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Abstract
We study the use of inverse harmonic Rayleigh quotients with target for the stepsize 
selection in gradient methods for nonlinear unconstrained optimization problems. 
This not only provides an elegant and flexible framework to parametrize and rein-
terpret existing stepsize schemes, but  it also gives inspiration for new flexible and 
tunable families of steplengths. In particular, we analyze and extend the adaptive 
Barzilai–Borwein method to a new family of stepsizes. While this family exploits 
negative values for the target, we also consider positive targets. We present a con-
vergence analysis for quadratic problems extending results by Dai and Liao (IMA J 
Numer Anal 22(1):1–10, 2002), and carry out experiments outlining the potential of 
the approaches.

Keywords  Unconstrained optimization · Harmonic Rayleigh quotient · Gradient 
methods · Framework for steplength selection · ABB method · Hessian spectral 
properties
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1  Introduction

We study the unconstrained optimization problem
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for strictly convex quadratic and general nonlinear continuously differentiable func-
tions f ∶ ℝ

n
→ ℝ . We consider the popular gradient method

where gk = ∇f (xk) and 𝛽k > 0 is the steplength. It is convenient to introduce a sepa-
rate notation �k for the inverse of the stepsize �k , since both play important roles; �k 
corresponds to (harmonic) Rayleigh quotients, which are scalars providing second-
order information (on the Hessian).

As usual, write sk−1 = xk − xk−1 and yk−1 = gk − gk−1 . Two popular stepsizes 
are the Barzilai–Borwein (BB) steplengths [1]

We denote their inverses by �BB1
k

 and �BB2
k

 , respectively. In case of convex quadratic 
problems

where A is n × n symmetric positive definite (SPD), and b ∈ ℝ
n , the BB steps are 

the inverses of the Rayleigh quotient and harmonic Rayleigh quotient,

We refer to [2] for a nice recent review on various steplength options.
In this paper, we will consider a general framework for these and other step-

sizes by introducing a harmonic Rayleigh quotient including a target � . We 
recall the harmonic Rayleigh–Ritz extraction for matrix eigenvalue problems 
in Sect. 2. The general form of this extraction features a target � ∈ ℝ ∪ {±∞} . 
This target is analyzed and exploited in Sect. 3, to develop a new general frame-
work for all possible stepsizes. We will see that the BB stepsizes correspond 
to � = 0 or � = ±∞ . This may not only add towards a new understanding and 
interpretation of known strategies, but also suggests new competitive schemes. 
Section 4 closer studies the Adaptive Barzilai–Borwein method (ABB) [3], and 
provides a new theoretical justification for it. We also showcase the potential of 
the framework by introducing new families generalizing the ABB method. As is 
common (see, e.g., [2]) we first consider the convex quadratic problem. Conver-
gence results for this case, extending those of [4], are presented in Sect. 5. The 
extension of the harmonic steplength to general nonlinear problems is treated in 
Sect. 6. Finally, we carry out numerical experiments and summarize some con-
clusions in Sects. 7 and 8.

min
x∈ℝn

f (x)

xk+1 = xk − �k gk = xk − �−1
k

gk,

�BB1
k

=
sT
k−1

sk−1

yT
k−1

sk−1
, �BB2

k
=

yT
k−1

sk−1

yT
k−1

yk−1
.

(1)min
x∈ℝn

1

2
xTAx − bTx,

�BB1
k

=
sT
k−1

sk−1

sT
k−1

A sk−1
, �BB2

k
=

sT
k−1

A sk−1

sT
k−1

A2 sk−1
.
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2 � Harmonic extraction and harmonic Rayleigh quotients

The harmonic Rayleigh–Ritz extraction has been introduced in the context of 
eigenvalue problems (see, e.g., [5–8]) to extract promising approximate (inte-
rior) eigenpairs from a subspace. Consider the eigenproblem Ax = �x for a given 
square A. Although A does not necessarily need to be symmetric or real for the 
harmonic extraction method, in our optimization context we are interested in SPD 
matrices A.

Suppose that we wish to extract promising approximate eigenpairs from 
a low-dimensional search space U  for which the columns of U ∈ ℝ

n×d form an 
orthogonal basis, where usually d ≪ n . We are interested in finding approximate 
eigenpairs (�, u) ≈ (�, x) , where u is of the form u = Uc ≈ x , with c ∈ ℝ

d of unit 
2-norm. The standard Rayleigh–Ritz extraction imposes the Galerkin condition

This leads to d approximate eigenpairs (�j,Ucj) , for j = 1,… , d , obtained from the 
eigenpairs (�j, cj) of UTAU.

Denote the eigenvalues of A by 0 < 𝜆1 ≤ ⋯ ≤ 𝜆n . The standard Rayleigh–Ritz 
extraction enjoys a good reputation for exterior eigenvalues (see, e.g., [9]), 
which means the largest or smallest few eigenvalues, in our case of symmetric 
A. However, for interior eigenvalues near a target � ∈ (�1, �n) , the harmonic Ray-
leigh–Ritz extraction tends to produce approximate eigenvectors of better quality. 
This approach works as follows (see, e.g., [7, Sec. 4.4] for more details).

Let � be not equal to an eigenvalue; in the context of eigenvalue problems, � is 
typically chosen close to the eigenvalues of interest. Eigenvalues near � are exte-
rior eigenvalues of (A − �I)−1 , which is a favorable situation to impose a Galerkin 
condition. Therefore, the idea is to impose such a condition involving this shifted 
and inverted matrix. To avoid having to work with an inverse of a (potentially 
large) matrix, a modified Galerkin condition

is considered. We note that this is equivalent to the Galerkin condition 
(A − �I)−1 u − (� − �)−1 u ⟂ (A − �I)U for u ∈ (A − �I)U , which considers this 
extraction from a different viewpoint.

This implies that the quantities of interest are (�̃j, c̃j) , for j = 1,… , d , the eigen-
pairs of the pencil (UT (A − �I)AU, UT (A − �I)U) ; and the associated vectors 
ũj = Uc̃j . This means that the relation between a harmonic Ritz vector ũ = Uc̃ 
and the corresponding harmonic Ritz value is

We will exploit this quantity in the next section to introduce a general harmonic 
framework for the choice of steplengths.

AUc − �Uc ⟂ U.

(A − �I)−1 U c̃ − (�̃ − �)−1 U c̃ ⟂ (A − �I)2 U

(2)�̃ =
ũ
T
(A − �I)2 ũ

ũ
T
(A − �I) ũ

+ � =
ũ
T
(A − �I)A ũ

ũ
T
(A − �I) ũ

.



78	 G. Ferrandi et al.

1 3

3 � A harmonic framework for stepsize selection

Inspired by (2), we now propose and study the use of harmonic Rayleigh quotients 
of the form

in the context of gradient methods, where the �k are targets that may be varied 
throughout the process. In contrast to the use of the target for eigenvalue problems, 
where the �k are typically selected inside or very close to the interval [�1, �n] (as 
discussed in Sect. 2), we investigate strategies with �-values outside this interval, as 
well as schemes where these targets may sometimes be inside.

The stepsize we consider is given by the inverse harmonic Rayleigh quotient

We will refer to these steps as “TBB steps”: Barzilai–Borwein type of steps using a 
harmonic Rayleigh quotient with target �k . In the rest of this section we will consider 
various aspects of gradient methods with TBB steps as in (4). In particular, we will 
discuss strategies for picking �k in Sects. 3.7 and 4.3.

3.1 � Properties of the TBB stepsize

In this section, we discuss some properties of the TBB stepsize for strictly convex 
quadratic functions, i.e., when the Hessian matrix A is SPD and thus sTAs > 0 for 
any s ≠ 0 . Then �BB1

k
≤ �BB2

k
 and therefore �BB2

k
≤ �BB1

k
 ; in fact (see, e.g., [2])

The following proposition summarizes several basic but essential properties of step-
size (4). To ease the notation, we drop the index k whenever it is clear that we are 
referring to the same iteration in the gradient method.

Proposition 1  Let s ∈ ℝ
n be not equal to a multiple of an eigenvector of A, SPD. The 

function �(�) = sT (A−�I) s

sT (A−�I)A s
 enjoys the following properties. 

	 (i)	 �(�) is defined for all � ∈ ℝ with exception of �BB2 =
sTA2 s

sTA s
 , and is a strictly 

monotonically decreasing function on (−∞, �BB2) and (�BB2,∞).
	 (ii)	 Alternative expressions are �(�) = �BB1

�−�BB1

�−�BB2
= �BB2

�BB1�−1

�BB2�−1
.

	 (iii)	 �(0) = �BB2 and lim
�→±∞

�(�) = �BB1.
	 (iv)	 For −∞ < 𝜏 < 0 , it holds 𝛽BB2 < 𝛽(𝜏) < 𝛽BB1.

(3)�k(�k) =
sT
k−1

(A − �kI)A sk−1

sT
k−1

(A − �kI) sk−1

(4)�k(�k) =
sT
k−1

(A − �kI) sk−1

sT
k−1

(A − �kI)A sk−1
.

(5)�BB1
k

∕ �BB2
k

= �BB2
k

∕ �BB1
k

= cos2(sk−1,Ask−1).
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	 (v)	 For 0 < 𝜏 < 𝜆1 , we have 1−𝛽
BB1𝜆1

1−𝛽BB2𝜆1
⋅ 𝛽BB2 < 𝛽(𝜏) < 𝛽BB2.

	 (vi)	 For 𝜏 > 𝜆n , it holds that 𝛽BB1 < 𝛽(𝜏) <
𝜆n−𝛼

BB1

𝜆n−𝛼
BB2

⋅ 𝛽BB1.
	(vii)	 � is a bijection from ℝ�{�BB2} to ℝ�{�BB1} , and from ℝ ∪ {±∞} − {�BB2} to 

ℝ.

Proof  The derivative of � with respect to � is given by

The numerator is equal to ‖As‖2 ‖s‖2 cos2(As, s) − ‖As‖2 ‖s‖2 < 0 , since s is 
assumed to be not equal to an eigenvector; part (i) follows from this. Item (ii) is 
obtained by factoring out sTs in the numerator, and sTAs in the denominator. Part (iii) 
follows directly from (ii). Since � is defined everywhere and strictly decreasing on 
the interval (−∞, 0) we get item (iv). Part (v) is derived from (ii) by the fact that � 
on the interval (0, �1) is defined everywhere and strictly decreasing. The factor 
1−�BB1�1
1−�BB2�1

 is less than one, since 𝛽BB1, 𝛽BB2 < 𝜆−1
1

 (again by the fact that s is not a mul-
tiple of an eigenvector) and 𝛽BB2 < 𝛽BB1 . Item (vi) follows from the fact that � is 
defined everywhere and strictly decreasing on the interval (�n,∞) . The factor �n−�

BB1

�n−�
BB2

 
is greater than one in view of 𝛼BB1, 𝛼BB2 < 𝜆n and 𝛼BB1 < 𝛼BB2 . 	�  ◻

It is particularly item (vii) that implies that the harmonic Rayleigh quotient with 
target forms a framework or parametrization for all possible steplengths: together 
with target � = ±∞ , we have a one-to-one relation between targets in ℝ ∪ {±∞} 
and any real stepsize (positive or negative). We stress that, because of the pole of 
� in � = �BB2 , the stepsize might be unbounded for � ∈ (�1, �n) , which evidently 
is unwanted. Note that in the (unlikely) case that s is equal to an eigenvector cor-
responding to eigenvalue � , �(�) is equal to the constant function �(�) ≡ �−1 (with 
exception of the “hole” at � = � ). Figure 1 gives an impression of the properties 
in Proposition 1 for a typical situation.

For completeness, we also list some characteristics of the inverse stepsize �(�) 
(see (3)), the harmonic Rayleigh quotient.

Proposition 2  Let s ∈ ℝ
n be not equal to a multiple of an eigenvector of A, SPD. 

	 (i)	 The function �(�) = sT (A−�I)A s

sT (A−�I) s
 is defined for all ��{�BB1} , and is a strictly 

monotonically increasing function on the intervals (−∞, �BB1) and (�BB1,∞)

.
	 (ii)	 Alternative expression are �(�) = �BB1 �−�BB2

�−�BB1
= �BB2 �BB2 �−1

�BB1 �−1
.

	 (iii)	 lim
�→±∞

�(�) = �BB1 and �(0) = �BB2.

Proof  The derivative of � with respect to � satisfies

��(�) =
(sTA s)2 − (sTA2 s) (sTs)

(sT (A − �I)A s)2
.
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The result now follows from a reasoning similar to Proposition 1. Part (ii) can be 
derived by factoring out a factor of sTs , sTAs , or sTA2s from the numerator or denom-
inator. Item (iii) is straightforward. 	� ◻

3.2 � Sensitivity of the stepsize with respect to the target

We now study the sensitivity of the steplength �(�) as function of � , in particular 
around � = 0 and � = −∞ , which correspond to �BB1 and �BB2 , respectively. We first 
consider the situation of small � ; recall that �(0) = �BB2.

Proposition 3  For � → 0 , we have up to higher-order terms in �

Proof  For � → 0 it holds that (cf. Proposition 1(ii))

	�  ◻

��(�) =
(sTA2 s) (sTs) − (sTA s)2

(sT (A − �I) s)2
.

�(�) − �BB2

�BB2
= −� (�BB1 − �BB2).

�(�) = �BB2 ⋅
1 − � �BB1

1 − � �BB2
= �BB2 ⋅ (1 − � (�BB1 − �BB2)) +O(�2).

τ = αBB1

α(τ) = αBB1

τ = αBB2

β(τ) = βBB1

inverse stepsize α(τ) stepsize β(τ)

−0.05 0.00 0.05 0.10 0.15 −1 0 1 2

−25
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Fig. 1   Harmonic Rayleigh quotient (left) and its inverse, the stepsize (right), as a function of � for the 
convex quadratic case A = diag(

1

100
,

1

99
,… ,

1

2
, 1) , where s = (1,… , 1)T
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In agreement with Fig. 1 and Proposition 1, an appreciable interpretation of this 
result is that for small negative � , the stepsize �(�) increases from �BB2 (for � = 0 ) 
towards the larger stepsize �BB1 (corresponding to � = −∞ ). Moreover, the rate of 
change for � → 0 is asymptotically proportional to the difference between �BB1 and 
�BB2 . As a side note, from (5) we have that �BB1 − �BB2 = �BB2 tan2(s, y).

Next, let us investigate the asymptotic situation � → ±∞ . To this end, we exploit 
the transformed variable � = �−1 and consider the expression 
�̂(�) ∶= �(�−1) = �(�) =

� sTA s−sT s

� sTA2 s−sTA s
 for � → 0.

Proposition 4  For � → ±∞ , we have up to higher-order terms in �−1

Proof  For � → 0 it holds that (cf. Proposition 1(ii))

	�  ◻

Again, this result has a nice meaning: for small negative �−1 (i.e., large negative 
� ), the stepsize �(�−1) decreases from �BB1 (for �−1 = 0 ) towards the smaller step-
size �BB2 (associated with � = 0 ). Moreover, the more �BB1 differs from �BB2 , the 
faster �k(�−1) decreases as function of �−1 . For small positive �−1 (which means large 
positive � ), the steplength increases, and thus gets larger than �BB1 ; cf.  Fig.  1. In 
Sects. 3.7, 4.3 and 7 we will discuss and experiment with strategies involving both 
negative and positive values of �.

3.3 � Pseudocode for gradient method with TBB steps

In Algorithm 1 we give a pseudocode for a gradient method based on TBB steps. 
We exploit a relative stopping criterion in line  4, which may be replaced by any 
other reasonable stopping rule.

Clearly, the choice of targets �k in Line 5 is a crucial aspect of the method. We 
discuss some options for this particularly in Sects. 3.7 and 4.3. In Sect. 6 we also 
consider practically important details such as the choice of �0.

�(�) − �BB1

�BB1
= −�−1 (�BB1 − �BB2).

�̂(�) = �BB1 ⋅
1 − � �BB1

1 − � �BB2
= �BB1 ⋅ (1 − � (�BB1 − �BB2)) +O(�2).
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3.4 � Secant conditions

In this subsection we consider an equivalent formulation of the TBB stepsize

where yk−1 = Ask−1 ; this will be useful in Sect.  6 for generic problems where the 
Hessian changes over the iterations.

We recall from [1] that a justification of the BB steps is the fact that they approxi-
mate the Hessian matrix by a scalar multiple of the identity, as follows. It is reason-
able that an approximation Bk to the Hessian approximately satisfies the secant equa-
tion yk−1 = Bksk−1 . The BB steps solve the secant equation in a least-squares sense 
[1]:

which results in an approximation of the form Bk = �I to the Hessian, where � is 
�BB1
k

 or �BB2
k

 , respectively.
As the TBB step (4) involves the shifted matrix A − �I (where � may vary over 

the iterations), this suggests us to consider a shifted secant equation

By replacing yk−1 by yk−1 − � sk−1 and � by � − � in the second secant condition 
in (7), we obtain that the TBB step satisfies a modified secant condition, which is 
equivalent to the second equation of (7) for � = 0 , but not equivalent to the first or 
second one for any other target value.

Proposition 5  Let � ≠ �BB1
k

=
yT
k−1

sk−1

sT
k−1

sk−1
 . Then the inverse TBB step �k = �−1

k
 satisfies

(6)�k(�) =
sT
k−1

(yk−1 − �k sk−1)

yT
k−1

(yk−1 − �k sk−1)
,

(7)�BB1
k

= argmin
�

‖yk−1 − � sk−1‖, �BB2
k

= argmin
�

‖sk−1 − �−1 yk−1‖,

(8)yk−1 − � sk−1 = (Bk − �I) sk−1.
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Proof  The result follows by setting to zero the derivative of the square of the objec-
tive function in (9) with respect to � , which gives

	�  ◻

In addition to this interpretation as modified secant condition, when the target 
is located outside [�1, �n] , we can also think of the TBB step as the scalar least 
squares solution to the following problem involving a certain weighted norm, as fol-
lows. Define the standard weighted norm associated with a given SPD matrix W by 
‖x‖2

W
∶= xTWx.

Proposition 6  The least squares solution to the weighted secant equation satisfies

Proof  The result follows by setting −yT
k−1

Wsk−1 + � sT
k−1

Wsk−1 , the derivative of 
1

2
‖yk−1 − � sk−1‖2W with respect to � , to zero. 	�  ◻

The BB1 and BB2 steps can be obtained from this proposition by taking 
W = I and W = A , respectively; cf. (7). The TBB step can be derived by choosing 
W = A − �I for 𝜏 < 𝜆1 or W = �I − A for 𝜏 > 𝜆n , which gives an SPD weight matrix 
in both cases.

In conclusion, the BB1, BB2, and TBB steps approximate the Hessian by a posi-
tive scalar multiple of the identity of the form Bk = �kI ≈ A . The scalars satisfy one 
or both (weighted) secant conditions.

3.5 � Regularization

Another viewpoint on harmonic steps (4) with a target � outside [�1, �n] is as regu-
larization of the Hessian. First consider taking a shift 𝜏 < 0 . As we replace A by 
A − �I for 𝜏 < 0 this yields a “more positive definite” shifted Hessian. As one indi-
cator, the condition number

of A is modified to �n−�
�1−�

 by this shift. Consider the function � ∶ (−∞, 0] → [1,∞) 
given by �(t) = �n−t

�1−t
 . Since this function is strictly monotonically decreasing on the 

domain (−∞, 0] , we conclude that 𝜅(A − 𝜏I) < 𝜅(A) . More precisely, we have the 
following first-order estimate.

(9)�k(�) =
yT
k−1

(yk−1 − � sk−1)

sT
k−1

(yk−1 − � sk−1)
= argmin

�
‖sk−1 − (� − �)−1(yk−1 − � sk−1)‖.

(yk−1 − � sk−1)
T (sk−1 − (� − �)−1(yk−1 − � sk−1)) = 0.

(10)argmin
�

‖yk−1 − � sk−1‖W =
yT
k−1

W sk−1

sT
k−1

W sk−1
.

(11)�(A) = �n ∕ �1
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Proposition 7  For � → 0 we have

Proof  Straightforward using the linear approximation �(t) ≈ �(0) + ��(0) t . 	�  ◻

In fact, for 𝜏 < 0 , the shifted condition number �(A − �I) may be considerably 
smaller than �(A) , especially if the Hessian is nearly singular. In conclusion, also in 
view of (8) and Proposition 5, harmonic stepsizes with 𝜏 < 0 may be viewed as sat-
isfying a secant condition on a regularized Hessian. Note that lim

�→−∞
�(A − �I) = 1.

Moreover, for 𝜏 > 𝜆n , we have a similar situation. It is not difficult to show that 
�(A − �I) = �(A) when � = �n + �1 (which is usually close to �n ). For 𝜏 > 𝜆n + 𝜆1 , 
the condition number of the shifted matrix A − �I decreases monotonically, with the 
analogous property lim

�→∞
�(A − �I) = 1.

3.6 � Connections with other stepsizes

We would like to point out that quotients of the form

for certain polynomials p, have also been considered in different contexts in [10, 
(2.6)], [8], and [11]. The harmonic Rayleigh quotient (3) is a special case of (12), 
but a very practical instance for several reasons. First, it gives a clear connection 
with the harmonic Rayleigh–Ritz extraction for eigenvalue problems, as seen in 
Sect. 2. Second, as we have seen in Sect. 3.1, by taking first-order polynomials p in 
� , we have a one-to-one correspondence between the target � and the stepsize �.

The introduction of an adjustable parameter in the stepsize has been first pro-
posed in [12], where the authors present a convex combination of BB1 and BB2 
steps,

where �k ∈ [0, 1] . Note that �CON
k

(0) = �BB2
k

 and �CON
k

(1) = �BB1
k

 . Its inverse mini-
mizes a linear combination of secant conditions, i.e.,

In [12], several strategies are considered to choose �k : fixed, randomly from the uni-
form distribution over [0, 1], or imitating the behavior of the cyclic gradient meth-
ods (cf. [12, pp. 56–57] and references therein). In the next section, we show a link 
between this convex combination steplength and the TBB step. This not only sug-
gests relevant strategies to select �k , or rather �k for our TBB methods, but also gives 
a far wider range of options.

�(A − �I) = �(A) +
�n − �1

�2
1

⋅ � +O(�2).

(12)
sT p(A)A s

sT p(A) s
,

�CON
k

(�k) = �k �
BB1
k

+ (1 − �k) �
BB2
k

,

argmin
�

‖� (� sk−1 − yk−1) + (1 − �) (sk−1 − �−1 yk−1)‖.
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3.7 � Strategies to select targets

There is a one-to-one correspondence between the parameter �k in Sect. 3.6 and the 
target �k in the TBB stepsize: with the choice

the corresponding TBB step coincides with the stepsize in [12]: �k(�k) = �CON
k

(�k) . 
In addition, since �k ∈ [0, 1] , the corresponding target values lie in �k ∈ [−∞, 0] . 
From Proposition 1 we conclude that �BB2

k
≤ �CON

k
(�k) ≤ �BB1

k
.

Given the relation between �k and �k , all strategies mentioned in [12] correspond 
to negative targets �k for the TBB steplengths (4). In the next section, we analyze new 
schemes for the choice of negative targets; here we focus on positive targets �k . As this 
yields steplengths 𝛽k(𝜏k) > 𝛽BB1

k
 , this is not equivalent to any of the stepsizes deter-

mined by �k in [12]. Inspired by the expression in (13), where the target is a negative 
factor times the inverse BB2 stepsize �BB2

k
 , we consider positive targets of the form

This gives us an affine (rather than convex) combination of BB1 and BB2:

This new stepsize is located in the right branch of the hyperbola (right plot of 
Fig. 1). We will make use of the following bounds for the inverse stepsize:

As in (13), we may let � vary through the iterations. In the numerical experiments, 
we will consider the strategy �1 = 0 and

Since �k ≥ k �1 for all k, the sequence {�k} converges to infinity; therefore, the corre-
sponding inverse stepsizes �k(�k) behave asymptotically as �BB1

k
 . In the long run, 

there exists a 𝜌 > 1 such that �k(�k) ∈ [
�−1

�
�1, �n] for all k > 𝜌 − 1.

The inverse stepsizes obtained from (14) and (15) are bounded from below by a 
multiple of �BB1

k
 , which will play a key role in the global convergence of the resulting 

gradient method in Sect. 5.

(13)�k = −
�k

1 − �k
�BB2
k

,

(14)𝜏k = 𝜌 𝛼BB2
k

, 𝜌 > 1.

�k(�k) =
�

�−1
�BB1
k

−
1

�−1
�BB2
k

.

𝛼k(𝜏k) =
𝜌−1

𝜌−cos2(sk−1, yk−1)
𝛼BB1
k

∈ [
𝜌−1

𝜌
𝛼BB1
k

, 𝛼BB1
k

] ⊆ [
𝜌−1

𝜌
𝜆1, 𝜆n].

(15)�k = k �BB2
k

, for k = 2, 3,… .
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4 � An analysis and extension of the ABB scheme

We now present an analysis and “continuous extension” of the ABB method [3]. We 
propose a new harmonic family of stepsizes, using various options for the target �k 
throughout the process. These strategies aim to retain the advantages of the ABB 
method, while being more flexible and tunable than the original approach.

The motivations for this adaptation are the following. First, it is a popular method. 
Second, the method contains a threshold parameter � , the choice of which may be 
seen as a bit arbitrary. Third, it is a good showcase of the possibilities that the har-
monic framework offers.

We first briefly recall the ABB approach. The stepsize is selected as

Here, � is a user-selected parameter with a common choice � = 0.8 ; see, e.g., [2]. 
As in the previous section, we study the strictly convex quadratic case, so that 
�BB2
k

≤ �BB1
k

 . The ABB scheme adaptively picks BB1 and BB2 steps based on the 
value of �BB2

k
∕ �BB1

k
= cos2(sk−1, yk−1).

The idea of the ABB stepsize is to take a larger step when cos2(sk−1, yk−1) ≈ 1 , 
and a smaller step when this is not the case. If cos2(sk−1, yk−1) is close to 1, this 
means that gk−1 (or, equivalently, sk−1 ) is close to an eigenvector of A correspond-
ing to an eigenvalue 𝜆 > 0 . Thus, as we will see in Sect. 5, by the step �BB1

k
 we are 

particularly reducing the gradient component corresponding to � significantly. When 
we are far from an eigenvalue, we prefer to take shorter steps, such as �BB2

k
 , since 

we aim to reduce several gradient components; this fosters the gradient method to 
take a new longer step in the next iterations. There exist several variants of the ABB 
method; the interested reader may refer to [3, 13, 14] for such ideas.

4.1 � A theoretical foundation for the ABB method

As discussed, a key statement for the ABB method is: “if cos(sk−1, yk−1) ≈ 1 , then 
sk−1 is close to an eigenvector” (see, e.g., [2, pp.  179–180]). The following new 
result quantifies this statement for the quadratic case. We need the assumption that 
� is a simple eigenvalue, since otherwise an eigenvector is not uniquely defined. We 
consider the situation cos2(s,As) ≈ 1 , so that sin(s,As) is small.

Proposition 8  Let (�, x) be an eigenpair of A, where � is a simple eigenvalue. Let 
s ≈ x be an approximate eigenvector. Then, up to higher-order terms in ∠(s, x),

Proof  Without loss of generality we may assume that A = diag(�,Λ) , where Λ is 
an (n − 1) × (n − 1) diagonal matrix containing all eigenvalues different from � , and 

𝛽ABB
k

=

{
𝛽BB2
k

, if 𝛽BB2
k

< 𝜂 𝛽BB1
k

,

𝛽BB1
k

, otherwise.

𝜆

max𝜆i≠𝜆 |𝜆i − 𝜆| ⋅ sin(s,As) ≲ tan(s, x) ≲
𝜆

min𝜆i≠𝜆 |𝜆i − 𝜆| ⋅ sin(s,As).
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that s is of the form [1, z]T , a perturbation of x , the first canonical basis vector. This 
means tan(s, x) = ‖z‖ ; our goal is to connect this quantity to ∠(s,As) via sin(s,As) . 
We have As = [�, Λ z]T , and

We now twice use the Taylor expansion (1 − t)−1 = 1 + t +O(t2) for small t, so that

This yields that

Multiplication by 𝜆 > 0 and omitting O(‖z‖4)-terms gives ‖Λ z − �z‖ = � sin(s,As) . 
The result now follows from

	�  ◻

Next, we investigate the sensitivity of the BB steps for quadratic problems 
where the direction is close to an eigenvector.

Proposition 9  Let s be an approximation of an eigenvector x corresponding to a sim-
ple eigenvalue � . Up to higher-order terms in ∠(s, x) , we have

Proof  With the same notation as in the proof of Proposition 8, we have for the BB1 
step

and for the BB2 step

	�  ◻

cos2(s,As) =
(sTAs)2

‖s‖2 ‖As‖2
=

(1 + �−1 zTΛ z)2

(1 + ‖z‖2) (1 + �−2 ‖Λ z‖2)
.

(1 + ‖z‖2)−1 = 1 − ‖z‖2 +O(‖z‖4),
(1 + �−2 ‖Λ z‖2)−1 = 1 − �−2 ‖Λ z‖2 +O(‖z‖4).

sin
2(s,As) = 1 − (1 + 2�−1 zTΛ z) (1 − ‖z‖2) (1 − �−2 ‖Λ z‖2) +O(‖z‖4)

= ‖z‖2 + �−2 ‖Λ z‖2 − 2�−1 zTΛ z +O(‖z‖4)
= ‖z − �−1 Λ z‖2 +O(‖z‖4).

min
�i≠�

��i − �� ‖z‖ ≤ ‖Λ z − �z‖ ≤ max
�i≠�

��i − �� ‖z‖.

|𝛽BB1
k

− 𝜆−1|
𝜆−1

≲
maxi |𝜆i − 𝜆|

𝜆
⋅ tan2(s, x),

|𝛽BB2
k

− 𝜆−1|
𝜆−1

≲
maxi |𝜆i (𝜆i − 𝜆)|

𝜆2
⋅ tan2(s, x).

s
T
s

sTA s
= �−1

1 + z
T
z

1 + �−1 zTΛ z
= �−1 (1 + z

T (1 − �−1Λ) z) +O(‖z‖4),

s
TA s

sTA2 s
=

� + z
TΛ z

�2 + zTΛ2 z
= �−1 (1 + z

T�−1Λ (I − �−1Λ) z) +O(‖z‖4).
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Comparing these two upper bounds, we conclude that the one for the BB2 steps may 
be larger by a factor �n∕� , which is close to �(A) for small � and may therefore be very 
large. As a result, one interpretation of this proposition is that, indeed, it may be a good 
idea to take BB1 steps rather than BB2 steps if s is close to an eigenvector, since BB2 
steps are more sensitive with respect to perturbations in that direction, in view of the 
extra factor in the upper bound. This seems especially relevant for small � , correspond-
ing to large stepsizes. Therefore, this result forms a clear mathematical motivation for 
the ABB scheme.

4.2 � Sensitivity of ˇ(�) with respect to s

The following result is an extension of Proposition 9 to the harmonic step with tar-
get (4). We will see that it reduces to Proposition 9 in the case of � = 0 or � → ±∞.

Proposition 10  Let s be an approximation of an eigenvector x corresponding to a 
simple eigenvalue � . Up to higher-order terms in ∠(s, x) , we have

Proof  With the notation as in Proposition 9, and using similar techniques we get

	�  ◻

Interestingly, the factor |�i − �| ∕ |� − �| converges to 1 for � → ±∞ , which 
reduces to the first inequality in Proposition 9; this corresponds to the BB1 step, the 
inverse Rayleigh quotient. When � → 0 , this factor converges to that in the second 
inequality in Proposition 9; this corresponds to the BB2 step, the inverse harmonic 
Rayleigh quotient for zero target.

4.3 � A new family of stepsizes

The ABB strategy may be viewed as “discrete”, in the sense that just two types of 
stepsizes are possible: the BB1 or the BB2 step. We will now propose a new “con-
tinuous” variant of ABB parameterized by choosing appropriate �k . We design this 
strategy to have a similar behavior as ABB: when cos2(sk−1, yk−1) ≈ 1 , the steps 
are close to the BB1 step, while the steps should be close to the BB2 step when 
cos2(sk−1, yk−1) ≈ 0 . Therefore, we are interested in a function of cos(sk−1, yk−1) 
such that when �k → −∞ we recover BB1, while �k = 0 yields the BB2 step. One 
choice to attain this is to use a cotangent function:

|𝛽(𝜏) − 𝜆−1|
𝜆−1

≲ max
i

|𝜆i − 𝜏| ⋅ |𝜆i − 𝜆|
|𝜆 − 𝜏| ⋅ 𝜆 ⋅ tan2(s, x).

�(�) =
� − � + z

T (Λ − �I) z

� (� − �) + zTΛ (Λ − �I) z

= �−1 (1 + (� − �)−1 zT (Λ − �I) (I − �−1Λ) z) +O(‖z‖4).

�k = − cot(sk−1, yk−1).
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Indeed, this choice has the two types of desired asymptotic behavior. To further tune 
the speed by which we approach the two BB steps when cos(sk−1, yk−1) approaches 0 
or 1, we will also introduce two extra parameters, and consider

for  q, r > 0 . For example, if we want our gradient method to have shorter steps more 
often than long ones, we may keep r = 1 but select a higher value of q, e.g., q = 2 . 
This mimics the effect of setting � relatively close to 1, as it is done in [2]. The fol-
lowing result ensures that this “cotangent step” (16) indeed may be regarded as a 
continuous extension of the ABB step, having similar properties for ∠(s, y) close to 
0 or �∕2.

Proposition 11  For q, r > 0 , consider �(�) as in (4), where � is defined by (16). We 
have that �(�) → �BB1 when ∠(s, y) → 0 and �(�) → �BB2 when ∠(s, y) → �∕2 . 
Moreover, �(�) is a decreasing function of ∠(s, y).

Proof  Since sin is strictly increasing and cos is strictly decreasing on (0, �
2
) , the 

function � defined by (16) is a strictly increasing function of ∠(s, y) , ranging from 
−∞ for ∠(s, y) → 0 to 0 for ∠(s, y) = �

2
 . Therefore, in combination with Sect. 3.1, 

we conclude that � decreases from �BB1 to �BB2 . 	�  ◻

We point out that in the quadratic case the targets (16) are negative, which 
implies that the corresponding stepsize has the same bounds as �CON

k
 in Sect. 3.7: 

�BB1
k

≤ �k(�k) ≤ �BB2
k

 . We will test various choices for q, r > 0 in the experiments 
in Sect. 7.

5 � Convergence analysis

In this section, we extend a few results on BB steps for strictly convex quadrat-
ics to the TBB step with the choices for the target �k described in Sects. 3.7 and 
4.3. Global convergence of the gradient method with BB steps has been proven 
by Raydan [15] for strictly convex quadratic functions. Dai and Liao [4] and Dai 
[16] show R-linear convergence of the method for a class of BB stepsizes. We fol-
low [16, Thm. 4.1] and [4, Thm. 2.5] to extend the results to the TBB steps.

Before stating the assumptions that the TBB stepsize must satisfy, we intro-
duce some expressions that will be useful for the following results. Since the 
Hessian is fixed through the iterations, it is sensible to decompose the gradient 
along an orthonormal basis of eigenvectors of A. Let v1,… , vn be the (orthonor-
mal) eigenvectors associated with the eigenvalues �1,… , �n . The gradient can be 
expressed as linear combination of these eigenvectors (cf., e.g., [4, (2.2)])

(16)�k = −
cosq(sk−1, yk−1)

sinr(sk−1, yk−1)
,
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Therefore, the TBB step expressed in the eigenvalues of A and the �k−1
i

 is

provided the denominator is nonzero. In particular, for � → ±∞ , this stepsize con-
verges to the BB1 stepsize, which is expressed as (cf., e.g., [4, Eq. (2.18)])

For strictly convex quadratic functions, we have the following recursive formula for 
the gradients gk and, as a consequence, for their coefficients (cf., e.g., [15, Eq. (8)])

Equations (19)–(20) can also be applied to the error ek = xk − A−1b and its compo-
nents ek

i
 in the directions of the eigenvectors. Using these equations, the following 

results can be obtained for the error components as well. The only complication is 
that higher powers of the eigenvalues appear:

since �ksk = Aek for all k. This expression extends [15, Eq.  (12) and p.  325]. To 
prove the convergence of the gradient method for strictly convex quadratic func-
tions, it is sufficient to show that ‖gk‖ → 0 . Since we chose an orthonormal basis, 
‖gk‖2 =

∑
i(�

k
i
)2 and thus we aim to show �k

i
→ 0 for i = 1,… , n . We remark that 

working with the �k
i
 is equivalent to assuming that our Hessian matrix A is diagonal.

5.1 � Assumptions for the TBB stepsize

We state the assumptions on the TBB stepsize, needed to get R-linear convergence. 
We adapt [16, Property A] to the TBB steplengths proposed in Sects. 3.7 and 4.3:

Assumption 1  The inverse stepsize �k satisfies Assumption 1 if there exist positive 
constants �low ∈ (

1

2
, 1] , �up ≥ 1 and M2 such that, for any k, 

	 (i)	 �low ⋅ �1 ≤ �k ≤ �up ⋅ �n;

gk =

n∑

i=1

�k
i
vi.

(17)�k(�) =

∑
i(�

k−1
i

)2 �i (�i − �)
∑

i(�
k−1
i

)2 (�i − �)
,

(18)�BB1
k

=

∑
i (�

k−1
i

)2 �i
∑

i (�
k−1
i

)2
.

(19)gk+1 = (I − �kA) gk,

(20)�k+1
i

= (1 − �k�i) �
k
i
.

�k(�) =

∑
i (e

k−1
i

)2 �3
i
(�i − �)

∑
i (e

k−1
i

)2 �2
i
(�i − �)

,
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	 (ii)	 for any 1 ≤ � ≤ n − 1 and 𝜀 > 0 , if 
∑�

i=1
(�k−1

i
)2 ≤ � and (�k−1

�+1
)2 ≥ M2 � , then 

�k ≥
�low

�low+1∕2
�
�+1.

[16, Property A] also includes retards in the BB steps, but, as we are not inter-
ested in retards in this paper, we will not include them to ease the notation in what 
follows. The interested reader is referred to [10] for the definition of BB steps with 
retards, and to [16] for the proof of R-linear convergence under this property. Sec-
ondly, we note that [16, Property A] requires �low = 1 , while we allow a looser lower 
bound for the inverse stepsize. In other words, admissible stepsizes are larger than 
the largest eigenvalue of A−1 . Finally, our upper bound in (i) has a more specific 
shape than the one set in [16, Property A], which is some M1 ≥ �1 . This will enable 
us to express some bounds as a function of the condition number of A. Given all the 
differences between Assumption 1 and [16, Property A], it is worthwhile to analyze 
the new situation.

We show that targets (14), (15), and (16) all lead to a stepsize that satisfies 
Assumption 1. In addition, we show a useful bound for the (� + 1) st gradient com-
ponent. Analogous proofs can be found in, e.g, [16, Corollary 4.2] or [15, Lemma 
2]. First notice that, with these choices for the target, for k sufficiently large:

for certain 0 < 𝜉low ≤ 1 and �up ≥ 1 . Consequently,

Lemma 12  Let the inverse stepsize �k(�k) satisfy (21) with 1
2
< 𝜉low ≤ 1 and �up ≥ 1 . 

Then such stepsize satisfies Assumption 1. In addition, given k, there exists a con-
stant c ∈ (0, 1) such that

Proof  Part (i) of Assumption  1 immediately follows from the bounds on the 
BB1 step. Given the hypotheses in (ii) of Assumption  1, Equation  (18) and 
M2 = (�low −

1

2
)−1 , it follows that

Since �k(�k) ≤ �up �n,

(21)�low ⋅ �BB1
k

≤ �k(�k) ≤ �up ⋅ �n

(�up)−1 ⋅ �−1
n

≤ �k(�k) ≤ �−1
low

⋅ �BB1
k

.

(22)|�k+1
�+1

| ≤ c |�k
�+1

|.

�k(�k) ≥ �low

∑n

i=1
(�k−1

i
)2�i

∑n

i=1
(�k−1

i
)2

≥ �low �
�+1

∑n

i=�+1
(�k−1

i
)2

∑n

i=�+1
(�k−1

i
)2 + �

≥ �low �
�+1

(�low −
1

2
)−1�

(�low −
1

2
)−1� + �

=
�low

�low +
1

2

�
�+1.

1 −
�low +

1

2

�low
≤ 1 − �

�+1 �k(�k) ≤ 1 −
�
�+1

�up �n
.
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Given (20), this implies |�k+1
�+1

| ≤ c |�k
�+1

| for constant 
c ∶= max{(2𝜉low)

−1, 1 − 𝜆
�+1 (𝜉

up 𝜆n)
−1} < 1 . 	�  ◻

Remark 13  If �k = � �BB2
k

 (cf. (14)), Lemma 12 does not hold for all the values of � : 
we must restrict ourselves to 𝜌 > 2 . Nevertheless, in the non-quadratic case, the gra-
dient method is endowed with a line search, where bounds on the stepsize are pro-
vided by the user (see, e.g., [17] and Sect. 6). In this context, we may try also � ≤ 2 , 
which corresponds to 𝜉low <

1

2
.

5.2 � Bounds on gradient components

We establish two bounds on the gradient components. To do so, the bounds in 
Assumption 1 are used, with an appropriate restriction on �low . We then show that 
the first gradient component converges to 0 under certain conditions. Let us start 
with the following lemma, which is an extension of [15, Lemma 1]: this holds for 
�low = �up = 1 and it is stated for the components of the error, that enjoy the same 
recursive formula as the components of the gradient.

Lemma 14  Under Assumption 1, �k
1
 converges to zero Q-linearly, i.e., there exists a 

constant c1 ∈ (0, 1) such that

Proof  From part (i) in Assumption 1, we have

with �(A) the condition number as in (11). Thus, when applying these bounds to 
(20), we see that (23) holds with c1 = max{�−1

low
− 1, 1 − (�(A) �up)−1} . The condi-

tions on �low and �up guarantee that c1 is indeed in the interval (0, 1). 	�  ◻

Unfortunately, it is not possible to prove the Q-linear convergence of the other 
gradient components, but the following inequality will play a role later. This result 
generalizes [4, Lemma 2.1].

Lemma 15  Under Assumption  1, there exists a constant c2 > 0 such that for 
i = 2,… , n

Proof  From part (i) in Assumption 1, we have

Application of these bounds to (20) implies that (24) holds with positive constant 
c2 ∶= max{�−1

low
�(A) − 1, 1 − (�(A) �up)−1} . 	� ◻

(23)|�k+1
1

| ≤ c1 |�k1 |.

1 − �−1
low

≤ 1 − �1 �k(�k) ≤ 1 − (�(A) �up)−1,

(24)|�k+1
i

| ≤ c2 |�ki |.

1 − �−1
low

�(A) ≤ 1 − �i �k(�k) ≤ 1 − (�(A) �up)−1.
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We note that usually c2 will be �−1
low

�(A) − 1 , and that this quantity may be 
very large. However, this still provides us with a needed tool for proving the 
convergence of the gradient method for quadratics. In addition, we remark that 
Lemma 15 still holds in general for �low ∈ (0, 1] and �up ≥ 1.

5.3 � Proof of R‑linear convergence

Finally, we are able to state the R-linear convergence result under Assumption 1, 
which closely follows the line of the proof of [16, Thm. 4.1]. The key parts of the 
proof are the bounds on the gradient components from Lemmas 14 and 15, the 
result on the (� + 1) st gradient component of Lemma 12. Our contribution is to 
adapt all these results that were already in [16] but derived from [16, Property A]. 
A slightly less general proof of R-linear convergence was previously presented in 
[4].

Theorem 16  Let f be a strictly convex quadratic function and let x∗ = A−1b be its 
unique minimizer. Let {xk} be the sequence generated by the gradient method where 
the stepsize satisfies Assumption  1. Then, either gk = 0 for some finite k, or the 
sequence {‖gk‖} converges to zero R-linearly.

Proof  Let G(k,�) ∶=
∑�

i=1
(�k

i
)2 , �1 = c 2

1
 , �2 = c 2

2
 and � = c2 . In particular, notice 

that G(k, n) = ‖gk‖2 . Assume also that c2 > 1 , otherwise we would immediately 
conclude the proof due to Lemma 15.

Part I. First we prove that, for an integer 1 ≤ � ≤ n − 1 and given k ≥ 1 , if there 
exists some �

�
∈ (0,M−1

2
) and integer m

�
 such that

then there exists j0 ∈ {m
�
,… ,m

�
+ Δ

�
+ 1} , with Δ

�
= Δ

�
(M2, �� , �2, �,m�

) , such 
that

Assume that (𝛾k+j
�+1

)2 > M2 𝜀� ‖gk‖2 for all j ∈ {m
�
,… ,m

�
+ Δ

�
} . We show that 

the thesis holds for j0 = m
�
+ Δ

�
+ 1 . First, apply Lemma  12 Δ

�
+ 1 times, and 

Lemma 15 m
�
 times to obtain

Then choose Δ
�
 as the smallest integer that solves �Δ�

+1�
m

�

2
≤ M2 �� (such Δ

�
 exists 

due to the choice of �
�
 and the fact that 𝛿 < 1 ) and complete the first proof:

Part II. Let m
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�
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�
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2
2
) �

�
 . If (25) holds, we show 

that
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�
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2
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)2.
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�
+Δ

�
+1

�+1
)2 ≤ M2 �� ‖gk‖2.
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Since G(k + j,� + 1) = G(k + j,�) + (�
k+j

�+1
)2 and m

�+1 > m
�
 , it is sufficient to prove 

that

From the first result, there are infinitely many pairs of indices j1, j2 with 
j2 ≥ j1 + 2 > j1 ≥ j0 ≥ m

�
 such that

From Lemma  12 it holds that (𝛾
k+j

�+1
)2 ≤ 𝛿 (𝛾

k+j−1

�+1
)2 < (𝛾

k+j−1

�+1
)2 for 

j ∈ {j1 + 3,… , j2 + 1} , since 𝛿 < 1 . This results in a chain of inequalities, halting 
at j = j1 + 2 , which corresponds to the rightmost term; to get any further, we apply 
Lemma 15:

Note that the last inequality also holds when j = j1, j1 + 1 (in place of j = j1 + 2 ), 
since we assumed 𝛿2 > 1 . Thus our conclusion is

Since j1 and j2 are chosen arbitrarily and j0 ≤ m
�+1 , the result automatically holds 

for any j ≥ m
�+1.

Part III. Finally, we prove by induction that (25) holds for all 1 ≤ � ≤ n with

For � = 1 and from Lemma  14, the first component of the gradient satisfies 
G(k + j, 1) ≤ �

j

1
‖gk‖2 . As in the first step, we ask �j

1
≤ �1 and get j ≥ m1 , with 

m1 = ⌈ log �1
log �1

⌉ . Once the thesis is true for some 1 ≤ � ≤ n − 1 , the second step shows 
that it also holds for � + 1 , with m

�+1 = m
�
+ Δ

�
+ 1 and 

�
�+1 =

1

4
(1 +M2 �

2
2
) (1 +M2 �

2
2
)�−n . We can conclude that the thesis holds for 

� = n , and thus

where mn does not depend on k. Renumbering the indices as in [4] enables us to con-
clude that the gk converge to zero R-linearly. 	� ◻

We remark that, when the objective function is quadratic, Theorem  16 shows 
that no line search is required to guarantee the convergence of the gradient method 
with TBB stepsizes. For generic unconstrained optimization problems, we add a line 
search procedure with a condition of sufficient decrease in the next section.

G(k + j,� + 1) ≤ �
�+1‖gk‖2 for j ≥ m

�+1.

(�
k+j

�+1
)2 ≤ M2 �

2
2
�
�
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�+1.
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�+1
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(𝛾
k+j

�+1
)2 > M2 𝜀� ‖gk‖2 for j ∈ {j1 + 1,… , j2 − 1}.

(�
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2
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4
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2
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‖gk+mn
‖2 ≤ 1

4
‖gk‖2,
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6 � Generic nonlinear functions

We now turn our attention to generic (non-quadratic) continuous differentiable 
functions f. As the expression (4) is not suitable since the Hessian is usually 
not available, we use the generalization (6). Just as for the quadratic case (see 
Proposition 1), the well-known BB1 and BB2 stepsizes are retrieved for �k → ±∞ 
and �k = 0 , respectively. In the quadratic case, the secant equation yk−1 = Bksk−1 
holds for Bk ≡ A , and this allows for the interpretation of BB steps and the TBB 
step as Rayleigh quotients of A. When f is a generic function, the average Hes-
sian Bk = ∫ 1

0
∇2f (xk−1 + t sk−1) dt satisfies the secant equation (cf., e.g., [18, 

Eq. (6.11)]), and thus we can still think at BB steps and the TBB step as Rayleigh 
quotients, which approximate the eigenvalues of this average Bk instead of the 
ones of ∇2f (xk) . We note that, under the condition that Bk is SPD, all results of 
Sects. 3 and 4 continue to hold for generic functions when replacing A by Bk.

Algorithm  2 shows a pseudocode for TBB-step methods for general nonlin-
ear unconstrained optimization problems. As usual (cf., e.g., [2, Alg. 1]), unlike 
the quadratic case of Algorithm 1, safeguards are added for the steplength. We 
also include the nonmonotone line search strategy from [19] (see Line 2). Line 3 
features a well-known condition of sufficient decrease, where we take the com-
mon values of the line search parameters cls = 10−4 , �ls =

1

2
 (cf. [18, p.  33]), 

and M = 10 in the experiments. One of the key ingredients to prove the global 
convergence of Algorithm 2 is the existence of uniform bounds on the stepsize, 
i.e., �k ∈ [�min, �max] for all k. Since the TBB stepsize (6) with safeguard lies in 
this interval, the convergence of the algorithm is guaranteed by [17, Thm. 2.1]. 
It is possible to show R-linear convergence of the algorithm for uniformly con-
vex functions (cf. [20, Thm.  3.1, Eq.  (31)]). We remark that the initial starting 
steplength in the nonmonotone line search is different from the algorithm in [17], 
and this might lead to a smaller number of backtracking steps.

The last two features that may significantly affect the speed of the algorithm are 
the initial stepsize, and the treatment of uphill directions, or, equivalently, nega-
tive steplengths. Popular choices for the initial stepsize are �0 = 1 (cf., e.g., [2, 
17]) or �0 = ‖g0‖−1 (cf., e.g., [16]), where the norm is the Euclidean norm or the 
∞-norm. Line 8 deals with possible uphill directions: when sT

k−1
yk−1 < 0 , Bk is not 

SPD, and thus all the properties studied in Sects. 3–5 do not necessarily hold. The 
TBB step may still be positive for some target values, but does not have a clear 
connection to the eigenvalues of Bk . In fact, when sT

k−1
yk−1 < 0 , the TBB steps 

(including the BB steps) render a negative approximation of the inverse eigenval-
ues of Bk . Therefore, the tentative �k is replaced by a certain �𝛽k > 0 . A possible 
choice is �̂k ≡ �max (see, e.g., [2]), but this stepsize may be huge and might cause 
overflow problems. Raydan [17] proposes to set �̂k = max(min(‖gk‖−12 , 105), 1) , 
which is an attempt to move away from the uphill direction, while keeping ‖�̂k gk‖ 
moderate. Others (e.g., [11, 21]) simply use �̂k = ‖gk‖−1 , as it is done for the first 
stepsize. There is also an interesting alternative of [22] that reuses the previous 
steplength �̂k = �k−1 ; this strategy resembles the cyclic gradient method, where 
the same BB stepsize is reused for several iterations [21].
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Algorithms  1 and 2 can be combined with preconditioning or scaling. Scaling 
may be viewed as the simplest case of preconditioning, that is, by a diagonal SPD 
matrix. Scaling is a powerful and efficient technique; we refer to [23] for scaling 
techniques for unconstrained optimization problems. The combination of precondi-
tioning and BB steps for quadratic problems has been discussed in [24]. The use of 
scaling or more general preconditioning is outside the scope of this paper.

7 � Numerical experiments

We test various target strategies on strictly convex quadratics (Algorithm  1) and 
generic differentiable functions (Algorithm 2). The purpose of these experiments is 
to show numerically that the introduction of an adaptive target in the stepsizes (4) 
can sometimes lead to better convergence results, in terms of number of iterations 
and function evaluations. For non-convex problems, we also observe that different 
targets can sometimes detect different local optima.

7.1 � Sweeping the spectrum of the Hessian matrix

Given the recursive definition of the gradient (19) for quadratic problems, one can see 
that if a stepsize sweeps the spectrum of the Hessian matrix appropriately, then the con-
vergence of the corresponding gradient method is faster. Before moving to a detailed 
analysis of the performances of different stepsizes, we illustrate the sweeping capa-
bility of each steplength on the three quadratic problems proposed by [2], QP1, QP2 
and QP3, in the same setting as [2]. All three problems have a diagonal Hessian with 
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eigenvalues 0 < 𝜆1 ≤ ⋯ ≤ 𝜆n . The eigenvalues of QP1 follow the asymptotic distribu-
tion of the eigenvalues of a class of covariance matrices; those of QP2 are such that the 
ratio between two consecutive eigenvalues is constant. In the last problem, eigenvalues 
are clustered in two groups; see [2] for further details. Table 1 reports all the imple-
mented target strategies, divided into three groups: known schemes from the literature, 
positive targets, and (negative) targets inspired by the cotangent function. The stepsizes 
studied throughout this section are summarized in Table 1.

We also consider two effective variants of ABB, which we indicate with ABBmin 
[13] and ABBbon [14]. In the first one, we take the smallest BB2 stepsize over the last 
m + 1 iterations, when cos2(sk−1, yk−1) is small:

ABBbon is defined in the same way as ABBmin but with an adaptive threshold � : 
starting from �0 = 0.5 , this is updated as

With respect to the positive targets, Remark 13 suggests the use of 𝜌 > 2 in (14) to 
ensure the convergence of the corresponding gradient method for quadratic func-
tions. The aim of setting � = 2.01 is to stay close to this lower bound and take the 
largest possible stepsizes (which are larger than �BB1

k
 ). An approach with � = 100 

picks positive targets �k such that the corresponding stepsize �k is close to, but still 
larger than �BB1

k
.

Figure  2 shows the inverse stepsize value �k through the iterations for QP1, 
QP2 and QP3. For each problem, we select the four stepsizes that require the 

𝛽
ABBmin

k
=

{
min{𝛽BB2

j
∣ j = max{1, k − m},… , k}, if 𝛽BB2

k
< 𝜂 𝛽BB1

k
,

𝛽BB1
k

, otherwise.

𝜂k+1 =

{
0.9 𝜂k, if 𝛽BB2

k
< 𝜂k 𝛽

BB1
k

,

1.1 𝜂k, otherwise.

Table 1   Strategies for the stepsize

Method Target �
k

Reference

BB1 ±∞ Cf. [1]
BB2 0 Cf. [1]
ABB (NA) Cf. [3], � = 0.8

ABBmin (NA) Cf. [13], � = 0.8 , m = 4

ABBbon (NA) Cf. [14], �0 = 0.5 , m = 4

IBB2 2.01 2.01 �BB2
k

Eq. (14)
IBB2 100 100 �BB2

k
Eq. (14)

ITER k �BB2
k

Eq. (15)
COT 11 − cot(s

k−1, yk−1) Eq. (16)
COT H1 − cos1∕2(s

k−1, yk−1) ∕ sin(s
k−1, yk−1) Eq. (16)

COT 1H − cos(s
k−1, yk−1) ∕ sin

1∕2(s
k−1, yk−1) Eq. (16)

COT 21 − cos2(s
k−1, yk−1) ∕ sin(s

k−1, yk−1) Eq. (16)
COT 12 − cos(s

k−1, yk−1) ∕ sin
2(s

k−1, yk−1) Eq. (16)



98	 G. Ferrandi et al.

1 3

smallest number of iterations for the convergence. All stepsizes seem to explore 
the whole spectrum in all problems, but in different ways. The two variants of 
ABB, ABBmin and ABBbon , perform well in all three problems. As a result of their 
definition, they both tend to recycle the same stepsize for some consecutive itera-
tions. Interestingly, they gradually cancel the gradient components corresponding 
to the largest eigenvalues of the Hessian. This feature is particularly clear in QP2: 
since some gradient components are annihilated at some stage, in the latest itera-
tions the stepsizes are concentrated only in the eigenvalues corresponding to the 
remaining gradient components. The stepsize COT H1 to some extent shows the 
same behavior in QP2.

ABBbon IBB2 100 ABBmin BB2

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
0

250

500

750

1000

iterations

α k

(a) QP1

ABBmin ABBbon IBB2 100 COT H1

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
0

2500

5000

7500

10000

iterations

α k

(b) QP2

ABBmin ITER ABBbon COT H1

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
0

250

500

750

1000

iterations

α k

(c) QP3

Fig. 2   Inverse stepsize �
k
 per iteration. Gray lines correspond to 21 equally spaced eigenvalues of the 

Hessian, including the smallest and the largest, for the three quadratic problems QP1–QP3. Stepsizes are 
ordered based on the (increasing) number of iterations of the corresponding gradient method
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Other stepsize strategies do not explicitly remove some of the gradient compo-
nents in an early phase, but still show a comparable number of iterations.

7.2 � Strictly convex quadratic functions

For the problems of the form (1), we take examples from the SuiteSparse Matrix 
Collection [25]. The selected matrices A are 65 symmetric positive definite matri-
ces with a number of rows between 102 and 104 , and an estimated condition number 
≤ 108 (the condition number is estimated via the routine condest in the Matrix R 
package). The vector b is chosen so that the solution of Ax = b is x∗ = e , the vector 
of all ones. For all problems, the starting vector is x0 = −10 e , and the initial step-
size is �0 = 1 . The algorithm stops when ‖gk‖ ≤ ��� ‖g0‖ with ��� = 10−6 , or when 
5 ⋅ 104 iterations are reached. The problem nos4 is scaled by the Euclidean norm of 
the first gradient.

We compare the performances of the different stepsizes in Table 1 by means of 
a performance profile [26]. The cost of solving each problem is normalized based 
on the minimum cost for that problem, to get the performance ratio [26]. The most 
efficient method solves the given problem with performance ratio 1, while all other 
methods solve it with a performance ratio at least 1. We plot the ratio of problems 
solved by a method within a certain factor of the smallest cost; this results in a 
cumulative distribution for each method. The algorithms are rated based on the max-
imum cost that one is willing to pay to get convergence. An infinite cost is assigned 
whenever a method is not able to solve a problem to the tolerance within the maxi-
mum number of iterations.

Given a problem, the cost of each gradient method differs only in the computa-
tion of the stepsize. For the computation of (4), we exploit the fact that sk = −�kgk 
(cf.  Algorithm  1) and that the stopping criterion is based on ‖gk‖ . The TBB step 
requires the additional computation of gT

k
yk and ‖yk‖ and therefore takes two extra 

inner products. ABB, the ABB variants and BB2 need the same quantities, while 
BB1 is slightly less expensive, with only one extra inner product. Moreover, com-
puting a gradient is usually (much) more expensive than determining the stepsize. 
As a consequence, the various methods have approximately the same computational 
cost per iteration. In addition, in the quadratic case we do not employ a line search 
procedure, thus we take the number of iterations as the basis of our performance 
profile.

Figure 3 displays the performance profile of the different stepsizes, based on the 
number of iterations. The performance ratio is considered in the interval [1, 3] . It 
is evident that the ABB variants perform much better than all other stepsizes. The 
stepsizes proposed in this paper are comparable with BB1, BB2, and ABB. One rea-
son for this behavior may be that the ABB variants are especially favorable to quad-
ratic problems: in fact, when the Hessian matrix is constant, previous BB2 stepsizes 
still approximate some eigenvalue of the current Hessian. This is no longer true for 
the generic problems: as a consequence, we will see that, in that case, the ABB vari-
ants have similar performances compared to the other stepsizes.
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The COT  11 step for a performance ratio ≤ 1.5 and the IBB2  2.01 step for 
[1.5, 3] perform better than the other TBB steplengths; the latter one competes with 
COT  1H, and COT  12 in different segments of its interval. Nevertheless, while 
IBB2 2.01 solves slightly more than 80% of the problems with a performance ratio 
≤ 3 , ABBbon manages to solve all problems within the same range.

Since we study the performance ratio in a restricted range, we also collect some 
summary information in Table 2. It is interesting to notice that the minimum perfor-
mance ratio is 1 for all stepsizes: this means that for each stepsize there is at least 
one problem where that stepsize performs at least as well as the others. The ABB 
variants appear to be more robust than the other stepsizes, followed by BB1 and the 
class of TBB steps with positive target. The steplength ABBmin solves the highest 
proportion of problems at the lowest cost.

7.3 � Unconstrained optimization

We take some generic differentiable functions from the collections in [17, 27, 28] 
and the suggested starting points x0 therein, as listed in Table  3. For Griewank’s 
function we choose x0 = e . For each problem, we also consider the starting points 
5 x0 and 10 x0 , in line with [28].

For all the test functions, we pick n = 100 variables. The generalized Rosen-
brock, generalized White and Holst and extended Powell objective functions 
have been scaled by the Euclidean norm of the first gradient.

The gradient method for unconstrained optimization problems requires the tuning 
of more parameters than the gradient method for quadratic functions. We maintain the 
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Fig. 3   Performance profile for strictly convex quadratic problems, based on the number of iterations
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choices made in [2] and set �min = 10−30 , �max = 1030 , cls = 10−4 , �ls =
1

2
 , M = 10 , 

and �0 = 1 . Although one might argue that the bounds on the stepsize are extremely 
large, the aim of this choice is to accept the BB stepsize as frequently as possible. 
Following Raydan [17], we choose �̂k = max(min(‖gk‖−12 , 105), 1) as the replace-
ment for negative stepsizes. Although the alternative of recycling the last positive 
stepsize also seems plausible, in our experiments we find that this strategy may 
lead to poor performance for some stepsizes. Raydan’s rule seems to behave well in 
combination with all stepsizes. Again the algorithm stops when ‖gk‖ ≤ ��� ‖g0‖ , or 
when 5 ⋅ 104 iterations are reached. We show the results for three levels of tolerance 
��� ∈ {10−4, 10−6, 10−8} . All different steps in Table 1 are tested.

Table 2   Gradient method with 
TBB steps and ABB variants: 
proportion of solved problems 
within 5 ⋅ 104 iterations, 
proportion of problems solved 
with unit cost (i.e., performance 
ratio (PR) equal to 1), average 
and standard deviation of 
the performance ratios (per 
method), and range of the 
performance ratios

Stepsize Solved (%) PR = 1 (%) Avg Sd Range

ABBbon 100 32.3 1.15 0.25 [1.00, 2.64]

ABBmin 97 43.1 1.11 0.24 [1.00, 2.32]

ITER 94 4.6 2.16 1.83 [1.00, 12.56]

BB1 94 3.1 2.11 1.75 [1.00, 11.52]

IBB2 100 94 3.1 2.14 1.95 [1.00, 14.48]

IBB2 2.01 94 1.5 2.04 2.25 [1.00, 17.49]

BB2 92 4.6 2.31 2.01 [1.00, 14.07]

COT H1 92 3.1 2.15 1.88 [1.00, 13.51]

COT 11 91 7.7 2.06 1.68 [1.00, 11.27]

COT 1H 91 6.2 2.03 1.68 [1.00, 10.38]

COT 12 91 1.5 1.90 1.39 [1.00, 10.05]

ABB 89 4.6 2.12 2.10 [1.00, 14.54]

COT 21 89 3.1 2.18 1.82 [1.00, 11.18]

Table 3   Unconstrained optimization test problems

Name Reference Name Reference

Broyden tridiagonal [28] Extended White and Holst [27]
Diagonal 1 [27] Full Hessian FH1 [27]
Diagonal 2 [27] Full Hessian FH2 [27]
Diagonal 3 [27] Generalized Rosenbrock [27]
Diagonal 4 [27] Generalized tridiagonal 1 [27]
Extended Beale [27] Generalized tridiagonal 2 [27]
Extended Freudenstein and Roth [27] Generalized White and Holst [27]
Extended Himmelblau [27] Griewank [29]
Extended Powell [28] Hager [27]
Extended PSC1 [27] Perturbed quadratic [27]
Extended Rosenbrock [28] Strictly Convex 1 [17]
Extended TET [27] Strictly Convex 2 [17]
Extended tridiagonal 1 [27] Trigonometric [28]
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Since some test problems are non-convex, we check whether all gradi-
ent methods converged to the same stationary point for different stepsizes. 
For this reason, the following analysis will not include Broyden tridiagonal, 
extended Freudenstein and Roth, generalized tridiagonal 2, Griewank, 
trigonometric.

Remark 17  Aside the computational cost of an algorithm, the quality of the reached 
minimum is also an important aspect. In this context, it is interesting to notice that 
in the extended Freudenstein and Roth function, for the setting ��� = 10−8 and 
starting point x0 , the choice of IBB2 2.01 leads to the global optimum f = 0 , while 
all the other gradient methods converge to f ≈ 1225 . The convergence of IBB2 2.01 
takes approximately seven times the number of function evaluations of the fastest 
method, but the gradient method finds a better solution.

As the performance profile, we may consider two different costs: the number 
of function evaluations and the number of iterations. The latter corresponds to 
the number of gradient evaluations, since the line search in Algorithm  2 does 
not require the computation of the gradient at the new tentative iterate. Our 
comparison is on the number of function evaluations, since this is the dominant 
cost for our test cases. The performance profiles are shown in Fig. 4 in the range 
[1, 3] , for the number of function evaluations, and various tolerances and start-
ing points.

As the tolerance decreases, from left to right, we notice that the performance pro-
files become more distinct. In contrast with the performance profile for the quadratic 
case, here the ABB variants are not as prominent as before. We can still distinguish 
their curves, along with the one of BB2, when ��� = 10−8 and the starting points are 
either x0 or 5 x0 . The situation changes when the starting point is 10 x0 : especially 
when ��� = 10−6 , the ABB variants are mixed with some curves of the cotangent 
family when the performance ratio is ≤ 1.5 . Then all curves of the cotangent family 
display more favorable behavior than the rest of the curves.

As in the quadratic case, Table  4 report some statistics on the performance 
ratios, based on the number of function evaluations, for ��� = 10−6 . As the per-
formance profiles already suggested, when the starting point is x0 , the ABBmin is 
the best stepsize in terms of proportion of solved problems, and problems solved 
at minimum cost. The BB2 step is the best method when the starting point is 
5 x0 , immediately followed by ABBmin . Finally, for the problems with 10 x0 , the 
picture changes: COT 11 and COT H1 are the best stepsizes, followed by BB2, 
but this time the range of BB2 is larger compared to the previous tables. As 
a consequence, ABBmin and ABBbon solve a smaller proportion of problems at 
minimum cost.

We have just shown that, as opposed to the quadratic case, there are situations 
where the TBB steps from the cotangent family show better performance than 
the ABB variants. In general, we observe that the stepsizes IBB2 100 and ITER 
are competitive with the BB1 step; IBB2 2.01 performs slightly worse, but this 
behavior can sometimes lead to better local optima (cf. Remark 17).
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8 � Conclusions

We have developed a harmonic framework for stepsize selection in gradient methods 
for unconstrained nonlinear optimization. The harmonic steplength (4) depending 
on targets �k is inspired by the harmonic Rayleigh–Ritz extraction for matrix eigen-
value problems.

The one-to-one relation between target and stepsize gives a general framework 
with new viewpoints and interpretations. Compared to the eigenproblem con-
text, where the target is commonly chosen inside the spectrum, in our situation we 
have studied both strategies with the target outside the spectrum and schemes that 
sometimes pick the target inside. Targets on the negative real axis lead to stepsizes 
between BB2 and BB1. This yields connection with schemes such as [12]. We have 
analyzed and extended the popular ABB method. While the original ABB approach 
only allows a choice between two stepsizes based on a single parameter, we have 
introduced a new competitive family of stepsizes with tunable parameters, that enjoy 
the same key idea but are more flexible. Additionally, we have considered new fami-
lies of positives targets, leading to steplengths larger than the BB1 steps. The use 
of harmonic stepsizes with target requires the same cost as the BB2 step, ABB, and 
ABB variants, and is only marginally more expensive than BB1. The experiments 
suggest that both the cotangent family and the approaches with positive targets seem 
competitive with the well-known BB stepsizes and ABB; they compete also with the 
ABB variants [13, 14] for generic unconstrained optimization problems.
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Table 4   Gradient method with 
nonmonotone line search: 
proportion of solved problems 
within 5 ⋅ 104 iterations, 
proportion of problems solved 
with unit cost, i.e., performance 
ratio (PR) equal to 1, average 
and standard deviation of the 
performance ratios, range of the 
performance ratios

The performance ratio is based on the number of function evalua-
tions

Stepsize Solved (%) PR = 1 (%) Avg SD Range

��� = 10−6 , starting point x0
ABBmin 100 38.1 1.11 0.17 [1.00, 1.73]

BB2 100 23.8 1.12 0.14 [1.00, 1.56]

ABB 100 23.8 1.19 0.27 [1.00, 2.14]

ABBbon 100 19.0 1.14 0.13 [1.00, 1.42]

COT 21 100 19.0 1.27 0.52 [1.00, 3.38]

COT 11 100 14.3 1.21 0.24 [1.00, 1.88]

IBB2 2.01 100 14.3 1.55 0.60 [1.00, 3.49]

ITER 100 14.3 1.44 0.51 [1.00, 3.17]

BB1 100 9.5 1.42 0.50 [1.00, 2.70]

COT 12 100 9.5 1.21 0.23 [1.00, 1.95]

COT 1H 100 9.5 1.24 0.21 [1.00, 1.64]

COT H1 100 9.5 1.21 0.19 [1.00, 1.76]

IBB2 100 100 9.5 1.43 0.52 [1.00, 3.35]

��� = 10−6 , starting point 5 x0
BB2 100 43 1.15 0.23 [1.00, 1.80]

ABBmin 100 33 1.21 0.29 [1.00, 1.87]

COT 12 100 29 1.18 0.27 [1.00, 2.24]

ITER 100 29 1.93 2.12 [1.00, 10.52]

COT 11 100 24 1.26 0.33 [1.00, 2.30]

COT 21 100 24 1.26 0.28 [1.00, 1.89]

COT 1H 100 24 1.33 0.47 [1.00, 2.74]

COT H1 100 24 1.42 0.84 [1.00, 4.94]

IBB2 2.01 100 24 2.61 3.79 [1.00, 18.59]

IBB2 100 100 24 1.58 0.94 [1.00, 4.27]

BB1 100 19 1.53 0.89 [1.00, 4.74]

ABB 100 19 1.22 0.24 [1.00, 1.82]

ABBbon 100 19 1.33 0.43 [1.00, 2.70]

��� = 10−6 , starting point 10 x0
COT 11 100 43 1.14 0.24 [1.00, 2.04]

COT H1 100 43 1.18 0.27 [1.00, 1.90]

BB2 100 38 1.40 0.75 [1.00, 3.93]

COT 12 100 33 1.17 0.21 [1.00, 1.66]

COT 1H 100 33 1.16 0.20 [1.00, 1.74]

ABB 100 29 1.47 0.76 [1.00, 3.98]

COT 21 100 29 1.22 0.22 [1.00, 1.62]

ITER 100 29 3.33 8.42 [1.00, 39.94]

ABBmin 100 24 1.46 0.80 [1.00, 3.89]

BB1 100 19 3.04 5.42 [1.00, 21.66]

IBB2 2.01 100 19 3.20 4.69 [1.00, 21.73]

IBB2 100 100 19 3.18 7.66 [1.00, 36.43]

ABBbon 100 14 1.41 0.75 [1.00, 3.89]
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For an analysis of the new schemes, we have extended convergence results from 
Dai and Liao [4] in Sect.  5. In view of the TBB steps, instead of �1 ≤ �k ≤ �n , 
we have studied the more general setting �low �1 ≤ �k ≤ �up �n , particularly for 
1

2
< 𝜉low ≤ 1 and �up ≥ 1.
An R implementation of the methods described in this paper can be obtained 

from github.com/gferrandi/tbbr.
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