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Abstract
This paper considers the problem of minimizing the summation of a differentiable 
function and a nonsmooth function on a Riemannian manifold. In recent years, 
proximal gradient method and its variants have been generalized to the Riemannian 
setting for solving such problems. Different approaches to generalize the proximal 
mapping to the Riemannian setting lead different versions of Riemannian proximal 
gradient methods. However, their convergence analyses all rely on solving their Rie-
mannian proximal mapping exactly, which is either too expensive or impracticable. 
In this paper, we study the convergence of an inexact Riemannian proximal gradient 
method. It is proven that if the proximal mapping is solved sufficiently accurately, 
then the global convergence and local convergence rate based on the Riemannian 
Kurdyka–Łojasiewicz property can be guaranteed. Moreover, practical conditions 
on the accuracy for solving the Riemannian proximal mapping are provided. As a 
byproduct, the proximal gradient method on the Stiefel manifold proposed in Chen 
et al. [SIAM J Optim 30(1):210–239, 2020] can be viewed as the inexact Riemann-
ian proximal gradient method provided the proximal mapping is solved to certain 
accuracy. Finally, numerical experiments on sparse principal component analysis are 
conducted to test the proposed practical conditions.

Keywords Riemannian optimization · Riemannian proximal gradient · Sparse PCA

1 Introduction

Proximal gradient method and its variants are family of efficient algorithms for com-
posite optimization problems of the form
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where f is differentiable, and g is continuous but could be nonsmooth. In the sim-
plest form, the method updates the iterate via1 

where ⟨u, v⟩F = uTv and ‖u‖2
F
= ⟨u, u⟩F . The idea is to simplify the objective func-

tion in each iteration by replacing the differentiable term f with its first order approx-
imation around the current iterate. In many applications, the proximal mapping has a 
closed-form solution or can be computed efficiently. Thus, the algorithm has low per 
iteration cost and is applicable for large-scale problems. For convergence analysis of 
proximal gradient methods, we refer the interested readers to [1–7] and references 
therein.

This paper considers a problem similar to (1) but with a manifold constraint,

where M is a finite dimensional Riemannian manifold. Such optimization problem 
is of interest due to many important applications including but not limit to com-
pressed models [8], sparse principal component analysis [9, 10], sparse variable 
principal component analysis [11–13], discriminative k-means [14], texture and 
imaging inpainting [15], co-sparse factor regression [16], and low-rank sparse cod-
ing [17, 18].

In the presence of the manifold constraints, developing Riemannian proximal gra-
dient methods is more difficult due to nonlinearity of the domain. The update for-
mula in (2) can be generalized to the Riemannian setting using a standard technique, 
i.e., via the notion of retraction. However, generalizing the proximal mapping to the 
Riemannian setting is not straightforward and different versions have been proposed. 
In [19], a proximal gradient method on the Stiefel manifold called ManPG, is pro-
posed and analyzed by generalizing the proximal mapping (2) to

via the restriction of the search direction � onto the tangent space at xk . It is shown 
that such proximal mapping can be solved efficiently by a semi-smooth Newton 
method when the manifold M is the Stiefel manifold. In [10], a diagonal weighted 
proximal mapping is defined by replacing ‖�‖2

F
 in (4) with ⟨�,W�⟩ F , where the 

diagonal weighted linear operator W is carefully selected. Moreover, the Nesterov 
momentum acceleration technique is further introduced to accelerate the algorithm, 

(1)min
x∈ℝn

F(x) = f (x) + g(x),

(2)

�
dk = argmin

p∈ℝn

⟨∇f (xk), p⟩F +
L

2
‖p‖2

F
+ g(xk + p), (Proximal mapping)

xk+1 = xk + dk, (Update iterates)

(3)min
x∈M

F(x) = f (x) + g(x),

(4)𝜂k = argmin
𝜂∈Txk

M

⟨∇f (xk), 𝜂⟩ F +
L̃

2
‖𝜂‖2

F
+ g(xk + 𝜂)

1 The commonly-used update expression is xk+1 = argminx⟨∇f (xk), x − xk⟩2 + L

2
‖x − xk‖22 + g(x) . We 

reformulate it equivalently for the convenience of the Riemannian formulation given later.
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yielding an algorithm called AManPG. Note that the Riemannian proximal map-
pings  (4) involves the calculation of the addition, i.e., xk + � , which cannot be 
defined on a generic manifold. In [20], a Riemannian proximal gradient method, 
called RPG, is proposed by replacing the addition xk + p with a retraction Rxk

(�) , so 
that it is well-defined for generic manifolds. In addition, the Riemannian metric ⟨, ⟩x 
is further used instead of the Euclidean inner product ⟨, ⟩F , and a stationary point is 
used instead of a minimizer. More precisely, letting

the Riemannian proximal mapping in RPG is given by

 Unlike ManPG and AManPG that only guarantee global convergence, the local con-
vergence rate of RPG has also been established in terms of Riemannian KL property.

The convergence analyses of Riemannian proximal gradient methods in [10, 19, 
20] all rely on solving proximal mappings (4) and (5) exactly. Unlike the Euclidean 
cases, the existing Riemannian proximal mappings rarely yield a closed-form solu-
tion. When the manifold M has a linear ambient space, (4) and (5) can be solved 
based on the semi-smooth Newton method described in [19, 20]. These methods 
solve a semi-smooth nonlinear systems with dimension equal to the dimension of 
the normal space. If the dimension of the normal space is low, such as the Stiefel 
manifold St (p, n) with p ≪ n , then these semi-smooth Newton based methods are 
shown to be efficient. Otherwise, these methods can be inefficient. Such manifolds 
and applications include the manifold of fixed rank matrices for texture completion 
in [15], the manifold of fixed tucker rank tensors for genomic data analysis in [21], 
and the manifold of symmetric positive definite matrices for sparse inverse covari-
ance matrix estimation in [22]. Therefore, finding an exact or high accurate solution 
is either not practicable due to numerical errors or may take too much computational 
time. Meanwhile, it is crucial to study the convergence of the inexact Riemann-
ian proximal gradient method (i.e., the method without solving the proximal map-
ping (5) exactly), which is essentially the goal of this paper. The main contributions 
of this paper can be summaried as follows:

• A general framework of the inexact RPG method is presented in Section  3. 
The global convergence as well as the local convergence rate of the method are 
respectively studied in Sects.  3.1 and  3.2 based on different theoretical condi-
tions. The local convergence analysis is based on the Riemannian KL property.

• It is shown in Sect. 4.1 that if we solve (4) to certain accuracy, the global conver-
gence of the inexact RPG can be guaranteed. As a result, ManPG in [19] can be 
viewed as the inexact RPG method with the proximal mapping (5), and it is not 
necessary to solve (4) exactly for ManPG to enjoy global convergence.

• Under the assumption g is retraction convex, a practical condition which meets 
the requirement for the local convergence rate analysis is provided in Sect. 4.2. 
The condition is derived based on the notion of error bound.

�xk
(𝜂) ∶= ⟨∇f (xk), 𝜂⟩xk +

L̃

2
⟨𝜂, 𝜂⟩xk + g(Rxk

(𝜂)),

(5)�k ∈ Txk
M is a stationary point of�xk

(�) that satisfies �xk
(�k) ≤ �xk

(0).
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Inexact proximal gradient methods have been investigated in the Euclidean setting, 
see e.g., [23–27]. Multiple practical termination criteria for the inexact proximal 
mapping have been given such that the global convergence and local convergence 
rate are preserved. However, these criteria, the corresponding theoretical results, and 
the algorithm design all rely on the convexity of the function in the proximal map-
ping. Therefore, these methods can not be trivially generalized to the Riemannian 
setting since the objective function in the Riemannian proximal mapping  (5) may 
not be convex due to the existence of a retraction. Note that for the inexact Rie-
mannian proximal gradient method, the global and local convergence analyses and 
the condition that guarantees global convergence all do not assume convexity of 
the Riemannian proximal mapping. The convexity assumption is only made for the 
algorithm design that guarantees local convergence rate.

The rest of this paper is organized as follows. Notation and preliminaries about 
manifolds are given in Sect. 2. The inexact Riemannian proximal gradient method is 
presented in Sect. 3, followed by the convergence analysis. Section 4 gives practical 
conditions on the accuracy for solving the inexact Riemannian proximal mapping 
when the manifold has a linear ambient space. Numerical experiments are presented 
in Sect. 5 to test the practical conditions.

2  Notation and preliminaries on manifolds

The Riemannian concepts of this paper follow from the standard literature, e.g., [28, 
29] and the related notation follows from [29]. A Riemannian manifold M is a man-
ifold endowed with a Riemannian metric (�x, �x) ↦ ⟨�x, �x⟩x ∈ ℝ , where �x and �x 
are tangent vectors in the tangent space of M at x. The induced norm in the tangent 
space at x is denoted by ‖ ⋅ ‖x or ‖ ⋅ ‖ when the subscript is clear from the context. 
The tangent space of the manifold M at x is denoted by TxM , and the tangent bun-
dle, which is the set of all tangent vectors, is denoted by TM . A vector field is a 
function from the manifold to its tangent bundle, i.e., � ∶ M → TM ∶ x ↦ �x . An 
open ball on a tangent space is denoted by B(𝜂x, r) = {𝜉x ∈ TxM ∣ ‖𝜉x − 𝜂x‖x < r} . 
An open ball on the manifold is denoted by �(x, r) = {y ∈ M ∣ dist (y, x) < r} , 
where dist (x, y) denotes the distance between x and y on M.

A retraction is a smooth ( C∞ ) mapping from the tangent bundle to the mani-
fold such that (i) R(0x) = x for all x ∈ M , where 0x denotes the origin of TxM , 
and (ii) d

dt
R(t�x)|t=0 = �x for all �x ∈ TxM . The domain of R does not need to be 

the entire tangent bundle. However, it is usually the case in practice, and in this 
paper we assume R is always well-defined. Moreover, Rx denotes the restriction 
of R to TxM . For any x ∈ M , there always exists a neighborhood of 0x such that 
the mapping Rx is a diffeomorphism in the neighborhood. An important retrac-
tion is the exponential mapping, denoted by Exp , satisfying Expx(�x) = �(1) , 
where �(0) = x , � �(0) = �x , and � is the geodesic passing through x. In a Euclidean 
space, the most common retraction is the exponential mapping given by addition 
Exp x(�x) = x + �x . If the ambient space of the manifold M is a finite dimensional 
linear space, i.e., M is an embedded submanifold of ℝn or a quotient manifold 
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whose total space is an embedded submanifold of ℝn , then there exist two con-
stants �1 and �2 such that the inequalities

hold for any x ∈ N  and Rx(�x) ∈ N  , where N  is a compact subset of M.
A vector transport T ∶ TM⊕ TM → TM ∶ (𝜂x, 𝜉x) ↦ T𝜂x𝜉x associated with a 

retraction R is a smooth ( C∞ ) mapping such that, for all (x, �x) in the domain of R 
and all �x ∈ TxM , it holds that (i) T�x�x ∈ TR(�x)

M (ii) T0x�x = �x , and (iii) T�x is a 
linear map. An important vector transport is the parallel translation, denoted P . 
The basic idea behind the parallel translation is to move a tangent vector along a 
given curve on a manifold “parallelly”. We refer to [29] for its rigorous definition. 
The vector transport by differential retraction TR is defined by 
TR�x

�x =
d

dt
Rx(�x + t�x)|t=0 . The adjoint operator of a vector transport T  , denoted 

by T♯ , is a vector transport satisfying 
⟨
𝜉y, T𝜂x𝜁x

⟩
y
=
⟨
T♯
𝜂x
𝜉y, 𝜁x

⟩
x
 for all 

�x, �x ∈ TxM and �y ∈ TyM , where y = Rx(�x) . In the Euclidean setting, a vector 
transport T�x for any �x ∈ TxM can be represented by a matrix (the commonly-
used vector transport is the identity matrix). Then the adjoint operators of a vec-
tor transport are given by the transpose of the corresponding matrix.

The Riemannian gradient of a function h ∶ M → ℝ , denote grad h(x) , is the 
unique tangent vector satisfying:

where D h(x)[�x] denotes the directional derivative along the direction �x.
A function h ∶ M → ℝ is called locally Lipschitz continuous with respect to 

a retraction R if for any compact subset N  of M , there exists a constant Lh such 
that for any x ∈ N  and �x, �x ∈ TxM satisfying Rx(�x) ∈ N  and Rx(�x) ∈ N  , it 
holds that �h◦R(�x) − h◦R(�x)� ≤ Lh‖�x − �x‖ . If h is Lipschitz continuous but not 
differentiable, then the Riemannian version of generalized subdifferential defined 
in [30] is used. Specifically, since ĥx = h◦Rx is a Lipschitz continuous function 
defined on a Hilbert space TxM , the Clarke generalized directional derivative at 
�x ∈ TxM , denoted by ĥ◦

x
(𝜂x;v) , is defined by ĥ◦

x
(𝜂x;v) = lim𝜉x→𝜂x

supt↓0
ĥx(𝜉x+tv)−ĥx(𝜉x)

t
 , 

where v ∈ TxM . The generalized subdifferential of ĥx at �x , denoted 𝜕ĥx(𝜂x) , is 
defined by 𝜕ĥx(𝜂x) = {𝜂x ∈ TxM ∣ ⟨𝜂x, v⟩x ≤ ĥ◦

x
(𝜂x;v) for all v ∈ TxM} . The Rie-

mannian version of the Clarke generalized direction derivative of h at x in the 
direction �x ∈ TxM , denoted h◦(x;�x) , is defined by h◦(x;𝜂x) = ĥ◦

x
(0x;𝜂x) . The gen-

eralized subdifferential of h at x, denoted �h(x) , is defined as 𝜕h(x) = 𝜕ĥx(0x) . Any 
tangent vector �x ∈ �h(x) is called a Riemannian subgradient of h at x.

A vector field � is called Lipschitz continuous if there exist a positive injec-
tivity radius i(M) and a positive constant Lv such that for all x, y ∈ M with 
dist (x, y) < i(M) , it holds that

(6)‖Rx(�x) − x‖ ≤ 𝜘1‖�x‖,

(7)‖Rx(�x) − x − �x‖ ≤ 𝜘2‖�x‖2

D h(x)[�x] = ⟨�x, grad h(x)⟩x, ∀�x ∈ TxM,
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where � is a geodesic with �(0) = x and �(1) = y , the injectivity radius i(M) is 
defined by i(M) = infx∈M ix and ix = sup{𝜖 > 0 ∣ Exp x|�(x,𝜖) is a diffeomorphism} . 
Note that for any compact manifold, the injectivity radius is positive [31, 
Lemma 6.16]. A vector field � is called locally Lipschitz continuous if for any com-
pact subset Ω̄ of M , there exists a positive constant Lv such that for all x, y ∈ Ω̄ with 
dist (x, y) < i(Ω̄) , inequality (8) holds. A function on M is called (locally) Lipschitz 
continuous differentiable if the vector field of its gradient is (locally) Lipschitz 
continuous.

Let Ω̃ be a subset of M . If there exists a positive constant � such that, for all 
y ∈ Ω̃, Ω̃ ⊂ Ry(B(0y, 𝜚)) and Ry is a diffeomorphism on B(0y, �) , then we call Ω̃ a 
totally retractive set with respect to � . The existence of Ω̃ can be shown along the lines 
of [32, Theorem 3.7], i.e., given any x ∈ M , there exists a neighborhood of x which is 
a totally retractive set.

In a Euclidean space, the Euclidean metric is denoted by ⟨�x, �x⟩F , where ⟨�x, �x⟩F 
is equal to the summation of the entry-wise products of �x and �x , such as �T

x
�x for vec-

tors and trace (�T
x
�x) for matrices. The induced Euclidean norm is denoted by ‖ ⋅ ‖F . 

For any matrix M, the spectral norm is denoted by ‖M‖2 . For any vector v ∈ ℝ
n , the 

p-norm, denoted ‖v‖p , is equal to 
�∑n

i=1
�vi�p

� 1

p . In this paper, ℝn does not only refer to a 
vector space, but also can refer to a matrix space or a tensor space.

3  An inexact Riemannian proximal gradient method

The proposed inexact Riemannian proximal gradient method (IRPG) is stated in Algo-
rithm 1. The search direction �̂�xk at the k-th iteration solves the proximal mapping

approximately in the sense that its distance to a stationary point �∗
xk

 , ‖�̂�xk − 𝜂∗
xk
‖ , is 

controlled from above by a continuous function q of ( �k , ‖�̂�xk‖ ) and the function 
value of �xk

 satisfies �xk
(0) ≥ �xk

(�̂�xk ) . To the best of our knowledge, this is not Rie-
mannian generalization of any existing Euclidean inexact proximal gradient meth-
ods. Specifically, given the exact Euclidean proximal mapping defined by 
Prox �g(y) = argmin

x

Φ�(x) ∶= �g(x) + 1

2
‖x − y‖2

F
 , letting z = Prox �g(y) , it follows 

that (y − z)∕� ∈ �Eg(z) and dist (0, �EΦ�(z)) = 0 , where �E denotes the Euclidean 
subdifferential. Based on these observations, the inexact Euclidean proximal map-
pings proposed in [25–27, 33] only require z to satisfy any one of the following 
conditions:

(8)‖P0←1
�

�y − �x‖x ≤ Lv dist (y, x),

(9)min
𝜂∈Txk

M
�xk

(𝜂) = ⟨ grad f (xk), 𝜂⟩xk +
L̃

2
‖𝜂‖2 + g(Rxk

(𝜂))

(10)dist(0, �EΦ�(z)) ≤
�

�
, Φ�(z) ≤ minΦ� +

�2

2�
, and

y − z

�
∈ �E

�2

2�

g(z),
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where �E
�
 denotes the Euclidean �-subdifferential. The corresponding analyses and 

algorithms rely on the properties of �-subdifferential of convex functions. How-
ever, since the function �xk

(�) is not necessarily convex, these techniques cannot be 
applied. Note that if g is convex and M is a Euclidean space, then the function Φ is 
strongly convex. Therefore, the solutions of the inexact Euclidean proximal map-
pings in (10) all satisfy (11) with certain q by choosing an appropriate choice of �.

Algorithm 1 An Inexact Riemannian Proximal Gradient Method (IRPG)

Require: Initial iterate x0; a sufficiently large positive constant L̃;
1: for k = 0, 1, . . . do
2: Let xk

(η) = gradf(xk), η xk
+ L̃

2 η 2 + g(Rxk
(η));

3: Find η̂xk
∈ Txk

M such that the following two conditions hold

η̂xk
− η∗xk

q(εk, η̂xk
) and xk

(0) ≥ xk
(η̂xk

), (11)

where εk > 0, and q : R2 → R is a continuous function;
4: xk+1 = Rxk

(η̂xk
);

5: end for

In Algorithm  1, q controls the accuracy for solving the proximal mapping 
and different accuracies lead to different convergence results. Here we give four 
choices of q: 

(1) q(𝜀k, ‖�̂�xk‖) = 𝜀k with �k → 0;
(2) q(𝜀k, ‖�̂�xk‖) = q̃(‖�̂�xk‖) with q̃ ∶ ℝ → [0,∞) a continuous function satisfying 

q̃(0) = 0;
(3) q(𝜀k, ‖�̂�xk‖) = 𝜀2

k
 , with 

∑∞

k=0
𝜀k < ∞ ; and

(4) q(𝜀k, ‖�̂�xk‖) = min(𝜀2
k
, 𝛿q‖�̂�xk‖2) with a constant 𝛿q > 0 and 

∑∞

k=0
𝜀k < ∞.

The four choices all satisfy the requirement for the global convergence in The-
orem  4, with the first one being the weakest. A practical scheme discussed in 
Sect. 4.1 can yield a �̂�xk that satisfies the second choice. The third q guarantees 
that the accumulation point is unique as shown in Theorem 7. The last q allows 
us to establish convergence rate analysis of Algorithm 1 based on the Riemannian 
KL property, as shown in Theorem 8. The practical scheme for generating �̂�xk that 
satisfies the third and fourth choices is discussed in Sect. 4.2.

3.1  Global convergence analysis

The global convergence analysis is over similar to that in [20] and relies on 
Assumptions 1 and 2 below. Assumption 1 is mild in the sense that it holds if the 
manifold M is compact and the function F is continuous.



8 W. Huang, K. Wei 

1 3

Assumption 1 The function F is bounded from below and the sublevel set 
Ωx0

= {x ∈ M ∣ F(x) ≤ F(x0)} is compact, where x0 is the initiate iterate of 
Algorithm 1.

Definition 1 has been used in [20, 34]. It generalizes the L-smoothness from the 
Euclidean setting to the Riemannian setting. It says that if the composition h◦R sat-
isfies the Euclidean version of L-smoothness, then h is called a L-retraction-smooth 
function.

Definition 1 Given L > 0 , a function h ∶ M → ℝ is called L-retraction-smooth with 
respect to a retraction R in a subset N  of the manifold M , i.e., N ⊆ M , if for any 
x ∈ N  and any Sx ⊆ TxM such that Rx(Sx) ⊆ N  , we have that

In Assumption 2, we assume that the function f is L-retraction-smooth in the sub-
level set Ωx0

 . This is also mild and practical methods to verify this assumption have 
been given in [34, Lemma 2.7].

Assumption 2 The function f is L-retraction-smooth with respect to the retraction R 
in the sublevel set Ωx0

.

Lemma 3 shows that IRPG is a descent algorithm. The short proof is the same as 
that for [20, Lemma 1], but included for completeness.

Lemma 3 Suppose Assumption 2 holds and L̃ > L . Then the sequence {xk} gener-
ated by Algorithm 1 satisfies

where 𝛽 = (L̃ − L)∕2.

Proof By the definition of �̂�xk and the L-retraction-smooth of f, we have

which completes the first result.   ◻

Now, we are ready to give a global convergence analysis of IRPG.

Theorem  4 Suppose that Assumptions  1 and  2 hold, that L̃ > L , and that 
limk→∞ q(𝜀k, ‖�̂�xk‖) = 0 . Then the sequence {xk} has at least one accumula-
tion point. Let x∗ be any accumulation point of the sequence {xk} . Then x∗ is a 

(12)h(Rx(�)) ≤ h(x) + ⟨ grad h(x), �⟩x + L

2
‖�‖2, ∀� ∈ Sx.

(13)F(xk) − F(xk+1) ≥ 𝛽‖�̂�xk‖2,

F(xk) = f (xk) + g(xk) ≥ f (xk) +
�
grad f (xk), �̂�xk

�
xk
+

L̃

2
‖�̂�xk‖2 + g(Rxk

(�̂�xk ))

≥
L̃ − L

2
‖�̂�xk‖2 + f (Rxk

(�̂�xk )) + g(Rxk
(�̂�xk )) = F(xk+1) +

L̃ − L

2
‖�̂�xk‖2,
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stationary point. Furthermore, Algorithm 1 returns xk satisfying ‖�̂�xk‖ ≤ 𝜖 in at most 
(F(x0) − F(x∗))∕(��

2) iterations.

Proof The proof mainly follows the proof in [20, Theorem 1]. Here, we only high-
light the differences. The existence of an accumulation point follows immediately 
from Assumption 1 and Lemma 3.

By Lemma  3, we have that F(x0) − F(x̃) ≥ 𝛽
∑∞

i=0
‖�̂�xk‖2 , where x̃ denotes a 

global minimizer of F. Therefore,

By limk→∞ q(𝜀k, ‖�̂�xk‖) = 0 , we have

The remaining of the proof follows [20, Theorem 1].   ◻

3.2  Local convergence rate analysis using Riemannian Kurdyka–Łojasiewicz 
property

The KL property has been widely used for the convergence analysis of vari-
ous convex and nonconvex algorithms in the Euclidean case, see e.g., [6, 35–37]. 
In this section we will study the convergence of RPG base on the Riemannian 
Kurdyka–Łojasiewicz (KL) property, introduced in  [38] for the analytic setting and 
in [39] for the nonsmooth setting. Note that a convergence analysis based on KL 
property for a Euclidean inexact proximal gradient has been given in [27]. As we 
pointed out before, the convergence analysis and algorithm design therein rely on 
the convexity of the objective in the proximal mapping.

Definition 2 A continuous function f ∶ M → ℝ is said to have the Riemannian KL 
property at x ∈ M if and only if there exists � ∈ (0,∞] , a neighborhood U ⊂ M of 
x, and a continuous concave function � ∶ [0, �] → [0,∞) such that

• �(0) = 0,
• � is C1 on (0, �),
• 𝜍′ > 0 on (0, �),
• For every y ∈ U with f (x) < f (y) < f (x) + 𝜀 , we have 

 where dist (0, �f (y)) = inf{‖v‖y ∶ v ∈ �f (y)} and � denotes the Riemannian gen-
eralized subdifferential. The function � is called the desingularising function.

Note that the definition of the Riemannian KL property is overall similar to 
the KL property in the Euclidean setting, except that related notions including 
U, �f (y) and dist (0, �f (y)) are all defined on a manifold. In [20, 39, 40], sufficient 

(14)lim
k→∞

‖�̂�xk‖ = 0.

lim
k→∞

‖�∗
xk
‖ = 0.

��(f (y) − f (x)) dist (0, �f (y)) ≥ 1,
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conditions to verify if a function satisfies the Riemannian KL condition are given. 
Specifically, in [20, Section 3.4], it is shown that any restriction of a semialge-
braic function onto the Stiefel manifold satisfies the Riemannian KL property. 
In [40], Lemma 4 therein gives a necessary and sufficient condition to verify if a 
function defined on an embedded submanifold satisfies the Riemannian KL prop-
erty by verifying whether its extension satisfies the Euclidean KL property.

Assumptions  5 and 6 are used for the convergence analysis in this section. 
Assumption 5 is a standard assumption and has been made in e.g., [6], when the 
manifold M is the Euclidean space.

Assumption 5 The function f ∶ M → ℝ is locally Lipschitz continuously 
differentiable.

Assumption 6 The function F is locally Lipschitz continuous with respect to the 
retraction R.

In order to guarantee the uniqueness of accumulation points, the Riemann-
ian proximal mapping needs to be solved more accurately than (11), as shown in 
Theorem 7.

Theorem 7 Let {xk} denote the sequence generated by Algorithm 1 and S denote the 
set of all accumulation points. Suppose Assumptions 1, 2, 5 and 6 hold. We further 
assume that F = f + g satisfies the Riemannian KL property at every point in S . If 
the Riemannian proximal mapping (5) is solved such that for all k,

that is, q(𝜀k, ‖�̂�xk‖) = 𝜀2
k
 and 

∑∞

k=1
𝜀k < ∞ . Then,

It follows that S only contains a single point.

Proof First note that the global convergence result in Theorem 4 implies that every 
point in S is a stationary point. Since limk→∞ ‖�̂�xk‖ = 0 , there exists a 𝛿T > 0 such 
that ‖�̂�xk‖ ≤ 𝛿T for all k. Thus, the application of [20, Lemma 6] implies that

Then by [37, Remark 5], we know that S is a compact set. Moreover, since F(xk) 
is nonincreasing and F is continuous, F has the same value at all the points in S . 
Therefore, by [20, Lemma 5], there exists a single desingularising function, denoted 
� , for the Riemannian KL property of F to hold at all the points in S.

(15)‖�̂�xk − 𝜂∗
xk
‖ ≤ 𝜀2

k
,

(16)
∞∑
k=0

dist (xk, xk+1) < ∞.

(17)dist (xk, xk+1) = dist (xk,Rxk
(�̂�xk )) ≤ 𝜅‖�̂�xk‖ → 0.
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Let x∗ be a point in S . Assume there exists k̄ such that xk̄ = x∗ . Since F(xk) is non-
increasing, it must hold F(xk̄) = F(xk̄+1) . By Lemma 3, we have 𝜂∗

xk̄
= 0 , xk̄ = xk̄+1 , 

(16) holds evidently.
In the case when F(xk) > F(x∗) for all k, Since �∗

xk
→ 0 , we have 

F(Rxk
(�∗

xk
)) → F(x∗) , dist (Rxk

(�∗
xk
),S) → 0 . By the Riemannian KL property of F on 

S , there exists an l > 0 such that

It follows that

Since limk→∞ ‖�∗
xk
‖ = 0 , there exists a constant k0 > 0 such that ‖𝜂∗

xk
‖ < 𝜇 for all 

k > k0 , where � is defined in [20, Lemma 7]. By Assumption 5 and [20, Lemma 7], 
we have

for all k ≥ k0 , where Lc is a constant. By the definition of �∗
xk

 , there exists 
�xk ∈ �g(Rxk

(�∗
xk
)) such that

 It follows that

Therefore, (19) and (21) yield

for all k > k0 . Inserting this into (18) gives

Define Δp,q = �(F(xp) − F(x∗)) − �(F(xq) − F(x∗)) . We next show that for suffi-
ciently large k,

where b0 =
Lc

�
 , b1 =

LF

�
 , and LF is the Lipschitz constant of F. To the end, we con-

sider two cases:

𝜍�(F(Rxk
(𝜂∗

xk
)) − F(x∗)) dist (0, 𝜕F(Rxk

(𝜂∗
xk
))) ≥ 1 for all k > l.

(18)𝜍�(F(Rxk
(𝜂∗

xk
)) − F(x∗)) ≥ dist (0, 𝜕F(Rxk

(𝜂∗
xk
)))−1 for all k > l.

(19)‖ grad f (Rxk
(𝜂∗

xk
)) − T

−♯

R𝜂∗xk

( grad f (xk) + L̃𝜂∗
xk
)‖ ≤ Lc‖𝜂∗xk‖

(20)grad f (xk) + L̃𝜂∗
xk
+ T

♯

R𝜂∗xk

𝜁xk = 0.

(21)
grad f (Rxk

(𝜂∗
xk
)) − T

−♯

R𝜂∗xk

( grad f (xk) + L̃𝜂∗
xk
)

= grad f (Rxk
(𝜂∗

xk
)) + 𝜁xk ∈ 𝜕F(Rxk

(𝜂∗
xk
)).

(22)dist (0, �F(Rxk
(�∗

xk
))) ≤ Lc‖�∗xk‖,

(23)𝜍�(F(Rxk
(𝜂∗

xk
)) − F(x∗)) ≥ L−1

c
‖𝜂∗

xk
‖−1 for all k > l̂ ∶= max(k0, l).

(24)‖�̂�xk‖2 ≤ b0Δk,k+1(‖�̂�xk−1‖ + 𝜀2
k−1

) + b1𝜀
2
k−1

,
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• Case 1: F(xk) = F(Rxk−1
(�̂�xk−1)) ≤ F(Rxk−1

(𝜂∗
xk−1

)).
  We have 

 where the first and the second inequalities are from the concavity of � , the third 
inequality is from (23) and (13), and the last inequality is from (15). It follows 
that 

 which implies that (24) holds.
• Case 2: F(xk) = F(Rxk−1

(�̂�xk−1)) > F(Rxk−1
(𝜂∗

xk−1
)).

  We have 

 where the third inequality is from Assumption 6 with Lipschitz constant denoted 
by LF and the last inequality is from  (15). Together with  (15), inequality  (25) 
yields that for all k > �̂  , 

 which gives 

𝜍(F(xk) − F(x∗)) − 𝜍(F(xk+1) − F(x∗))

≥ 𝜍�(F(xk) − F(x∗))(F(xk) − F(xk+1))

≥ 𝜍�(F(Rxk−1
(𝜂∗

xk−1
)) − F(x∗))(F(xk) − F(xk+1))

≥ L−1
c
𝛽
‖�̂�xk‖2
‖𝜂∗

xk−1
‖

≥
𝛽

Lc

‖�̂�xk‖2
(‖�̂�xk−1‖ + 𝜀2

k−1
)

for all k > l̂ ∶= max(k0, l),

‖�̂�xk‖2 ≤
Lc

𝛽
Δk,k+1(‖�̂�xk−1‖ + 𝜀2

k−1
),

(25)

𝜍(F(xk) − F(x∗)) − 𝜍(F(xk+1) − F(x∗))

≥ 𝜍(F(Rxk−1
(𝜂∗

xk−1
)) − F(x∗)) − 𝜍(F(xk+1) − F(x∗))

≥ 𝜍�(F(Rxk−1
(𝜂∗

xk−1
)) − F(x∗))(F(Rxk−1

(𝜂∗
xk−1

)) − F(xk+1))

= 𝜍�(F(Rxk−1
(𝜂∗

xk−1
)) − F(x∗))

�
F(Rxk−1

(𝜂∗
xk−1

))

− F(Rxk−1
(�̂�xk−1)) + F(xk) − F(xk+1)

�

≥

𝛽‖�̂�xk‖2 − LF‖𝜂∗xk−1 − �̂�xk−1‖
Lc‖𝜂∗xk−1‖

for all k > l̂ ∶= max(k0, l)

≥

𝛽‖�̂�xk‖2 − LF𝜀
2
k−1

Lc(‖�̂�xk−1‖ + 𝜀2
k−1

)
,

(26)𝛽‖�̂�xk‖2 ≤ LcΔk,k+1(‖�̂�xk−1‖ + 𝜀2
k−1

) + LF𝜀
2
k−1

,
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 which implies that (24) holds.
Once (24) has been established, by 

√
a2 + b2 ≤ a + b and 2

√
ab ≤ a + b , we have

For any p > l̂ , taking summation of (28) from p to s yields

which implies

Taking s to ∞ yields

It follows that 
∑∞

k=0
‖�̂�xk‖ < ∞ , which yields (16) due to (17).   ◻

Theorem 8 gives the local convergence rate based on the Riemannian KL prop-
erty. Note that the local convergence rate requires an even more accurate solution 
than that in Theorem 7.

Theorem  8 Let {xk} denote the sequence generated by Algorithm  1 and S denote 
the set of all accumulation points. Suppose Assumptions  1,  2,  5, and  6 hold. We 
further assume that F = f + g satisfies the Riemannian KL property at every point 
in S with the desingularising function having the form of �(t) = C

�
t� for some C > 0 , 

� ∈ (0, 1] . The accumulation point, denoted x∗ , is unique by Theorem 7. If the Rie-
mannian proximal mapping (5) is solved such that for all k,

that is, q(𝜀k, ‖�̂�xk‖) = min
�
𝜀2
k
,

𝛽

2LF
‖�̂�xk‖2

�
 and 

∑∞

k=1
𝜀k < ∞ . Then

• If � = 1 , then there exists k1 such that xk = x∗ for all k > k1.
• if � ∈ [

1

2
, 1) , then there exist constants Cr > 0 and d ∈ (0, 1) such that for all k

(27)‖�̂�xk‖2 ≤
Lc

𝛽
Δk,k+1(‖�̂�xk−1‖ + 𝜀2

k−1
) +

LF

𝛽
𝜀2
k−1

.

(28)2‖�̂�xk‖ ≤ b0Δk,k+1 + ‖�̂�xk−1‖ + 𝜀2
k−1

+ 2
√
b1𝜀k−1.

s�
k=p

2‖�̂�xk‖ ≤

s�
k=p

b0Δk,k+1 +

s�
k=p

‖�̂�xk−1‖ + 2
√
b1

s�
k=p

𝜀k−1 +

s�
k=p

𝜀2
k−1

,

s�
k=p

‖�̂�xk‖ ≤ ‖�̂�xp−1‖ + b0Δp,s+1 + 2
√
b1

s�
k=p

𝜀k−1 +

s�
k=p

𝜀2
k−1

.

(29)
∞�
k=p

‖�̂�xk‖ ≤ ‖�̂�xp−1‖ + b0𝜍(F(xp) − F(x∗)) + 2
√
b1

∞�
k=p

𝜀k−1 +

∞�
k=p

𝜀2
k−1

.

(30)‖�̂�xk − 𝜂∗
xk
‖ ≤ min

�
𝜀2
k
,

𝛽

2LF
‖�̂�xk‖2

�
,

dist (xk, x∗) < Crd
k;
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• if � ∈ (0,
1

2
) , then there exists a positive constant C̃r such that for all k

Proof In the case of � = 1 , suppose F(xk) > F(x∗) . It follows from (18) and (22) that

Therefore, we have ‖𝜂∗
xk
‖ ≥ C∕Lc for all k > max(k0, l) . By  (11), there exists 

k2 > 0 and Ĉ > 0 such that ‖�̂�xk‖ ≥ Ĉ‖𝜂∗
xk
‖ for all k ≥ k2 . It follows that

Due to the descent property in  (13), there must exist k1 such that xk = x∗ for all 
k > k1.

Next, we consider � ∈ (0, 1) . By the same derivation as the proof in Theorem 7 
and noting the difference between (30) and (15), we obtain from (24) that

by replacing �k−1 with 𝛽

2LF
‖�̂�xk‖ . Since ‖�̂�xk‖ → 0 , for any 𝛿 > 0 , there exists k2 > 0 

such that for all k > k2 , it holds that 1 + 𝛽∕(2LF)‖�̂�xk‖ < 𝛿 . Therefore, we have

By 2
√
ab ≤ a + b , we have

where b̃0 = 2b0(1 + 𝛿) . It follows that

Substituting �(t) = C

�
t� into (31) yields

By Assumption 6 and (30), we have

dist (xk, x∗) < C̃rk
−1

1−2𝜃 .

dist (0, 𝜕F(Rxk
(𝜂∗

xk
))) ≥ C for all k > l,

dist (0, 𝜕F(Rxk
(𝜂∗

xk
))) ≤ Lc‖𝜂∗xk‖ for all k > k0.

‖�̂�xk‖ ≥ ĈC∕Lc, for all k > max(k0, k2, l).

‖�̂�xk‖2 ≤ b0Δk,k+1

�
‖�̂�xk−1‖ +

𝛽

2LF
‖�̂�xk‖2

�
+ b1

𝛽

2LF
‖�̂�xk‖2,

‖�̂�xk‖2 ≤ b0Δk,k+1(1 + 𝛿)‖�̂�xk−1‖ +
1

2
‖�̂�xk‖2.

2‖�̂�xk‖ ≤ b̃0Δk,k+1 + ‖�̂�xk−1‖

(31)
∞�
k=p

‖�̂�xk‖ ≤ ‖�̂�xp−1‖ + b̃0𝜍(F(xp) − F(x∗)).

(32)
∞�
k=p

‖�̂�xk‖ ≤ ‖�̂�xp−1‖ +
b̃0C

𝜃
(F(xp) − F(x∗))

𝜃 .
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Combining (32) and (33) yields

By  (18), we have 1
C
(F(Rxp−1

(�∗
xp−1

)) − F(x∗))
1−� ≤ dist (0, �F(Rxp−1

(�∗
xp−1

)) . Combin-
ing this inequality with (22) yields

It follows from (34) and (35) that

Since limk→∞ ‖�̂�xk‖ = 0 , there exists p̂ > 0 such that ‖�̂�xk‖ < 1 for all k > p̂ . There-
fore, for all p > p̂ , it holds that

which combining with (36) yields

Note that if � ≥ 0.5 , then 1 ≤ 2� ≤ �∕(1 − �) . Thus min
(
2�, �

1−�

)
≥ 1 . If 

� ∈ (0, 0.5) , then min
(
2𝜃, 𝜃

1−𝜃

)
= 𝜃∕(1 − 𝜃) < 1 . The remaining part of the proof 

follow the same derivation as those in [41, Appendix B] and [5, Theorem 2].   ◻

4  Conditions for solving Riemannian proximal mapping

In the general framework of the inexact RPG method (i.e., Algorithm  1), the 
required accuracy for solving the Riemannian proximal mapping involves the 
unknown exact solution �∗

xk
 . In this section, we study two conditions that can gen-

erate search directions satisfying (11) for different forms of g when the manifold 

(33)
�F(xp) − F(Rxp−1

(𝜂∗
xp−1

))� = �F(Rxp−1
(�̂�xp−1 )) − F(Rxp−1

(𝜂∗
xp−1

))�
≤ LF‖�̂�xp−1 − 𝜂∗

xp−1
‖ ≤

𝛽

2
‖�̂�xp−1‖2.

(34)
∞�
k=p

‖�̂�xk‖ ≤ ‖�̂�xp−1‖ +
b̃0C

𝜃

�
F(Rxp−1

(𝜂∗
xp−1

)) − F(x∗) +
𝛽

2
‖�̂�xp−1‖2

�𝜃

.

(35)
1

C
(F(Rxp−1

(�∗
xp−1

)) − F(x∗))
1−�

≤ Lc‖�∗xp−1‖.

(36)

∞�
k=p

‖�̂�xk‖ ≤ ‖�̂�xp−1‖ +
b̃C

𝜃

�
(CLc‖𝜂∗xp−1‖)

1

1−𝜃 +
𝛽

2
‖�̂�xp−1‖2

�𝜃

≤ ‖�̂�xp−1‖ +
b̃0C

𝜃

��
CLc(1 + 𝛿)‖�̂�xp−1‖

� 1

1−𝜃
+

𝛽

2
‖�̂�xp−1‖2

�𝜃

.

‖�̂�xp−1‖
1

1−𝜃 ≤ ‖�̂�xp−1‖
min

�
2,

1

1−𝜃

�
and ‖�̂�xp−1‖2 ≤ ‖�̂�xp−1‖

min
�
2,

1

1−𝜃

�

∞�
k=p

‖�̂�xk‖ ≤ ‖�̂�xp−1‖ +
b̃0C

𝜃

��
CLc(1 + 𝛿)

� 1

1−𝜃 + 𝛽∕2
�𝜃

‖�̂�xp−1‖
min

�
2𝜃, 𝜃

1−𝜃

�
.
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M has a linear ambient space, or equivalently, M is an embedded submanifold of 
ℝ

n or a quotient manifold whose total space is an embedded submanifold of ℝn . 
Throughout this section, the Riemannian metric is fixed to be the Euclidean met-
ric ⟨, ⟩F . We describe the algorithms for embedded submanifolds and point out 
here that in the case of a quotient manifold, the derivations still hold by replacing 
the tangent space TxM with the notion of horizontal space Hx.

4.1  Condition that ensures global convergence

We first show that an approximate solution to the Riemannian proximal mapping 
in [19] satisfies the condition that is needed to establish the global convergence of 
IRPG. Recall that the Riemannian proximal mapping therein is

Since M has a linear ambient space ℝn , its tangent space can be characterized by

where BT
x
∶ ℝ

n → ℝ
n−d ∶ v ↦ (⟨b1, v⟩ F , ⟨b2, v⟩ F ,… , ⟨bn−d, v⟩ F )T is a linear opera-

tor, d is the dimension of the manifold M , and {b1, b2,… , bn−d} forms an orthonor-
mal basis of the normal space of TxM . Concrete expressions of BT

x
 for various mani-

folds will be given later in Appendix 1. Based on BT
x
 , Problem (37) can be written as

Semi-smooth Newton method can be used to solve (39). Specifically, the KKT con-
dition of (39) is given by

where L(�,Λ) is the Lagrangian function defined by

Equation (40) yields

where

(37)�̃�x = argmin
𝜂∈TxM

�̃x(𝜂) = ⟨ grad f (x), 𝜂⟩ F +
L̃

2
⟨𝜂, 𝜂⟩ F + g(x + 𝜂).

(38)TxM =
{
� ∈ ℝ

n ∶ BT
x
� = 0

}
,

(39)�̃�x = argmin
BT
x
𝜂=0

�̃x(𝜂) = ⟨ grad f (x), 𝜂⟩ F +
L̃

2
⟨𝜂, 𝜂⟩ F + g(x + 𝜂).

(40)��L(�,Λ) = 0,

(41)BT
x
� = 0,

L(𝜂,Λ) = ⟨ grad f (x), 𝜂⟩ F +
L̃

2
⟨𝜂, 𝜂⟩ F + g(X + 𝜂) −

�
Λ,BT

x
𝜂
�
F
.

(42)𝜂 = v(Λ) ∶= Prox g∕L̃

(
x −

1

L̃
( grad f (x) − BxΛ)

)
− x,



17

1 3

An inexact Riemannian proximal gradient method  

denotes the Euclidean proximal mapping. Substituting (42) into (41) yields that

which is a system of nonlinear equations with respect to Λ . Therefore, to solve (7), 
one can first find the root of (44) and substitute it back to (42) to obtain �̃�x . Moreo-
ver, the semi-smooth Newton method can be used to solve (44), which updates the 
iterate Λk by Λk+1 = Λk + dk , where dk is a solution of

and JΨ(Λk) is a generalized Jacobian of Ψ.
To solve the proximal mapping (37) approximately, we consider an algorithm that 

can solve (44) globally, e.g., the regularized semi-smooth Newton algorithm from 
[42–44]. Given an approximate solution Λ̂ to (44), define2

where v(⋅) is defined in (42). We will show later, in order for �̂�x to satisfy (11), it suf-
fices to require Λ̂ to satisfy

where 𝓁x(⋅) the Riemannian proximal mapping function used in Algorithm  1, 
� ∶ ℝ → ℝ satisfies �(0) = 0 and nondecreasing. Moreover, a globally convergent 
algorithm will terminate properly under these two stopping conditions. The analyses 
rely on Assumption 9.

Assumption 9 The function g is convex and Lipschitz continuous with constant Lg , 
where the convexity and Lipschitz continuity are in the Euclidean sense.

Note that if g is given by the one-norm regularization, then Assumption 9 holds.
It is evident that, in order to show that �̂�x satisfies (11), we only need to show 

that there is a function q̃(t) such that ‖�̂�x − 𝜂∗
x
‖ ≤ q̃(‖�̂�x‖) holds if �̂�x satisfies (46) 

and (47). Therefore, the function q(s, t) in (11) can be defined by q(s, t) = q̃(t).

(43)Prox g∕L̃(z) = argmin
v∈ℝn

1

2
‖v − z‖2 + 1

L̃
g(v)

(44)Ψ(Λ) ∶= BT
x

(
Prox g∕L̃

(
x −

1

L̃
( grad f (x) − BxΛ)

)
− x

)
= 0,

JΨ(Λk)[dk] = −Ψ(Λk),

(45)�̂�x = PTxM
(v(Λ̂)),

(46)‖Ψ(Λ̂)‖ ≤ min(𝜙(‖�̂�x‖), 0.5),

(47)�x(0) ≥ �x(�̂�x),

2 Note that if Ψ(Λ) ≠ 0 , then � defined by (42) may be not in TxM . Therefore, we add an orthogonal 
projection.
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Theorem 10 Suppose there exists a constant 𝜌 > 0 such that for any x ∈ Ωx0
 it holds 

that Ωx0
⊆ Rx(B(0x, 𝜌)) . If L̃ is sufficiently large and the search direction �̂�x define 

in (45) satisfies (46), then we have

where

and �(t) is defined in (46).

Proof For ease of notation, let 𝜖 = Ψ(Λ̂) = BT
x
v(Λ̂) . Consider the optimization 

problem

Its KKT condition is given by

which is satisfied by (Λ̂, v(Λ̂)) Therefore, v(Λ̂) is the minimizer of �̃x(𝜂) over the set 
S = {v ∶ BT

x
v = �} , i.e.,

Define �̂x(𝜂x) = �̃x(𝜂 + Bx𝜖) . Further by the definition of �̂�x , i.e., �̂�x = PTxM
v(Λ̂) , it is 

not hard to see that

By the L̃-strongly convexity of �̂x and the definition of �̂�x , it holds that

By definition of �̂�x , we have

Since Ωx0
 is compact, there exists a constant Uf  such that ‖ grad f (x)‖ < Uf  for all 

x ∈ Ωx0
 . By [45], if a function is Lipschitz continuous, then the norm of any subgra-

dient is smaller than its Lipschitz constant. Therefore, by Assumption 9, it holds that 
‖�‖ ≤ Lg for any � ∈ �Eg(x + �) . It follows from (52) and (46) that

(48)‖�̂�x − 𝜂∗
x
‖ ≤ q̃(‖�̂�x‖),

q̃(t) =
2Lg�2

L̃ − 2Lg�2
t +

√√√√4Lg�2 − 4L2
g
�
2
2

(L̃ − 2Lg�)
2

t2 +
4𝜗

L̃ − 2Lg�2
min(𝜙(t), 0.5)

(49)min
BT
x
𝜂=𝜖

�̃x(𝜂).

��L(�,Λ) = 0, BT
x
� = �,

(50)v(Λ̂) = argmin
v∈S

�̃x(𝜂) = ⟨ grad f (x), 𝜂⟩ F +
L̃

2
⟨𝜂, 𝜂⟩ F + g(x + 𝜂).

�̂�x = argmin
𝜂∈TxM

�̂x(𝜂).

(51)�̂x(𝜂x) ≥ �̂x(�̂�x) +
L̃

2
‖𝜂x − �̂�x‖2, ∀𝜂x ∈ TxM.

(52)0 ∈ grad f (x) + L̃�̂�x + PTxM
𝜕Eg(x + �̂�x + Bx𝜖).
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Define U = {Rx(�x) ∶ x ∈ Ωx0
, ‖�x‖ ≤ �} . Therefore, U is compact. Moreover, since 

Ωx0
⊆ Rx(B(0x, 𝜌)) for any x ∈ Ωx0

 , we have Ωx0
⊂ U . It follows from (7) that there 

exists �2 such that

holds for any x ∈ Ωx0
 and ‖�x‖ ≤ � . By Assumption 9 and (54), we have

Moreover, by the definition of �̂x(𝜂x) , we have for any x ∈ Ωx0
 and ‖�x‖ ≤ �,

where the third line has used the fact ‖Bx�‖ ≤ ‖�‖ ≤ 1∕2 (see (46)). Together 
with  (55), and (51), it holds that for any x ∈ Ωx0

, �x ∈ TxM , and ‖�x‖ ≤ �,

Define

It is easy to verify that

(53)‖�̂�x‖ ≤
Uf + Lg

L̃
.

(54)‖Rx(�x) − x − �x‖ ≤ 𝜘2‖�x‖2

(55)��x(𝜂x) − �̃x(𝜂x)� ≤ Lg𝜘2‖𝜂x‖2, ∀x ∈ Ωx0
, 𝜂x ∈ TxM, ‖𝜂x‖ ≤ 𝜌.

��̂x(𝜂x) − �̃x(𝜂x)�
≤ ‖ grad f (x)‖‖Bx𝜖‖ + L̃‖𝜂x‖‖Bx𝜖‖ + L̃

2
‖Bx𝜖‖2

+ �g(x + 𝜂x + Bx𝜖) − g(x + 𝜂x)�
= (‖ grad f (x)‖ + L̃‖𝜂x‖ + L̃

2
‖Bx𝜖‖ + Lg)‖Bx𝜖‖

≤ (Uf + (𝜌 + 1)L̃ + Lg)‖Bx𝜖‖
=∶ 𝜗2‖Bx𝜖‖,

(56)

�̂x(�̂�x) +
L̃

2
‖𝜂x − �̂�x‖2 − Lg𝜘2‖𝜂x‖2 − 𝜗2‖Bx𝜖‖

≤ �̂x(𝜂x) − Lg𝜘2‖𝜂x‖2 − 𝜗2‖Bx𝜖‖
≤ �̃x(𝜂x) − Lg𝜘2‖𝜂x‖2

(57)≤ �x(�x)

(58)
≤ �̃x(𝜂x) + Lg𝜘2‖𝜂x‖2
≤ �̂x(𝜂x) + Lg𝜘2‖𝜂x‖2 + 𝜗2‖Bx𝜖‖.

Ω̂ =

�
𝜂x ∈ TxM ∶

L̃

2
‖𝜂x − �̂�x‖2 − Lg𝜘2‖𝜂x‖2 − 𝜗2‖Bx𝜖‖ ≤ Lg𝜘2‖�̂�x‖2 + 𝜗2‖Bx𝜖‖

�
.
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which yields

Noting the expression of �2 , when L̃ → ∞ , the righthand side in the above inequality 
goes to 

√
4(� + 1) . Thus, for sufficiently large L̃ and � , we have

For any �x ∈ W but not in Ω̂ , it follows from (58) that

Therefore, there exists a global minimizer of �x in the set Ω̂ , we denote it by �∗
x
 . It 

follows from 𝜂∗
x
∈ Ω̂ , and thus ‖�̂�x − 𝜂∗

x
‖ ≤ q̃(‖�̂�x‖) for q̃(t) given in the theorem.   ◻

Theorem  10 ensures that the search direction given by  (45) is desirable for 
IRPG to have global convergence. There are several implications of this theorem. 
First, the global convergence of ManPG in [19] follows and the step size one is 
always acceptable. This can be seen by noting that if �(t) ≡ 0 , then the direction �̂� 
with Λ satisfying (46) is the search direction used in [19]. Secondly, one can relax 
the accuracy of the solution in ManPG and still guarantees its global conver-
gence. However, it should be pointed out that Theorem 10 does not implies that 
�̂�x satisfies (15) or (30). Therefore, the uniqueness of accumulation points and the 
convergence rate based on the Riemannian KL property are not guaranteed.

Lemma 11 shows that a globally convergent algorithm for solving (44) can ter-
minate properly in the sense that it satisfies (46) and (47) under the assumption 
that L̃ is sufficiently large.

Ω̂ =

⎧
⎪⎨⎪⎩
𝜂x ∈ TxM ∶

�����
𝜂x −

L̃

L̃ − 2Lg𝜘2
�̂�x

�����

����4L̃Lg𝜘2 − 4L2
g
𝜘
2
2

(L̃ − 2Lg𝜘)
2

≤

����4L̃Lg𝜘2 − 4L2
g
𝜘
2
2

(L̃ − 2Lg𝜘2)
2

‖�̂�x‖2 +
4𝜗2

L̃ − 2Lg𝜘2
‖Bx𝜖‖

⎫
⎪⎬⎪⎭
,

Ω̂ ⊆ U ∶=

�
𝜂x ∈ TxM ∶ ‖𝜂x − �̂�x‖ ≤

2Lg𝜘2

L̃ − 2Lg𝜘2
‖�̂�x‖

+

����4L̃Lg𝜘2 − 4L2
g
𝜘
2
2

(L̃ − 2Lg𝜘2)
2

‖�̂�x‖2 +
4𝜗2

L̃ − 2Lg𝜘2
‖Bx𝜖‖

⎫
⎪⎬⎪⎭
.

Ω̂ ⊂ U ∶= {𝜂x ∈ TxM ∶ ‖𝜂x‖ ≤ 𝜌∕2}

⊂ W ∶= {𝜂x ∈ TxM ∶ ‖𝜂x‖ ≤ 𝜌}.

(59)
�x(𝜂x) ≥ �̂x(�̂�x) +

L̃

2
‖𝜂x − �̂�x‖2 − Lg𝜘2‖𝜂x‖2 − 𝜗‖Bx𝜖‖

> �̂x(�̂�x) + Lg𝜘2‖�̂�x‖2 + 𝜗‖Bx𝜖‖ ≥ �x(�̂�x).
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Lemma 11 Suppose there exists a constant 𝜌 > 0 such that for any x ∈ Ωx0
 it holds 

that Ωx0
⊆ Rx(B(0x, 𝜌)) . If L̃ is sufficiently large and an algorithm that converges 

globally is used for (44), then inequalities  (46) and  (47) are satisfied by all but 
finitely many iterates from the algorithm.

Proof If � = 0 , then �̂�x = �̃�x and the above derivations for �̂�x also hold for �̃�x . There-
fore, �x(0x) > �x(�̃�x) follows from (59) by noting 0x ∈ W and 0x ∉ Ω̂ when L̃ is suf-
ficiently large. Finally, by strong convexity of �̃x and the convergence of the algo-
rithm, we have that �̂�x → �̃�x and ‖Ψ(Λ)‖ → 0 . Therefore, inequalities (46) and (47) 
are satisfied by all but finitely many iterates from the algorithm.   ◻

4.2  Condition that ensures local convergence rate

In this section, we directly consider the solution of the Riemanniann proximal mapping 
(9) and provide a condition that meets the requirement for the local convergence rate 
analysis. First note that the Riemnnaian proximal mapping (9) is equivalent to

which is an optimization problem on a Euclidean space, where the subscript k is 
omitted for simplicity, d is the dimension of M and Qx forms an orthonormal space 
of TxM.

The analysis in this section relies on the notion of error bound (see its definition 
in e.g., [46, (35)], [47]), whose discussion relies on the convexity of the objective 
function. Therefore, we will make Assumption 12 which uses Definition 3. It fol-
lows that Jx(c) is convex. Note that Definition 3 has also been used in [20, 48]

Definition 3 A function h ∶ M → ℝ is called retraction-convex with respect to a 
retraction R in N ⊆ M if for any x ∈ N  and any Sx ⊆ TxM such that Rx(Sx) ⊆ N  , 
there exists a tangent vector � ∈ TxM such that px = h◦Rx satisfies

Note that � = grad px(�) if h is differentiable; otherwise, � is any Riemannian sub-
gradient of px at �.

Assumption 12 The function g is retraction-convex on M.

In the typical error bound analysis, the residual map plays a key role which con-
trols the distance of a point to the optimal solution set. For our purpose, the residual 
map for (60) is defined as follows:

It is not hard to see that

(60)min
c∈ℝd

Jx(c) ∶=
�
c,QT

x
grad f (x)

�
F
+

L̃

2
‖c‖2 + g(Rx(Qxc)),

(61)px(�) ≥ px(�) + ⟨� , � − �⟩x ∀�, � ∈ Sx.

(62)

rx(c) = argmin
v∈ℝn

wx,c(v) ∶=
�
v,QT

x
grad f (x) + L̃c

�
F
+

L̃

2
‖v‖2 + g(Rx(Qx(c + v))),
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Note the residual map defined here is slightly different from the one defined in [46], 
where the coefficient in front ‖v‖2 is 1/2 instead of L̃∕2 . However, the error bound 
can be established in exactly the same way. To keep the presentation self-contained, 
details of the proof are provided below. It is worth pointing out that the family of 
Problems (60) parameterized by x possesses an error bound property with the coef-
ficient independent of x.

Lemma 13 Suppose that Assumption 12 holds. Then it holds that

where c∗
x
 is the minimizer of Jx(c).

Proof Let f̃x(c) denote grad f (x)TQxc +
L̃

2
‖c‖2 and g̃x(c) denote g(Rx(Qx(c))) . It fol-

lows that Jx(c) = f̃x(c) + g̃x(c) and

Therefore, we have 0 ∈ ∇f̃x(c) + L̃rx(c) + 𝜕Eg̃x(c + rx(c)), which implies

It follows that

Since 0 ∈ ∇f̃x(c
∗
x
) + 𝜕Eg̃x(c

∗
x
) , we have c∗

x
= argmin

v∈ℝn

∇f̃x(c
∗
x
)Tv + g̃x(v). Therefore,

Adding (64) to (65) yields

By definition of f̃x , we have that f̃x is L̃-strongly convex and Lipschitz continuously 
differentiable with constant L̃ . Therefore, (66) yields

which implies ‖c − c∗
x
‖ ≤ 2‖rx(c)‖.   ◻

Computing the residual map (62) is usually impractical due to the existence of 
the retraction R in g. Therefore, we use the same technique in [20, Section 3.5] to 

rx(c
∗) = 0 ⇔ c∗ is the optimal solution to (60).

(63)‖c − c∗
x
‖ ≤ 2‖rx(c)‖, for all x ∈ M,

rx(c) = argmin
v∈ℝd

�
v,∇f̃x(c)

�
F
+

L̃

2
‖v‖2 + g̃x(c + v).

rx(c) = argmin
v∈ℝd

⟨
∇f̃x(c) + L̃rx(c), v

⟩
F
+ g̃x(c + v).

(64)

⟨
∇f̃x(c) + L̃rx(c), rx(c)

⟩
F
+ g̃x(c + rx(c)) ≤

⟨
∇f̃x(c) + L̃rx(c), c

∗
x
− c

⟩
F
+ g̃x(c

∗
x
).

(65)
⟨
f̃x(c

∗
x
), c∗

x

⟩
F
+ g̃x(c

∗
x
) ≤

⟨
∇f̃x(c

∗
x
), c + rx(c)

⟩
F
+ g̃x(c + rx(c)).

(66)

�
f̃x(c) − f̃x(c

∗
x
), c − c∗

x

�
F
+ L̃‖rx(c)‖2 ≤

�
f̃x(c

∗
x
) − f̃x(c), rx(c)

�
F
+ L̃

�
rx(c), c

∗
x
− c

�
F
.

L̃‖c − c∗
x
‖2 ≤ 2L̃‖c − c∗

x
‖‖rx(c)‖,
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linearize Rx(Qx(c + v)) by Rx(Qxc) + TRQxc
Qxv , and define a new residual map r̃x(c) 

that can be used to upper bound rx(c),

where y = Rx(Qxc) . A simple calculation can still show that

Moreover, minimizing w̃ is the same as Problem (37) and therefore can be solved by 
the techniques in Sect. 4.1.

Lemma 14 Let G ⊂ M be a compact set. Suppose that Assumptions 9 and12 hold, 
and that there exists a parallelizable set U such that G ⊂ U , where a set is called 
parallelizable if Qx as a function of x is smooth in U.3 If L̃ is sufficient large, then 
there exist two constants b > 0 and 𝛿 > 0 such that

for all x ∈ G and ‖c‖ < 𝛿.

Proof Since Qx is smooth in U and TR is smooth, we have that the function 
z ∶ U ×ℝ

d → ℝ
d×d ∶ (x, c) ↦ QT

y
TRQxc

Qx is a smooth function, where y = Rx(Qxc) . 
Furthermore, since TR0x

 is an identity for any x ∈ M , we have z(x, 0) = Id for any 
x ∈ M . It follows that

where LJ = maxx∈G,‖c‖≤� ‖Jz(x,Qxc)‖ . Since the set of {(x, c) ∶ x ∈ G, ‖c‖ ≤ �} is 
compact and the Jacobi Jz is continuous by smoothness of z, we have LJ < ∞.

Using (69) and noting ‖TRQxc
‖ = ‖QT

y
TRQxc

Qx‖ yields

and

which gives

(67)

r̃x(c) = argmin
v∈ℝd

w̃x,c(v) ∶=
�
v, grad f (x) + L̃Qxc

�
F
+

L̃

2
‖TRQxc

Qxv‖2 + g(y + TRQxc
Qxv),

r̃x(c
∗) = 0 ⇔ c∗ is the optimal solution to (60).

(68)‖rx(c)‖ ≤ b‖r̃x(c)‖

(69)‖QT
y
TRQxc

Qx − Id‖ ≤ LJ‖c‖, for any x ∈ G, ‖c‖ ≤ �,

‖TRQxc
‖ ≤ ‖Id‖ + ‖QT

y
TRQxc

Qx − Id‖ ≤ 1 + LJ‖c‖

‖T−1
RQxc

‖ − ‖Id‖ ≤ ‖Id − (QT
y
TRQxc

Qx)
−1‖

≤ ‖T−1
RQxc

‖‖QT
y
TRQxc

Qx − Id‖ ≤ LJ‖c‖‖T−1RQxc
‖,

3 The notion of a parallelizable set is defined in [49] and the function Q is also called a local frame. The 
existence of a smooth Q around any point x ∈ M can be found in [29, 50].
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Therefore, by choosing 𝛿 < min(
√
3∕2 − 1, 1 − 1∕

√
2)∕LJ , we have

 It follows that

which yields

 By the compactness of G , there exists a constant 𝜒2 such that

for all x,Rx(Qxc),Rx(Qx(c + v)) ∈ G.
Therefore, we have

where CR = L̃∕4 + 2Lg𝜒2 , the second inequality follows from  (71) and Assump-
tion 9, and the last inequality follows from (70).

Since wx,c and w̃x,c are both strongly convex, their minimizers rx(c) ∈ ℝ
d and 

r̃x(c) ∈ TyM are unique. By the same derivation in Theorem 10, we have that

which implies

By assuming L̃ > 8Lg𝜒2 , we have that (68) holds with b =

√
L̃+

√
2CR√

L̃−
√
2CR

 .   ◻

(1 − LJ‖c‖)‖T−1RQxc
‖ ≤ 1.

(70)‖TRQxc
‖ ≤

√
3∕2, and ‖T−1

RQxc
‖ ≤

√
2.

‖TRQxc
Qxv‖2 − ‖v‖2 ≤ (‖TRQxc

‖2 − 1)‖v‖2 ≤ 1

2
‖v‖2 and

‖TRQxc
Qxv‖2 − ‖v‖2 ≥

⎛⎜⎜⎝
1

‖T−1
RQxc

‖2 − 1

⎞⎟⎟⎠
‖v‖2 ≥ −

1

2
‖v‖2,

�‖TRQxc
Qxv‖2 − ‖v‖2� ≤ 1

2
‖v‖2.

(71)‖Rx(Qx(c + v)) − Rx(Qxc) − TRQxc
Qxv‖ ≤ 𝜒2‖TRQxc

Qxv‖2,

�wx,c(v) − w̃x,c(v)�
≤
����
L̃

2
‖v‖2 + g(Rx(Qx(c + v))) −

L̃

2
‖TRQxc

Qxv‖2 + g(y + TRQxc
Qxv)

����
≤

L̃

2
�‖TRQxc

Qxv‖2 − ‖v‖2� + Lg𝜒2‖TRQxc
‖2‖v‖2

≤ CR‖v‖2,

L̃

2
‖rx(c) − r̃x(c)‖2 − CR‖rx(c)‖2 ≤ CR‖r̃x(c)‖2,

��
L̃

2
−
√
CR

�
‖rx(c)‖ ≤

��
L̃

2
+
√
CR

�
‖r̃x(c)‖, for all k > k0.
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The main result is stated in Theorem 15, which follows from Lemmas 13 and 14 . 
It shows that if the Riemannian proximal mapping is solved sufficiently accurate 
such that the computable r̃xk (c̄k) satisfies (72), then the difference ‖�̄�xk − 𝜂∗

xk
‖ is con-

trolled from above by the prescribed function � . An algorithm that achieves (72) 
can be found in [20, Algorithm 2] by adjusting its stopping criterion to (72).

Theorem 15 Let S denote the set of all accumulation points of {xk} . Suppose that 
there exists a neighborhood of S , denoted by U , such that U is a parallelizable set, 
that Assumptions 1, 2, 9 and 12 hold, that L̃ is sufficiently large, and that an algo-
rithm is used to solve

such that the output c̄k ∈ ℝ
d of the algorithm satisfies

where xk is the k -th iterate of Algorithm 1 and � is a function from ℝ3 to ℝ . Then 
there exists a constant ã > 0 and an integer K̃ > 0 such that for all k > K̃ , it holds 
that

where �̄�xk = Qxk
c̄k . Moreover, if �(�k, �, t) = �2

k
 , then inequality  (15) holds; if 

�(�k, �, t) = min(�2
k
, �t2) with 𝜚 < 𝛽

2LFa
 , then inequality (30) holds.

Proof By (17) and [37, Remark 5], we have that S is a compact set. Therefore, there 
exists a compact set G and an integer K̃ > 0 such that S ⊂ G ⊂ U and it holds that 
xk ⊂ G for all k > K̃ . By Lemma 14, there exists two constants b > 0 and 𝛿 > 0 such 
that ‖rx(c)‖ ≤ b‖r̃x(c)‖ for all x ∈ G and ‖c‖ < 𝛿 . In addition, it follows from (14) 
that there exists a constant K̃+ > 0 such that for all k > K̃+ it holds that ‖�̂�xk‖ < 𝛿 . 
Therefore, for all k > max(K̃, K̃+) , we have

The result (73) follows from (72) and (74).   ◻

For simplicity, we define r̃xk (c) as the minimizer of w̃xk ,c
(v) . Indeed, we can show 

that it is not necessary to optimize w̃xk ,c
(v) exactly. Suppose that the minimizer c∗

xk
 of 

Jxk (c) is nonzero, that a converging algorithm is used to optimize Jxk (c) and let {ci} 
denote the generated sequence, and that w̃xk ,c

(v) is only solved approximately such 
that the approximated solution, denoted by ̃̃rxk (ci) , satisfies 
‖̃̃rxk (ci) − r̃xk (ci)‖ ≤ 𝛿r‖̃̃rxk (ci)‖ , where �r ∈ (0, 1) is a constant.4 Then we have

min
c∈ℝd

Jxk (c) ∶=
�
c,QT

x
grad f (xk)

�
F
+

L̃

2
‖c‖2 + g(Rxk

(Qxk
c)),

(72)‖r̃xk (c̄k)‖ ≤ 𝜓(𝜀k, 𝜚, ‖c̄k‖),

(73)‖�̄�xk − 𝜂∗
xk
‖ ≤ ã𝜓(𝜀k, 𝜚, ‖�̄�xk‖),

(74)‖rxk (c̄k)‖ ≤ b‖r̃xk (c̄k)‖.

4 Note that w̃xk ,c
(v) has the same format as (37). We can use condition (46) and (47) to find the approxi-

mate solution ̃̃rxk (ci).
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It follows that if

then  (72) holds. Since a converging algorithm is used, we have ci goes to c∗
xk

 and 
r̃xk (ci) goes to zero. It follows that �(�k, �, ‖ci‖) is greater than a positive constant 
for all i and ̃̃rxk (ci) goes to zero by (75). Therefore, an iterate ci , denoted by c̄k , satis-
fying inequality (76) can be found.

5  Numerical experiments

In this section, we use the sparse principle component analysis (SPCA) problem 
to test the proposed practical conditions on the accuracy for solving the Riemann-
ian proximal mapping (9).

5.1  Experimental settings

Since practically a sufficiently large L̃ is unknown, we dynamically increase its 
value by L̃ ← 1.5L̃ if the search direction is not descent in the sense that back 
tracking algorithm �(i+1) = 0.5�(i) with �(0) = 1 for finding a step size fails for 5 
iterations. In addition, the initial value of L̃ at k + 1-th iteration, denoted by L̃k+1 , 
is given by the Barzilar-Borwein step size with safeguard:

where L̃min > 0 , L̃max > 0 , yk = PTxk
M grad f (xk+1) − grad f (xk) and sk = ��xk . The 

value of L̃0 is problem dependent and will be specified later. The parameters are 
given by L̃min = 10−3 , L̃max = L̃0 , � ∶ ℝ → ℝ ∶ t ↦

√
t , �k =

500

(1+k)1.01
 , and � = 100.

Let IRPG-G, IRPG-U, and IRPG-L respectively denote Algorithm 1 with the 
subproblem solved accurately enough in the sense that (46) and (47) hold,  (72) 
holds with �(�k, �, ‖�‖) = �2

k
 , and (72) holds with �(�k, �, ‖�‖) = min(�2

k
, �‖�‖2) . 

Unless otherwise indicated, IRPG-G stops if the value of (‖𝜂xk‖L̃k) reduces at 
least by a factor of 10−3 . IRPG-U and IRPG-L stop if their objective function val-
ues are smaller than the function value of the last iterate given by IRPG-G.

All the tested algorithms are implemented in the ROPTLIB package [51] using 
C++, with a MATLAB interface. The experiments are performed in Matlab 
R2018b on a 64 bit Ubuntu platform with 3.5GHz CPU (Intel Core i7-7800X).

(75)(1 − 𝛿r)‖̃̃rxk (ci)‖ ≤ ‖r̃xk (ci)‖ ≤ (1 + 𝛿r)‖̃̃rxk (ci)‖.

(76)‖̃̃rxk (ci)‖ ≤
1

1 + 𝛿r
𝜓(𝜀k, 𝜚, ‖ci‖),

L̃k+1 = min

�
max

������
⟨yk, yk⟩
⟨yk, sk⟩

�����
, L̃min

�
, L̃max

�
,
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5.2  SPCA test

An optimization model for the sparse principle component analysis is given by

where A ∈ ℝ
m×n is the data matrix. This model is a penalized version of the ScoT-

LASS model introduced in [52] and it has been used in [10, 19].
Basic settings A matrix Ã ∈ ℝ

m×n is first generated such that its entries are drawn 
from the standard normal distribution. Then the matrix A is created by shifting and 
normalized columns of Ã such that the columns have mean zero and standard devia-
tion one. The parameter L̃0 is 2�max(A)

2 , where �max(A) denotes the largest singular 
value of A. The initial iterate is the leading r right singular vectors of the matrix A. 
The Riemannian optimization tools including the Riemannian gradient, the retrac-
tion by polar decomposition can be found in [20].

Empirical observations Figure  1 shows the performance of IRPG-G, IRPG-
U, and IRPG-L with multiple values of n, p, and � . Since IRPG-G, IRPG-U, and 
IRPG-L solve the Riemannian proximal mapping up to different accuracy, we find 
that IRPG-G takes notably more iterations than IRPG-U, and IRPG-U takes slightly 
more iterations than IRPG-L, which coincides with our theoretical results. Though 
IRPG-U and IRPG-L take fewer iterations, their computational times are still larger 
than that of IRPG-G due to the excessive cost on improving the accuracy of the Rie-
mannian proximal mapping.

Appendix: Implementations of BT

x
 and B

x

In this section, the implementations of the functions BT
x
∶ ℝ

n → ℝ
n−d and 

Bx ∶ ℝ
n−d → ℝ

n are given for Grassmann manifold, manifold of fixed-rank matri-
ces, manifold of symmetric positive definite matrices, and products of manifolds. 
Note that the Riemannian metric is chosen to be the Euclidean metric in this section.

Grassmann manifold We consider the representation of Grassmann manifold by

where [X] = {XO ∶ OTO = Ip} . The ambient space of Gr (p, n) is ℝn×p and the 
orthogonal complement space of the horizontal space HX at X ∈ St (p, n) is given 
by

Therefore, we have

(77)min
X∈St(p,n)

− trace (XTATAX) + �‖X‖1,

Gr (p, n) = {[X] ∶ X ∈ St (p, n)},

H⟂

X
= {XM ∶ M ∈ ℝ

p×p}.

BT
X
∶ ℝ

n×p → ℝ
p×p ∶ Z → XTZ, and

BX ∶ ℝ
p×p → ℝ

n×p ∶ M → XM.
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Manifold of fixed-rank matrices The manifold is given by

The ambient space is therefore ℝm×n . Given X ∈ ℝ
m×n
r

 , let X = USV  be a thin singu-
lar value decomposition. The normal space at X is given by

ℝ
m×n
r

= {X ∈ ℝ
m×n ∶ rank(X) = r}.
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Fig. 1  Average results of 10 random runs for SPCA. The same random seed is used when compar-
ing the three algorithms. We choose the runs where the three algorithms find the same minimizer in 
the sense that the norm of the difference between the solutions is smaller than 10−2 . “time” denotes 
the computational time in seconds. “iter” denotes the number of iterations. Top: multiple values 
n = {256, 512, 1024, 2048} with p = 4 , m = 20 , and � = 2 ; Middle: multiple values p = {1, 2, 4, 8} 
with n = 1024 , m = 20 , and � = 2 ; Bottom: Multiple values � = {0.5, 1, 2, 4} with n = 1024 , p = 4 , and 
m = 20.
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where U
⟂
∈ ℝ

m×(m−r) forms an orthonormal basis of the perpendicular space of 
span(U) and V

⟂
∈ ℝ

n×(n−r) forms an orthonormal basis of the perpendicular space of 
span(V) . It follows that

Note that it is not necessary to form the matrices U
⟂
 and V

⟂
 . One can use [53, Algo-

rithms 4 and 5] to implement the actions of U
⟂
 , UT

⟂
 , V

⟂
 , and VT

⟂
.

Manifold of symmetric positive semi-definite matrices The manifold is

The ambient space is ℝn×n . Given X ∈ �
n×n
r

 , let X = HHT , where H ∈ ℝ
n×r is full 

rank. The normal space at X is

where H
⟂
∈ ℝ

n×(n−r) forms an orthonormal basis of the perpendicular space of 
span(H) . Therefore, we have

where vec(M) = (M11,M22,… ,Mss,
√
2M12,

√
2M13,

√
2M1s,… ,

√
2M(s−1)s)

T for 
M ∈ ℝ

s×s being a symmetric matrix, and vec−1 is the inverse function of vec.
Product of manifolds Let the product manifold M be denoted by 

M1 ×M2 ×… ×Mt . Let the ambient space of Mi be ℝni and the dimension of 
Mi be di . For any X = (X1,X2,… ,Xt) ∈ M , the mappings BT

X
 and BX are given by

where BT
Xi

 and BXi
 denote the mappings for manifold Mi at Xi , and vi ∈ ℝ

ni−di , 
i = 1,… , t.
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N Xℝ
m×n
r

= {U
⟂
MVT

⟂
∶ M ∈ ℝ

(m−r)×(n−r)},

BT
X
∶ ℝ

m×n → ℝ
(m−r)×(n−r) ∶ Z ↦ UT

⟂
ZV

⟂
, and

BX ∶ ℝ
(m−r)×(n−r) → ℝ

m×n ∶ M ↦ U
⟂
MVT

⟂
.

𝕊
n×n
r

= {X ∈ ℝ
n×n ∶ X = XT ,X ⪰ 0, rank(X) = r}.

N X𝕊
n×n
r

= {H
⟂
MHT

⟂
∶ M ∈ ℝ

(n−r)×(n−r),M = MT},

BT
X
∶ ℝ

n×n → ℝ
(n−r)(n−r+1)

2 ∶ Z ↦ vec
(
1

2
HT

⟂
(Z + ZT )H

⟂

)
, and

BX ∶ ℝ
(n−r)(n−r+1)

2 → ℝ
n×n ∶ v ↦ H

⟂
vec−1(v)HT

⟂
,

BT
X
∶ ℝ

n1 ×ℝ
n2 ×… ×ℝ

nt → ℝ
(n1−d1+n2−d2+…+nt−dt)

∶ (Z1, Z2,… , Zt) ↦
(
(BT

X1
Z1)

T , (BT
X2
Z2)

T ,… , (BT
Xt
Zt)

T
)T

, and

BX ∶ ℝ
(n1−d1+n2−d2+…+nt−dt) → ℝ

n1 ×ℝ
n2 ×… ×ℝ

nt

∶ (vT
1
, vT

2
,… , vT

t
)T ↦ (BX1

v1,BX2
v2,… ,BXt

vt),
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