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Abstract
It is known that many tensor data have symmetric or partially symmetric structure
and structural tensors have structure preserving Candecomp/Parafac (CP) decomposi-
tions. However, the well-known alternating least squares (ALS) method cannot realize
structure preserving CP decompositions of tensors. Hence, in this paper, we consider
numerical problems of structure preserving rank-R approximation and structure pre-
serving CP decomposition of partially symmetric tensors. For the problem of structure
preserving rank-R approximation,wederive the gradient formula of the objective func-
tion, obtain BFGS iterative formulas, propose a BFGS algorithm for positive partially
symmetric rank-R approximation, and discuss the convergence of the algorithm. For
the problem of structure preserving CP decomposition, we give a necessary condition
for partially symmetric tensors with even orders to have positive partially symmetric
CP decompositions, and design a general partially symmetric rank-R approximation
algorithm. Finally, some numerical examples are given. Through numerical examples,
we find that if a tensor has a positive partially symmetric CP decomposition then its
partially symmetric rank CP decomposition must be a positive CP decomposition.
In addition, we compare the BFGS algorithm proposed in this paper with the stan-
dard CP-ALS method. Numerical examples show that the BFGS algorithm has better
stability and faster computing speed than CP-ALS algorithm.
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1 Introduction

Tensor Candecomp/Parafac(CP) decomposition and tensor rank are the basic problems
in tensor research and have lots of important applications in data analysis [1, 2], signal
processing [3, 4] and others [5, 6]. Although the tensor decomposition problem is
NP hard [7], there are many researchers still doing it without bored and tired. The
decomposition of a tensor into an outer product of vectors and the corresponding
notations were first proposed and studied by Frank L. Hitchcock in [8, 9]. The same
decomposition was rediscovered in 1970s [20] in order to extend the data analysis
model to multidimensional arrays.

Symmetric tensors are a class of tensors with many different decomposition prop-
erties and special applications [10–12], so many scholars have conducted in-depth
research on symmetric tensors. Comon et al. [13] proved that any symmetric tensor
can be decomposed into a linear combination of rank-1 tensor. Brachat et al. [14]
presented an algebraic method for symmetric tensor decompositions, based on linear
algebra computation with Hankel matrices by extending Sylvester’s theorem to multi-
ple variables in 2010. Kolda [15] considered real-valued decomposition of symmetric
tensor, both nonnegative and sparse and presented a numerical optimization algorithm
based on gradient in 2015. In 2017, Nie [16] devised a combination of polynomial
optimization and numerical approaches for solving complex-valued symmetric tensor
decompositions. In 2022, Liu [17] proposed an alternating gradient descent algorithm
for solving symmetric tensor CP decomposition by minimizing a multiconvex opti-
mization problem.

Partially symmetric tensor can be used to solve practical engineering problems,
such as elastic material analysis [18] and quantum information theory [19]. Carroll
and Chang [20] first considered the CP decomposition of partially symmetric tensors
and proposed an alternating method of ignoring the symmetry, the decomposition
obtained by this method does not have the property of structure preserving unless
the decomposition satisfies the uniqueness condition [21]. In 2013, Li and Navasca
[22] proposed the so called partial column-wise least squares method to obtain the
CP decomposition of the partially symmetric tensor of the third and fourth order.
Ni and Li [23] proved that any partially symmetric tensor has a partially symmetric
CP decomposition and presented a semi-definite relaxation algorithm. However, the
semi-definite relaxation is hard to calculate a partially symmetric CP decomposition
if the tensor has higher order and higher dimension, since the number of moments will
increase sharply with the increase of tensor order and dimension.

Motivated by the above, we consider the numerical algorithm of structure preserv-
ing rank-R approximation of partially symmetric tensors. We deduce the gradient
formula of the structure preserving rank-R approximation loss function, propose a
gradient descent algorithm and a BFGS algorithm, and analyze the convergence of
the BFGS algorithm. The BFGS algorithm can be used to the structure preserving CP
decomposition of partially symmetric tensors, completely symmetric tensors and non-
symmetric tensors, respectively. Numerical examples show that the BFGS algorithm
has good numerical performance.

The paper is structured as follows. Section2 introduces some basic concepts and
related properties, including matrix and tensor product, inner product and Frobenius
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norm of tensor, as well as partially symmetric tensor, etc. Section3 deduces the gra-
dient of the partially symmetric rank-R approximation loss function. In Sect. 4, we
propose the BFGS algorithm and discuss its convergence. In Sect. 5, We derive the
discrimination of partially symmetric tensors with the positive decomposition. Finally,
numerical experiments are given in Sect. 6.

Notation. N+, R and C denote the set of positive integers, real field and complex
field, respectively. A uppercase letter in calligraphic font denotes a tensor, e.g., T . A
uppercase letter represents a matrix, e.g., U . A boldface lowercase letter represents a
vector, e.g., v. A lowercase letter represents a scalar, e.g., x . The entry with row index
i and column index j in a matrix U , i.e., (U )i j , is symbolized by ui j ( also (v)i = vi
and (T )i1i2···iN = ti1i2···iN ). Let s > 0 be an integer, denote [s] := {1, 2, · · · , s} as an
integer set. St denotes the set of all permutations of {1, 2, · · · ,mt }, mt is a positive
integer, t ∈ [s].

2 Preliminaries

2.1 Matrix and tensor products

A tensor can be regarded as a multiway array, which is a generalization of matrices.
A tensor is represented with calligraphic script uppercase letters in this paper, e.g.,
T . In this subsection, some basic concepts and products of matrix and tensor will be
reviewed. For more details, please refer to the literature [24].

The Kronecker product of matrices A ∈ R
I×J and B ∈ R

K×L , denoted as A ⊗ B,
is defined as

A ⊗ B :=

⎡
⎢⎢⎢⎣

a11B a12B · · · a1J B
a21B a22B · · · a2J B

...
...

. . .
...

aI1B aI2B · · · aI J B

⎤
⎥⎥⎥⎦ ∈ R

I K×J L .

The Khatri-Rao product of two matrices A ∈ R
I×K and B ∈ R

J×K is defined as

A � B := [a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK ] ∈ R
I J×K .

If a and b are vectors, then the Khatri-Rao and Kronecker products are identical, i.e.,
a ⊗ b = a � b.

The Hadamard product of two same-sized matrices A, B ∈ R
I×J , denoted as

A ∗ B ∈ R
I×J , is defined as

(A ∗ B)i j := ai j bi j .

We use ”◦” to represent the outer product of two arbitrary tensors X ∈
R

I1×I2×···×Im , Y ∈ R
J1×J2×···×Jn

X ◦ Y = (
xi1i2···im y j1 j2··· jn

) ∈ R
I1×···×Im×J1×···×Jn . (2.1)
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Invoking the definition of tensor outer product as described in (2.1), we can get
that for vectors xk ∈ R

Ik , for k ∈ [m], their tensor outer product x1 ◦ x2 ◦ · · · ◦ xm ∈
R

I1×I2×···×Im is an mth-order rank-1 tensor such that

(x1 ◦ x2 ◦ · · · ◦ xm)i1i2···im = (x1)i1(x2)i2 · · · (xm)im .

In particular, if x1 = x2 = · · · xm = x ∈ R
n , then x◦m ≡

m︷ ︸︸ ︷
x ◦ x ◦ · · · ◦ x is an

mth-order n-dimensional symmetric rank-1 tensor and is denoted as xm for simplicity.

Definition 2.1 Let T ∈ R
I1×I2×···×Im be a tensor and vectors xk ∈ R

Ik for k ∈ [m].
Define the contraction product of tensor T and a rank-1 tensor as follows

T · ◦mi=1xi :=
I1,··· ,Im∑

i1,··· ,im=1

ti1···im (x1)i1 · · · (xm)im ∈ R,

T · ◦mi=1,i �=kxi :=
⎛
⎝

I1,··· ,Ik−1,Ik+1,··· ,Im∑
i1,··· ,ik−1,ik+1,··· ,im=1

ti1···im (x1)i1 · · · (xk−1)ik−1 (xk+1)ik+1 · · · (xm)im

⎞
⎠ ∈ R

Ik .

Generally, the inner product of two tensors X ,Y ∈ R
I1×I2×···×Im , denoted as X · Y

or 〈X ,Y〉, is defined as

X · Y :=
I1∑

i1=1

I2∑
i2=1

· · ·
Im∑

im=1

xi1i2···im yi1i2···im .

The Frobenius norm of a tensor X ∈ R
I1×I2×···×Im is defined as

‖X‖F :=
√√√√

I1∑
i1=1

I2∑
i2=1

· · ·
Im∑

im=1

x2i1i2···im .

It follows immediately that 〈X ,X 〉 = ‖X‖2F .
The mode-k matricization of a tensor T ∈ R

I1×I2×···×Im is denoted as T(k) and
rearrange its elements into a matrix of size Ik × ∏

i �=k Ii . Element (i1, i2, · · · , im)

maps to matrix entry (ik, j), where

j = 1 +
m∑
t �=k

(it − 1)
t−1∏
n �=k

In .

Let T ∈ R
I1×I2×···×Im be an mth-order tensor. The CP decomposition of T is

T = [[A1, A2, · · · , Am]] ≡
R∑

i=1

a(1)
i ◦ a(2)

i ◦ · · · ◦ a(m)
i ,

123



Partially symmetric tensor structure preserving rank-R approximation... 625

where Ak = (a(k)
1 a(k)

2 · · · a(k)
R ) ∈ R

Ik×R , k ∈ [m] are called factor matrices. The
mode-k matricization of tensor T = [[A1, A2, · · · , Am]], Ak ∈ R

Ik×R , for k ∈ [m]
can be written in the form of factor matrix,

T(k) = Ak(Am � · · · � Ak+1 � Ak−1 � · · · � A1)
T . (2.2)

2.2 Partially symmetric tensor

Partially symmetric tensor is the main content of this paper, so its basic concepts
and some properties are indispensable. Detailed introduction can be referred to the
literature [23, 25–27].

Definition 2.2 [23] Let m = (m1,m2, · · · ,ms) , n = (n1, n2, · · · , ns) ∈ N
s+. An

mth-order n-dimensional tensor T is an array over the field F indexed by integer
tuples

(
i1, · · · , im1 , j1, · · · , jm2 , · · · , l1, · · · , lms

)
, i.e.,

T =
(
ti1,··· ,im1 , j1,··· , jm2 ,··· ,l1,··· ,lms

)
∈ F

n
m1
1 ×n

m2
2 ×···×nms

s

with i1, · · · , im1 ∈ [n1], j1, · · · , jm2 ∈ [n2], · · · , l1, · · · , lms ∈ [ns].

The space of all tensors over the filed F is denoted as T [m]F [n]. T is called a square
tensor, if all dimensions are equal, that is to say n1 = n2 = · · · = ns .

Definition 2.3 [25] Let m = (m1,m2, · · · ,ms) , n = (n1, n2, · · · , ns) ∈ N
s+. A

tensor S ∈ T [m]F [n] is called partially symmetric if

si1···im1 j1··· jm2 ···l1···lms
= sσ1(i1)···σ1(im1 )σ2( j1)···σ2( jm2 )···σs (l1)···σs (lms )

for every permutation σt ∈ St , where St is the set of all permutations of
{1, 2, · · · ,mt }, t ∈ [s].

The space of allmth-order n-dimensional partially symmetric tensors over the field
F is denoted by S[m]F[n].
Definition 2.4 [23] Let vectors u(t)

k ∈ F
nt for all t ∈ [s]. The result of the tensor outer

product
(
u(1)
k

)m1 ◦
(
u(2)
k

)m2 ◦ · · · ◦
(
u(s)
k

)ms
is a rank-1 partially symmetric tensor. A

tensor S ∈ S [m]F [n] is said to have a partially symmetric CP decomposition if the
tensor S has a decomposition as

S =
R∑

k=1

λk

(
u(1)
k

)m1 ◦
(
u(2)
k

)m2 ◦ · · · ◦
(
u(s)
k

)ms
, λk ∈ F,u(t)

k ∈ F
nt , ‖u(t)

k ‖2 = 1.

If m1,m2, · · · ,ms = 1, then the tensor T ∈ T [m]F[n] is an sth-order n1 × n2 ×
· · · × ns-dimensional tensor, the partially symmetric CP decomposition of T is an
usual nonsymmetric CP decomposition. If s = 1 and n1 = n2 = · · · = ns = n, let
m1 = m, then T ∈ T [m]F[n] is an mth-order n-dimensional symmetric tensor.
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Theorem 2.1 [23] Let m = (m1,m2, · · · ,ms) , n = (n1, n2, · · · , ns) ∈ N
s+, and

S ∈ S [m]F [n] be a partially symmetric tensor. Then there exist λk ∈ F, u(t)
k ∈ F

nt ,

‖u(t)
k ‖2 = 1 for k ∈ [R] and t ∈ [s] such that

S =
R∑

k=1

λk

(
u(1)
k

)m1 ◦
(
u(2)
k

)m2 ◦ · · · ◦
(
u(s)
k

)ms
. (2.3)

i.e., any partially symmetric tensor (over any field) has a partially symmetric CP
decomposition.

If S ∈ S[m]R[n] has a decomposition as (2.3) with λk ≥ 0 for all k ∈ [R], then
we say that S has a positive partially symmetric CP decomposition. According to
Theorem 2.1, there is the following corollary.

Corollary 2.1 If there is i ∈ [s] such that mi is an odd number, then, any nonzero
tensor S ∈ S[m]R[n] has a positive partially symmetric CP decomposition. However,
S may not have positive partially symmetric CP decomposition, if m1, · · · ,ms are
even.

Proof If there is i ∈ [s] such that mi is an odd number, without loss of generality, let
m1 be an odd number. Then, the m1th real root of λk always exists for k ∈ [R], so we
can rewrite the item λk

(
u(1)
k

)m1
as

λk

(
u(1)
k

)m1 =
(
ũ(1)
k

)m1
, where ũ(1)

k = m1
√

λu(1)
k .

Then,

S =
R∑

k=1

(
ũ(1)
k

)m1 ◦
(
u(2)
k

)m2 ◦ · · · ◦
(
u(s)
k

)ms
.

That is, S ∈ S [m]R [n] has a positive partially symmetric CP decomposition. How-
ever, if all orders are even, then mt th real root does not exist if λk < 0, for t ∈ [s], so
the scalar cannot be absorbed. In this case,S may not have positive partially symmetric
CP decomposition. This completes the proof. ��

If S has a positive partially symmetric CP decomposition as in (2.3), then we can

writeλk

(
u(t)
k

)mt =
(
(λk)

1/mtu(t)
k

)mt
for some t ∈ [s]. In this case, the decomposition

(2.3) can be rewritten as follows

S =
R∑

k=1

(
u(1)
k

)m1 ◦
(
u(2)
k

)m2 ◦ · · · ◦
(
u(s)
k

)ms
. (2.4)

Let Ut = (u(t)
1 ,u(t)

2 , · · · ,u(t)
R ) ∈ R

nt×R for t ∈ [s]. We call {U1,U2, · · · ,Us} as a
tuple of factor matrices of partially symmetric tensor S. The partially symmetric CP
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decomposition (2.4) can also be written as

S = [[
m1︷ ︸︸ ︷

U1, · · · ,U1,

m2︷ ︸︸ ︷
U2, · · · ,U2, · · · ,

ms︷ ︸︸ ︷
Us, · · · ,Us]]

≡ [[U×m1
1 ,U×m2

2 , · · · ,U×ms
s ]]. (2.5)

3 Positive partially symmetric rank-R approximation

Now, we study the positive partially symmetric rank-R approximation of partially
symmetric tensors. Let s, R be two positive integers andm = (m1,m2, · · · ,ms) ,n =
(n1, n2, · · · , ns) ∈ N

s+. Given a real partially symmetric tensor S ∈ S [m]R [n], find

positive scalars λk > 0 and unit-norm vectors u(t)
k ∈ R

nt for t ∈ [s] and k ∈ [R] such
that the rank-R tensor

Ŝ :=
R∑

k=1

λk

(
u(1)
k

)m1 ◦
(
u(2)
k

)m2 ◦ · · · ◦
(
u(s)
k

)ms

minimizes the function

f (Ŝ) = 1

2
‖S − Ŝ‖2F .

The positive partially symmetric rank-R approximation problem of tensors S is
equivalent to solving the following optimization problem

min
1

2

∥∥∥∥∥S −
R∑

k=1

λk

(
u(1)
k

)m1 ◦
(
u(2)
k

)m2 ◦ · · · ◦
(
u(s)
k

)ms

∥∥∥∥∥
2

F

(P1)

s.t .λk > 0,u(t)
k ∈ F

nt , ‖u(t)
k ‖2 = 1, k ∈ [R], t ∈ [s].

Since λk > 0 for all k ∈ [R], we can rewrite Ŝ as

Ŝ =
R∑

k=1

(
ũ(1)
k

)m1 ◦
(
ũ(2)
k

)m2 ◦ · · · ◦
(
ũ(s)
k

)ms
. (3.1)

Then u(t)
k = ũ(t)

k /‖ũ(t)
k ‖2 and λk = ∏s

t=1 ‖ũ(t)
k ‖mt

2 , for all k ∈ [R] and t ∈ [s].
The right hand side of (3.1) may also be written as the form of a tuple of factor

matrices
Ŝ = [[U×m1

1 ,U×m2
2 , · · · ,U×ms

s ]],

where Ut =
(
ũ(t)
1 , ũ(t)

2 , · · · , ũ(t)
R

)
∈ R

nt×R is a matrix for all t ∈ [s].
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Let U ∈ R
(n1+···+ns )×r be a block-matrix vector as

U =

⎛
⎜⎜⎜⎝

U1
U2
...

Us

⎞
⎟⎟⎟⎠ .

Then the constrained optimization problem (P1) is turned to an unconstrained opti-
mization

min
U

fS(U) = fS(U1,U2, · · · ,Us) := 1

2

∥∥∥S − [[U×m1
1 ,U×m2

2 , · · · ,U×ms
s ]]

∥∥∥2
F

.

(3.2)

3.1 Gradient calculation of fS(U)

Lemma 3.1 Let s and R be two positive integers, m = (m1,m2, · · · ,ms),n =
(n1, n2, · · · , ns) ∈ N

s+ and S ∈ S[m]R[n] be a partially symmetric tensor. Let

Ŝ =
R∑

k=1

(
u(1)
k

)m1 ◦
(
u(2)
k

)m2 ◦ · · · ◦
(
u(s)
k

)ms
, u(t)

k ∈ R
nt .

Then

∂〈S, Ŝ〉
∂u(t)

k

= mt S ·
((

u(1)
k

)m1 ◦ · · · ◦
(
u(t)
k

)mt−1 ◦ · · · ◦
(
u(s)
k

)ms
)

∈ R
nt .

Proof Assume that A ∈ S[m]R[n] be a symmetric tensor of m-order. Then,

∂A · xm
∂x

= mA · xm−1. (3.3)

Define a function F(Ŝ) = 〈S, Ŝ〉. Then,

F(Ŝ) = 〈S,

R∑
k=1

(
u(1)
k

)m1 ◦
(
u(2)
k

)m2 ◦ · · · ◦
(
u(s)
k

)ms 〉

=
R∑

k=1

S ·
(
u(1)
k

)m1 ◦
(
u(2)
k

)m2 ◦ · · · ◦
(
u(s)
k

)ms
.

According to the formula (3.3), we have that

∂F(Ŝ)

∂u(t)
k

= mt S ·
((

u(1)
k

)m1 ◦ · · · ◦
(
u(t)
k

)mt−1 ◦ · · · ◦
(
u(s)
k

)ms
)

.

This completes proof. ��
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Theorem 3.1 Let m = (m1,m2, · · · ,ms), n = (n1, n2, · · · , ns) ∈ N
s+, Mt :=

m1 + · · · + mt , t ∈ [s]. Let S ∈ S[m]R[n] be a given partially symmetric tensor,
Ut = (u(t)

1 ,u(t)
2 , · · · ,u(t)

R ) ∈ R
nt×R be a matrix for all k ∈ [R], t ∈ [s] and U =

(UT
1 ,UT

2 , · · · ,UT
s )T be a block-matrix vector. Then the first order partial derivative

of the function fS(U) defined in (3.2) with respect to Ut is

∂ fS(U)

∂Ut
= −mt (S(Mt )Wt −UtW

T
t Wt ),

where S(Mt ) is the mode-Mt matricization of the tensor S and

Wt = Us
�ms � · · · � Ut

�mt−1 � · · · � U1
�m1 . (3.4)

Proof According to the definition of derivative, the first order partial derivative of the
function with respect to Ut is

∂ fS(U)

∂Ut
=
(

∂ fS(U)

∂u(t)
1

,
∂ fS(U)

∂u(t)
2

, · · · ,
∂ fS(U)

∂u(t)
R

)
.

Let Ŝ = [[U×m1
1 ,U×m2

2 , · · · ,U×ms
s ]]. Then

‖S − Ŝ‖2 = 〈S,S〉 − 2〈S, Ŝ〉 + 〈Ŝ, Ŝ〉, ∂ fS(U)

∂u(t)
k

= −∂〈S, Ŝ〉
∂u(t)

k

+ ∂〈Ŝ, Ŝ〉
2∂u(t)

k

.

From the Lemma 3.1, for every k ∈ [R], it is followed that

∂ fS(U)

∂u(t)
k

= −mt (S − Ŝ) ·
((

u(1)
k

)m1 ◦ · · · ◦
(
u(t)
k

)mt−1 ◦ · · · ◦
(
u(s)
k

)ms
)

.

According to definition of the mode-k matricization, we have that

∂ fS(U)

∂u(t)
k

= −mt (S − Ŝ)(Mt )

((
u(s)
k

)⊗ms ⊗ · · · ⊗
(
u(t)
k

)⊗mt−1 ⊗ · · · ⊗
(
u(1)
k

)⊗m1
)

.

Thus,

∂ fS(U)

∂Ut
= −mt (S − Ŝ)(Mt )

(
Us

�ms � · · · �Ut
�mt−1 � · · · �U1

�m1
)
.

Substitute (3.4) into the above equation, we get that

∂ fS(U)

∂Ut
= −mt (S(Mt )Wt −UtW

T
t Wt ). (3.5)

This completes the proof. ��
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If the gradient is calculated directly according to the formula (3.5), it will cost a lot
of computational expenses. We can save the computational expenses by the following
method. The first item S(Mt )Wt can be obtained by MTTKRP, which is a function
in the tensor toolbox [29] to efficiently calculate matricized tensor times Khatri–Rao
product. The second item can also avoid forming Wt since WT

t Wt is given by

WT
t Wt = (UT

s Us)
∗ms ∗ · · · ∗ (UT

t Ut )
∗mt−1 ∗ · · · ∗ (UT

1 U1)
∗m1 .

The following is the algorithm for calculating gradient value of fS(U) defined as (3.2)
at a given point.

Algorithm 1 The gradient G of the function fS(U)

Input: A tensor S ∈ S[m]R[n] and the factor matrix U0 = (UT
1 , · · · ,UT

s )T .

Output: The gradient G = (GT
1 , · · · ,GT

s )T of function fS (U) at U0.
1: for t = 1, · · · , s do
2: Let Mt = m1 + m2 + · · · + mt .
3: Compute V = (UT

s Us )
∗ms ∗ · · · ∗ (UT

t Ut )
∗mt−1 ∗ · · · ∗ (UT

1 U1)
∗m1 .

4: Compute Gt = −mt (MTTKRP(S, [[U×m1
1 , · · · ,U×ms

s ]], Mt ) −Ut V ).
5: end for
6: return G = (GT

1 , · · · ,GT
s )T .

3.2 Gradient descent method

We introduce two linear search methods. Armijo inexact search rule adopts the back-
tracking strategy to obtain the step size. In other words, the step size is picked as
αk = βγmk , where mk is the smallest nonnegative integer satisfying the following
condition

f
(
uk + βγmkdk

)
≤ f

(
uk
)

+ σβγmk 〈gk,dk〉, (3.6)

where β > 0, σ, γ ∈ (0, 1).
Another inexact search rule choosing a step size αk > 0 is Armijo-Wolfe conditions

[28], {
f
(
uk + αdk

) ≤ f
(
uk
)+ c1α〈gk,dk〉

〈∇ f
(
uk + αdk

)
,dk〉 ≥ c2〈gk,dk〉, (3.7)

where 0 < c1 < c2 < 1 are the parameters of line search algorithm, the above
two condition are called the sufficient decrease condition and curvature condition
respectively.

Therefore, the iterative scheme is

uk+1 = uk + αkdk,

where αk is obtained from the above Armijo or Armijo-Wolfe rule, dk is the search
direction of the k-th iteration. Ifdk = −∇ f (uk), the iterationmethod is called gradient
descent method.
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The termination condition of optimization algorithm is that norm of gradient is less
than a given criteria, i.e.,

‖gk‖F < ε.

For partially symmetric rank-R approximationproblemof somepartially symmetric
tensors, the iterative formula of gradient descent method is that

Uk+1 = Uk + αkGk,

where Gk = −∇ fS(Uk), αk satisfies the Armijo or Armijo-Wolfe rule.
The following is gradient descent algorithm with Armijo rule (3.6) for the partially

symmetric rank-R approximation of a partially symmetric tensor.

Algorithm2 Positive partially symmetric rank-R approximationwith gradient descent
method
Input: A tensor S ∈ S[m]R[n] and a termination condition ε > 0
Output: The factor matrix U = (UT

1 , · · · ,UT
s )T of Ŝ.

Initialization: Obtain an initial point U1 = (U1
1
T
, · · · ,U1

s
T
)T , k = 1.

Step 1: Calculate the gradientGk by Algorithm 1 with input (S,Uk ). If ‖Gk‖F < ε, then take U = Uk ,
and go to Step 4.
Step 2: Take the search direction Dk = −Gk , and pick the step size αk with Armijo rule (3.6).
Step 3: Take Uk+1 = Uk + αkDk and k = k + 1. Turn to Step 1.
Step 4: Return U = (UT

1 , · · · ,UT
s )T .

4 BFGSmethod

We now review the standard BFGS method with Armijo-Wolfe line search for solving
the optimization problem minx∈Rn f (x). For more details, please refer to [28]. The
iterative formula of BFGS method for solving the problem minx∈Rn f (x) is

xk+1 = xk − αk(B
k)−1gk or xk+1 = xk − αk H

kgk .

where gk = ∇ f (xk), αk is step size satisfying Armijo-Wolfe rule. The initial point
x0 of the iterative algorithm is usually given randomly; H0 and B0 must be positive
definite matrices, usually the identity matrix.

Let yk = gk+1 − gk and sk = xk+1 − xk . The updated formula of Bk is that

Bk+1 = Bk + yk(yk)
T

(yk)T sk
− Bksk(sk)T Bk

(sk)T Bksk
.

The updated formula of Hk is that

Hk+1 =
(
I − sk(yk)T

(yk)T sk

)
Hk
(
I − yk(sk)T

(yk)T sk

)
+ sk(sk)T

(yk)T sk
.
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4.1 The BFGSmethod for partially symmetric rank-R approximation

Following the standard BFGS method, we will give the tensor BFGS method to solve
the partially symmetric rank-R approximation of partially symmetric tensor. Let S ∈
S[m]R[n] be a partially symmetric tensor, U = (UT

1 , · · · ,UT
s )T be a block-matrix

vector, Ut ∈ R
nt×r for t ∈ [s] and n := n1 + · · · + ns . The function fS(U) is defined

as (3.2), then the gradient ∇ fS(U) of is fS(U) that

∇ fS(U) =

⎛
⎜⎜⎜⎜⎝

∂ fS (U)
∂U1

∂ fS (U)
∂U2
...

∂ fS (U)
∂Us

⎞
⎟⎟⎟⎟⎠

∈ R
n×R;

the Hessian is that

∇2 fS(U) =
(

∂2 fS(U)

∂ui j∂ukl

)
∈ R

n×R×n×R,

which is a fourth-order tensor.
In order to obtain the BFGS iterative formula for tensor, we define a multiplication

of two fourth-order tensors and a product between a fourth-order tensor and a matrix.
For any two tensors A, B ∈ R

K×L×K×L , define C = A � B ∈ R
K×L×K×L as

ci1i2i3i4 =
K ,L∑

j1, j2=1

ai1i2 j1 j2b j1 j2i3i4 . (4.1)

For any T ∈ R
K×L×K×L and A ∈ R

K×L , define B = T A ∈ R
K×L as

bi1i2 =
K ,L∑

i3,i4=1

ti1i2i3i4ai3i4 . (4.2)

In the sense of the multiplication of two fourth-order tensors, we define the fourth-
order identity tensor I ∈ R

K×L×K×L as

(I)k1l1k2l2 =
{
1 if k1 = k2, l1 = l2,

0 otherwise.
(4.3)

According to the definition (4.3) and (4.2), for any matrix A ∈ R
K×L , we have

IA = A. The tensor A ∈ R
K×L×K×L is an invertible tensor, if there is a same-sized

tensor B such that A � B = I and B � A = I, and if so, then B is called the inverse
of A. The inverse of A is denoted by A−1.
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Lemma 4.1 Let fourth-order tensor T ∈ R
K×L×K×L be invertible and its elements

satisfy Tk1l1k2l2 = Tk2l2k1l1 , and A, B,C ∈ R
K×L . Then

(1) 〈T −1A, T B〉 = 〈A, B〉.
(2) (A ◦ B)C = A〈B,C〉.
Proof According to the multiplication defined as (4.2),

〈T −1A, T B〉 =
∑
i, j

⎛
⎝∑

k1,l2

T −1
i jk1l1 Ak1l1

⎞
⎠
⎛
⎝∑

k1,l2

Ti jk2l2Bk2l2

⎞
⎠

=
∑
k1,l1

∑
k1,l2

Ak1l1Bk2l2

∑
i, j

T −1
i jk1l1Ti jk2l2

Since Tk1l1k2l2 = Tk2l2k1l1 , we have that

〈T −1A, T B〉 =
∑
k2,l2

∑
k1,l1

Ik2l2k1l1 Ak1l1Bk2l2

=
∑
k2,l2

Ak2l2Bk2l2 .

Therefore, 〈T −1A, T B〉 = 〈A, B〉. According to the multiplication defined as (4.2)
and tensor outer product defined as (2.1),

((A ◦ B)C)i j =
K∑

k=1

L∑
l=1

(A ◦ B)i jkl ckl

=
K∑

k=1

L∑
l=1

ai j bklckl

= ai j

K∑
k=1

L∑
l=1

bklckl .

Hence, (A ◦ B)C = A〈B,C〉. The proof is completed. ��
Let fS(U) be defined as (3.2), then the iterative formula of BFGS algorithm with

Armijo-Wolfe line search for solving the optimization problem minU fS(U) is

Uk+1 = Uk − αk(Bk)−1Gk,

where Gk is gradient value of fS(U) at Uk , i.e., Gk = ∇ fS(Uk), the step size αk

satisfies Armijo-Wolfe rule.
The updated formula of Bk is that

Bk+1 = Bk + Yk ◦ Yk

〈Yk,Sk〉 −
(
BkSk

) ◦ (BkSk)

〈BkSk,Sk〉 . (4.4)
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where Yk = ∇ fS(Uk+1) − ∇ fS(Uk), Sk = Uk+1 − Uk .

Lemma 4.2 Let Bk+1 be defined as (4.4). Then, the inverse of Bk+1 can be given by

Hk+1 =
(
I − Sk ◦ Yk

〈Sk,Yk〉
)

� Hk �
(
I − Yk ◦ Sk

〈Sk,Yk〉
)

+ Sk ◦ Sk

〈Sk,Yk〉 . (4.5)

Proof In order to prove that Hk+1 is the inverse of Bk+1, we just need to prove that,
for any block-matrix X, Bk+1(HK+1X) = X. Let 〈Sk,Yk〉 = 1

μ
, 〈BkSk,Sk〉 = 1

ν
.

From the formula (4.4), we have

Bk+1(Hk+1X) = Bk(Hk+1X) + μ(Yk ◦ Yk)(Hk+1X)

−ν(BkSk ◦ BkSk)(Hk+1X). (4.6)

According to the Lemma 4.1,

Hk+1X = HkX − μHkYk〈Sk,X〉 − μSk〈Yk,HkX〉
+μ2Sk〈Yk,HkX〉〈Sk,X〉 + μSk〈Sk,X〉. (4.7)

By putting (4.7) into (4.6) and using the Lemma 4.1, we get Bk+1(HK+1X) = X. The
proof is completed. � ��

Now, we will give the BFGS algorithm with Armijo-Wolfe step size (3.7) for the
positive partially symmetric rank-R approximation of a partially symmetric tensor as
follows. The initial factor matrix U1 is obtained randomly andH1 is usually selected
as fourth-order identity tensor I defined as (4.3).

Algorithm3Positive partially symmetric rank-R approximationwithBFGSalgorithm
Input: A tensor S ∈ S[m]R[n] and a termination condition ε > 0
Output: The factor matrix U = (UT

1 , · · · ,UT
s )T of Ŝ.

Initialization: Obtain an initial point U1 = (U1
1
T
, · · · ,U1

s
T
)T , and let H1 = I.

Step 1: Calculate the gradientG1 by Algorithm 1 with input (S,U1). If ‖G1‖F < ε, then take U = U1,
and go to Step 6.
Step 2: Take D1 = −G1 and k = 1.
Step 3: Pick the step size αk with Armijo-Wolfe rule (3.7), and take Uk+1 = Uk + αkDk .
Step 4: Calculate the gradient Gk+1 by Algorithm 1 with input (S,Uk+1). If ‖Gk+1‖F < ε, then take
U = Uk+1, and go to Step 6.
Step 5: CalculateHk+1 by the formula (4.5), and take the descent direction Dk+1 = −Hk+1Gk+1. Let
k = k + 1, and turn to Step 3.
Step 6: Return U = (UT

1 , · · · ,UT
s )T .

4.2 Convergence analysis of BFGS algorithm

In this subsection, the super-linear convergence of algorithm will be discussed. The
proof of following results refers to [28]. First, we give the relevant assumptions.
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Assumption 4.1 Let s, r > 0 be two integers and m = (m1,m2, · · · ,ms), n =
(n1, n2, · · · , ns) ∈ N

s+. Let S ∈ S[m]R[n] be a partially symmetric tensor, n =
n1 + · · · + ns . The function fS(U) is defined as (3.2), where the block-matrix vector
U = (UT

1 ,UT
2 , · · · ,UT

s )T ∈ R
n×r , Ut ∈ R

nt×r for all t ∈ [s].
1) 〈∇2 fS(U∗)W,W〉 > 0 for any W ∈ R

n×r , where U∗ is a local minimum point
of fS(U);

2) there is a neighborhood N (U∗) of U∗ and a constant L > 0 such that for any
U, V ∈ N (U∗)

‖∇2 fS(U) − ∇2 fS(V)‖F ≤ L‖U − V‖F .

Lemma 4.3 If the function fS(U) satisfies the second condition of Assumption 4.1,
then for any U,V,W ∈ R

n×r ,

‖∇ fS(V)−∇ fS(W)−∇2 fS(U)(V−W)‖F ≤ L
‖U − W‖F + ‖U − V‖F

2
‖V−W‖F .

(4.8)
Forthermore, if ∇2 fS(U) is invertible and for every ε ∈ (0, 1

L‖(∇2 fS (U))−1‖F ), for any
V andW that satisfy ‖U−W‖F < ε and ‖U−V‖F < ε, respectively, then there are
constants β > α > 0 related to U such that

α‖V − W‖F ≤ ‖∇ fS(V) − ∇ fS(W)‖F ≤ β‖V − W‖F . (4.9)

Proof For any U,V,W ∈ R
n×r , according to the Cauchy-Schwarz inequality,

‖∇ fS(V) − ∇ fS(W) − ∇2 fS(U)(V − W)‖F
=
∥∥∥∥
∫ 1

0
(∇2 fS(W + τ(V − W)) − ∇2 fS(U))(V − W)dτ

∥∥∥∥
F

≤ ‖V − W‖F
∫ 1

0
L‖W + τ(V − W) − U‖Fdτ

≤ L‖V − W‖F
∫ 1

0
(τ‖V − U‖F + (1 − τ)‖W − U‖F )dτ

= L‖V − W‖F ‖V − U‖F + ‖W − U‖F
2

.

For every given ε ∈ (0, 1
L‖[∇2 fS (U)]−1‖F ), any U and V satisfying

max{‖V − U‖F , ‖W − U‖F } < ε,

we have that

‖∇ fS(V) − ∇ fS(W)‖F
≤ ‖∇2 fS(U)(V − W)‖F + ‖∇ fS(V) − ∇ fS(W) − ∇2 fS(U)(V − W)‖F
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≤
(

‖∇2 fS(U)‖F + L(‖V − U‖F + ‖W − U‖F )

2

)
‖V − W‖F

≤ (‖∇2 fS(U)‖F + Lε)‖V − W‖F .

Let β = ‖∇2 fS(U)‖F + Lε, then the second inequality of (4.9) holds. Using the
properties of the norm, we have that

‖∇ fS(V) − ∇ fS(W)‖F
≥ ‖∇2 fS(U)(V − W)‖F − ‖∇ fS(V) − ∇ fS(W) − ∇2 fS(U)(V − W)‖F
≥
(
1/‖(∇2 fS(U))

−1‖F − L(‖V − U‖F + ‖W − U‖F )

2

)
‖V − W‖F

≥ (‖1/‖(∇2 fS(U))
−1‖F − Lε)‖V − W‖F .

Let α = (‖1/‖(∇2 fS(U))
−1‖F − Lε), then The first inequality of (4.9) holds. The

proof is completed. ��
Theorem 4.1 Assume that the function fS(U) satisfies the Assumption 4.1, {Bk} and
{Uk} are obtained by Algorithm 3 without line search (that is, the step size αk is
uniformly 1), and {Uk} converges to a local minimum point U∗ of fS(U). Then the
point sequence {Uk} super-linear converges to U∗ if and only if

lim
k→∞

‖(Bk − ∇2 f (U∗))(Uk+1 − Uk)‖F
‖Uk+1 − Uk‖F = 0. (4.10)

Proof (⇐) First we prove the sufficiency. Let Sk = Uk+1 − Uk . Then

(Bk − ∇2 fS(U∗))Sk = −∇ fS(Uk) − ∇2 fS(U∗)Sk

= ∇ fS(Uk+1) − ∇ fS(Uk) − ∇2 fS(U∗)Sk − ∇ fS(Uk+1).

According to the triangle inequality and Lemma 4.3, for any k ≥ 0, we have that

0 ≤ ‖∇ fS(Uk+1)‖F
‖Sk‖F

≤ ‖(Bk − ∇2 fS(U∗))Sk‖F
‖Sk‖F + ‖∇ fS(Uk+1) − ∇ fS(Uk) − ∇2 fS(U∗)Sk‖F

‖Sk‖F
≤ ‖(Bk − ∇2 fS(U∗))Sk‖F

‖Sk‖F + L

2
(‖Uk − U∗‖F + ‖Uk+1 − U∗‖F ). (4.11)

If (4.10) holds, substituting (4.10) and the assumption lim
k→∞Uk = U∗ into (4.11), we

get

lim
k→∞

‖∇ fS(Uk+1)‖F
‖Sk‖F = 0. (4.12)
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Because ∇2 fS(U∗) is invertible and Uk → U∗, according to Lemma 4.3, there exist
a real number α > 0 and an integer k0 > 0, for any integer k ≥ k0, such that

‖∇ fS(Uk+1)‖F = ‖∇ fS(Uk+1) − ∇ fS(U∗)‖F ≥ α‖Uk+1 − U∗‖F .

Thus

‖∇ fS(Uk+1)‖F
‖Uk+1 − Uk‖F ≥ α‖Uk+1 − U∗‖F

‖Uk+1 − U∗‖F + ‖Uk − U∗‖F =
α

‖Uk+1−U∗‖F
‖Uk−U∗‖F

1 + ‖Uk+1−U∗‖F
‖Uk−U∗‖F

> 0,

Since the left limit of the above inequality is zero by (4.12), so the right limit of the
above inequality is also zero, i.e.,

lim
k→∞

‖Uk+1−U∗‖F
‖Uk−U∗‖F

1 + ‖Uk+1−U∗‖F
‖Uk−U∗‖F

= 0.

It follows that

lim
k→∞

‖Uk+1 − U∗‖F
‖Uk − U∗‖F = 0,

which means that {Uk} super-linear converges to U∗.
(⇒) Next we prove the necessity. By Lemma 4.3, there exist a real number β > 0

and an integer k0 > 0, for any integer k ≥ k0, such that

‖∇ fS(Uk+1)‖F = ‖∇ fS(Uk+1) − ∇ fS(U∗)‖F ≤ β‖Uk+1 − U∗‖F .

Because {Uk} super-linear converges U∗, we have that

0 = lim
k→∞

‖Uk+1 − U∗‖F
‖Uk − U∗‖F

≥ lim
k→∞

‖∇ fS(Uk+1)‖F
β‖Uk − U∗‖F

= lim
k→∞

1

β

‖∇ fS(Uk+1)‖F
‖Uk+1 − Uk‖F

‖Uk+1 − Uk‖F
‖Uk − U∗‖F .

Then

lim
k→∞

‖∇ fS(Uk+1)‖F
‖Uk+1 − Uk‖F = 0.

Thus,the equation (4.10) holds. This completes the proof. ��
Based on the Theorem 4.1, we give a theorem of super-linear convergence of the

Algorithm 3.
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Theorem 4.2 Let {Bk} and {Uk} be obtained byAlgorithm 3. Suppose fS(U) satisfies
the Assumption 4.1, {Uk} converges to local minimum point U∗, and

lim
k→∞

‖(Bk − ∇2 f (U∗))(Uk+1 − Uk)‖F
‖Uk+1 − Uk‖F = 0. (4.13)

Then, {Uk} converges to U∗ super-linearly if and only if step size {αk} converges to 1.
Proof First, we prove the sufficiency. From the trigonometric inequality, we get

‖(α−1
k Bk − ∇2 fS(U∗))(Uk+1 − Uk)‖F

‖Uk+1 − Uk‖F
≤ ‖(Bk − ∇2 f (U∗))(Uk+1 − Uk)‖F

‖Uk+1 − Uk‖F + ‖(α−1
k − 1)Bk(Uk+1 − Uk)‖F

‖Uk+1 − Uk‖F .

If (4.13) holds, and {αk} converges to 1, then the limit on the right side of the above
inequality is equal to 0 when k → ∞. It follows that

lim
k→∞

‖(α−1
k Bk − ∇2 fS(U∗))(Uk+1 − Uk)‖F

‖Uk+1 − Uk‖F = 0. (4.14)

By the Theorem 4.1 and (4.14), we can get that {Uk} superlinearly converges to U∗.
Next,we prove the necessity. If {Uk} converges toU∗ super-linearly, by theTheorem

4.1, it is followed that (4.14) holds. Since Bk(Uk+1−Uk) = −αk∇ fS(Uk), by (4.13),
we have that

lim
k→∞

‖(αk − 1)∇ fS(Uk)‖F
‖Uk+1 − Uk‖F = lim

k→∞
‖(α−1

k − 1)Bk(Uk+1 − Uk)‖F
‖Uk+1 − Uk‖F

≤ lim
k→∞

‖(α−1
k Bk − ∇2 fS(U∗))(Uk+1 − Uk)‖F

‖Uk+1 − Uk‖F
+ lim

k→∞
‖(Bk − ∇2 fS(U∗))(Uk+1 − Uk)‖F

‖Uk+1 − Uk‖F = 0.

Hence,

lim
k→∞

‖(αk − 1)∇ fS(Uk)‖F
‖Uk+1 − Uk‖F = 0. (4.15)

By Assumption 4.1 and Lemma 4.3, there exist a real number α > 0 and an integer
k0 > 0, for any integer k ≥ k0, such that

α‖Uk − U∗‖F ≤ ‖∇ fS(Uk) − ∇ fS(U∗)‖F = ‖∇ fS(Uk)‖F .

So

α|αk − 1| ‖Uk − U∗‖F
‖Uk+1 − Uk‖F ≤ ‖(αk − 1)∇ fS(Uk)‖F

‖Uk+1 − Uk‖F . (4.16)
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By (4.15) and (4.16), we have that

lim
k→∞ α|αk − 1| ‖Uk − U∗‖F

‖Uk+1 − Uk‖F = 0.

Since again {Uk} super-linearly converges to U∗, so

lim
k→∞

‖Uk − U∗‖F
‖Uk+1 − Uk‖F = 1.

Hence lim
k→∞ α|αk − 1| = 0, i.e., lim

k→∞ αk = 1. This completes the proof. ��

5 Discrimination of positive partially symmetric CP decompositions

Let S ∈ S[m]R[n]. When all ordersm1,m2, · · · ,ms are even, according to the Theo-
rem 2.1, the tensor S may not have positive partially symmetric CP decomposition. In
this case, we cannot obtain its partially symmetric CP decomposition by Algorithm 3.
Therefore, we discuss how to identify whether even order partially symmetric tensors
have positive partially symmetric CP decompositions in real number field.

Theorem 5.1 Let m = (m1,m2, · · · ,ms), n = (n1, n2, · · · , ns), and S ∈ S[m]R[n]
be a partially symmetric tensor. For any vectors x(i) ∈ R

ni and y( j) ∈ R
n j , i, j ∈ [s],

denote

Pt
m(mt − k, k) := (x(1))m1 ◦ · · · ◦ (x(t))mt−k ◦ (y(t))k ◦ · · · ◦ (x(s))ms ,

where k ∈ {0, 1, · · · ,mt }. Then,

〈S, (x(1))m1 ◦ · · · ◦ (x(t) + y(t))mt ◦ · · · ◦ (x(s))ms 〉 =
mt∑
k=0

(
mt

k

)
〈S, Pt

m(mt − k, k)〉.

Proof Let Ik := {it = (it,1, it,2, · · · , it,mt )|it,1, · · · , it,mt ∈ [nt ]}, t ∈ [s]. For any
vectors x(i) ∈ R

ni and y( j) ∈ R
n j , i, j ∈ [s],

〈S, (x(1))m1 ◦ · · · ◦ (x(t) + y(t))mt ◦ · · · ◦ (x(s))ms 〉
=

∑
it∈It ,t∈[s]

Si1···it ···is ((x(1))m1)i1 · · ·

·(x(t) + y(t))it,1 · · · (x(t) + y(t))it,mt
· · · ((x(s))ms )is

=
∑

it∈It ,t∈[s]
Si1···it ···is ((x(1))m1)i1 · · · (x(t))it,1 · · · (x(t))it,mt

· · · ((x(s))ms )is

+
(
mt

1

) ∑
it∈It ,t∈[s]

Si1···it ···is ((x(1))m1)i1 · · ·
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·(x(t))it,1 · · · (x(t))it,mt−1
(y(t))it,mt

· · · ((x(s))ms )is

+
(
mt

2

) ∑
it∈It ,t∈[s]

Si1···it ···is ((x(1))m1)i1 · · ·

·(x(t))it,1 · · · (x(t))it,mt−2
(y(t))it,mt−1

(y(t))it,mt
· · · ((x(s))ms )is

+ · · · +
(
mt

mt

) ∑
it∈It ,t∈[s]

Si1···it ···is ((x(1))m1)i1 · · ·

·(y(t))it,1 · · · (y(t))it,mt
· · · ((x(s))ms )is .

For k = 0, 1, 2, · · · ,mt , it is obtained that

〈S, Pt
m(mt − k, k)〉 =

∑
it∈It ,t∈[s]

Si1···it ···is ((x(1))m1)i1 · · · (x(t))it,1 · · ·

·(x(t))it,mt−k (y
(t))it,mt−k+1 · · · (y(t))it,mt

· · · ((x(s))ms )is .

Hence,

〈S, (x(1))m1 ◦ · · · ◦ (x(t) + y(t))mt ◦ · · · ◦ (x(s))ms 〉

=
mt∑
k=0

(
mt

k

)
〈S, Pt

m(mt − k, k)〉.

This completes the proof. ��
Theorem 5.2 Let S1, S2 ∈ S[m]R[n] be two partially symmetric tensors. Assume that
all orders m1,m2, · · · ,ms are even. Then 〈S1,S2〉 ≥ 0 ifS1 andS2 both have positive
partially symmetric CP decomposition.

Proof Since S1,S2 ∈ S[m]R[n], and they have positive partially symmetric CP
decomposition. Hence, S1 and S2 can be represented as the following form

S1 =
R1∑
k=1

(u(k)
1 )

m1 ◦ · · · ◦ (u(k)
s )

ms
,

S2 =
R2∑
l=1

(v(l)
1 )

m1 ◦ · · · ◦ (v(l)
s )

ms
,

where u(k)
t , v(l)

t ∈ R
nt , k ∈ [R1], l ∈ [R2], t ∈ [s].

Then, the inner product of S1 and S2 is

〈S1,S2〉 = 〈
R1∑
k=1

(u(k)
1 )

m1 ◦ · · · ◦ (u(k)
s )

ms
,

R2∑
l=1

(v(l)
1 )

m1 ◦ · · · ◦ (v(l)
s )

ms 〉
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=
R1∑
k=1

R2∑
l=1

〈(u(k)
1 )

m1 ◦ · · · ◦ (u(k)
s )

ms
, (v(l)

1 )
m1 ◦ · · · ◦ (v(l)

s )
ms 〉

=
R1∑
k=1

R2∑
l=1

(
〈u(k)

1 , v(l)
1 〉
)m1 · · ·

(
〈u(k)

s , v(l)
s 〉
)ms

.

Since orders m1,m2, · · · ,ms are even,
(
〈u(k)

t , v(l)
t 〉
)mt ≥ 0, for all k ∈ [R1], l ∈

[R2], t ∈ [s]. Hence, it is followed that 〈S1,S2〉 ≥ 0. The proof is completed. ��
Assume that {U1,U2, · · · ,Us} is a tuple of factor matrices of Ŝ ∈ S[m]R[n], i.e.,

Ŝ = [[U×m1
1 ,U×m2

2 , · · · ,U×ms
s ]].

In the next, we see the object function FS(Ŝ) = ‖S − Ŝ‖2F as a function of factor
matrix Ut , t ∈ [s], i.e.,

FS(Ut ) = FS(Ŝ) = ‖S − Ŝ‖2F . (5.1)

For convenience, we denote

Ŝ[U×k
t ,ΔUt

×(mt−k−l),U×l
t ]

:= [[U×m1
1 , · · · ,U×mt−1

t−1 ,U×k
t ,ΔUt

×(mt−k−l),U×l
t ,U×mt+1

t+1 , · · · ,U×ms
s ]].

Next, in order to study the convexity of the function FS(Ut ), we derive a second-
order Taylor formula of FS(Ut ).

Theorem 5.3 LetS ∈ S[m]R[n] be a partially symmetric tensor and FS(Ut ) is defined
as (5.1). Let

L1 := −2

(
mt

1

)
〈S − Ŝ, Ŝ[ΔUt ,U

×(mt−1)
t ]〉, (5.2)

L2 := −2

(
mt

2

)
〈S − Ŝ, Ŝ[ΔUt

×2,U×(mt−2)
t ]〉

+‖Ŝ[ΔUt ,U
×(k−1)
t ] + Ŝ[Ut ,ΔUt ,U

×(k−2)
t ] + · · · + Ŝ[U×(k−1)

t ,ΔUt ]‖2F .

(5.3)

Then, the second-order Taylor formula of the function FS(Ut ) is as follows

FS(Ut + ΔUt ) = FS(Ut ) + L1 + L2 + o(‖ΔUt‖2F ). (5.4)

Proof From (5.1), FS(Ut + ΔUt ) = ‖S − Ŝ[(Ut + ΔUt )
×mt ]‖2F . Then,

FS(Ut + ΔUt ) = 〈S,S〉 − 2〈S, Ŝ[(Ut + ΔUt )
×mt ]〉
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+〈Ŝ[(Ut + ΔUt )
×mt ], Ŝ[(Ut + ΔUt )

×mt ]〉. (5.5)

Now, we compute the first degree term and the second degree term of �Ut in the right
hand side of (5.5). Since,

〈S, Ŝ[(Ut + ΔUt )
×mt ]〉 = 〈S,

R∑
k=1

(u(k)
1 )m1 ◦ · · · ◦ (u(k)

t + Δu(k)
t )mt ◦ · · · ◦ (u(k)

s )ms 〉.

According to the Theorem 5.1, we can get that

〈S, Ŝ[(Ut + ΔUt )
×mt ]〉

= 〈S, Ŝ〉 +
(
mt

1

)
〈S, Ŝ[ΔUt ,U

×(mt−1)
t ]〉

+
(
mt

2

)
〈S, Ŝ[ΔUt

×2,U×(mt−2)
t ]〉 + o(‖ΔUt‖2F ). (5.6)

Since,

‖Ŝ[ΔUt ,U
×(mt−1)
t ] + Ŝ[Ut ,ΔUt ,U

×(mt−2)
t ] + · · · + Ŝ[U×(mt−1)

t ,ΔUt ]‖2F
=
(
mt

1

)(
mt − 1

1

)
〈Ŝ[ΔUt ,U

×(mt−1)
t ], Ŝ[Ut ,ΔUt ,U

×(mt−2)
t ]〉

+
(
mt

1

)
‖Ŝ[ΔUt ,U

×(mt−1)
t ]‖2F . (5.7)

And, for all k, l ∈ [R] and t ∈ [s],

〈(u(k)
t + Δu(k)

t )mt , (u(l)
t + Δu(l)

t )mt 〉
=
(
〈u(k)

t ,u(l)
t 〉 + 〈Δu(k)

t ,u(l)
t 〉 + 〈u(k)

t ,Δu(l)
t 〉 + 〈Δu(k)

t ,Δu(l)
t 〉
)mt

= 〈u(k)
t ,u(l)

t 〉mt +
(
mt

1

)(
〈u(k)

t ,Δu(l)
t 〉 + 〈Δu(k)

t ,u(l)
t 〉
)

〈u(k)
t ,u(l)

t 〉mt−1

+
(
mt

1

)
〈Δu(k)

t ,Δu(l)
t 〉〈u(k)

t ,u(l)
t 〉mt−1

+
(
mt

1

)(
mt − 1

1

)
〈u(k)

t ,Δu(l)
t 〉〈Δu(k)

t ,u(l)
t 〉〈u(k)

t ,u(l)
t 〉mt−2

+
(
mt

2

)(
〈u(k)

t ,Δu(l)
t 〉2 + 〈Δu(k)

t ,u(l)
t 〉2

)
〈u(k)

t ,u(l)
t 〉mt−2

+o
(
‖Δu(l)

t ‖2F + ‖Δu(k)
t ‖2F

)
. (5.8)

Let

Pk := (u(k)
1 )m1 ◦ · · · ◦ (u(k)

t−1)
mt−1, k ∈ [R],
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Qk := (u(k)
t+1)

mt+1 ◦ · · · ◦ (u(k)
s )ms , k ∈ [R].

Then, by (5.7) and (5.8), we have that

〈Ŝ[(Ut + ΔUt )
×mt ], Ŝ[(Ut + ΔUt )

×mt ]〉

=
R∑

k=1

R∑
l=1

〈Pk ◦ (u(k)
t + Δu(k)

t )mt ◦ Qk,Pl ◦ (u(l)
t + Δu(l)

t )mt ◦ Ql〉

=
R∑

k=1

R∑
l=1

〈Pk,Pl〉〈(u(k)
t + Δu(k)

t )mt , (u(l)
t + Δu(l)

t )mt 〉〈Qk,Ql〉

= 〈Ŝ, Ŝ〉 + 2

(
mt

1

)
〈Ŝ, Ŝ[ΔUt ,U

×(mt−1)
t ]〉 +

(
mt

1

)
‖Ŝ[ΔUt ,U

×(mt−1)
t ]‖2F

+
(
mt

1

)(
mt − 1

1

)
〈Ŝ[ΔUt ,U

×(mt−1)
t ], Ŝ[Ut ,ΔUt ,U

×(mt−2)
t ]〉

+2

(
mt

2

)
〈Ŝ, Ŝ[ΔUt

×2,U×(mt−2)
t ]〉 + o(‖ΔUt‖2F ).

= 〈Ŝ, Ŝ〉 + 2

(
mt

1

)
〈Ŝ, Ŝ[ΔUt ,U

×(mt−1)
t ]〉 + 2

(
mt

2

)
〈Ŝ, Ŝ[ΔUt

×2,U×(mt−2)
t ]〉

+‖Ŝ[ΔUt ,U
×(k−1)
t ] + Ŝ[Ut ,ΔUt ,U

×(k−2)
t ] + · · · + Ŝ[U×(k−1)

t ,ΔUt ]‖2F
+o(‖ΔUt‖2F ). (5.9)

Hence, by (5.6) and (5.9), the first degree term and the second degree term of ΔUt in
the right hand side of (5.5) are as follows, respectively.

L1 = −2

(
mt

1

)
〈S − Ŝ, Ŝ[ΔUt ,U

×(mt−1)
t ]〉,

L2 = −2

(
mt

2

)
〈S − Ŝ, Ŝ[ΔUt

×2,U×(mt−2)
t ]〉

+‖Ŝ[ΔUt ,U
×(k−1)
t ] + Ŝ[Ut ,ΔUt ,U

×(k−2)
t ] + · · · + Ŝ[U×(k−1)

t ,ΔUt ]‖2F .

This completes the proof. ��
It is well known that (1) ifUt is a stationary point of function FS(Ut ), then L1 = 0

for anyΔUt ; (2) the function FS(Ut ) is convex at the pointUt if and only if L2 ≥ 0 for
any ΔUt . From this, we will discuss the discrimination of partially symmetric tensors
with the positive decomposition.

Theorem 5.4 Assume that orders m1, · · · ,ms are even and S ∈ S[m]R[n] has pos-
itive partially symmetric CP decomposition. Then, zero tensor O ∈ S[m]R[n] is the
global minimum point of the function F−S(Ŝ), and the global minimum value is equal
to F−S(O) = ‖S‖2F .
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Proof Since F−S(Ut ) = ‖S + Ŝ‖2F . By Theorem 5.3, L1 and L2 of F−S(Ut ) are as
follows

L1 = 2

(
mt

1

)
〈S + Ŝ, Ŝ[ΔUt ,U

×(mt−1)
t ]〉,

L2 = 2

(
mt

2

)
〈S + Ŝ, Ŝ[ΔUt

×2,U×(mt−2)
t ]〉

+‖Ŝ[ΔUt ,U
×(k−1)
t ] + Ŝ[Ut ,ΔUt ,U

×(k−2)
t ] + · · · + Ŝ[U×(k−1)

t ,ΔUt ]‖2F .

Since S has positive partially symmetric CP decomposition, and orders m1,
m2, · · · ,ms are even. According to Theorem 5.2, ifUi �= 0 for all i ∈ [s], i �= t , then
〈S, Ŝ[ΔUt

×2,U×(mt−2)
t ]〉 is nonnegative and 〈Ŝ, Ŝ[ΔUt

×2,U×(mt−2)
t ]〉 is positive if

Ut �= 0. Hence, L2 is positive atUt for any ΔUt , i.e., the function F−S(Ut ) is convex
for every t ∈ [s] if Ui �= 0 for all i ∈ [s], i �= t . Since Ŝ = O if and only if there
exists Ui = 0 for some i ∈ [s]. Hence, Ŝ = O is the global minimum point of the
function F−S(Ŝ) and the global minimum value is F−S(O) = ‖S‖2F . This completes
the proof. ��

Assume that S ∈ S[m]R[n] be a partially symmetric tensor and its orders are even.
From the Theorem 5.4,Ut = 0 is the global minimum point of the function F−S(Ut ),
and the global minimum value is equal to ‖S‖2F , if partially symmetric tensor S has
positive CP decomposition. According to Theorem 5.4, we have the corollary in the
following.

Corollary 5.1 Assume that S ∈ S[m]R[n] and its orders are even. The function
F−S(Ŝ) is defined as in (5.1). Then, the partially symmetric tensor S has no positive
partially symmetric CP decomposition, if zero tensor O is not the global minimum
point of the function F−S(Ŝ).

Proof These results can be obtained directly form Theorem 5.4. ��

When dealing with partially symmetric rank-R approximation of S ∈ S[m]R[n]
with even orders, i.e., mt for all t ∈ [s] are even, we construct a new tensor S̃ ∈
S[1,m]R[1,n] satisfying

S̃1i1···im1 j1··· jm2 ···l1···lms
= Si1···im1 j1··· jm2 ···l1···lms

.

We compute the partially symmetric rank-R approximation of S̃ by the Algorithm 3
as

S̃ ≈ [[Ũ0, Ũ
×m1
1 , · · · , Ũ×ms

s ]],
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where Ũt =
(
ũ(1)
t , ũ(2)

t , · · · , ũ(R)
t

)
, t ∈ [s]. Compute u(t)

k and λk , t ∈ [s], k ∈ [R] by
the following formula

λk = ũ(0)
k

s∏
t=1

‖ũ(t)
k ‖mt

2 , and u(t)
k = ũ(t)

k /‖ũ(t)
k ‖2.

So, we obtain that

λ = (λ1,λ2, · · · ,λR)T , Ut =
(
u(1)
t ,u(2)

t , · · · ,u(R)
t

)
, t ∈ [s].

That is, the general partially symmetric rank-R approximation of S is

S ≈ [[λ;U×m1
1 , · · · ,U×ms

s ]].

We give an algorithm to calculate general partially symmetric rank-R approxima-
tion of partially symmetric tensors with BFGS algorithm as follows.

Algorithm 4General partially symmetric rank-R approximation of partially symmet-
ric tensors
Input: A partially symmetric tensor S ∈ S[m]R[n]. A positive integer R.
Output: A general partially symmetric rank-R approximation of S
Step 1: Construct a new tensor S̃ ∈ S[1,m]R[1,n] with

S̃1i1···im1 j1··· jm2 ···l1···lms
= Si1···im1 j1··· jm2 ···l1···lms

.

Step 2: Compute the partially symmetric rank-R approximation of S̃ by Algorithm 3,

S̃ ≈ [[Ũ0, Ũ
×m1
1 , · · · , Ũ×ms

s ]],

Step 3: Compute u(t)
k and λk , t ∈ [s], k ∈ [R], by

λk = ũ(0)
k

s∏
t=1

‖ũ(t)
k ‖mt

2 , u(t)
k = ũ(t)

k /‖ũ(t)
k ‖2.

Step 4: Obtain λ = (λ1, λ2, · · · , λR)T , Ut =
(
u(1)
t , u(2)

t , · · · ,u(R)
t

)
, t ∈ [s].

Step 5: Return {λ,U1, . . . ,Us }, the general partially symmetric rank-R approximation

S ≈ [[λ;U×m1
1 , · · · ,U×ms

s ]].

123



646 C. Chen et al.

Table 1 The minimum values of F−S (Ŝ) for R = 1, 2, · · · , 6

R = 1 R = 2 R = 3 R = 4 R = 5 R = 6

min F−S (Ŝ) 44.7896 39.1948 38.7092 38.7092 38.092 38.7092

‖Ŝ‖F 2.3677 3.3274 3.3996 3.3996 3.3996 3.3996

run-time 0.1357 0.1799 0.2175 0.2222 0.2348 0.2989

Table 2 The positive partially symmetric rank-R approximation of S
R = 1 R = 2 R = 3 R = 4 R = 5 R = 6

min FS (Ŝ) 26.6158 14.9132 14.2719 14.1711 14.1711 14.1711

run-time 0.2049 0.3430 0.6942 0.5885 0.3417 0.2971

6 Numerical examples

We give some examples in this section. All experiments on a laptop with an Intel(R)
Core(TM) i7-8550UCPUand8.00GBofRAM,usingMATLAB2018bon aMicrosoft
Win 10. All tensor computations use the tensor toolbox for MATLAB, Version [29].

Example 6.1 (A random tensor) Consider a partially symmetric CP decomposition of
a tensor S ∈ S[2, 2]R[3, 2]. It is obtained randomly as follows

S(:, :, 1, 1) =
⎛
⎝
1.4897 0.6715 1.6302
0.6715 1.2075 0.4889
1.6302 0.4889 1.0347

⎞
⎠ ,

S(:, :, 1, 2) =
⎛
⎝

0.7296 0.7873 −1.0689
0.7873 0.8884 −0.8095

−1.0689 −0.8095 −2.9443

⎞
⎠ ,

S(:, :, 2, 2) =
⎛
⎝

1.4384 1.3703 −0.2412
1.3703 −1.7115 0.3192

−0.2412 0.3192 0.3129

⎞
⎠ .

Firstly, we discuss whether there is a positive partially symmetric CP decomposition
of tensor S. We compute the minimum value of F−S(Ŝ) defined as in (5.1) for all
R = 1, 2 · · · , 6 by Algorithm 3 and obtain the minimum values min F−S(Ŝ), norms
of the minimum points ‖Ŝ‖F and running time as in Table 1. From the datum in Table
1, it can be seen that the minimum points Ŝ are not zero tensor. Hence, tensor S has
no positive partially symmetric CP decomposition by Corollary 5.1.

Secondly, we compute the positive partially symmetric rank-R approximation of
S by the Algorithm 3 for all R = 1, 2 · · · , 6. We obtain in the minimum values min
FS(Ŝ) and running time as in Table 2. It can be seen from Table 2 that the minimum
values of the objective function are always greater than 14.

Finally, we consider the general partially symmetric CP decomposition of tensor
S. We compute the partially symmetric rank-R approximation of the tensor S by the
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Table 3 The general partially symmetric rank-R approximation of S
R = 1 R = 2 R = 3 R = 4 R = 5 R = 6

min FS (Ŝ) 26.6158 14.9132 7.3878 0.3930 0.0116 2.6001e−15

run-time 0.2496 0.2999 0.6163 0.5746 0.5476 0.9072

Table 4 A general partially symmetric CP decomposition Ŝ
λk −4.3145 −2.4363 −1.1755 0.7307 5.4125 5.5547

uk 0.2957 −0.0615 −0.1442 0.6882 −0.3700 −0.6367

0.1253 −0.8871 0.9895 −0.6924 −0.1581 −0.6216

−0.9470 0.4575 0.0088 −0.2169 −0.9155 0.4563

vk 0.8793 −0.0408 −0.0831 0.9564 0.8834 −0.6275

0.4763 −0.9992 −0.9965 0.2919 −0.4685 −0.7787

Algorithm 4 for R = 1, 2, · · · , 6 and obtain the minimum values min FS(Ŝ) and
running time as in Table 3.

Therefore, we obtain a general partially symmetric CP decomposition of the tensor
S with R = 6 as

Ŝ =
6∑

k=1

λk(uk)2 ◦ (vk)2,

where λk ∈ R, uk ∈ R
3 and vk ∈ R

2 for k = 1, 2, · · · , 6 are as in the Table 4

Example 6.2 (Comparison of convergence speed between the gradient descent method
and the BFGS method) Partially symmetric tensor S ∈ S[1, 2]R[n1, n2] is given by
S = [[U1,U

×2
2 ]], where U1 ∈ R

n1×R , U2 ∈ R
n2×R are randomly obtained. We

use Algorithm 2 and Algorithm 3 to calculate the rank-R approximation of tensor
S, that is, its structure preserving CP decomposition. The termination condition of
both methods are that the norm of gradient is less 10−5, or the number of iteration
reaches 5000. We calculate four types of tensors: (n1, n2, R) = (5, 5, 3), (5, 5, 5),
(10, 10, 5), (10, 10, 10). For each type, we calculate 10 times. The results of numerical
calculation are shown in Table 5, where ‘Iter’ denotes the average number of iterations,
‘Time’ denotes average running time and ‘Error’ denotes average value of ‖S − Ŝ‖F ,
respectively. Form Table 5, we see that the running time of BFGS method is less than
that of gradient descent method.

Example 6.3 (Rank partially symmetric CP decomposition) Assume orders m of
S ∈ S[m]R[n] are even. If the tensor S has a positive partially symmetric CP
decomposition, must its rank partially symmetric CP decomposition be a positive
CP decomposition? Here, we assume that the tensor S ∈ S[2, 2, 2]R[3, 4, 5] has the
following form

S =
r∑

k=1

(uk)2 ◦ (vk)2 ◦ (wk)
2,
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Table 5 Comparison of gradient descent method and BFGS method

BFGS Method Gradient Descent Method

(n1, n2, R) Iter Time Error Iter Time Error

(5,5,3) 88 0.4958 2.8621e−06 1784 13.9672 7.8444e−06

(5,5,5) 139 0.8539 2.3775e−06 4327 34.3292 1.1041e−05

(10,10,5) 196 1.2396 1.8571e−06 1567 14.6899 2.9783e−06

(10,10,10) 302 1.9261 1.6014e−06 3024 28.3224 4.2299e−06

Table 6 A random tensor S
uk 0.5879 0.0573 −0.5386 −0.4456 0.2703

0.2569 0.6998 0.2485 0.8666 −0.2906

−0.7671 −0.7121 −0.8051 −0.2247 −0.9178

vk −0.5227 0.4239 0.4971 −0.1866 −0.8625

−0.6135 −0.8625 0.0352 0.2793 −0.0620

0.2197 0.1632 0.8410 0.6191 0.0810

−0.5496 −0.2233 −0.2105 −0.7099 0.4957

wk −0.1873 −0.0872 0.0549 0.3834 −0.3450

0.0660 −0.6735 0.4485 −0.1169 −0.5523

0.4818 0.1916 −0.2199 0.1492 −0.3000

−0.4444 −0.3929 0.4977 −0.3105 −0.3327

−0.7286 −0.5897 0.7070 0.8489 −0.6126

Table 7 The positive partially symmetric rank-R approximation of S
R = 1 R = 2 R = 3 R = 4 R = 5

min FS (Ŝ) 3.8551 2.8202 1.7086 0.7745 3.8329e−14

run-time 0.6164 0.8543 1.2143 3.6154 3.1265

where uk ∈ R
3, vk ∈ R

4 and wk ∈ R
5 are generated randomly unit vectors for all

k ∈ [r ].
Let r = 5. The tensor S is obtained randomly as in Table 6.
We first compute the partially symmetric rank of S by Algorithm 4. We compute

the general partially symmetric rank-R approximation by the Algorithm 4 for R =
1, 2, · · · , 5 as in Table 7. It is clear that the partially symmetric rank of tensor S is
equal to 5.

Furthermore, we obtain a general partially symmetric rank decomposition of the
tensor S with R = 5 as in Table 8. It is observed that the rank partially symmetric CP
decomposition is also a positive CP decomposition. When we take r = 10 or 15, the
results are the same. Hence, we have the result that if a tensor S has a positive partially
symmetric CP decomposition, then its rank partially symmetric CP decomposition
must be a positive CP decomposition.
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Table 8 A rank partially symmetric CP decomposition of S
λk 1.0000 1.0000 1.0000 1.0000 1.0000

uk 0.5879 0.0573 −0.5386 −0.4456 0.2703

0.2569 0.6998 0.2485 0.8666 −0.2906

−0.7671 −0.7121 −0.8051 −0.2247 −0.9178

vk −0.5227 0.4239 0.4971 −0.1866 −0.8625

−0.6135 −0.8625 0.0352 0.2793 −0.0620

0.2197 0.1632 0.8410 0.6191 0.0810

−0.5496 −0.2233 −0.2105 −0.7099 0.4957

wk −0.1873 −0.0872 0.0549 0.3834 −0.3450

0.0660 −0.6735 0.4485 −0.1169 −0.55233

0.4818 0.1916 −0.2199 0.1492 −0.3000

−0.4444 −0.3929 0.4977 −0.3105 −0.3327

−0.7286 −0.5897 0.7070 0.8489 −0.6126

Example 6.4 (Comparison with ALS method) Given a random nonsymmetric tensor
S ∈ S[1, 1, 1]R[3, 4, 5] as in the following. We compare the compute efficient of the
ALS method and the BFGS method.

S(1, :, :) =

⎛
⎜⎜⎝
0.8147 0.9572 0.6787 0.6948 0.7094
0.9134 0.1419 0.3922 0.0344 0.6797
0.2785 0.7922 0.7060 0.7655 0.1189
0.9649 0.0357 0.0462 0.4898 0.3403

⎞
⎟⎟⎠ ,

S(2, :, :) =

⎛
⎜⎜⎝
0.9058 0.4854 0.7577 0.3171 0.7547
0.6324 0.4218 0.6555 0.4387 0.6551
0.5469 0.9595 0.0318 0.7952 0.4984
0.1576 0.8491 0.0971 0.4456 0.5853

⎞
⎟⎟⎠ ,

S(3, :, :) =

⎛
⎜⎜⎝
0.1270 0.8003 0.7431 0.9502 0.2760
0.0975 0.9157 0.1712 0.3816 0.1626
0.9575 0.6557 0.2769 0.1869 0.9597
0.9706 0.9340 0.8235 0.6463 0.2238

⎞
⎟⎟⎠ .

We compute the CP-rank rank(S) = 7 by Algorithm 3. Hence, we take R =
7 to compute its CP decomposition ten times by the ALS method and the BFGS
method, respectively. For each time, the initial point is obtained randomly. For the
ALS method, the program code “cp_als” comes from the tensor toolbox [29]. The
termination condition of both algorithms is that the iterative steps reaches 10,000 or
the absolute error ‖S − Ŝ‖F is less than 10−5. We obtain the number of iteration
‘it-number’, running time and the absolute error ‖S − Ŝ‖F in Table 9. The average
running time ofAlgorithm3 andALSalgorithm is 1.4743 seconds and 8.8574 seconds,
respectively. The numerical results show that the BFGS method is more effective than
the ALS method in terms of calculation accuracy and calculation speed.
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Table 9 Comparison between ALS method and BFGS method

BFGS Method ALS Method

it-number run-time ‖S − Ŝ‖F it-number run-time ‖S − Ŝ‖F
196 1.5016 8.6112e−06 1412 2.4816 9.9639e−06

288 2.1853 9.7341e−06 10,000 15.1429 0.0105

104 0.7118 7.9662e−06 6192 9.2558 9.9998e−06

112 0.8293 7.4256e−06 8478 12.3807 9.9960e−06

116 0.9340 7.1936e−06 10,000 14.8388 0.0016

123 0.9170 9.6007e−06 10,000 14.9394 0.0168

526 3.9134 4.9603e−06 10,000 14.9196 0.0130

141 1.0186 6.0423e−06 1288 1.9106 9.9485e−06

187 1.4230 6.9865e−06 315 0.4857 9.9445e−06

174 1.3086 8.3163e−06 1495 2.2186 9.9702e−06

Table 10 Comparison with stability between ALS method and BFGS method

Tensor types BFGS ALS

m n R success run-time success run-time

4 6 12 10 14.3239 3 67.7969

4 10 12 10 21.3027 7 41.4185

2, 2 6, 6 12 10 31.1316 6 63.1839

2, 4 6, 5 12 8 350.2533 1 383.3560

2, 2, 2 6, 6, 6 12 9 368.0565 4 311.4647

2, 2, 4 6, 4, 4 8 10 738.7009 2 1027.4193

Example 6.5 (ComparisonwithALSmethod)We compare the stability and computing
speed of the BFGS algorithm and the ALS algorithm. The BFGS algorithm is the
structure preserving CP decomposition method proposed in this paper, while the ALS
algorithm is the usual CP decomposition method and does not have the structure
preserving property. In the numerical example, partially symmetric tensors have the
following form

S =
R∑

k=1

(uk)m1 ◦ (vk)m2 ◦ (wk)
m3 ,

where uk ∈ R
n1 and vk ∈ R

n2 and wk ∈ R
n3 are generated randomly, for all k ∈ [R].

For each parameter tuple (m,n, R), we randomly generate tensor S ten times,
and use Algorithm 3 and the ALS algorithm to calculate their CP decomposition
respectively, where the program code “cp_als” comes from the tensor toolbox [29].
The termination condition of both algorithms is that the iterative steps reaches 10,000
or the relative error ‖S − Ŝ‖F/‖S‖F is less than 10−5. We say a run is successful,
if the relative error is less than 10−5. We obtain the total running time and success
times of each tuple (m,n, R) in Table 10. The numerical results show that the BFGS
method is more stable and faster than the ALS method.
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7 Conclusion

In this paper, we study the numerical problem of structure preserving rank-R approx-
imation and structure preserving CP decomposition of partially symmetric tensors.
For the problem of structure preserving rank-R approximation, we deduce the gradi-
ent formula of the objective function, obtain the BFGS iterative formula with tensor
form, propose a BFGS algorithm for positive partially symmetric rank-R approxi-
mation, and discuss the convergence of the algorithm. For the problem of structure
preserving CP decomposition, we give a necessary condition for partially symmetric
tensors with even orders to have positive partially symmetric CP decomposition, and
design a general partially symmetric rank-R algorithm to obtain structure preserv-
ing CP decomposition. Finally, some numerical examples are given. We compute the
partially symmetric CP decomposition of the random partially symmetric tensors. By
some numerical examples, we find that if a tensor has a positive partially symmetric CP
decomposition then its partially symmetric rank CP decomposition must be a positive
CP decomposition. Meanwhile, in some numerical examples, we compare the BFGS
algorithm proposed in this paper with the standard CP-ALS method.

When m1,m2, . . . ,ms are all even numbers, it is difficult to judge and obtain the
positive partially symmetric CP decomposition of S. In particular, when m1 = m2 =
. . . = ms = 2, the tensor S can be regarded as a real Hermitian tensor, and S has
real Hermitian separability if and only if S has a positive partially symmetric CP
decomposition, see reference [30].
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