗ z̄. (3.5)

5 By the Cauchy–Schwarz inequality, we easily see that ‖D‖Y→Y ′ ≤ 1.
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Then, we can formulate the KKT conditions as follows.

Proposition 3.3 (Optimality (KKT) system) Let (y, u) ∈ Y×U be an optimal solution
of Problem 1.1. If B : Y → Z ′ is a bijection, then there exists an adjoint state z ∈ Z
such that the following optimality system holds:

B y − Ru = h in Z ′ (state equation), (3.6a)

Dy + B∗z = g in Y ′ (adjoint equation), (3.6b)

λu−R∗z = 0 in U ′ (gradient equation), (3.6c)

or, in operator form

⎛
⎝D B∗ 0

B 0 −R
0 −R∗ λI

⎞
⎠

⎛
⎝ȳ

z̄
ū

⎞
⎠ =

⎛
⎝g

h
0

⎞
⎠ .

Setting P := R R∗ : V → V ′, inserting (3.5) into (3.4) yields the reduced first
order optimality system for determining (y, z̄) ∈ Y × Z such that

b(y, δz) − λ−1〈Pz̄, δz〉V ′×V = h(δz) ∀δz ∈ Z, (3.7a)

d(y, δy) + b(δy, z) = g(δy) ∀δy ∈ Y, (3.7b)

or, in operator form (where we reordered the equations)

L

(
ȳ
z̄

)
=

(
g
h

)
, L :=

(
D B∗
B −λ−1P

)
: W := (Y × Z) → W ′. (3.8)

For later reference, we equip the space W = Y × Z with the norm

‖w‖W := ‖y‖Y + ‖z‖Z , w = (y, z) ∈ W. (3.9)

It is easily seen that L : W → W ′ is bounded, i.e., ‖L‖W→W ′ < ∞.

Remark 3.4 (Well-posedness of the adjoint problem) From (3.4b) we see that the
adjoint problem arises from the primal one by exchanging the roles of trial and test
spaces—and by a different right-hand side, of course. We recall from Sect. 2.2 that
the primal problem (3.4a) is well-posed, see e.g. [11, 14]. This is a consequence of
the Banach–Nečas theorem and the fact that the inf-sup condition (2.15) holds. Due to
its specific form, this immediately implies well-posedness also of the adjoint problem
(3.4b), even with the same inf-sup constant as for (3.4a).

Remark 3.5 Due to the convexity of the objective function as well as the linearity of
the state equation, the Problem 1.1 is convex. Hence, every solution of (3.3) is a global
optimal solution of the problem, [1].
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Theorem 3.6 (Well-posedness of the optimality system) The first order optimality
system (3.8) is well-posed, i.e., L ∈ Lis(W,W ′), for all λ > 0 with

L−1 =
(

λ−1B−1PC−1 B−1 − λ−1B−1PC−1DB−1

C−1 −C−1DB−1

)

with C := B∗ + λ−1DB−1P : Z → Y ′. For γP := ‖P‖V→V ′ , we have

‖L−1‖W ′→W ≤ γP+λβ+λβ2

λβ3 . (3.10)

Proof The fact that L L−1 and L−1L are identity maps can be verified by straightfor-
ward calculations, as long as L−1 exists. This, in turn, boils down to the existence of
C−1. In order to show this, note thatC = B∗(I +λ−1B−∗ DB−1P) =: B∗(I +λ−1K )

and B∗ is invertible. The operator K : Z → Z is self-adjoint since

(K z, δz)Z = 〈B−∗ DB−1Pz, Pδz〉Z×Z ′ = 〈Pz, B−∗ DB−1Pδz〉Z ′×Z = (z, K δz)Z

since D∗ = D. Hence, the spectrum σ(K ) ⊂ R
+
0 is contained in the non-negative

reals. This implies ‖(I + λ−1K )−1‖Z→Z ≤ 1 for all λ > 0, so that ‖C−1‖Y ′→Z ≤
‖B−∗‖Y ′→Z = 1

β
. In order to bound ‖L−1‖W ′→W , let (g, h)T ∈ W ′. Then,

∥∥∥L−1(g, h)T
∥∥∥
Y×Z

≤ 1
λ
‖B−1PC−1‖Y ′→Y ‖g − DB−1h‖Y ′ + ‖B−1‖Z ′→Y‖h‖Z ′

+ ‖C−1‖Y ′→Z‖g − DB−1h‖Y ′

≤ ‖C−1‖Y ′→Z (
γP
λ

‖B−1‖Z ′→Y + 1)‖g − DB−1h‖Y ′ + ‖B−1‖Z ′→Y‖h‖Z ′

≤ 1
β
(

γP
λβ

+ 1)(‖g‖Y ′ + ‖D‖Y→Y ′ ‖B−1‖Z ′→Y‖h‖Z ′ ) + 1
β
‖h‖Z ′

≤ 1
β
(

γP
λβ

+ 1)‖g‖Y ′ + ( 1
β2 (

γP
λβ

+ 1) + 1
β

)‖h‖Z ′

≤ 1
β
max{ γP

λβ
+ 1, 1

β

( γP
λβ

+ 1
) + 1}(‖g‖Y ′ + ‖h‖Z ′ )

=
(

1
β2

( γP
λβ

+ 1
) + 1

β

)
(‖g‖Y ′ + ‖h‖Z ′ ) = γP +λβ+λβ2

λβ3 (‖g‖Y ′ + ‖h‖Z ′ ),

which proves the claim. ��
Remark 3.7 For the optimal solution (y, z)� ∈ W of (3.8) we have ‖y‖Y + ‖z‖Z =
‖(y, z)�‖W ≤ ‖L−1‖W ′→W‖(g, h)�‖W ′ and for the corresponding optimal control
u ∈ U it holds due to (3.5)

‖u‖U = 1
λ
‖R∗z‖H ≤ 1

λ
‖R∗‖V→H‖z‖V ≤ 1

λ
‖R∗‖V→H‖(y, z)T ‖W

≤ 1
λ
‖R∗‖V→H‖L−1‖W ′→W‖(g, h)T ‖W ′ ≤ γP

λ
‖L−1‖W ′→W‖(g, h)T ‖W ′ .

Remark 3.8 Recall that ‖L−1‖W ′→W is the inverse of the inf-sup constant of L , i.e.,

inf
w∈W

sup
v∈W

〈Lw, v〉W ′×W
‖v‖W‖w‖W ≥ λβ3

γP+λβ+λβ2 . (3.11)
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Corollary 3.9 For (2.13) we have

‖L−1‖W ′→W ≤ γP+2λ
λ

= 2 + γP
λ

, (3.12)

so that the inf-sup-constant (3.11) of the reduced optimality system is at least λ
γP+2λ .

Proof Since β = 1 the estimate (3.12) follows from (3.10) and (3.11). ��
Remark 3.10 (Comparisonwith existing space–timemethods, continued)We continue
Remark 2.8 with highlighting the differences to previous publications.

(a) In [3–5], the adjoint problem is derived directly from the variational formulation,
which means that the terminal condition is imposed in strong form. This neces-
sarily implies that Z = Y is the space for the adjoint state. Moreover, the same
high regularity requirements apply for the solution of the adjoint problem as for
the primal one, [3, Prop. 2.3].

(b) In [6, 7] the adjoint equation is derived by integration by parts in time, which is
possible sinceZ = Y . As in [3–5], this implies high (and the same) regularity for
y and z, [6, La. 3.2].

(c) In [8] the adjoint problem and also the gradient equation are derived in strong
form, which is then formulated in space–time variational form. This results in a
coupled space–time system where primal and adjoint state have the same regular-
ity. Moreover, since the initial condition is imposed in the primal trial space, the
terminal condition is part of the definition of the adjoint trial space. In our case, it
holds z ∈ Z , which is appropriate since B∗ ∈ Lis(Z,Y ′). Hence, Z is the natural
space for the adjoint, which effects the required regularity and the sharpness of
the error estimates.

The differences concerning discretization will be described in the next section.

4 Space–time discretization

In this section, we are going to describe a conforming discretization of the optimal
control problem in space and time.We start by reviewing space–time Petrov–Galerkin
methods for parabolic problems from [15, 17, 18] and will extend this to a full
space–time discretization of the optimal control problem at hand. This leads us to
a tensorproduct-type discretization w.r.t. time and space variables. Of course, the
approach is not restricted to tensorproducts; for example, one could also use unstruc-
tured space–timefinite elements as in [8].However,w.r.t. stability and efficient solution
of the fully discretized problems, the tensorproduct approach turned out to be very
promising, see also [20, 22].

4.1 Petrov–Galerkin discretization of the PDE

We consider and construct finite-dimensional spaces Yδ ⊂ Y and Zδ ⊂ Z , where—
for simplicity—we assume that nδ := dim(Yδ) = dim(Zδ). The Petrov–Galerkin
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approximation to (2.13) amounts to find yδ ∈ Yδ such that (for given u ∈ U to be
discretized below)

b(yδ, zδ) = 〈Ru, zδ〉V ′×V + h(zδ) ∀zδ ∈ Zδ. (4.1)

We may think of δ = (	t, h), where 	t is the temporal and h the spatial mesh
width. We recall, that there are several ways to select such discrete spaces so that the
arising discrete problem is well-posed and stable in the sense of (1.4). An overview of
conditionally and unconditionally stable variants can be found in [17, 26, 33]. In [21]
a finite element approach is described. Moreover, the authors of [15, 18] show that
linear ansatz and constant test functions w.r.t. time lead to the Crank–Nicolson time
integration scheme for the special case of homogeneous Dirichlet boundary conditions
if the right-hand side is approximatedwith the trapezoidal rule. A similar approach, but
for the case of Robin boundary conditions, is briefly presented in the sequel, where we
basically follow [17]. It is convenient (and, as we explained above, also efficient from
the numerical point of view) to choose the approximation spaces to be of tensorproduct
form,

Yδ = V	t ⊗ Vh, Zδ = Q	t ⊗ Vh (4.2)

with the temporal subspaces V	t ⊂ H1(I ) and Q	t ⊂ L2(I ) as well as the spatial
subspace Vh ⊂ V = H1(�). Our particular choice is as follows: The time interval
I = (0, T ) is discretized according to

T	t := {0 =: t (0) < t (1) < · · · < t (K ) := T } ⊂ [0, T ], t (k) = k · 	t,

where K ∈ N denotes the number of time steps, i.e., 	t := T /K is the time step size.
The temporal subspaces V	t , Q	t and the spatial subspace Vh read

V	t := span �	t ⊂ H1(I ), Q	t := span �	t ⊂ L2(I ), Vh := span �h ⊂ H1(�)

with piecewise linear functions �	t = {θk ∈ H1(I ) : k = 1, . . . , K }, piecewise
constants �	t = {ξ� ∈ L2(I ) : � = 0, . . . , K − 1} in time and piecewise linear
basis functions in space �h = {φi ∈ H1(�) : i = 1, . . . , nh}. Doing so, we obtain
dim(Yδ) = dim(Zδ) = nδ = K nh . Such a Petrov–Galerkin discretization for solving
(4.1) amounts to determine

Yδ � yδ =
K∑

k=1

nh∑
i=1

yk
i θk ⊗ φi , (4.3)

with the coefficient vector yδ := [y11 , . . . , y1nh
, . . . , yK

1 , . . . , yK
nh

]� ∈ R
nδ . We are

going to derive the arising linear system of equations for (4.1)

Bδ yδ = (Ru)δ+hδ, (4.4)
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with the stiffness matrix Bδ ∈ R
nδ×nδ and the vectors (Ru)δ ∈ R

nδ , hδ ∈ R
nδ to be

detailed next. To this end, we use the basis functions for the test space and obtain for
� = 0, . . . , K − 1 and j = 1, . . . , nh

b(yδ, ξ
� ⊗ φ j ) =

∫

I

〈ẏδ(t), ξ
� ⊗ φ j 〉V ′×V + a(yδ(t), ξ

l ⊗ φ j ) dt

=
K∑

k=1

nh∑
i=1

yk
i

[
〈θ̇k ⊗ φi , ξ

� ⊗ φ j 〉V ′×V + a(θk ⊗ φi , ξ
� ⊗ φ j ) dt

]

=
K∑

k=1

nh∑
i=1

yk
i

[(
θ̇k, ξ �

)
L2(I )

(
φi , φ j

)
H +

(
θk, ξ �

)
L2(I )

a(φi , φ j )

]
.

Moreover, it holds (Ru)δ := [r�
j (u)]�=0,...,K−1; j=1,...,nh ∈ R

nδ and

hδ := [h�
j ]�=0,...,K−1; j=1,...,nh ∈ R

nδ , where r�
j (u) =: 〈Ru, ξ � ⊗ φ j 〉V ′×V and

h�
j =: h(ξ� ⊗ φ j ) = (η, ξ� ⊗ φ j )G . The control u will be discretized below. In

order to derive a compact form, we introduce a number of matrices

C time
	t := [

ck,�

]K ,K−1
k=1,�=0 ∈ R

K×K with ck,� := (θ̇k, ξ �)L2(I ),

N time
	t := [

nk,�

]K ,K−1
k=1,�=0 ∈ R

K×K with nk,� := (θk, ξ �)L2(I ),

M time
	t := [

mk,�

]K−1,K−1
k=0,�=0 ∈ R

K×K with mk,� := (ξ k, ξ �)L2(I ),

Aspace
h := [

ai, j
]nh

i, j=1 ∈ R
nh×nh with ai, j := a(φi , φ j ),

Mspace
h := [

mi, j
]nh

i, j=1 ∈ R
nh×nh with mi, j := (φi , φ j )H .

Based upon this, we obtain Bδ := C time
	t ⊗ Mspace

h + N time
	t ⊗ Aspace

h ∈ R
nδ×nδ .

Remark 4.1 There are several uniformly inf-sup stable discretizations available, see
e.g. [33]. For the above case, there is even an optimal discretization, i.e., where the
inf-sup constant β̄ is unity, [15, 18]. In any case, we have (and shall assume in the
sequel) that (1.4) holds uniformly in δ → 0, possibly with discrete norms ‖ · ‖Yδ

,
‖ · ‖Zδ

.

4.2 Discretization of the control

So far, we did not discretize the control u ∈ U = L2(I ; H). A natural choice seems
to be Uδ := Q	t ⊗ Vh = Zδ , but other choices are also possible. Thus, set

uδ :=
K−1∑
k=0

nh∑
i=1

uk
i ξ k ⊗ φi , uδ := [uk

i ]k=0,...,K−1; i=1,...,nh ∈ R
K nh . (4.5)
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The next step is to detail (Ru)δ based upon this discretization. We obtain for � =
0, . . . , K − 1 and j = 1, . . . , nh

r�
j (uδ) = 〈Ruδ, ξ

� ⊗ φ j 〉V ′×V =
K−1∑
k=0

nh∑
i=1

uk
i (ξ k, ξ �)L2(I ) 〈Rφi , φ j 〉V ′×V

= [(M time
	t ⊗ N space

h )uδ]�, j=: [M̃δuδ]�, j , (4.6)

where M time
	t ∈ R

K×K is as introduced above and N space
h := [

ni, j
]nh ,nh

i=1, j=1 with

ni, j := 〈Rφi , φ j 〉V ′×V .6 Putting everything together, the discretized version of the
primal problem (4.4) reads

Bδ yδ − M̃δuδ = hδ. (4.7)

For later reference, we note that

‖uδ‖2H =
K−1∑

k,�=0

nh∑
i, j=1

uk
i u�

j (ξ k, ξ �)L2(I ) (φi , φ j )H = u�
δ (M time

	t ⊗ Mspace
h ) uδ

=: u�
δ Mδ uδ.

Remark 4.2 We stress the fact that we could use any other suitable discretization of
the control, both w.r.t. time and space, in particular including adaptive techniques
or a discretization arising from implicitly utilizing the optimality conditions and the
discretization of the state and adjoint equation, see e.g. [34].

4.3 Petrov–Galerkin discretization of the adjoint problem

We are now going to derive the discrete form of the adjoint problem (3.6b) or (3.4b).
Since this problem involves the adjoint operator, it seems reasonable to use the same
discretization, so that the (matrix–vector form of the) discrete problem amounts to
find zδ ∈ R

nδ such that (for given yδ ∈ Yδ)

B�
δ zδ + dδ(yδ) = gδ, (4.8)

with dδ(yδ) ∈ R
nδ , gδ ∈ R

nδ , i.e., d(yδ, δyδ) + b(δyδ, zδ) = g(δyδ) for all δyδ ∈ Yδ .
Note, that the stiffness matrix is the transposed of the stiffness matrix of the primal
problem. The unknown coefficient vector zδ ∈ R

K nh reads

Zδ � zδ=
K−1∑
k=0

nh∑
i=1

zk
i ξ k ⊗ φi , zδ := [zk

i ]k=0,...,K−1; i=1,...,nh ∈ R
K nh . (4.9)

6 For the common case R = I , we get ni, j = (φi , φ j )H , i.e., N
space
h = M

space
h .
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Let us now detail the remaining terms dδ(yδ) = [d�
j (yδ)]�=1,...,K ; j=1,...,nh ∈ R

nδ ,

gδ = [g�
j ]�=1,...,K ; j=1,...,nh ∈ R

nδ . For � = 1, . . . , K and j = 1, . . . , nh , we get

g�
j = g(θ� ⊗ φ j ) = (yd , θ K (T ) ⊗ φ j )H = θ K (T ) · (yd , φ j )H .

Further, we abbreviate the coefficient vector of yδ(T ) in terms of the basis �h as
yK
δ := [yK

1 , . . . , yK
nh

]� so that by (4.3) we obtain for � = 1, . . . , K and j = 1, . . . , nh

d�
j (yδ) = d(yδ, θ

� ⊗ φ j ) = (yδ(T ), θ K (T ) ⊗ φ j )H

= θ�(T ) · θ K (T ) ·
nh∑

i=1

yK
i (φi , φ j )H = δ�,K · [Mspace

h yK
δ ] j =: [Dδ yδ]�, j ,

where δ�,K denotes the discrete Kronecker delta and we introduce

Dδ :=
(
0 0
0 Mspace

h

)
∈ R

nδ×nδ .

We note that it holds θ�(T ) = δ�,K , i.e., θ�(T ) = 0 for � = 1, . . . , K − 1 and
θ K (T ) = 1. With this notation at hand, the fully discretized version of the adjoint
problem (4.8) reads

B�
δ zδ + Dδ yδ = gδ. (4.10)

4.4 Petrov–Galerkin discretization of the gradient equation

In order to obtain a discrete version of the gradient equation we test (3.4c) with the
basis functions of Uδ , namely λ (uδ, δuδ)H − 〈Rδuδ, zδ〉V ′×V = 0 for all δuδ ∈ Uδ .
Recalling the discretizations (4.5) and (4.9) of uδ and zδ , respectively, we obtain for
� = 0, . . . , K − 1 and j = 1, . . . , nh

0 = λ
(

uδ, ξ
� ⊗ φ j

)
H − 〈zδ, ξ

� ⊗ Rφ j 〉V×V ′

= λ

K−1∑
k=0

nh∑
i=1

uk
i (ξ k ⊗ φi , ξ

� ⊗ φ j )H −
K−1∑
k=0

nh∑
i=1

zk
i 〈ξ k ⊗ φi , ξ

� ⊗ Rφ j 〉V×V ′

= λ

K−1∑
k=0

nh∑
i=1

uk
i (ξ k, ξ �)L2(I ) (φi , φ j )H −

K−1∑
k=0

nh∑
i=1

zk
i (ξ k, ξ �)L2(I ) 〈Rφ j , φi 〉V ′×V

= λ[(M time
	t ⊗ Mspace

h )uδ]�, j − [(M time
	t ⊗ (N space

h )�)zδ]�, j

= λ[Mδuδ]�, j − [M̃�
δ zδ]�, j .
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Then, the discrete version of the gradient equation (3.4c) reads

λMδuδ − M̃
�
δ zδ = 0. (4.11)

We note, that Mδ is a square mass matrix, i.e., invertible. For R = I , we have

M̃
�
δ = Mδ , so that uδ = λ−1zδ .

4.5 The discrete optimality system

We can now put all pieces together and detail the discrete version of the first order
optimality system (3.4), namely

b(yδ, δzδ) − 〈Ruδ, δzδ〉V ′×V = h(δzδ) ∀δzδ ∈ Zδ, (4.12a)

d(yδ, δyδ) + b(δyδ, zδ) = g(δyδ) ∀δyδ ∈ Yδ, (4.12b)

λ(uδ, δuδ)H − 〈Rδuδ, zδ〉V ′×V = 0 ∀δuδ ∈ Uδ. (4.12c)

Recalling (4.7), (4.10) and (4.11), the discrete first order optimality system (4.12)
can be written in matrix form as

⎛
⎜⎝
Dδ BT

δ 0
Bδ 0 −M̃δ

0 −M̃
�
δ λ Mδ

⎞
⎟⎠

⎛
⎝ yδ

zδ
uδ

⎞
⎠ =

⎛
⎝gδ

hδ

0

⎞
⎠ ,

where all involved matrices have tensorproduct structure. In view of (4.11), i.e,

λMδuδ = M̃
�
δ zδ , we can easily eliminate the variable uδ and obtain the reduced

system

Lδ

(
yδ

zδ

)
=

(
gδ

hδ

)
, Lδ :=

(
Dδ BT

δ

Bδ − 1
λ
M̃δM

−1
δ M̃δ

)
(4.13)

which is a discretized version of (3.8). All involved matrices are tensorproducts and
for our choice, we have Mδ = M̃δ . Set γ := ‖M̃δM

−1
δ M̃δ‖ = ‖Mδ‖, which is

bounded uniformly in δ → 0.

Theorem 4.3 (Well-posedness of the discrete optimality system) Assume that the dis-
crete inf-sup condition (1.4) holds. Then, the discrete first order optimality system
(4.12) is well-posed for all λ > 0 with

‖L−1
δ ‖ ≤ γ+λβ̄+λβ̄2

λβ̄3 , (4.14)

and we have

‖ yδ‖ + ‖zδ‖ ≤ γ+λβ̄+λβ̄2

λβ̄3 (‖hδ‖ + ‖gδ‖), ‖uδ‖ ≤ γ
λ

γ+λβ̄+λβ̄2

λβ̄3 (‖hδ‖ + ‖gδ‖).
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Proof We obtain the bound (4.14) by adapting the proof of Theorem 3.6 to the discrete
case. This ensures the reduced system (4.13) to be well-posed. Remark 3.7, also
adapted to the discrete case, yields the bounds for ‖ yδ‖ + ‖zδ‖ and ‖uδ‖. ��

Remark 4.4 (Comparison with existing space–time methods, continued) We continue
Remarks 2.8 and 3.10 with highlighting the differences to previous publications, now
concerning the discretization.
To summarize our approach, we start by an optimally stable Petrov–Galerkin dis-
cretization of the state equation based upon tensorproducts, which can be chosen to be
equivalent to a Crank–Nicolson time stepping method. In a second step, we chose an
appropriate discretization of the control. This automatically yields a Petrov–Galerkin
discretization of the adjoint equation and the gradient equation. Putting everything
together results in a stable discretization of the optimality system along with a priori
and a posteriori error estimates.

(a) [3–5] suggest semi-discretizations for the state bydiscontinuousGalerkinmethods.
Since there Z = Y , this can also be used for the adjoint state. Stability and
approximation results are then given.

(b) [6, 7] uses a Petrov–Galerkin method with temporal discontinuous trial functions
and continuous test functions for primal and adjoint problems. The control is not
discretized, but treated in a variational manner.

(c) In [8], the derivation yields a 2× 2 saddle point problem for primal and dual state
similar to (3.7), which is discretized in a similar fashion as in our approach for
the primal state equation. This means that also here primal and dual states use
discretizations of the same order, which is different from our approach.
Moreover, [8] uses an unstructured space–time discretization, whereas we sug-
gest a tensorproduct approach. However, the tensorproduct discretization was here
mainly chosen to allow the use of efficient solvers and can easily be replaced by
other discretizations as well, provided that a discrete inf-sup can be proven. Ten-
sorproduct discretizations require typically less storage, but usually do not allow
adaptive refinement.

4.6 Error analysis

Corollary 4.5 (A priori estimate) The Xu–Zikatanov Lemma [16, Thm. 2] yields a
quasi-best approximation statement, i.e.,

‖y − yδ‖Y + ‖z − zδ‖Z + ‖u − uδ‖U
≤ ‖L‖W→W ′(1 + γP

λ
)
γ+λβ̄+λβ̄2

λβ̄3[
inf

ỹδ∈Yδ

‖y − ỹδ‖Y + inf
z̃δ∈Zδ

‖z − z̃δ‖Z + inf
ũδ∈Uδ

‖u − ũδ‖U
]

.

123



A space–time variational method for optimal control problems… 787

Proof Due to infwδ∈Wδ
supvδ∈Wδ

〈Lwδ,vδ〉W ′×W
‖vδ‖W‖wδ‖W = ‖L−1

δ ‖−1 ≥ λβ̄3

γ+λβ̄+λβ̄2 , we get by

applying [16, Thm. 2] to (4.13) the estimate

‖w − wδ‖W ≤ ‖L‖W→W ′ γ+λβ̄+λβ̄2

λβ̄3 inf
w̃δ∈Wδ

‖w − w̃δ‖W

for w := (y, z) ∈ W , wδ := (yδ, zδ) ∈ Wδ := Yδ × Zδ . Finally, Remark 3.7 yields
‖u − uδ‖U ≤ γP

λ
‖z − zδ‖Z , which, together with the definition (3.9) of the norm on

W , proves the claim. ��
Using the above described discretization for Yδ , Zδ and Uδ , we get an error of

orderO(max{h,	t}) in the prescribed norms, which can easily be improved by using
higher order discretizations (if the solution is sufficiently regular).

Corollary 4.6 (A posteriori estimate) It holds that

‖y − yδ‖Y + ‖z − zδ‖Z + ‖u − uδ‖U ≤ (1 + γP
λ

)
γP+λβ+λβ2

λβ3 ‖rδ‖W ′ ,

where rδ := (g, h)� − L(yδ, zδ)
� ∈ W ′ is the residual of the optimality system (3.8).

Proof Let w := (y, z) ∈ W the solution of the reduced optimality system (3.8) and
wδ := (yδ, zδ) ∈ Wδ := Yδ × Zδ ⊂ W the discrete solution. Then, denoting the
right-hand side of (3.8) by � := (g, h)� ∈ W ′ it holds for v ∈ W

rδ(v) = �(v) − 〈Lwδ, v〉W ′×W = 〈Lw, v〉W ′×W − 〈Lwδ, v〉W ′×W
= 〈L(w − wδ), v〉W ′×W .

Using the lower bound (3.11) for the inf-sup constant of L , it holds for w − wδ ∈ W

λβ3

γP+λβ+λβ2 ‖w − wδ‖W ≤ sup
v∈W

〈L(w − wδ), v〉W ′×W
‖v‖W = sup

v∈W
rδ(v)

‖v‖W = ‖rδ‖W ′ .

Moreover, Remark 3.7 yields ‖u − uδ‖U ≤ γP
λ

‖z − zδ‖Z , which, together with the
definition (3.9) of the norm on W , proves the claim. ��

The latter estimate allows us to use residual-based error estimates, which are e.g.
particularly relevant for the reduced basis method in the case of parameter-dependent
problems, see e.g. [35].

4.7 Discretization of the cost function

Finally, we detail the space–time discretization of the cost function, i.e.,

Ĵδ(uδ) := 1
2‖yδ(T ) − yd,h‖2H + λ

2‖uδ‖2H
= 1

2 (θ
K (T ) yK

δ − yd,h)�Mspace
h (θ K (T ) yK

δ − yd,h) + λ
2u

�
δ Mδ uδ,
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where yd,h = ∑nh
i=1 yd,i φi with the coefficient vector yd,h := (yd,i )i=1,...,nh ∈ R

nh

is a discretization of yd .7

We solve the optimal control problem by numerically solving the reduced 2 × 2
block linear system arising from the optimality system (4.13).

5 Numerical results

In this section, we present some results of our numerical experiments. We follow two
main goals: (1) We make quantitative comparisons concerning the inf-sup-stability of
the optimality system and (2) we compare the above presented space–time variational
approach with the standard semi-variational approach (see also [36] for such compar-
isons for parabolic problems). We do not compare with other state-of-the-art methods
as we are mainly interested in investigating the effect of simultaneous space–time
discretization. In order to make the comparison fair, we chose an all-at-once method
for the semi-variational framework so that the reduced discrete optimality system is
built in a similar manner in both approaches. Moreover, we used the Crank–Nicolson
scheme for the semi-discrete problem since our choice for trial and test spaces for
the primal problem is equivalent to this time-stepping scheme, [15, 18]. Thus, in the
semi-variational setting, primal and dual problems amount for a comparable number
of operations, with a stability issue for the dual problem, of course. Note that, in
the semi-variational case, the Crank–Nicolson scheme for the adjoint problem (i.e.,
∂t z + 	z = 0; z(T ) = y(T ) − yd ) is backward in time.

All results were obtained with Matlab R2020b on a machine with a quad core
with 2.7 GHz and 16 GB of RAM.

5.1 Discrete inf-sup constant

We start by computing the discrete inf-sup constant of the optimality system and
compare that with the bound (3.12) in Corollary 3.9. We report the data for a 1d
example on I × � = (0, 1) × (−1, 1) with μ(x) = x2 + 0.1 for nh = 40, K = 80,
but stress that the results are representative also for other examples.

First, we investigate the dependence of the inf-sup constant w.r.t. the regularization
parameter λ. In Fig. 1, we show the computed discrete inf-sup constant in comparison
with the lower bound (2+ 1

λ
)−1.8 We observe the same quantitative behaviors of both

curves and see that our bound seems to be almost sharp for increasing values of λ. In
particular, we see the optimality (inf-sup is unity) already for λ = 10−2 and larger.
For small values of λ, the bound is too pessimistic by almost two orders of magnitude.

Next, we fix λ = 10−2 and investigate the dependence of the discretization. The
results are presented in Fig. 2. On the left, we fix K = 60 and vary nh , whereas on
the right, we choose nh = 60 and modify K . We see that the lower bound is in fact
pessimistic, stability improves as K increases and worsens for nh – as to be expected.

7 Doing so, we have that yd,h ∈ Vh (i.e., a piecewise linear approximation), which is useful for our
experiments. We could of course have also used a piecewise constant approximation.
8 Note that in our setting we have that γP = 1.
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Fig. 1 Discrete inf-sup constant of the optimality system for different values of λ

Fig. 2 Discrete inf-sup constant of the optimality system for λ = 10−2 and different values of nh and K

However, we can confirm uniform stability (i.e., for all choices of nh and K ) in all
cases.

5.2 Space-time versus semi-variational method

Our next aim is to compare our space–time method with a semi-variational approach.
As already pointed out earlier, we choose the data in such a way that the results are in
fact comparable.

5.2.1 One-dimensional example

Westart byProblem1.1 on I ×� = (0, 1)×(−1, 1) forμ(x) := x+1.3, boundary data

η(t, x) := sign(x)50t2

cosh(50x)
+ (1.3 + x) tanh(50x)t2 and desired state yd(x) = tanh(50x).

Again, we note that we got comparable results also for other data. We compare the
value of the objective function that we reach by solving the optimality system with the
two approaches. The results are shown in Fig. 3 for two values of the regularization
parameter λ. We show the value for increasing number K of time steps and two
different spatial discretizations, namely nh = 101 and nh = 1001. First, we observe
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Fig. 3 1d example, values of the objective function for different discretizations (left: λ = 10−1, right:
λ = 10−3, abbreviations: semi-variational (sv), space–time (st))

that the overall performance is independent of the choice of λ. Next, we see that both
methods converge to the same value of the objective function as K increases. However,
the huge benefit of the space–time setting shows off, namely that we reach an almost
optimal value also for very coarse temporal discretizations, which offers significant
computational savings.

It is not surprising that this effect is due to the improved stability of the space–time
method as we can also see in Fig. 4, where we depict the control for different values
of K for λ = 10−3 and nh = 101. We can clearly observe the stability issues for the
semi-variational approach in the left column, which do not appear in the space–time
context.

5.2.2 Higher dimensional examples

A possible criticism of the space-time-approach is the fact that the size of the opti-
mality system might significantly grow with increasing space dimension. Hence, we
realized both approaches also in 2d and 3d and report the results in the 2d case here.
We do not monitor CPU-time comparisons, but refer e.g. to [22, 37], where such com-
parisons have been done for space–time variational formulations of the heat and wave
equation, respectively. It was shown there, that appropriate tensorproduct solvers in
fact yield competitive CPU times for the arising space–time systems. The adaptation
of those approaches to the optimality system (4.13) is subject to ongoing work, see
also Remark 5.1 below.

Hence, we are going to report results for I × � := (0, 1) × (0, 1)2 and boundary
data μ(x) := 0.25 cosh(xy) + 0.25 along with a compatible function η. As desired
state, we choose yd(x) = tanh(10(x − 0.5)(y − 0.5)). As in the 1d case, we compare
the values of the objective function, see Fig. 5. The overall behavior is very similar
to the 1d case, namely we get a significant improvement of the space-approach over
the semi-variational one for small number of time steps K . Note, that here we use a
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Fig. 4 Optimal control for λ = 10−3 and nh = 101 (left column: semi-variational, right column: space–
time, top row: K = 50, bottom row: K = 500)

linear scale for the horizontal axis as opposed to Fig. 3, where the results are shown
in logarithmic scale. Moreover, for large values of λ, we observe the necessity of a
sufficiently fine spatial discretization for both methods.

Remark 5.1 With the chosen all-at-once approach, we get very similar CPU times for
both methods. As already pointed out earlier, a runtime comparison of best possible
schemes is not the aim of this paper. Not using efficient tensorproduct solvers yields
that the limiting factor is the memory – in both cases.

6 Summary, conclusions and outlook

We have considered a space–time variational formulation for a PDE-constrained opti-
mal control problem. Our first-optimize-then-discretize approach follows the abstract
functional analytic framework of such problems, which is then detailed for the space–
time variational method. This can be summarized as follows:

• Well-posed space–time variational formulation of the state equation. This yields
different trial and test spaces (Petrov–Galerkin style) of minimal regularity;

• Formulation of the optimal control problem in the arising spaces, definition of the
Lagrange function and derivation of KKT conditions. This yields the adjoint and
gradient equations in natural spaces with minimal regularity requirements;
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Fig. 5 2d example, values of the objective function for different discretizations (left: λ = 10−1, right:
λ = 10−3, abbreviations: semi-variational (sv), space–time (st))

• Derivation of (necessary and sufficient) optimality conditions and optimality sys-
tem (still in the infinite-dimensional setting);

• LBB-stable discretization of the optimality system. In special cases, this can be
chosen to be equivalent to a Crank–Nicolson semi-discrete discretization, which
allows quantitative numerical comparisons.

Moreover, we reported on numerical experiments showing that space–time methods
yield the same value of the objective function for significantly smaller number of
unknowns. Since the CPU-times for the same number of unknowns turned out to be
similar, this offers potential for significant speedup.

Topics for future research include control and state constraints, other types of PDEs
for the constraints, improved schemes for solving the optimality system, adaptive
discretization of the control, etc. Also efficient solvers that explicitly exploit the Kro-
necker structures of arising operators should be investigated. Finally, the above setting
seems to be a very good starting point for investigating model reduction, e.g. [18].
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