
Vol.:(0123456789)

Computational Optimization and Applications (2024) 87:811–833
https://doi.org/10.1007/s10589-023-00456-5

1 3

Optimal control problems with L0(Ω) constraints: 
maximum principle and proximal gradient method

Daniel Wachsmuth1 

Received: 24 January 2022 / Accepted: 18 January 2023 / Published online: 7 February 2023 
© The Author(s) 2023

Abstract
We investigate optimal control problems with L0 constraints, which restrict the 
measure of the support of the controls. We prove necessary optimality conditions 
of Pontryagin maximum principle type. Here, a special control perturbation is used 
that respects the L0 constraint. First, the maximum principle is obtained in integral 
form, which is then turned into a pointwise form. In addition, an optimization algo-
rithm of proximal gradient type is analyzed. Under some assumptions, the sequence 
of iterates contains strongly converging subsequences, whose limits are feasible and 
satisfy a subset of the necessary optimality conditions.

Keywords  Sparse optimal control · L0 constraints · Pontryagin maximum principle · 
Proximal gradient method

Mathematics Subject Classification  49M20 · 49K20

1  Introduction

We are interested in the following optimal control problem written as an optimation 
problem:

subject to

(1.1)min
u∈L2(Ω)

f (u) +
�

2
‖u‖2

L2(Ω)

(1.2)‖u‖0 ≤ �.
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Here, Ω ⊆ ℝ
d is an open set supplied with the Lebesgue measure, f ∶ L2(Ω) → ℝ 

abstracts the state equation and smooth ingredients of the control problem, � ≥ 0 is 
a parameter. The constraint (1.2) uses the so-called L0 norm (which is—of course—
not a norm) that is defined for measurable u ∶ Ω → ℝ by

Of course, � ∈ (0,meas(Ω)) is a meaningful restriction.
The motivation to study such problems comes from sparse control: Find a con-

trol with small support, in our case: with prescribed size of support. The main 
challenge is the discontinuity and non-convexity of the ‖ ⋅ ‖0-functional: Methods 
from differentiable or convex optimization are not applicable. In addition, due to 
the lack of weak lower continuity it is not possible to ensure existence of solu-
tions in spaces of integrable functions. Nevertheless, we can look into optimal-
ity conditions that need to be satisfied at a solution. In order to study necessary 
optimality conditions, we will employ the Pontryagin maximum principle, which 
is first obtained in integral form, and then turned into a pointwise condition by 
means of natural arguments.

Let us mention related works. Optimal control problems with L0 norm of the 
control in the cost function were investigated in [10, 15]. An actuator design 
problem is studied in [11]: the controlled source term in the equation is ��u , 
where �� is the characteristic function of � , and the subset � and the control u 
are optimization variables. An additional volume constraint is posed on � , which 
is equivalent to a L0 constraint on ��u . In that work, shape calculus and topologi-
cal derivatives with respect to � are studied. Unfortunately, no optimality condi-
tions involving these topological derivatives are given, which could be compared 
to our results. This is subject to future work. In the recent work [4], a shape opti-
mization problem is turned into a problem with L0 constraints. There the control 
problem is posed in W1,p , and offers different challenges than the setting consid-
ered here. That work will become relevant if one wants to study the regularization 
of (1.1)–(1.2) in W1,p spaces, which would guarantee existence of solutions due to 
the compact embedding of W1,p in Lp.

In this article, we will prove optimality conditions of Pontryagin maximum 
principle type. Related works can be found, e.g., in [5, 6, 14]. Those results are 
not directly applicable in our situation, since they do not cover L0 constraints. We 
will use a modification of the control perturbations considered in [5, 6, 14] that 
is adapted to the L0 constraints. These will give the maximum principle in inte-
gral form, see Theorem 4.4. In order to turn it into pointwise conditions in Theo-
rem 4.5, we study integral minimization problems in Sect. 3.

In Sect. 5, we investigate an proximal gradient type algorithm, which extends 
our earlier works [13, 15], where optimization problems with L0 and Lp , 
p ∈ (0, 1) , functionals were considered. Due to the simple nature of its sub-prob-
lems, this method is easy to implement. Other methods in finite-dimensional L0 
constrained (or cardinality constrained) optimization include augmented Lagran-
gian methods [12] and DC-based reformulations [8]. We will prove some con-
vergence results for the proximal gradient method. As it turns out, limit points of 

‖u‖0 ∶= meas{x ∶ u(x) ≠ 0}.
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iterates do not satisfy the necessary condition Theorem 5.2 but only a subset of 
those, see Theorem 5.7. We hope that this work initiates further research on algo-
rithms with L0 constraints in an infinite-dimensional setting.

Notation We will frequently use the following notation: For a measurable set A, we 
denote its characteristic function by �A . The integrand in the L0 norm is abbreviated by

Then ‖u‖0 = ∫
Ω
�u(x)�0 dx . Note that u ↦ |u|0 is neither continuous nor convex but 

lower semicontinuous. In addition, u ↦ ‖u‖0 as mapping from Lp(Ω) to ℝ is lower 
semicontintinuous but not weakly lower semicontinuous. Moreover, we will denote 
the support of the measurable function u by

2 � Maximum principle for control of ordinary differential equations

Let us briefly and formally derive the maximum principle for an optimal control prob-
lem subject to ordinary differential equations with constraint ‖u‖0 ≤ � , which serves 
as benchmark for more general situations. For illustration, let us consider the following 
control problem in Mayer form: Minimize

subject to

and

Here, T > 0 is fixed, and x ∶ (0, T) → ℝ
n and u ∶ (0, T) → ℝ are the state and con-

trol. The functions f ∶ ℝ ×ℝ
n ×ℝ and l ∶ ℝ

n → ℝ are assumed to be smooth for 
simplicity. Employing a standard procedure, the constraint ‖u‖0 ≤ � can be writ-
ten equivalently as an additional end-point constraint on the artificial state xn+1 as 
follows:

Let us set f̃ (t, x, u) ∶= (f (t, x, u), |u|0) . Then the classical maximum principle for 
an optimal control ū with state (x̄, x̄n+1) and adjoint (p̄, p̄n+1) ∈ ℝ

n+1 is: there are 
(�0, �n+1) ≠ 0 , �0 ≥ 0 , such that the following conditions are satisfied:

|u|0 ∶=
{

1 if u ≠ 0,

0 if u = 0.

suppu ∶= {x ∈ Ω ∶ u(x) ≠ 0}.

l(x(T))

x�(t) = f (t, x(t), u(t)) a.e. on (0, T),

x(0) = x0,

u(t) ∈ U for almost all t ∈ (0, T),

‖u‖0 ≤ �.

xn+1(0) = 0, x�
n+1

(t) = |u(t)|0 a.e. on (0, T), xn+1(T) ≤ �.
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where H(t, x, u, p) ∶= pTf (t, x, u) is the Hamiltonian of the original problem, and p̄ 
solves the adjoint system

and

Hence, p̄n+1 is constant, p̄n+1 ≤ 0 , and −p̄n+1 can be interpreted as Lagrange multi-
plier to the constraint ‖u‖0 ≤ � . For a precise formulation of the maximum princi-
ple, we refer to [9]. In order to obtain the system in qualified form, i.e., 𝜆0 > 0 , one 
needs additional conditions (constraint qualifications).

Summarizing the above considerations, the following two conditions will serve 
as necessary optimality conditions: ū(t) maximizes the penalized Hamiltonian, 
i.e.,

and � ≥ 0 satisfies the complementarity condition

Let us now transfer these results to optimal control problems, where the control is 
no longer defined on a subset of the real line but defined on a set Ω ⊆ ℝ

d , d > 1 . 
For illustration, let now Ω ⊆ ℝ

d , d > 1 , be a bounded domain. As above, we want to 
translate the control constraint ‖u‖0 ≤ � to an auxiliary state constraint. In fact, if we 
define y0 as the weak solution in H1(Ω) of the auxiliary state equation

then it follows ∫
Ω
y0 dx = ∫

Ω
|u|0 dx , and the control constraint ‖u‖0 ≤ � is equiva-

lent to the constraint ∫
Ω
y0 dx ≤ � on the auxiliary state y. In [6], the maximum prin-

ciple for problems with elliptic partial differential equations was obtained. In order 
to get a system in qualified form ( 𝜆0 > 0 ) strong stability is used: the optimal value 
function has to be locally Lipschitz continuous with respect to the parameter � . To 
the best of our knowledge, such a result is not available in the literature for the L0 
constraints considered here.

Thus, we will proceed differently. We will not formulate the integral control 
constraint as a state constraint. Rather we will modify the technique of [6] to only 
consider perturbations that satisfy the constraint. In this way, we get a maximum 
principle in integral form satisfied for all functions v with ‖v‖0 ≤ � . This integral 
maximum principle can be translated into a pointwise one. In that way, we get the 
final system in qualified form while circumventing the strong stability requirement.

ū(t) = argmax
u∈U

H(t, x̄(t), u, p̄(t)) + p̄n+1(t)|u|0,

−p̄(T) = 𝜆0l
�(x̄(T)), −p̄�(t) = fx(t, x̄(t), ū(t))

T p̄(t) a.e. on (0, T)

− p̄n+1(T) = 𝜆n+1, −p̄
�
n+1

(t) = 0,

𝜆n+1 ≥ 0, 𝜆n+1(x̄n+1(T) − 𝜏) = 0.

(2.1)ū(t) = argmax
u∈U

H(t, x̄(t), u, p̄(t)) − 𝜆|u|0,

(2.2)𝜆(‖ū‖0 − 𝜏) = 0.

−Δy + y = |u|0,
�y

�n
= 0



815

1 3

Optimal control problems with L0(Ω) constraints: maximum princi…

3 � Optimality conditions for integral functionals

First, we are going to derive optimality conditions for integral functionals. This 
is later used to transform the maximum principle from integral to pointwise form. 
We will consider integral functionals generated by normal integrands. In this sec-
tion, let Ω ⊆ ℝ

d be a Lebesgue measurable set.

Definition 3.1  The function f ∶ Ω ×ℝ → ℝ ∪ {+∞} is called normal integrand if 
there exist Caratheodory functions (fn)n∈ℕ such that for all u and almost all x ∈ Ω

for all u and almost all x ∈ Ω.

This definition is from [2, Def. 1] with equivalent characterizations in [2, Thm. 
2]. We will now prove optimality conditions for the following problem: Minimize 

subject to the constraint

Here, the minimization is over all measurable u such that g(⋅, u) is integrable. 
Clearly, if ū is a solution of (3.1) and ū(x) ≠ 0 then g(x, ū(x)) = infv∈ℝ g(x, v) . The 
latter function will play an important role in the subsequent analysis. We work 
with the following assumption.

Assumption 1 

1.	 g ∶ Ω ×ℝ → ℝ ∪ {+∞} is a normal integrand,
2.	 g(⋅, 0) is integrable,
3.	 � ∈ (0,meas(Ω)).

Let us define the non-positive function ṽ ∶ Ω → ℝ ∪ {−∞} by

We start with a technical lemma that helps to prove integrability of ṽ under suitable 
assumptions.

Lemma 3.2  Let g ∶ Ω ×ℝ → ℝ ∪ {+∞} be a normal integrand. Then there are 
measurable functions vn and un such that

f (x, u) = sup
n

fn(x, u).

(3.1a)∫
Ω

g(x, u(x)) dx

(3.1b)u ∈ U� ∶= {u measurable ∶ ‖u‖0 ≤ �}.

(3.2)ṽ(x) ∶= inf
v∈ℝ

g(x, v) − g(x, 0).

vn(x) = inf
|u|≤n g(x, u) − g(x, 0) = g(x, un(x)) − g(x, 0), |un(x)| ≤ n
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for almost all x ∈ Ω . In addition, ṽ is measurable.

Proof  Let (gn) be Caratheodory functions such that g(x, u) = supn gn(x, u) for all u 
and almost all x ∈ Ω . Let us define the set-valued mapping

so E(x) is the epi-graph of v ↦ g(x, v) − g(x, 0) . Then it holds

Each of the set-valued mappings in the intersection is measurable by [1, Thm. 8.2.9], 
so E is measurable by [1, Thm. 8.2.4]. Using [1, Thm. 8.2.11], we get the measur-
ability of un and vn . Measurability of ṽ is a consequence of ṽ(x) = infn vn(x) . 	�  ◻

Using the function ṽ from (3.2), we define the sets

Lemma 3.3  Let u ∈ U� be given such that g(⋅, u) is integrable. Let s ≤ 0 and S ⊆ Ω 
with meas(S) = � be such that ṽ (see (3.2)) is integrable on S and

Then it holds

This inequality is satisfied with equality only if the following conditions are satisfied: 

1.	 g(x, u(x)) − g(x, 0) = ṽ(x) for almost all x ∈ suppu,
2.	 Ω<s ⊆ suppu ⊆ Ω≤s,
3.	 s = 0 or meas(suppu) = �.

Proof  Let A ∶= suppu . Then meas(A) ≤ � = meas(S) , and it follows 
meas(A ⧵ S) ≤ meas(S ⧵ A) . Using (3.3), we estimate

E(x) ∶= {(v, t) ∶ g(x, v) − g(x, 0) ≤ t},

E(x) =
⋂

n

{(v, t) ∶ gn(x, v) − t ≤ g(x, 0)}.

(3.3)Ω<s ∶= {x ∶ ṽ(x) < s}, Ω≤s ∶= {x ∶ ṽ(x) ≤ s}.

Ω<s ⊆ S ⊆ Ω≤s.

�
Ω

g(x, u(x)) − g(x, 0) dx ≥ �S

ṽ(x) dx.
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Equality in the above chain of inequalities is obtained only if (a) g(⋅, u) − g(⋅, 0) = ṽ 
on A, (b) ṽ = s on A ⧵ S , hence A ⊆ Ω≤s , (c) s(meas(A⧵S) −meas(S⧵A)) = 0 , and (d) 
smeas(S⧵A) = ∫

S⧵A
ṽ dx . Condition (d) implies ṽ = s on S ⧵ A , hence Ω<s ⊆ A . If 

s ≠ 0 then condition (c) implies meas(A) = � . 	�  ◻

With the help of these sets, we can fully characterize the solutions of (3.1).

Theorem 3.4  Let Assumption 1 be satisfied. Then ū is a solution of (3.1) if and only 
if there are s ≤ 0 and A ⊆ Ω with meas(A) = � such that

ṽ is integrable on A, and

where ṽ is defined in (3.2).

Proof  Let ū be a solution of (3.1). Let (vn) and (un) be given by Lemma  3.2. By 
construction, (vn(x)) is monotonically decreasing and vn(x) → ṽ(x) for almost all 
x ∈ Ω . Let B ⊆ Ω with meas(B) ≤ � . We want to show that �Bun is feasible for (3.1). 
It remains to argue that g(⋅,�Bun) is integrable. If the negative part of g(⋅,�Bun) 
would not be integrable, then problem (3.1) would be unsolvable, as we could find 
subsets Bk ⊆ B such that ∫

Ω
g(x,�Bk

un) dx → −∞ for k → ∞ . So the negative part 
of g(⋅,�Bun) is integrable, and the integrability of g(⋅,�Bun) is a consequence of 
g(x,�Bun(x)) − g(x, 0) ≤ 0 for almost all x.

Then �Bun is feasible for (3.1), which implies

By the monotone convergence theorem, it follows that ṽ is integrable on B and

�
Ω

g(x, u(x)) − g(x, 0) dx ≥ �A

ṽ(x) dx

= �A∩S

ṽ(x) dx + �A⧵S

ṽ(x) dx

≥ �A∩S

ṽ(x) dx + smeas(A ⧵ S)

≥ �A∩S

ṽ(x) dx + smeas(S ⧵ A)

≥ �S

ṽ(x) dx.

(3.4)Ω<s ⊆ suppū ⊆ A ⊆ Ω≤s,

(3.5)g(x, ū(x)) − g(x, 0) = ṽ(x) for almost all x ∈ A,

0 ≥ �B

vn dx = �
Ω

g(x,𝜒Bun(x)) − g(x, 0) dx ≥ �
Ω

g(x, ū(x)) − g(x, 0) dx.

(3.6)�B

ṽ dx ≥ �
Ω

g(x, ū(x)) − g(x, 0) dx.
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The increasing functions s ↦ meas(Ω<s) and s ↦ meas(Ω≤s) are continuous from 
the left and from the right, respectively. Given � , there is a uniquely determined 
s ≤ 0 such that meas(Ω<s) ≤ 𝜏 ≤ meas(Ω≤s) . Since the measure space is non-
atomic, the celebrated Sierpiński theorem implies that there is S ⊆ Ω such that 
Ω<s ⊆ S ⊆ Ω≤s and meas(S) = �.

By the first part of the proof, ṽ is integrable on S. Then s and S satisfy the require-
ments of Lemma 3.3. Using Lemma 3.3 and (3.6), we get

Hence, the inequality of Lemma  3.3 is satisfied with equality, which implies 
Ω<s ⊆ suppū ⊆ Ω≤s . It remains to utilize that s = 0 or meas(suppū) = 𝜏 . If 
meas(ū) = 𝜏 then (3.4) and (3.5) are satisfied with A ∶= suppū . If meas(suppū) < 𝜏 
then s = 0 , and we can find a set A with meas(A) = � and suppū ⊆ A ⊆ Ω = Ω≤0 , 
which is (3.4). Using Lemma 3.3 and ū(x) = 0 on A ⧵ suppū , we see that (3.5) is 
satisfied.

Let now ū, s,A satisfy (3.4) and (3.5) such that ṽ is integrable on A. Let u ∈ U� . 
Then by Lemma 3.3 with S ∶= A we find

and ū solves (3.1). 	�  ◻

Corollary 3.5  Let Assumption 1 be satisfied. Let ū be a solution of (3.1). Let s ≤ 0 be 
given by Theorem 3.4. Then for almost all x ∈ Ω

Proof  This follows from Theorem 3.4, (3.4): If ū(x) ≠ 0 , then ṽ(x) ≤ s . 	�  ◻

Let us define the value function of (3.1) by

Using the above characterization of solutions, we have the following strong stability 
result.

Lemma 3.6  Let Assumption  1 be satisfied. Let �, �� ∈ (0,meas(Ω)) with 𝜏 < 𝜏′ 
be given. Then 0 ≤ V(�) − V(��) ≤ |s|(� − ��) , where s is associated to � by 
Theorem 3.4.

Proof  Let u� , u�′ be solutions to �, �′ . Due to Theorem 3.4 there are s, s′ , A,A′ such 
that meas(A) = � , meas(A�) = �� , and

�
Ω

g(x, ū(x)) − g(x, 0) dx ≥ �S

ṽ(x) dx ≥ �
Ω

g(x, ū(x)) − g(x, 0) dx.

�
Ω

g(x, u(x)) − g(x, 0) dx ≥ �A

ṽ(x) dx = �A

g(x, ū(x)) − g(x, 0) dx

= �
Ω

g(x, ū(x)) − g(x, 0) dx,

|ū(x)|0 ⋅ (ṽ(x) − s) ≤ 0.

V(�) ∶= inf
u∈U� ∫Ω

g(x, u(x)) dx.
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If s < s′ then Ω≤s ⊆ Ω<s� and A ⊆ A′ , which implies

If s = s� then

resulting in the same estimate. 	�  ◻

In addition, we obtain the following result, which says that −s can be inter-
preted as Lagrange multiplier to the constraint ‖u‖0 ≤ �.

Corollary 3.7  Let Assumption 1 be satisfied. Let ū be a solution of (3.1). Let s ≤ 0 be 
given by Theorem 3.4. Then we have

Proof  Suppose ‖ū‖0 < 𝜏 . By Theorem  3.4 there is A with meas(A) = � and 
suppū ⊆ A ⊆ Ω≤s . Due to (3.5), ṽ = 0 on A ⧵ suppū ⊆ Ω≤s , where A ⧵ suppū has 
positive measure. Hence, s = 0 follows by definition of Ω≤s , see (3.3). 	�  ◻

Furthermore, ū is a solution of unconstrained penalized problems, where −s 
plays the role of a penalization parameter.

Corollary 3.8  Let Assumption  1 be satisfied. Let ū be a solution of (3.1). Let 
� ∶= −s ≥ 0 , where s is given by Theorem 3.4. Then ū is a solution of

and a solution of

Ω<s ⊆ A ⊆ Ω≤s, Ω<s� ⊆ A� ⊆ Ω≤s.

�
Ω

g(x, u𝜏(x)) dx − �
Ω

g(x, u𝜏� (x)) dx = �A

ṽ dx − �A�

ṽ dx

= −�A�⧵A

ṽ dx

≤ −smeas(A� ⧵ A) = −s(𝜏� − 𝜏).

∫
Ω

g(x, u𝜏(x)) dx − ∫
Ω

g(x, u𝜏� (x)) dx

= ∫A⧵Ω<s

ṽ dx − ∫A�⧵Ω<s

ṽ dx

= s(meas(A ⧵Ω<s) −meas(A� ⧵Ω<s)) = −s(𝜏� − 𝜏),

(3.7)s ⋅ (𝜏 − ‖ū‖0) = 0.

min
u ∫

Ω

g(x, u(x)) + �|u(x)|0 dx.

min
u ∫

Ω

g(x, u(x)) dx + �(‖u‖0 − �)+.
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Proof  Let s and A be as in Theorem 3.4. Let u be measurable and set B ∶= suppu . 
As in the proof of Lemma 3.3, we get

and

which results in

We proceed with

where we used ‖ū‖0 ≤ meas(A) , ‖u‖0 = meas(B) , and s ≤ 0 . This proves the first 
claim. Using the result of Corollary 3.7 and s ≤ 0 , we get

which proves the second claim. 	�  ◻

Let us prove the following converse result.

Corollary 3.9  Let Assumption  1 be satisfied. Let �′ ≥ 0 . Let ū with ‖ū‖0 = 𝜏 be a 
solution of

Then ū solves (3.1).

Proof  Let u be given with ‖u‖0 ≤ � . By optimality of ū , we have

which implies the claim. 	�  ◻

�
Ω

g(x, u(x)) − g(x, 0) dx ≥ �B

ṽ dx ≥ �A∩B

ṽ(x) dx + smeas(B ⧵ A)

�A∩B

ṽ(x) dx + smeas(A ⧵ B) ≥ �A

ṽ dx = �
Ω

g(x, ū(x)) − g(x, 0) dx,

�
Ω

g(x, u(x)) − g(x, ū(x)) ≥ s(meas(B ⧵ A) −meas(A ⧵ B)).

s(meas(B ⧵ A) −meas(A ⧵ B)) = s(meas(B ⧵ A) −meas(A ⧵ B) + ‖ū‖0 − ‖ū‖0)
≥ s(meas(B ⧵ A) +meas(A ∩ B) − ‖ū‖0)
= s(‖u‖0 − ‖ū‖0),

s(meas(B ⧵ A) −meas(A ⧵ B)) ≥ s(‖u‖0 − �) ≥ s(‖u‖0 − �)+,

min
v ∫

Ω

g(x, v(x)) + ��|v(x)|0 dx.

�
Ω

g(x, ū(x)) dx + 𝜆�𝜏 = �
Ω

g(x, ū(x)) + 𝜆�|ū(x)|0 dx

≤ �
Ω

g(x, u(x)) + 𝜆�|u(x)|0 dx ≤ �
Ω

g(x, u(x)) dx + 𝜆�𝜏,
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Let us close the section with the following observation: Every minimum of the 
integral functional ∫

Ω
g(x, u(x)) dx subject to the constraint u ∈ U� ∩ Lp(Ω) is a solu-

tion of (3.1).

Theorem  3.10  Let Assumption  1 be satisfied. Let p ∈ [1,∞] . Let ū ∈ Lp(Ω) be a 
solution of

Then ū solves (3.1).

Proof  Let (un) and (vn) be given by Lemma 3.2, which implies un ∈ L∞(Ω) for all n. 
Let B ⊆ Ω with meas(B) ≤ � be given, hence �Bun ∈ Lp(Ω) for all n. Arguing as in 
the proof of Theorem  3.4, we get ∫

B
vn dx → ∫

B
ṽ dx ≥ ∫

Ω
g(x, ū(x)) − g(x, 0) dx by 

monotone convergence, see (3.6). Let now u be feasible for (3.1). Let B ∶= suppu . 
Then

hence ū solves (3.1) as well. 	�  ◻

Remark 3.11  All the results of this section are valid in the more general situation of 
a non-atomic, complete, �-finite measure space.

4 � Optimal control of elliptic partial differential equation with L0 
constraint

In this section, we consider the following optimal control problem: Minimize 

subject to

where yu is the weak solution of the equation

 We impose the following assumption on the data of this problem:

Assumption 2 

min
u∈U�∩L

p(Ω)∫Ω

g(x, u(x)) dx.

�
Ω

g(x, u(x)) − g(x, 0) dx ≥ �B

ṽ dx ≥ �
Ω

g(x, ū(x)) − g(x, 0) dx,

(4.1a)∫
Ω

L(x, yu(x), u(x)) dx

(4.1b)‖u‖0 ≤ �,

(4.1c)
(Ay)(x) = f (x, y(x), u(x)) on Ω

y = 0 on �Ω.
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1.	 Ω is an open and bounded domain in ℝd , d ∈ {2, 3} , with Lipschitz boundary �Ω . 
Let � ∈ (0,meas(Ω)).

2.	 A denotes a second-order elliptic operator in Ω of the type 

 with coefficients aij ∈ C(Ω̄) . In addition, there is Λ > 0 such that for almost all 
x ∈ Ω

3.	 The functions f , L ∶ Ω ×ℝ ×ℝ are Caratheodory functions, i.e., x ↦ f (x, y, u) 
and x ↦ L(x, y, u) are measurable for all y, u ∈ ℝ , and (u, y) ↦ f (x, y, u) and 
(u, y) ↦ L(x, y, u) are continuous for almost all x ∈ Ω . We assume that f, L are 
continuously differentiable with respect to y for almost all x ∈ Ω and all u ∈ ℝ 
with fy(x, y, u) ≤ 0 . In addition, for all M > 0 there are non-negative aM ∈ L1(Ω) , 
bM ∈ ℝ , cM ∈ L2(Ω) such that for almost all x ∈ Ω

 and 

 where fy, Ly denote the partial derivatives of f, L with respect to y.

Let us briefly comment on those assumptions. The conditions on the differential 
equation are to ensure W1,p regularity of weak solutions y of (4.1c) for some p > d , 
which guarantees y ∈ L∞(Ω) . The conditions on L and f ensure that the Nemyzki 
operators induced by them are continuous (and differentiable with respect to y) from 
L∞(Ω) × L2(Ω) to L1(Ω) and L2(Ω) , respectively. We opted for this set of conditions 
in order to be able to use the results of [6] on regularity of solutions of partial dif-
ferential equations. This allows us to focus on the L0 constraints. Of course, other 
settings are possible (e.g., control constraints, other types of boundary conditions, 
parabolic equations).

As consequence of the assumptions, we have the following solvability and regu-
larity result for (4.1c).

Theorem 4.1  Let Assumption 2 be satisfied. Let u ∈ L2(Ω) be given. Then there is a 
uniquely determined yu ∈ W

1,p

0
(Ω) solving the Eq. (4.1c), where p > d.

Proof  This is a consequence of [6, Theorem 1]. 	�  ◻

We define the Hamiltonian of the control problem (4.1) by

Ay = −

d∑

i,j=1

�xj (aij(x)�xi y)

d∑

i,j=1

aij(x)�i�j ≥ Λ|�|2 ∀� ∈ ℝ
d.

|L(x, y, u)| + |Ly(x, y, u)| ≤ aM(x) + bM|u|2 ∀|y| ≤ M

|f (x, y, u)| + |fy(x, y, u)| ≤ cM(x) + bM|u| ∀|y| ≤ M,
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Note that the inequality constraint ‖u‖0 ≤ � is not taken into account in the Ham-
iltonian, which is different to the approach in Sect. 2. In addition, we defined the 
Hamiltonian in the qualified sense, that is, there is no “multiplier” �0 ≥ 0 associated 
to the functional L by �0L.

We are going to prove the maximum principle in integrated form first. The main 
difference to other works, e.g., [6, 14], is the construction of perturbations that sat-
isfy the constraint ‖u‖0 ≤ � . Here, we will adapt a result of [14] to generate these 
perturbations. It is based on Lyapunov’s theorem.

Lemma 4.2  Let � ∈ (0, 1) . Let g1,… , gm ∈ L1(Ω) be given. Then there is a sequence 
(En

�
) of measurable subsets of Ω such that

and

Proof  The proof is an adaptation of the proof of [14, Lemma 4.2]. It is included for 
the convenience of the reader.

Let (�n) be a dense subset of L1(Ω) . For n ≥ 0 , define f n ∶ Ω → ℝ
m+n by

By the Lyapunov convexity theorem [7, Corollary IX.5], there is En
𝜌
⊆ Ω such that 

� ∫
Ω
f n dx = ∫

En
�

f n dx . By definition of f n , this implies ∫
En
�

gk dx = � ∫
Ω
gk dx for all 

k.
Let now � ∈ L1(Ω) be given. Take 𝜖 > 0 . By density, there is N such that 

‖𝜑 − 𝜑N‖L1(Ω) < 𝜖 . Then for all n > N , we get

which proves the claim. 	�  ◻

Corollary 4.3  Let (En
�
) be a sequence of measurable subsets of Ω such that

Let h ∈ L2(Ω) be given. Then (1 − 1

�
�En

�
)h → 0 in W−1,p(Ω) where p ∈ (1,+∞) for 

d = 2 and p ∈ (1, 6) for d = 3.

H(x, y, u,�) ∶= L(x, y, u) + �f (x, y, u).

∫En
�

gk dx = �∫
Ω

gk dx ∀k = 1,… ,m ∀n ∈ ℕ

1

�
�En

�
⇀∗ 1 for n → ∞ in L∞(Ω) = L1(Ω)∗.

f n = (g1,… , gm,�1,… ,�n).

|||||�Ω

(
1 −

1

�
�En

�

)
� dx

|||||
≤ |||||�Ω

(
1 −

1

�
�En

�

)
(� − �N) dx

|||||
+
|||||�Ω

(
1 −

1

�
�En

�

)
�N dx

|||||

≤ 1 − �

�
� + 0,

1

�
�En

�
⇀∗ 1 for n → ∞ in L∞(Ω) = L1(Ω)∗.



824	 D. Wachsmuth 

1 3

Proof  Due to the assumptions, we have (1 − 1

�
�En

�
)h ⇀ 0 in L2(Ω) . Under the condi-

tions on p, the embedding W1,p�

0
(Ω) ↪ L2(Ω) is compact, where p′ is given by 

1

p
+

1

p�
= 1 . Hence, the embedding L2(Ω) ↪ W−1,p(Ω) is compact as well. 	�  ◻

Now we have all tools available to prove the maximum principle. The proof is 
very similar to the proofs in [6]. Hence, we will be brief on arguments that are simi-
lar to those in [6]. We first prove the maximum principle in integrated form.

Theorem 4.4  Let ū be a local solution of (4.1a) and (4.1b) in the L2(Ω)-sense with 
associated state ȳ ∶= yū ∈ W

1,p

0
(Ω) , where p > d is such that W1,p�

0
(Ω) ↪ L2(Ω) , 

where p′ is given by 1
p
+

1

p�
= 1 . Then there is 𝜑̄ ∈ W

1,p�

0
(Ω) that solves the adjoint 

equation

In addition,

for all v ∈ L2(Ω) be with ‖v‖0 ≤ �.

Proof  Let v ∈ L2(Ω) with ‖v‖0 ≤ � . Set h ∶= f (⋅, ȳ, v) − f (⋅, ȳ, ū) , m ∶= 4 , and

Then by Lemma 4.2 and Corollary 4.3, for each 𝜌 > 0 there is a set E� such that

and

Let us set

Then

and

A∗𝜑̄ = fy(⋅, ȳ, ū)𝜑̄ + Ly(⋅, ȳ, ū).

�
Ω

H(x, ȳ(x), ū(x), 𝜑̄(x)) dx ≤ �
Ω

H(x, ȳ(x), v(x), 𝜑̄(x)) dx

(g1,… , gm) ∶= ((v − ū)2, |ū|0, |v|0, L(⋅, ȳ, v) − L(⋅, ȳ, ū)).

∫E�

gk dx = �∫
Ω

gk dx ∀k = 1,… ,m

‖‖‖‖‖

(
1 −

1

𝜌
𝜒E𝜌

)
h
‖‖‖‖‖W−1,p(Ω)

< 𝜌.

u𝜌 = ū + 𝜒E𝜌
(v − ū).

‖u𝜌‖0 = ‖(1 − 𝜒E𝜌
)ū + 𝜒E𝜌

v‖0
= ‖(1 − 𝜒E𝜌

)ū‖0 + ‖𝜒E𝜌
v‖0

= ‖ū‖0 − ‖𝜒E𝜌
ū‖0 + ‖𝜒E𝜌

v‖0 = (1 − 𝜌)‖ū‖0 + 𝜌‖v‖0 ≤ 𝜏
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Hence, J(ū) ≤ J(u𝜌) by local optimality of ū for 𝜌 > 0 small enough. Arguing as in 
[6, Lemma 2], we find

where

and z ∈ W
1,p

0
(Ω) satisfies

In addition, there is 𝜑̄ ∈ W
1,p�

0
(Ω) [6, Theorem 2] that solves the adjoint equation

This implies

which is the claim. 	�  ◻

Using Theorem 3.10 and the results of Sect. 3, we can turn the maximum princi-
ple from integrated to pointwise form.

Theorem 4.5  Let ū be a local solution of (4.1a)–(4.1b) in the L2(Ω)-sense with asso-
ciated state ȳ ∶= yū ∈ W

1,p

0
(Ω) , where p > d is such that W1,p�

0
(Ω) ↪ L2(Ω) where p′ 

is given by 1
p
+

1

p�
= 1 , and adjoint 𝜑̄ ∈ W

1,p�

0
(Ω) given by Theorem 4.4.

Then there is a number s ≤ 0 such that

and for almost all x ∈ Ω

In addition, we have the following properties for almost all x ∈ Ω:

‖u𝜌 − ū‖2
L2(Ω)

= ∫E𝜌

(v − ū)2 dx = 𝜌‖v − ū‖2
L2(Ω)

.

0 ≤ lim
𝜌↘0

1

𝜌
(J(u𝜌) − J(ū)) = z0,

z0 = ∫
Ω

Ly(x, ȳ(x), ū(x))z(x) + L(x, ȳ, v(x)) − L(x, ȳ(x), ū(x)) dx

Az = fy(⋅, ȳ, ū)z + f (⋅, ȳ, v) − f (⋅, ȳ, ū).

A∗𝜑̄ = fy(⋅, ȳ, ū)𝜑̄ + Ly(⋅, ȳ, ū).

0 ≤ z0 = �
Ω

L(x, ȳ, v(x)) − L(x, ȳ(x), ū(x)) dx

+ �
Ω

𝜑̄(x)(f (x, ȳ(x), v(x)) − f (x, ȳ(x), ū(x))) dx

= �
Ω

H(x, ȳ(x), v(x), 𝜑̄(x)) − H(x, ȳ(x), ū(x), 𝜑̄(x)) dx,

s(‖ū‖0 − 𝜏) = 0

ū(x) = argmin
u∈ℝ

H(x, ȳ(x), u, 𝜑̄(x)) + (−s)|u|0.
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Proof  Let us define g by

Then g is a normal integrand, and g(⋅, 0) is integrable. Due to Theorem 4.4, ū solves

By Theorem 3.10, ū solves (3.1). Hence, the results of Sect. 3 are applicable. Let 
s ≤ 0 be as in Theorem 3.4. Then the claim follows with Corollaries 3.5, 3.7 and 
3.8. 	�  ◻

This result shows that the conditions (2.1) and (2.2), which we derived for an 
ODE control problem, are satisfied in adapted form in the PDE control problem.

5 � Proximal gradient algorithm

In this section, we will analyze a proximal gradient algorithm applied to a prob-
lem with L0 constraints. Here, we consider problems of the type

We are going to use the following set of assumptions.

Assumption 3 

1.	 Ω ⊆ ℝ
d is Lebesgue measurable with meas(Ω) ∈ (0,∞) , � ∈ (0,meas(Ω)).

2.	 The function f ∶ L2(Ω) → ℝ is bounded from below and Fréchet differentiable. 
In addition, ∇f ∶ L2(Ω) → L2(Ω) is Lipschitz continuous with constant Lf  , i.e., 

 holds for all u1, u2 ∈ L2(Ω).
3.	 � ≥ 0.

These requirements on f are well-established in the context of first-order opti-
mization methods. The requirement of global Lipschitz continuity of ∇f  and 
knowledge of the Lipschitz modulus Lf  can be overcome by a suitable back-track-
ing method, see [15, Section 3.3], which can be used in our situation as well.

ū(x) ≠ 0 ⇒ ū(x) = argmin
u∈ℝ

H(x, ȳ(x), u, 𝜑̄(x)),

|ū(x)|0 ⋅ ( inf
u∈ℝ

H(x, ȳ(x), u, 𝜑̄(x)) − H(x, ȳ(x), 0, 𝜑̄(x)) − s) ≤ 0.

g(x, u) ∶= H(x, ȳ(x), u, 𝜑̄(x)).

min
u∈U�∩L

2(Ω)∫Ω

g(x, u(x)) dx.

(5.1)min
u∈U�∩L

2(Ω)
f (u) +

�

2
‖u‖2

L2(Ω)
.

‖∇f (u1) − ∇f (u2)‖L2(Ω) ≤ Lf‖u1 − u2‖L2(Ω)
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Remark 5.1  Under some restrictions, the problem of Sect. 4 satisfies these assump-
tions. Let us assume that L is of the form L(x, y, u) = L(x, y) +

�

2
u2 . Define 

f (u) ∶= ∫
Ω
L(x, yu(x)) dx , where yu is the solution of (4.1c). If the nonlinearity in the 

equation is linear in u, e.g., f (x, y, u) = f (x, y) + u , then f satisfies Assumption 3. See 
also the discussion in [13, Section 2.2].

Let us first prove a necessary optimality condition for (5.1). The proof is simi-
lar to Theorem 4.4 above.

Theorem 5.2  Suppose f is a Fréchet differentiable mapping from L1(Ω) → ℝ . Let ū 
be a local solution of (5.1). Then it holds

for all v ∈ L2(Ω) be with ‖v‖0 ≤ �.

In addition, there is a number s ≤ 0 such that

If 𝛼 > 0 then for almost all x ∈ Ω the following conditions are fulfilled:

If � = 0 then ∇f (ū) = 0.

Proof  Let us set F(u) ∶= f (u) +
�

2
‖u‖2

L2(Ω)
 , which is Fréchet differentiable on L2(Ω) 

with gradient ∇F(u) = ∇f (u) + �u . Let v ∈ L2(Ω) with ‖v‖0 ≤ � . Set m ∶= 5 , and

Then by Lemma 4.2, for each 𝜌 > 0 there is a set E� such that ∫
E�
gj dx = � ∫

Ω
gj dx 

for all j = 1…m . As in the proof of Theorem 4.4, the function u𝜌 ∶= ū + 𝜒E𝜌
(v − ū) 

satisfies ‖u�‖0 ≤ � and ‖u𝜌 − ū‖2
L2(Ω)

= 𝜌‖v − ū‖2
L2(Ω)

 . Due to Fréchet differentiabil-
ity and the construction of E� and u� , we have

Dividing by 𝜌 > 0 and passing to the limit � ↘ 0 , implies by local optimality

�
Ω

∇f (ū)ū dx +
𝛼

2
‖ū‖2

L2(Ω)
≤ �

Ω

f (ū)v dx +
𝛼

2
‖v‖2

L2(Ω)

(5.2)s(‖ū‖0 − 𝜏) = 0.

(5.3)ū(x) ≠ 0 ⇒ ū(x) = −
1

𝛼
∇f (ū)(x),

(5.4)|ū(x)|0 ⋅
(
−

1

2𝛼
|∇f (ū)(x)|2 − s

) ≤ 0.

(g1,… , gm) ∶= ((v − ū)2, |ū|0, |v|0, ∇F(ū), |v − ū|).

F(u𝜌) − F(ū) = ∇F(ū)(u𝜌 − ū) + o(‖u𝜌 − ū‖L1(Ω)) +
𝛼

2
‖u𝜌 − ū‖2

L2(Ω)

= 𝜌∇F(ū)(v − ū) + o(𝜌) + 𝜌
𝛼

2
‖v − ū‖2

L2(Ω)
.
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which proves the first claim. The second claim follows from Theorem 3.4 and Corol-
laries 3.5 and 3.7 with ṽ = −

1

2𝛼
|∇f (ū)|2 . 	�  ◻

Let us briefly give the motivation of the proximal gradient algorithm. The well-
known steepest descent method applied to the unconstrained differentiable problem 
minu f (u) amounts to the iteration

where tk > 0 is a suitable step-size. It is immediate that uk+1 is a solution of the 
unconstrained problem

While it is impossible to add the constraint ‖u‖0 ≤ � to the iteration procedure (5.5), 
this constraint can be easily imposed on the problem (5.6). The resulting proximal 
gradient (or forward-backward) algorithm reads as follows. Here, we replaced the 
parameter tk by a fixed parameter L, which takes the place of 1

tk
.

Algorithm  1  (Proximal gradient algorithm) Choose L > 0 and u0 ∈ L2(Ω) . Set 
k = 0 . 

1.	 Compute uk+1 as solution of 

2.	 Set k ∶= k + 1 , go to step 1.

The functional to be minimized in (5.7) can be written as an integral functional 
∫
Ω
g(x, u(x)) dx with g defined by

The pointwise minimum of g is realized by the function ũ ∈ L2(Ω) defined by

Clearly, g(⋅, 0) is integrable, Assumption 1 is satisfied, and the results of Sect. 3 are 
applicable. Hence, a solution of (5.7) can be computed as in Theorem  3.4. Here, 
L > 0 is important: note that integrability of g(⋅, u) implies u ∈ L2(Ω) . It is easy to 
verify that

0 ≤ ∇F(ū)(v − ū) +
𝛼

2
‖v − ū‖2

L2(Ω)

= ∇f (ū)(v − ū) +
𝛼

2
‖v‖2

L2(Ω)
−

𝛼

2
‖ū‖2

L2(Ω)
,

(5.5)uk+1 = uk − tk∇f (uk),

(5.6)min
u

f (uk) + ∇f (uk) ⋅ (u − uk) +
1

2tk
‖u − uk‖2L2(Ω).

(5.7)min
u∈U�∩L

2(Ω)
f (uk) + ∇f (uk) ⋅ (u − uk) +

L

2
‖u − uk‖2L2(Ω) +

�

2
‖u‖2

L2(Ω)

g(x, u) = f (uk) + ∇f (uk)(x) ⋅ (u − uk(x)) +
L

2
(u − uk(x))

2 +
�

2
u2.

ũ(x) ∶=
Luk(x) − ∇f (uk)(x)

L + 𝛼
.
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which corresponds to ṽ in Theorem 3.4.

Lemma 5.3  Let Assumption 3 be satisfied. Let L > 0 and uk ∈ L2(Ω) be given. Then 
(5.7) is solvable. In addition, there is �k+1 ≥ 0 such that for every solution uk+1 of 
(5.7) it holds

and uk+1 solves

Moreover, for almost all x ∈ Ω we have

and

Proof  Existence of solutions follows from Theorem  3.4. The properties of 
�k+1 ∶= −s , where s is as in Theorem 3.4, are consequences of Corollary 3.7 and 
Corollary 3.8. The claim (5.8) is a consequence of Corollary 3.8 and [15, Corollary 
3.9]. Finally, Corollary 3.5 implies (5.9). 	�  ◻

The iterates of the algorithm satisfy the following properties.

Theorem 5.4  Let Assumption 3 be satisfied. Suppose L > Lf  . Let (uk) be a sequence 
of iterates generated by Algorithm 1. Then it holds that: 

1.	 The sequences (uk) and (∇f (uk)) are bounded in L2(Ω) if 𝛼 > 0.
2.	 The sequence (f (uk) +

�

2
‖uk‖L2(Ω)) is monotonically decreasing and converging.

3.	
∑∞

k=0
‖uk+1 − uk‖2L2(Ω) < ∞.

Proof  These claims can be proven as in [15, Theorem 3.13]. 	�  ◻

Let us define the following sequence

Using Eq.  (5.8), we have the following estimate of (�k) , which is similar to [15, 
Lemma 3.12].

g(x, ũ(x)) − g(x, 0) = −
1

2(L + 𝛼)

(
Luk(x) − ∇f (uk)(x)

)2
,

�k+1(‖uk+1‖0 − �) = 0,

min
u∈L2(Ω)

f (uk) + ∇f (uk) ⋅ (u − uk) +
L

2
‖u − uk‖2L2(Ω) +

�

2
‖u‖2

L2(Ω)
+ �k+1‖u‖0.

(5.8)uk+1(x) ≠ 0 ⇒ |uk+1(x)| ≥
√

2�k+1

L + �

(5.9)|uk+1(x)|0 ⋅
(
−

1

2(L + �)

(
Luk(x) − ∇f (uk)(x)

)2
+ �k+1

)
≤ 0.

�k(x) ∶= |uk(x)|0.
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Lemma 5.5  Let (uk) be iterates of Algorithm 1. Then it holds

Proof  Let x ∈ Ω such that �k+1(x) ≠ �k(x) . Then |�k+1(x) − �k(x)| = 1 , and exactly 
one of uk+1(x) and uk(x) is zero. Suppose uk+1(x) = 0 and uk(x) ≠ 0 . Then 
|uk+1(x) − uk(x)| = |uk(x)| ≥

√

2�k
L+�

 . If uk+1(x) ≠ 0 and uk(x) = 0 then 
|uk+1(x)| ≥

√

2�k+1
L+�

 . And 
the claim is proven. 	�  ◻

Under the assumption that (�k) is bounded from below by a positive number, 
we can prove feasibility of weak limit points of the algorithm. In the general situ-
ation, it is not clear how to prove such a result as the map u ↦ ‖u‖0 is not weakly 
sequentially lower semi-continuous from L2(Ω) → ℝ.

Theorem 5.6  Let Assumption 3 be satisfied. Suppose L > Lf  . Let (uk) be a sequence 
of iterates generated by Algorithm 1. Suppose

where (�k) is as in Lemma 5.3.

Then 𝜒k → 𝜒̄ in L1(Ω) , and every weak sequential limit point ū of (uk) is feasible 
for the L0 constraint, i.e. ‖ū‖0 ≤ 𝜏.

Proof  Let 𝜆 ∶= lim infk→∞ 𝜆k > 0 . Then for all k sufficiently large, we have

The summability of ‖uk+1 − uk‖2L2(Ω) implies those of ‖�k+1 − �k‖L1(Ω) . Hence (�k) is 
a Cauchy sequence in L1(Ω) , 𝜒k → 𝜒̄ in L1(Ω) , and 𝜒̄ is a characteristic function. As 
(�k) is trivially bounded in L∞(Ω) , it follows 𝜒k → 𝜒̄ in Lp(Ω) for all p < ∞.

Let now (ukn) be a subsequence with ukn ⇀ ū in L2(Ω) . Let � ∈ L∞(Ω) . Since 
�k(x) ∶= |uk(x)|0 , we have ∫

Ω
(1 − �kn

)ukn� dx = 0 for all n. Passing to the limit 
in this equation yields ∫

Ω
(1 − 𝜒̄)ū𝜑 dx = 0 . Since � ∈ L∞(Ω) was arbitrary, this 

implies (1 − 𝜒̄)ū = 0 almost everywhere, which in turn implies |ū|0 ≤ 𝜒̄ almost eve-
rywhere, as both functions 𝜒̄ and |u|0 only attain the values 0 and 1. And it follows

and ū is feasible for the L0 constraint. 	�  ◻

Moreover, we can prove strong convergence under additional assumptions on 
∇f  . See also the related result [15, Theorem 3.18]. Here, we assume that ∇f  maps 
weakly to strongly converging sequences.

‖uk+1 − uk‖2L2(Ω) ≥ 2min(�k, �k+1)

L + �
‖�k+1 − �k‖L1(Ω).

lim inf
k→∞

𝜆k > 0,

‖uk+1 − uk‖2L2(Ω) ≥ �

L + �
‖�k+1 − �k‖L1(Ω).

‖ū‖0 ≤ ‖𝜒̄‖L1(Ω) = lim
k→∞

‖𝜒k‖L1(Ω) = lim
k→∞

‖uk‖0 ≤ 𝜏,



831

1 3

Optimal control problems with L0(Ω) constraints: maximum princi…

Theorem  5.7  Let Assumption  3 be satisfied. Suppose L > Lf  . Let us assume com-
plete continuity of ∇f  from L2(Ω) to L2(Ω) , i.e., for all sequences (vk) in L2(Ω) the 
following implication

holds. In addition, we require 𝛼 > 0.

Let (uk) be a sequence of iterates generated by Algorithm 1. Suppose

where (�k) is as in Lemma 5.3.

Then ukn ⇀ ū in L2(Ω) implies ukn → ū in L2(Ω) . In addition, for almost all x ∈ Ω 
the following condition is fulfilled

Proof  If uk+1(x) ≠ 0 then �uk+1(x) = −(∇f (uk)(x) + L(uk+1(x) − uk(x))) . This implies

Adding the equation (1 − �k+1)uk+1 = 0 , yields

Let now ukn ⇀ ū in L2(Ω) . Then ∇f (ukn ) → ∇f (ū) in L2(Ω) by complete conti-
nuity of ∇f  . In addition, uk+1 − uk → 0 in L2(Ω) by Theorem  5.4. The right-hand 
side in (5.12) converges strongly in L2(Ω) by Lemma 5.8 below, which implies the 
strong convergence ukn → ū in L2(Ω) . In addition, in the limit we obtain from (5.12) 
𝛼ū = −𝜒̄∇f (ū) . 	�  ◻

Let us compare the properties of limit points ū with the necessary optimality condi-
tions (5.2)–(5.4) according to Theorem 5.2. The above result only proves the impli-
cation (5.3) for limit points ū . It seems to be impossible to prove the remaining two 
conditions (5.2) and (5.4). An obvious choice for s in those formulas would be any limit 
point of (−�k) . Under the assumption (5.11), we would get s < 0 . However, it seems 
impossible to prove ‖ū‖0 = 𝜏 : the mapping u ↦ |u|0 is merely lower semicontinuous at 
u = 0 , so that we can only prove ‖ū‖0 ≤ 𝜏 . And it is not clear that the complementarity 
condition (5.2) is satisfied in the limit. In order to prove (5.4), a natural idea would be 
to pass to the limit in the condition (5.9). At best we can expect to get

(5.10)vk ⇀ v in L2(Ω) ⇒ ∇f (vk) → ∇f (v) in L2(Ω)

(5.11)lim inf
k→∞

𝜆k > 0,

ū(x) ≠ 0 ⇒ ū(x) = −
1

𝛼
∇f (ū)(x).

�k+1uk+1 = −�k+1

1

�
(∇f (uk) + L(uk+1 − uk)).

(5.12)�uk+1 = −�k+1(∇f (uk) + L(uk+1 − uk)).

|ū(x)|0 ⋅
(
−

1

2(L + 𝛼)
(Lū(x) − ∇f (ū)(x))2 − s

)
≤ 0.
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This is different to (5.4) because of the presence of the prox-parameter L > 0 in the 
inequality.

We close the section with the following auxiliary result, whis was used in the 
proof of Theorem 5.7. Note that an application of Hölder inequality implies strong 
convergence in Lp(Ω) only for p < 2.

Lemma 5.8  Let meas(Ω) < ∞ . Let sequences (�k) and (gk) be given such that 
‖�k‖L∞(Ω) ≤ 1 , 𝜒k → 𝜒̄ in L1(Ω) , and gk → ḡ in L2(Ω) . Then 𝜒kgk → 𝜒̄ ḡ in L2(Ω).

Proof  The sequences admit pointwise a.e. converging subsequences (gkn) , (�kn
) 

together with a dominating function a ∈ L2(Ω) with |gkn | ≤ a , see [3, Theorem 4.9]. 
Then 𝜒kn

gkn → 𝜒̄ ḡ in L2(Ω) by dominated convergence. A subsequence-subsequence 
argument finishes the proof. 	�  ◻
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