
Vol.:(0123456789)

Computational Optimization and Applications (2023) 84:789–831
https://doi.org/10.1007/s10589-022-00445-0

1 3

Computational aspects of column generation for nonlinear
and conic optimization: classical and linearized schemes

Renaud Chicoisne1 

Received: 29 April 2021 / Accepted: 15 December 2022 / Published online: 20 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Solving large scale nonlinear optimization problems requires either significant
computing resources or the development of specialized algorithms. For Linear
Programming (LP) problems, decomposition methods can take advantage of
problem structure, gradually constructing the full problem by generating variables
or constraints. We first present a direct adaptation of the Column Generation (CG)
methodology for nonlinear optimization problems, such that when optimizing over
a structured set X plus a moderate number of complicating constraints, we solve a
succession of (1) restricted master problems on a smaller set S ⊂ X and (2) pricing
problems that are Lagrangean relaxations wrt the complicating constraints. The
former provides feasible solutions and feeds dual information to the latter. In turn,
the pricing problem identifies a variable of interest that is then taken into account
into an updated subset S′

⊂ X  . Our approach is valid whenever the master problem
has zero Lagrangean duality gap wrt to the complicating constraints, and not only
when S is the convex hull of the generated variables as in CG for LPs, but also with
a variety of subsets such as the conic hull, the linear span, and a special variable
aggregation set. We discuss how the structure of S and its update mechanism
influence the number of iterations required to reach near-optimality and the
difficulty of solving the restricted master problems, and present linearized schemes
that alleviate the computational burden of solving the pricing problem. We test our
methods on synthetic portfolio optimization instances with up to 5 million variables
including nonlinear objective functions and second order cone constraints. We show
that some CGs with linearized pricing are 2–3 times faster than solving the complete
problem directly and are able to provide solutions within 1% of optimality in 6 h for
the larger instances, whereas solving the complete problem runs out of memory.

Keywords  Nonlinear optimization · Conic programming · Column generation ·
Lagrangean duality · Portfolio optimization

 *	 Renaud Chicoisne
	 renaud.chicoisne@gmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0002-5001-4350
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-022-00445-0&domain=pdf

790	 R. Chicoisne

1 3

1  Introduction

Decomposition methods are fundamental tools to solve difficult large scale
problems. In this work, we focus on Column Generation (CG) algorithms, where
the number of variables is too large to allow a direct solution with an off-the-shelf
optimization software. More formally, we focus on solving the following problem:

where C is a cone in some Euclidean space, X is a high-dimensional structured set
and f and g are generic mappings1. The feasibility set of the auxiliary variables y is
fully defined by constraints −g(x, y) ∈ C.

Defining n, n0 and m as the respective dimensions of x, y and C , we assume
that the main issue with P(X) is the joint presence of the difficult (or coupling/
side) constraints −g(x, y) ∈ C and the magnitude of n ≫ 1 . In other words, we
consider a setting in which: (1) for some low-dimensional subset S ⊆ X  , P(S) can
be solved efficiently, and (2) P(X) without the constraints −g(x, y) ∈ C gives birth
to an efficiently solvable problem. We propose to use these simpler optimization
problems to build a computationally efficient solution method for P(X) . For the
sake of simplicity, we do not consider equalities in the complicating constraints (the
generalization is straightforward).

1.1 � Examples

We now show some examples of problems that have the structure we just described.
For given integers p, q > 0 , we denote [p] ∶= {1, ..., p} , || ⋅ ||q is the q-norm in ℝp , the
Lorentz cone of dimension p + 1 is the set Lp+1

2
∶= {(u, u0) ∈ ℝp+1

∶ ||u||2 ⩽ u0} .
Finally, given symmetric matrices M1 and M2 , M1

⪰ M2 means that M1
−M2

belongs to the cone of semidefinite positive matrices, i.e. the eigenvalues of
M1

−M2 are nonnegative.

Example 1  Partially separable Second-Order cone (SOC) Programming,
where X ∶= {x = (xk)k∈[K] ∶ ||Akxk − ak||2 ⩽ (pk)⊤xk − pk

0
,∀k ∈ [K]} ,

g(x, y) ∶= (bl − Xlx − Yly;rl
0
− x⊤ql − y⊤rl)l∈[L] and

C ∶= {(ul, ul
0
)l∈[L] ∶ ||ul||2 ⩽ ul

0
,∀l ∈ [L]} with L reasonably small:

(P(X)) �(X) ∶= min
x,y

f (x, y)

s.t. x ∈ X, −g(x, y) ∈ C,

min
x=(xk)k ,y

f (x, y) ∶= c⊤x + d⊤y

s.t.
|||
|||A

kxk − ak
|||
|||2 ⩽

(
pk
)⊤
xk − pk

0
, ∀k ∈ [K]

|||
|||X

lx + Yly − bl
|||
|||2 ⩽ x⊤ql + y⊤rl − rl

0
, ∀l ∈ [L].

1  f and g satisfy some convexity properties in Sect. 3.

791

1 3

Computational aspects of column generation for nonlinear…

Notice that partially block-angular LPs are a particular case of Example 1 (i.e. when
Ak , ak , Xl , Yl and bl are all zero).

Example 2  Partially separable Semidefinite Programming (SDP) where
g(x, y) ∶= B −

∑K

k=1

∑nk
j=1

xk
j
Xkj

−
∑n0

j=1
yjY

j   ,
X ∶= {x = (xk)k∈[K] ∶

∑nk
j=1

xk
j
Akj

⪰ Bk,∀k ∈ [K]} and C is a cone of SDP matrices
of reasonable dimension:

Several existing works already use CG to tackle this kind of problem with e.g.
polyhedral approximations of the cone of SDP matrices as their S sets [2]. CG could
also be used to generate the block factor-width-2 cone of matrices that is used in [68]
to inner approximate huge SDP cones. Example 1 and some inner approximations of
high-dimensional SDP cones are a particular case of Example 2.

Example 3  Partially separable Nonlinear Programming (NLP). C ∶= ℝm
+
 with m rea-

sonably small and X ∶= {x = (xk)k∈[K] ∶ pk
i

(
xk
)
⩽ 0,∀i ∈ [mk],∀k ∈ [K]}:

Examples 1 and 2 are particular cases of Example 3.

Finally, a vast majority of problems that are tractable computationally when their
data is known become way harder when considering their stochastic counterpart, i.e.
when their data—such as their objective function or constraints—are uncertain and
considered random [5]. They can become highly nonlinear or too big when—to name
a few—using risk measures or chance constraints. As we see later in our experimental
setup, the risk-averse portfolio optimization problem that we consider allows our CG
scheme to take advantage of the original (deterministic) features of the problem.

min
x=(xk)k ,y

f (x, y) ∶= c⊤x + d⊤y

s.t.

nk∑
j=1

xk
j
Akj

⪰ Bk, ∀k ∈ [K]

K∑
k=1

nk∑
j=1

xk
j
Xkj

+

n0∑
j=1

yjY
j
⪰ B.

min
x=(xk)k ,y

f (x, y) ∶=

K∑
k=1

ck
(
xk
)
+ d(y)

s.t. pk
i

(
xk
)
⩽ 0, ∀i ∈ [mk],∀k ∈ [K]

gi
(
x1, ..., xK , y

)
⩽ 0, ∀i ∈ [m].

792	 R. Chicoisne

1 3

1.2 � Preliminaries

We now introduce several definitions that are used through this paper. We call the
dual cone of the cone C , the set C∗ defined as C∗ ∶= {u ∶ ⟨u, v⟩ ⩾ 0,∀v ∈ C} . For
any penalization vector � ∈ C

∗ , let us define the following Lagrangean relaxation:

For any � ∈ C
∗ we have �(X, �) ⩽ �(X) . The Lagrangean dual of P(X) is:

We say that P(X) has no Lagrangean duality gap if P(X) and D(X) share the same
optimal value �(X) . Notice that the concept of Lagrangean dual is associated to the
constraints that are relaxed, which in this work are the constraints −g(x, y) ∈ C . On
another hand, given a set S ⊆ X  , we define the restricted problem as follows:

Given that the original problem P(X) is a relaxation of P(S) for any S ⊆ X  , we
have �(X) ⩽ �(S) . If S contains the projection onto the x-components of an
optimal solution of P(X) , notice that we have �(X) = �(S) and P(S) returns optimal
solutions for P(X).

1.3 � Main concept

In this paper, we extend the concept of CG beyond the scope of LPs and simplicial
approximations of X  , while keeping a similar philosophy: in the LP case, at each
iteration k we solve an approximation P(Sk

) of P(X) that uses Sk
∶= conv(x̄l)l∈[k] , the

convex hull of a family of columns x̄l , each belonging to X  . Doing so, we obtain an
upper bound �(Sk

) on �(X) and retrieve the corresponding optimal dual multipliers
�
k . These multipliers are fed to the pricing problem L(X, �k) that returns an optimal

solution (x̄k, ȳk) and provides a lower bound �(X, �k) for �(X).
As pictured in Fig. 1, we iteratively refine both problems until the optimality gap

�(X, �k) − �(S
k
) is under some tolerance. Our approach generalizes CG in several

ways: under reasonable conditions (1) the approximating set Sk does not have to
be a convex hull of previous columns, and (2) P(X) is not necessarily an LP but
P(Sk

) must have zero Lagrangean duality gap wrt the complicating constraints

(L(X, �)) �(X, �) ∶= min
x∈X,y

{f (x, y) + ⟨�, g(x, y)⟩}.

(D(X)) max
�∈C

∗

{�(X, �)} ⩽ �(X).

(P(S)) �(S) ∶= min
x∈S,y

{f (x, y) ∶ −g(x, y) ∈ C}.

Fig. 1   CG feedback: (x̄k, ȳk) is
optimal for L(X, �k) , �k is dual-
optimal for P(Sk)

793

1 3

Computational aspects of column generation for nonlinear…

−g(x, y) ∈ C . Further, (1) depending on the structure of the approximations Sk , the
master problem can be greatly simplified and (2) under some convexity assumptions,
it is possible to replace L(X, �k) by a computationally easier pricing. We now present
the assumptions used in this article.

1.4 � Working hypothesis

We make two kinds of assumptions: the first ensures the validity of our framework
and the remaining are necessary to make it computationally efficient:

Assumption 1  S is such that P(S) can be solved by a Lagrangean algorithm that pro-
vides a multiplier � ∈ C

∗ such that �(S) = �(S, �).

Assumption 2  For any � ∈ C
∗ we can solve efficiently L(X, �) in practice.

Assumption 3  The choice of S makes P(S) efficiently solvable in practice.

Assumption 1 implies that P(S) has no Lagrangean duality gap and we have an
algorithm to find an optimal primal-dual pair ((x, y), �) for P(S) ; notice that (x, y) is
also optimal for L(S, �) . Assumption 1 is satisfied by many optimization problems
such as e.g. LPs or Linear Conic problems (LC) and Nonlinear optimization
Problems (NLP) that satisfy a Constraint Qualification [43], which can be solved
using an interior point method [41]. Slater’s condition is a popular constraint
qualification that is satisfied if the problem at hand is convex and strictly feasible2:
Although Assumption 1 may sound overly restrictive, we show in Proposition 1 that
for a regular enough S , P(S) satisfies Slater’s condition. Notice that we only need
P(S) to satisfy Assumption 1, while P(X) may not, as we show in Example 4:

Example 4  Consider the following sets

and the following SDP P(X):

X ∶=

⎧
⎪⎨⎪⎩
x ∈ ℝ6

∶

⎛⎜⎜⎝

x1 x4 x5
x4 x2 x6
x5 x6 x3

⎞⎟⎟⎠
⪰ 0

⎫
⎪⎬⎪⎭
,

S ∶=

⎧
⎪⎨⎪⎩
x ∈ ℝ

6
∶ ∃𝜃 ∈ [0, 1] ∶

⎛⎜⎜⎝

x1 x4 x5
x4 x2 x6
x5 x6 x3

⎞
⎟⎟⎠
= 𝜃

⎛⎜⎜⎝

1 0 0

0 1 0

0 0 0

⎞⎟⎟⎠
+ (1 − 𝜃)

⎛⎜⎜⎝

0 0 0

0 1 0

0 0 0

⎞⎟⎟⎠

⎫
⎪⎬⎪⎭
⊊ X

2  Strict feasibility is defined in Subsection 1.8.

794	 R. Chicoisne

1 3

Because P(S) is an LP, it satisfies Assumption 1, while P(X) does not by having a
nonzero duality gap (see Appendix A for the details). This example shows that our
framework could possibly solve some problems having a nonzero duality gap.

Assumptions 2 and 3 are not needed from a theoretical point a view, however,
they are essential for our methodology to be competitive computationally.
Assumption 2 is the basic assumption for classical CG for LPs and means that the
pricing problem L(X, �) is either (1) block-decomposable thanks to the structure of
X and can be solved in parallel, or (2) there is an efficient dedicated algorithm to
solve it. Finally, Assumption 3 says that S is e.g. low dimensional and defined with
a few constraints3. Both Assumptions 2 and 3 depend on the ability of the modeller
to identify a set of constraints that are relaxed and choose a set S such that both P(S)
and L(X, �) are easy enough to solve in practice.

Our objective is to design an iterative search in terms of both � and S that
successively improves the lower and upper bounds �(X, �) and �(S) , returning
increasingly good feasible solutions as a byproduct. Our framework achieves this
goal by feeding information from one problem to the other by updating respectively
� from P(S) and S from L(X, �) , while choosing computationally efficient
approximations S and pricing problems.

1.5 � Dantzig–Wolfe for LPs

To illustrate our point, consider the following LP as a special (well known) case of
P(X) - i.e. when X is a polyhedron, f and g are linear mappings and C ∶= ℝm

+
 :

 Because of the high dimensionality of the polyhedron X and the presence of (1c)
breaking any eventual structure, even state-of-the art solvers cannot tackle directly
this kind of problem. Suppose in our case that optimizing a linear objective over the
(high-dimensional) polyhedron X is easy in practice and, as pointed out before, if
we were to replace X by some wisely chosen subset S ⊆ X in (1), we would obtain a
computationally cheap upper bound for the optimal value of (1).

�(X) ∶= min
x∈X,y

⎧
⎪⎨⎪⎩
y2 ∶

⎛⎜⎜⎝

x1 x4 x5
x4 x2 x6
x5 x6 x3

⎞
⎟⎟⎠
=

⎛⎜⎜⎝

1 0 0

0 1 0

0 0 0

⎞⎟⎟⎠
− y1

⎛
⎜⎜⎝

1 0 0

0 0 0

0 0 0

⎞⎟⎟⎠
− y2

⎛
⎜⎜⎝

0 0 1

0 − 1 0

1 0 0

⎞⎟⎟⎠

⎫
⎪⎬⎪⎭
.

(1a)𝜔(X) ∶= min
x,y

c⊤x + d⊤y

(1b)s.t. x ∈ X ∶= {x ⩾ 0 ∶ Ax = a}

(1c)Xx + Yy ⩾ b.

3  This point is explored in more detail in Sects. 4 and 5.

795

1 3

Computational aspects of column generation for nonlinear…

Master problem P(S) In this LP case, there is a natural choice for S readily
available [7]: Letting V be the set of vertices of X and R a complete set of
extreme rays of X  , we have X = conv V + coneR , where cone R is the conic hull
of R:

Problem (1) can thus be rewritten as the following extensive formulation:

 Because X ∶= {x ⩾ 0 ∶ Ax = a} is convex and each x̄l belongs to X  , notice that the
side constraints Xx + Yy ⩾ b are the only remnants of the original problem. The LP
dual of the extended formulation is the following problem:

 A direct solution of problem (2) is in general impractical as its number of variables
can be exponential in (n, n0,m) . However, the Dantzig–Wolfe (DW) algorithm [16]
offers a solution method successively generating vertices and extreme rays of the
polyhedron X  . It starts with finite subsets V ⊂ V and R ⊂ R and solves a restricted
master problem (2) with V and R instead of the full sets V and R . With our notation,
this restricted master problem is none other than P(S) with S ∶= conv V + cone R .
Making different choices for S and consider a broader class of optimization
problems is one of the central ideas of this paper.

Pricing problem L(X, �) Obtaining the optimal dual variables � associated with
constraints (2b) in P(S) , the Lagrangean relaxation L(X, �) is solved:

By dual feasibility (3d) of � , implying that Y⊤
𝜆 = d , it can be rewritten

X =

{
x ∶ x =

∑
l∶x̄l∈V

𝜃lx̄
l
+

∑
l∶x̄l∈R

𝜃lx̄
l, for some 𝜃 ⩾ 0 ∶

∑
l∶x̄l∈V

𝜃l = 1

}
.

(2a)𝜔(X) = min
𝜃⩾0,y

∑
l∶x̄l∈V

𝜃lc
⊤x̄l +

∑
l∶x̄l∈R

𝜃lc
⊤x̄l + d⊤y

(2b)s.t.
∑
l∶x̄l∈V

𝜃lXx̄
l
+

∑
l∶x̄l∈R

𝜃lXx̄
l
+ Yy ⩾ b

(2c)
∑
l∶x̄l∈V

𝜃l = 1

(3a)𝜔(X) = max
𝜆⩾0,𝜂

b⊤𝜆 + 𝜂

(3b)s.t.
(
Xx̄l

)⊤
𝜆 ⩽ c⊤x̄l − 𝜂, ∀l ∶ x̄l ∈ V

(3c)
(
Xx̄l

)⊤
𝜆 ⩽ c⊤x̄l, ∀l ∶ x̄l ∈ R

(3d)Y⊤
𝜆 = d.

min
x∈X,y

{
c⊤x + d⊤y + 𝜆

⊤
(b − Xx − Yy)

}

= min
x∈X,y

{(
c − X⊤

𝜆

)⊤
x +

(
d − Y⊤

𝜆

)⊤
y
}
+ 𝜆

⊤b.

796	 R. Chicoisne

1 3

thus eliminating the variables y from the pricing problem. Discarding this
dependency in y is, however, not always possible in a nonlinear setting. Letting x̄
be an optimal solution of the pricing problem (4), with a slight abuse of notation
we refer to an optimal solution to either (1) a vertex of X if the pricing problem in
x has a bounded optimal objective value, or (2) an extreme ray of X otherwise. In
the latter case we increment R̄ ← R̄ ∪ {x̄} and in the former V̄ ← V̄ ∪ {x̄} , which
defines the particular update mechanism used by DW. We iterate until an optimality
tolerance criterion is satisfied or until we generated the complete sets V and R , thus
solving the full, original problem P(X).

1.6 � Decomposition methods and previous work

CG algorithms were studied in depth for LPs [16, 36] or Mixed Integer Linear Pro-
gramming (MILP) problems [4, 55], where notoriously large MILPs could be solved
by embedding DW in a branch-and-price framework [14, 18]. The main idea of DW
is to exploit the structure of X and solve smaller problems: (1) the master problem,
that works over a reduced subset S ⊂ X while keeping the side constraints; and (2)
a pricing problem that is still large but is computationally easy to solve thanks to the
absence of side constraints.

In a nonlinear setting, several algorithms such as the Alternating Direction Method of
Multipliers (ADMM) [64], the Douglas–Rachford splitting operator [21] or augmented
Lagrangean algorithms [53] all make use of a special structure in X . However, they all
solve inexactly the Lagrangean dual D(X) and do not always provide feasible solutions
for P(X) . Further, proving optimality or near optimality can be tricky and a concrete stop-
ping criterion is also not always available. Closer to a generalization of CG for NLPs, the
convex simplex method [65] minimizes a nonlinear objective over a polyhedron. It can
be seen as solving a master problem over a basis of variables and—similar to the sim-
plex algorithm—selecting the entering variable by linearizing some penalization function.
Akin to DW, the simplicial decomposition [61] solves a linearized master problem over a
subset S that is the convex hull of a handful of points, and the pricing problem generating
such columns is the original problem P(X) with an objective linearized at an incumbent
point. [39] has the same master problem but the pricing problem uses a penalty function
instead of a lagrangean relaxation and does not consider generic conic constraints.

Problem-dependent CG schemes for NLPs were presented in e.g. [42] for nonlin-
ear facility location problems that are reformulated as set partitioning problems and
solved with DW, whose pricing problem is an NLP with integer variables; [15] that
uses a branch-and-price scheme for sibling groups reconstruction, which is refor-
mulated as a set covering problem for which columns are generated with quadratic
optimization pricing problems. A direct extension of DW for NLPs with C = ℝm

+
 is

introduced in [9]. DW is used in [40, 44] for mixed integer nonlinear-nonconvex
optimization problems with polyhedral complicating constraints.

(4)𝜆
⊤b +min

x∈X

{(
c − X⊤

𝜆

)⊤
x
}
,

797

1 3

Computational aspects of column generation for nonlinear…

In an LC setting—i.e. f and g are linear mappings but C is a more general cone than ℝm
+

—similar extensions of CG have been developed: [2] present a decomposition procedure
for SDPs where S is an inner approximation of a matrix set X , that are updated with the
(matricial) “columns” generated by a separation problem tailored for SDPs. The approach
has two drawbacks: (1) depending on the inner approximation chosen, the master problem
can be slow to attain near optimality, and (2) the pricing problem is a handmade separa-
tion problem that uses problem-specific considerations and does not provide dual bounds.
For SDPs, chordal sparsity patterns [59] are able to detect underlying substructures that
can be exploited by ADMM [58, 66, 67], but no CG approach has been attempted so far.
The presence of a special substructure being crucial for decomposition, automatic struc-
ture detection in LPs were developed in [6, 31, 63] so that a decomposition method can
make use of it. Previous CG methods for LC have focused on gradually building the set
of variables considered with problem specific algorithms that are difficult to generalize.

Other works use a different kind of set S for LPs. A subset S consisting on
forcing clusters of variables to share the same value—thus aggregating the variables
together—is used in [38] and [8]. This variable aggregation principle has been
successfully applied to Freight routing [54], general extended formulations [55],
open pit mining scheduling [8], pricing problems [3], quadratic binary knapsack
problems [50], support vector machine problems [45] or in a column-and-row
generation context where DW is used in combination with a constraint aggregation
scheme to solve resource constrained covering problems [51]. Finally, [23, 24]
introduce a CG scheme for almost generic sets S and pricing problems. However,
they do not take into account generic conic side constraints and link their generic
scheme with only a few special cases, whereas we take advantage of the structure of
both the pricing and master problems.

1.7 � Article outline

Section 2 presents a CG algorithm to solve the generic NLP P(X) with a large
number of variables and nonlinear-conic side constraints. We show that it admits
several existing schemes as special cases, all defined by different sets S . We
present sufficient conditions to (1) drop the optimization in the y variables for the
pricing problem and (2) make sure that P(S) has no Lagrangean duality gap. As
the Lagrangean relaxation of a nonlinear optimization problem can be as hard
as the problem itself, under some convexity assumptions we present in Sect. 3 a
linearized version of the methodology making the pricing problem easier to solve.
Additionally, we also prove that L(X, �) can always be independent of the secondary
variables y in the linearized algorithm. In Sect. 4, we point out the relationships of
our generic schemes to existing frameworks. In Sect. 5 we describe the risk-averse
portfolio optimization problem on which we test our algorithms, and present several
computational enhancements. In Sect. 6, we present numerical results on large scale
synthetic instances and empirically prove the usefulness of our methodology. We
conclude with some remarks and the description of several ongoing works in Sect. 7.

798	 R. Chicoisne

1 3

1.8 � Background notations

Given a set U , we call respectively conv U , cone U , lin U , aff U , relint U and dim U ,
the convex hull, the conic hull, the linear span, the affine span, the relative inte-
rior and the dimension of U . The adjoint U∗ of a linear mapping U ∶ U → V is the
linear operator such that ⟨Uu, v⟩ = ⟨u,U∗v⟩ for any (u, v) ∈ U × V . For any integer
p > 0 , B(ū, 𝜌) ∶= {u ∈ ℝp

∶ ||ū − u||2 < 𝜌} is the open ball of radius 𝜌 > 0 cen-
tered at ū ∈ ℝp . A cone K is said to be proper if it is convex, closed, contains no
line and relint K ≠ ∅ . If K is a proper cone then u ∈ relint K and ū ∈ K imply that
u + ū ∈ relint K.

Consider some function � ∶ U → V . For some L > 0 and a norm || ⋅ || , we say that
� is L-Lipschitz if for any (u1, u2) ∈ U × U we have ||�(u1) − �(u2)|| ⩽ L||u1 − u2|| .
For some cone K ⊆ V , � is said to be K-convex [10] if for any t ∈ [0, 1] and any
(u1, u2) ∈ U × U , we have t�

(
u1
)
+ (1 − t)�

(
u2
)
− �

(
tu1 + (1 − t)u2

)
∈ K . If � is

real-valued and differentiable, we call its linear approximation at some ū ∈ U the
function: 𝜑̄[ū] ∶ u → 𝜑(ū) + ⟨∇𝜑(ū), u − ū⟩ . Notice that 𝜑̄[ū] is a global under
estimator of � if � is convex. If � is vector valued, its linear approximation is the
component-wise linear approximation 𝜑̄[ū](u) = 𝜑(ū) + D𝜑(ū)(u − ū), where D𝜑(ū)
is the Jacobian of � at ū . Given a linear mapping � and a mapping � , we say that
U ∶= {u ∶ �(u) = 0, −�(u) ∈ K} or minu∈U �(u) is strictly feasible iff there exists u
such that �(u) = 0 and −�(u) ∈ relint K.

Unless otherwise specified, through this document ((xk, yk), �k) is an optimal pri-
mal-dual pair for P(Sk

) and (x̄k, ȳk) is an optimal solution for L(X, �k).

2 � A generic column generation algorithm

Instead of using specific forms of feeding the pricing information to the restricted
problem, we use a generic mechanism to update S at each iteration as described in
Algorithm 1.

799

1 3

Computational aspects of column generation for nonlinear…

Fig. 2 summarizes the relationships between the bounds of the problems involved in
Algorithm 1. In all the “bound relationship" figures of this paper, an edge a → b means
that a ⩽ b , the gray edges are the nontrivial relationships that apply at a stopping criterion
and the gray nodes are the optimal values of the problems solved by the algorithm.

Theorem 1  At termination, Algorithm 1 returns an optimal solution for P(X).

Proof  If Algorithm 1 terminates at line 8, we have x̄k ∈ S
k . (x̄k, ȳk) is then feasible

and optimal for the Lagrangean relaxation of P(Sk
) with �k:

In consequence, we have that �(X, �k) = �(S
k, �k) . Recall that (xk, yk) is optimal

for P(Sk
) and �k is an optimal dual vector associated to −g(x, y) ∈ C in P(Sk

) . From
Assumption 1, (xk, yk) is then also optimal for L(Sk, �k) , and �(Sk

) = �(S
k, �k) , thus

proving the gray edges in Fig. 2. To summarize, we have:

making (xk, yk) optimal for P(X) . Now, if Algorithm 1 terminates at line 5, we can
choose (x̄k, ȳk) = (x̄k−1, ȳk−1) and have x̄k ∈ S

k , which is the first stopping condition
at line 8. 	� ◻

2.1 � General remarks

Algorithm 1 can be useful only if Assumptions 2 and 3 are satisfied, i.e. either
dim S

k is significantly smaller than n, or P(Sk
) possesses a special structure or is

sparser than in P(X) . In Sects. 4 and 5, we show that the master problem can be
considerably shrunk depending on the set Sk in use. Even though Assumption 1
must be satisfied in order to get the dual variables and make Theorem 1 hold, in
presence of a nonzero duality gap Algorithm 1 can still be used as a heuristic
that provides optimality bounds. Notice again that we do not need P(X) to have
zero duality gap, but we do see in the next Subsection that it does help to make
Assumption 1 hold.

We did not prove that Algorithm 1 always finishes but we did prove that if it
were to stop, it would return an optimal solution. Its finite termination depends
on the way the sets Sk are generated in combination with the structure of the

(
L(Sk, �k)

)
�

(
S
k, �k

)
= min

x∈Sk ,y

{
f (x, y) +

⟨
�
k, g(x, y)

⟩}
.

�(X) ⩽ �

(
S
k
)
= �

(
S
k, �k

)
= �

(
X, �k

)
⩽ �(X),

Fig. 2   Relationships of the
optimal values involved in
Algorithm 1

800	 R. Chicoisne

1 3

original problem. More precisely, the sequence Sk should shift towards at least
one optimal solution of P(X) by e.g. strictly growing in dimension until reach-
ing X in the worst case (which can be achieved in some special cases that we
describe later). Ideally, the sets Sk should contain increasingly good solutions
for P(X) such that we can stop prematurely the algorithm and still obtain an
approximately optimal solution. For example, by forcing Sk+1 to contain Sk or xk ,
we ensure that the primal bound �(Sk

) is nonincreasing.
Because we maintain lower and upper bounds over the optimal value of

P(X) at each iteration, early termination can be reasonably used and Algo-
rithm 1 can provide a solution (xk, yk) feasible for P(X) with an optimality gap
�(S

k
) − �(X, �k) . Because the algorithm is not guaranteed to converge, we set

a maximum number of iterations and execution time that we can spend before
forcing the algorithm to stop.

2.2 � How can the restricted problem P(S) maintain a zero duality gap?

As we mentioned earlier, it is not clear when Assumption 1 can hold. We now show
that whenever (1) the approximated sets Sk are described by convex constraints and
are strictly feasible, and (2) P(Sk

) admits as a feasible solution some known, feasible
solution for P(X) satisfying strictly the side constraints −g(x, y) ∈ C , then Slater’s
condition holds for P(Sk

) and thus satisfies Assumption 1:

Proposition 1  Suppose that C is proper, g is L-Lipschitz, f is convex, we know some
(x̄, ȳ) such that x̄ ∈ X and −g(x̄, ȳ) ∈ relint C , and S is described as

for some proper cone K , a linear mapping � and a K-convex mapping � . If S ⊆ X is
strictly feasible and contains x̄ , then P(S) has no Lagrangean duality gap.

Proof  Appendix B. 	� ◻

In this work, we consider approximated sets Sk that are nonempty polyhedra4 that
always contain the projection onto the variables x of a known, strictly feasible solu-
tion for P(X) . In fact, it is enough to find some feasible solution (x̄0, ȳ0) for P(X)
such that −g(x̄0, ȳ0) ∈ relint C , and set S1

∋ x̄0 : In other words, we consider x̄0 as the
first column generated.

2.3 � y‑independent pricing problems L(X,�k)

Notice that L(X, �k) optimizes in both x and y and is still an NLP that can be as dif-
ficult to solve as P(X) . We partially address the former issue in the next Proposition

S ∶= {x ∶ �(x, �) = 0, −�(x, �) ∈ K, for some �},

4  More precisely, projections onto the variables x of a polyhedron in an extended space.

801

1 3

Computational aspects of column generation for nonlinear…

and both in the next Section. We now introduce an adaptation of the P-property5
[25]: Given a function � ∶ U × V → ℝ , consider the following NLP:

Problem (5) satisfies the P-property wrt v if minv∈V �(u, v) can be solved indepen-
dently of u ∈ U . Even if this P-property appears to be overly restrictive, it holds if
�(u, v) = �1(u,�2(v)) , for some �2 ∶ V → ℝ and some �1 ∶ U ×ℝ → ℝ that is non-
decreasing in its second argument. This structure can appear if e.g. (1) � is separable
in u and v (i.e. �(u, v) = �1(u) + �2(v) ), or (2) �(u, v) = �1(u)�2(v) with �1(u) ⩾ 0
for any u ∈ U . We are now ready to state a y-independency result for the Lagrangean
relaxation L(X, �k):

Proposition 2  If L(X, �k) satisfies the P-property wrt y, then y = yk is always an
optimal choice in L(X, �k) , which becomes an optimization problem in x only:

Proof  Appendix C. 	� ◻

Proposition 2 allows to drop the optimization in y in the pricing problem if the
P-property holds. We now show that using a linearized version of L(X, �k) , we can
always drop the optimization in y in the pricing, regardless of the P-property.

3 � A linearized column generation algorithm

In practice, it is common to face e.g. LPs with a nice structure that admit tailored
algorithms to solve them, getting hardened by replacing their linear objective with
a nonlinear objective function f and/or adding possibly nonlinear side constraints
−g(x, y) ∈ C to their polyhedral feasible set X  . This can happen for e.g. robust
optimization problems [5] that are no easier than their deterministic counterparts.

In this Section, we show that solving a pricing problem whose objective
function is linearized at the current incumbent (xk, yk) holds the same guarantees as
Algorithm 1, while alleviating the difficulty of solving the pricing problem whenever
optimizing a linear objective over X is an easy task. As we show in our experiments,
this can be extremely useful whenever a linear objective pricing problem can be
solved with a dedicated algorithm.

(5)min
(u,v)∈U×V

�(u, v).

(
L
(
X, �k

))
�

(
X, �k

)
∶= min

x∈X

{
f
(
x, yk

)
+

⟨
�
k, g

(
x, yk

)⟩}
.

5  Originally used in a Generalized Benders Decomposition context.

802	 R. Chicoisne

1 3

3.1 � Additional assumptions and results

We now present several results that allow the use of a linearized version of L(X, �k)
as a pricing problem. In this Section, the following extra assumption is met:

Assumption 4  Sk , C and f are convex, g is C-convex, f and g are differentiable.

Further, we assume that for any cost vector c, minx∈X⟨c, x⟩ can be solved
efficiently (which is in fact equivalent to Assumption 2 if the objective function of
L(X, �k) is linear). We now present several technical Lemmas to prove our main
result:

Lemma 1  Consider a cone K , � ∈ K
∗ and a K-convex function � . Then

� ∶ u → ⟨�,�(u)⟩ is convex.

Proof  Appendix D. 	� ◻

Lemma 2  Given � ∈ V , a differentiable function � ∶ U → V and ū ∈ U , the linear
approximation of � ∶ u → ⟨�,�(u)⟩ at ū is 𝜓̄[ū] ∶ u → ⟨𝜆, 𝜑̄[ū](u)⟩.

Proof  Appendix E. 	� ◻

Lemma 3  Consider the NLC �∗
∶= minu∈U �(u) , where U is convex and � ∶ U → ℝ

is differentiable. If u∗ is one of its optimal solutions, it is also optimal for
𝜔̄[u∗] ∶= minu∈U{𝜑̄[u

∗
](u) ∶= 𝜑(u∗) + ⟨∇𝜑(u∗), u − u∗⟩} and we have 𝜔∗

= 𝜔̄[u∗].

Proof  Appendix F. 	� ◻

Lemma 3 tells us that an optimal solution of a convex optimization problem
is also optimal for the same problem with an objective function linearized at said
solution. For any S ⊆ X  , � ∈ C

∗ and (x̄, ȳ) , let us define the following problem:

which is L(S, �) with its objective function linearized at (x̄, ȳ).

3.2 � A linearized algorithm

Now consider the following algorithm: (1) instead of solving L(X, �k) , the pricing
we solve is its linear approximation L̄[xk, yk](X, 𝜆k) at the current incumbent (xk, yk)
of the restricted problem P(Sk

) and (2) the stopping criterion at line 5 of Algorithm 1
is replaced by a slightly more restrictive condition. We describe the changes applied
to Algorithm 1 in Algorithm 2 and illustrate in Fig. 3 the relationships between the
bounds of the problems involved in it.

(
L̄
[
x̄, ȳ

]
(S, 𝜆)

)
𝜔̄

[
x̄, ȳ

]
(S, 𝜆) ∶= min

x∈S,y

{
f̄
[
x̄, ȳ

]
(x, y) +

⟨
𝜆, ḡ

[
x̄, ȳ

]
(x, y)

⟩}
,

803

1 3

Computational aspects of column generation for nonlinear…

Theorem 2  Algorithm 2 returns an optimal solution for P(X) at termination.

Proof  If Algorithm 2 terminates because x̄k ∈ S
k , then (x̄k, ȳk) is feasible and opti-

mal for L̄[xk, yk](Sk, 𝜆k) and we have:

Because f is convex and g is C-convex, Lemmas 1 and 2 imply that f̄ [xk, yk] and
⟨𝜆k, ḡ[xk, yk](⋅)⟩ are global under estimators of f and ⟨�k, g(⋅)⟩ respectively. In
consequence we have that

On another hand, (xk, yk) is also an optimal solution for L(Sk, �k) from Assumption 1.
Finally, we can interpret L[xk, yk](Sk, �k) as the linearization of L(Sk, �k) at one of its
optimal solutions (xk, yk) . Recalling that:

Lemma 3 then tells us that (xk, yk) is also an optimal solution for L̄[xk, yk](Sk, 𝜆k) ,
giving 𝜔(Sk, 𝜆k) = 𝜔̄[xk, yk](Sk, 𝜆k) . To summarize, we obtain

thus proving the optimality of (xk, yk) for P(X) . If Algorithm 2 stops from its
criterion at line 5, we can choose (x̄k, ȳk) = (x̄k−1, ȳk−1) , giving x̄k ∈ S

k . 	� ◻

𝜔̄

[
xk, yk

](
S
k, 𝜆k

)
= 𝜔̄

[
xk, yk

](
X, 𝜆k

)
.

𝜔̄

[
xk, yk

](
X, 𝜆k

)
⩽ 𝜔

(
X, 𝜆k

)
⩽ 𝜔(X).

𝜔

(
S
k, 𝜆k

)
= min

x∈Sk ,y

{
f (x, y) +

⟨
𝜆
k, g(x, y)

⟩}

𝜔̄

[
xk, yk

](
S
k, 𝜆k

)
= min

x∈Sk ,y

{
f̄
[
xk, yk

]
(x, y) +

⟨
𝜆
k, ḡ

[
xk, yk

]
(x, y)

⟩}
,

𝜔(X) ⩽𝜔
(
S
k
)
= 𝜔

(
S
k, 𝜆k

)
= 𝜔̄

[
xk, yk

](
S
k, 𝜆k

)

=𝜔̄

[
xk, yk

](
X, 𝜆k

)
⩽ 𝜔

(
X, 𝜆k

)
⩽ 𝜔(X),

Fig. 3   Relationships of the optimal values involved in Algorithm 2

804	 R. Chicoisne

1 3

As in the nonlinearized case, there is no guarantee that Algorithm 2 terminates
but if it does, an optimal solution for P(X) is returned.

3.3 � y‑independent pricing problems L̄[xk, yk](X,�k)

As opposed to Algorithm 1, we now show that regardless of the P-property, we can
always get rid of the variables y in the linearized pricing L̄[xk, yk](X, 𝜆k):

Proposition 3  Taking y = yk is always optimal for L̄[xk, yk](X, 𝜆k) , which becomes a
linear objective minimization problem in x only:

Proof  Appendix G. 	� ◻

3.4 � “Reduced costs”

Recall that DW for LPs can stop whenever the reduced costs6 are zero: we now show
that this is also true for the linearized scheme in our nonlinear setting.

Proposition 4  Let c̄k ∶= ∇xf (x
k, yk) + D∗g(xk, yk)𝜆k be the cost vector wrt x in

L̄[xk, yk](X, 𝜆k) . If c̄k = 0 then (xk, yk) is optimal for P(X).

Proof  The linearized pricing in x is minx∈X⟨c̄k, x⟩ . If c̄k = 0 , then any x̄k ∈ X is opti-
mal: choosing any x̄k ∈ S

k
⊆ X satisfies the stopping criterion. 	� ◻

This last result provides a computationally cheap stopping criterion for the non-
linearized scheme as well, as the pricing problem—linearized or not—always provides
a lower bound for �(X) : an all-zeroes reduced cost vector ensures that the master
problem cannot be improved.

4 � Relationship with existing schemes

4.1 � Dantzig–Wolfe

Assume that X ⊆ ℝn is a polyhedron (that we consider bounded for simplicity),
f (x, y) ∶= c⊤x + d⊤y and the conic inequality is defined by C ∶= ℝm

+
 and

g(x, y) ∶= b − Xx − Yy . Using Sk
∶= conv(x̄l)l∈{0,...,k−1} we retrieve DW for LPs. Its

finite convergence is ensured by the fact that X has a finite—although exponential in
general—number of extreme points.

𝜔̄

[
xk, yk

](
X, 𝜆k

)
=min

x∈X

{
f̄
[
xk, yk

](
x, yk

)
+

⟨
𝜆
k, ḡ

[
xk, yk

](
x, yk

)⟩}

6  In the LP case, the vector of reduced costs is c − X
⊤
𝜆
k(see problem (4) in Subsection 1.5).

805

1 3

Computational aspects of column generation for nonlinear…

Extensions Notice that if C is a more general cone, our algorithm generalizes DW for
LCs, where at each iteration P(Sk

) is an LC and L(X, �k) is an LP. Applications of DW
to LCs can be found in [2] and references therein. Further, there is a direct extension of
DW to a special class of nonlinear problems: going back to the general case for C , f and
g but keeping X polyhedral, L̄[xk, yk](X, 𝜆k) turns out to be an LP. Because X is finitely
generated, the finite convergence of the linearized algorithm is also ensured with the
same arguments.

Constraint redundancy If X is not convex, to enforce Sk
⊆ X  , we must use

thus potentially losing the advantage of dropping any X-defining constraint in
the master problem as in the LP/convex cases. Similarly, if the conic hull is used
instead and X is a cone, it is sufficient to use Sk

∶= cone(x̄l)l∈{0,...,k−1} instead of
S
k
∶= X ∩ cone(x̄l)l∈{0,...,k−1}.

4.2 � Bienstock–Zuckerberg (BZ)

We now link our framework with a decomposition scheme for LPs [8] where the
choice of S differs substantially from DW. Considering a partition
J
k
∶= {J

k
1
, ...,Jk

Lk
} of the indices [n], we force all the variables xj belonging to a

same cluster Jk
l
 to yield the same value, ultimately aggregating all the variables into

a single one. In other words, we use

Update mechanism The update mechanism in this case refines the partition Jk into
a new partition Jk+1 , by splitting some of its clusters such that the new column x̄k
belongs to Sk+1

∶= P(J
k+1

) . We call a partition induced by some x ∈ ℝn , a partition
J(x) = {J1(x), ...,JL(x)} of [n] such that for every l ∈ [L] and any pair of indices
(j, j�) ∈ Jl(x) × Jl(x) we have xj = xj� . Given two partitions of [n], J = {J1, ...,JL}
and J�

= {J
�

1
, ...,J�

L�
} , their intersection JΔJ� is the partition of [n] defined as

follows:

Given a partition Jk and Jk
(x̄k) a partition induced by x̄k , we first compute the refined

partition Jk+1
∶= J

k
ΔJ

k
(x̄k) and the new restricted set is given by Sk+1

∶= P(J
k+1

).
Extensions and convergence Such a scheme makes Algorithms 1 and 2

generalizations to nonlinear problems of the BZ algorithm [8]. This time the
convergence is not ensured by some property of P(X) , but rather thanks to the
structure of the sets Sk . In fact, either (1) the partition is refined until turning
into {{1}, ..., {n}} , meaning we reached the original problem P(X) , or (2) the
partition is not refined, in which case Jk+1

= J
k
ΔJ

k
(x̄k) = J

k . It is not difficult to
see that the latter implies that x̄k ∈ S

k
= P(J

k
) , which is a stopping criterion for

both Algorithms 1 and 2. The former implies that we are guaranteed to converge

S
k
∶= X ∩ conv

(
x̄l
)
l∈{0,...,k−1}

,

S
k
∶= P(J

k
) ∶=

{
x ∈ X ∶ xj = �l,∀j ∈ J

k
l
,∀l ∈

[
Lk
]
, for some � ∈ ℝ

Lk
}
.

JΔJ
�
∶=

{
Jl ∩ J

�

l�
,∀
(
l, l�

)
∈ [L] × [L�]

}
.

806	 R. Chicoisne

1 3

to an optimal solution in at most n iterations because the size of the partition
increases by at least one (i.e. |Jk+1| > |Jk| ). Motivating the scheme in the next
Subsection, [38] show that given a sequence of columns (x̄l)l∈{0,...,k−1} , we have
S
k
⊇ X ∩ lin(x̄l)l∈{0,...,k−1}.
Induced partition cardinality Notice that the pricing problem may provide

a column x̄k with a large number of different values, hence generating a high-
cardinality induced partition J(x̄k) and increasing rapidly the size of the partition
J
k+1 used in the next restricted problem P(Sk+1

) . This issue is partially addressed
by the linearized Algorithm 2 and completely circumvented in the next scheme. For
example, if X is polyhedral and possesses the integrality property [26], the pricing
problems L̄[xk, yk](X, 𝜆k) can return integer optimal solutions x̄k , thus increasing the
probability of having a reduced number of different values.

Constraint redundancy Given that
{x ∶ xj = �l,∀j ∈ J

k
l
,∀l ∈ [Lk], for some � ∈ ℝLk} is not necessarily contained in

X  , we need to keep the X-defining constraints in general. This issue can sometimes
be avoided for e.g. bound constraints � ⩽ x ⩽ u that are present in the definition of
X  : they become equivalent to the following Lk ≪ n bound constraints in terms of �:

4.3 � Non‑partitioned BZ

[38] link the last scheme for MILPs to another that uses at each iteration the subset
of X spanned by lin(x̄l)l∈{0,...,k−1} , i.e.

Akin to the classical BZ, it converges in at most n iterations. What is not mentioned
in [38] is that this is also true independently of the structure of P(X) . Instead of
using partitions of variables, it uses the raw directions x̄l , thus avoiding an explo-
sive increase in the number of variables. This comes at the cost of a less structured
P(S) : in fact, variable aggregation is akin to a contraction operation in combinatorial
optimization, which can eliminate a substantial amount of rows and columns when
dealing with structured LPs.

Notice that even if we can maintain a reasonable number of variables in the
master problem, the loss in structure in comparison to BZ prohibits in general the
use of the trick we present in (6), and all the X-defining constraints must be kept,
including variables bounds.

4.4 � How do we check if x̄k ∈ S
k?

In our experimental design, we consider the four aforementioned sets Sk . We now
show how to determine if x̄k ∈ S

k efficiently in those special cases: For BZ, it is

(6)max
j∈Jk

l

�j ⩽ �l ⩽ min
j∈Jk

l

uj ,∀l ∈
{
1, ..., Lk

}
.

S
k
∶=

{
x ∈ X ∶ x =

k−1∑
l=0

𝜃lx̄
l, for some 𝜃 ∈ ℝ

k

}
= X ∩ lin(x̄l)l∈{0,...,k−1}.

807

1 3

Computational aspects of column generation for nonlinear…

enough to check if the size of the partition after refinement increased or not; For the
linear span case, it is enough to check if x̄k is a linear combination of the previous
columns, which is done by projection. In the convex and conic hull cases, we must
check whether a small LP is feasible. Let the polyhedron Θk be as follows:

In these cases, we have that x̄k ∈ S
k iff {𝜃 ∈ Θ

k
∶
∑k−1

l=0
𝜃lx̄

l
= x̄k} ≠ � , which can

be done by solving an LP having k variables �k and O(n) ≫ O(1) linear constraints.
To avoid this large number of constraints, we choose to solve the following problem
instead:

We can see that x̄k ∈ S
k iff distance2

2

(
x̄k,Sk

)
= 0 . There are two advantages to use

(7): (1) we are able to monitor the distance of the current column x̄k to Sk , and (2)
when solving (7) with an interior point method, the O(k) constraints that define Θk
are not a problem because k ≪ n and the gradient and Hessian of the penalized
objective have dimensions k and k × k respectively.

4.5 � x‑free master problems P(S) and constraint redundancy

First, notice that all of the aforementioned schemes are of the form

meaning that P(Sk
) is equivalent to the following problem in � and y only:

Further, we are sometimes able to shrink or make redundant some X-defining
constraints in P(Sk

) . This is of crucial importance from a computational point of
view, as we must make P(Sk

) as simple to solve as possible: Given a generic set G , a
convex set V , a cone K , a subspace E ∶= {x ∶ Ex = 0} and some variable bounds (if
x is a vector) B ∶= {x ∶ � ⩽ x ⩽ u} , consider that

We summarize in Table 1 how each of these X-defining constraints can be simplified
depending of the scheme used:

Θ
k
∶=

��
� ∈ ℝk

+
∶
∑k−1

l=0
�l = 1

�
If using the convex hull

ℝk
+

If using the conic hull.

(7)distance2
2

(
x̄k,Sk

)
∶= min

𝜃∈Θk

||||||

||||||
x̄k −

k−1∑
l=0

𝜃lx̄
l

||||||

||||||

2

2

.

S
k
∶=

{
x ∈ X ∶ x = Qk

� for some � ∈ Θ
k
}
,

(
P(Sk

)
�

(
S
k
)
∶= min

�∈Θk ,y

{
f (Qk

�, y) ∶ Qk
� ∈ X,−g

(
Qk

�, y
)
∈ C

}
.

X ∶= G ∩ V ∩K ∩ E ∩ B.

808	 R. Chicoisne

1 3

5 � Risk‑averse portfolio optimization problem

We now describe the NLP we test our algorithms on. We consider the portfolio
optimization problem of determining which assets to buy—with uncertain returns—
such that (1) some risk of being rewarded a poor outcome is minimized, and (2)
the variance of the return is kept under some threshold. As opposed to a classical
expected value maximization model, using the variance and nonlinear risk measures
makes the resulting optimization problem a large scale, nonlinear objective, SOC
constrained optimization problem (See e.g. [1, 17, 33, 34, 60] for non expected
value portfolio optimization).

5.1 � Problem description

An administrator must allocate the resources of T + 1 different clients interested in
disjoint subsets of stocks. The administrator must minimize some client-dependant
risk measures while keeping the variance of some returns under some threshold �2 .
The clients have budgets bt and are interested in nt assets each. We purposefully sep-
arate the 0th client from the T others as its associated decision variables are only a
handful that we model with the y variables. Client t has to pay a unitary cost at

j
 per

asset j. Each asset j has an uncertain future value ct
j
 and at most ut

j
 units can be pur-

chased . The variables xt
j
 ( yj ) represent the amount of each asset j purchased by cli-

ent t (0). We enforce that xt ∈ Xt and y ∈ X0 where

y ∈ X0 is considered to be part of the side constraints −g(x, y) ∈ C . We define dt
as the vector of returns ct , where many components are zero except for some vital
assets. Upper bounding the variance of the returns of these assets is equivalent to:

Xt ∶=

{
z ∈

[
0, ut

]
∶

(
at
)
⊤

z ⩽ bt

}
,∀t ∈ {0, ..., T}.

Table 1   Master constraints redundancy

S
k X ∩ conv(x̄l)

l
X ∩ cone(x̄l)

l
X ∩ lin(x̄l)

l P(J
k
)

Θ
k

� ⩾ 0 ∶

k−1∑
l=0

�l = 1
ℝk

+
ℝk

ℝ|Jk |

Qk
� ∈ V – As is As is As is

Qk
� ∈ K Redundant if

K is convex

– As is As is

Qk
� ∈ E – – – As is but

Sometimes shrinkable

Qk
� ∈ B – As is As is

∀l ∈ [Lk],

⎧⎪⎨⎪⎩

max
j∈Jk

l

�j ⩽ �l

min
j∈Jk

l

uj ⩾ �l

809

1 3

Computational aspects of column generation for nonlinear…

Each client minimizes a risk measure ft that depends on its uncertain returns. They
each minimize an entropic risk [52] of parameter �t , ft(z) ∶= E

𝛼t
(−(ct)⊤z) , where7

E
�
(Z) ∶= � ln�(eZ∕�) . The general problem can be cast as follows:

5.2 � Sample average approximation (SAA)

The last problem is approximated by using S samples cts of respective probabilities
ps with SAA [32]. The approximations of the variance and expectations are
summarized in Table 2. For simplicity, we use the same names for the functions and
their respective SAAs.

Defining V, Vt and V0 such that Vt
sj
∶=

√
ps(d

ts
j
− dt

j
) and Vx ∶=

∑T

t=1
Vtxt , the

variance constraint can be expressed as a classic nonlinear quadratic (CLA) convex
constraint ||V0y + Vx||2

2
⩽ �

2 , or the SOC constraint (V0y + Vx, �) ∈ L
S+1
2

 . The full
approximated problem becomes:

Notice that Assumption 1 is satisfied from Proposition 1, as P(X) is a convex NLP
that for some small 𝜖 > 0 , admits the all-� ’s vector of ℝn+n0 , �n+n0 , as a strictly
feasible point and we can use �n as a starting column for S1

⊂ S
2
⊂ S

3...

(8)𝕍

(
y⊤d0 +

T∑
t=1

(
dt
)
⊤

xt

)
⩽ 𝜎

2.

min
x,y

{
f0(y) +

T∑
t=1

ft
(
xt
)
∶ xt ∈ Xt,∀t ∈ [T], y ∈ X0, (8)

}
.

𝜔(X) = min
x,y

𝛼0 ln

S∑
s=1

pse
−(c

0s
)
⊤

y∕𝛼0 +

T∑
t=1

𝛼t ln

S∑
s=1

pse
−(cts)

⊤
xt∕𝛼t

s.t.: xt ∈ Xt ,∀t ∈ [T]

y ∈ X0{ ||||V0y + Vx||||22 ⩽ 𝜎
2 If (8) is seen as a CLA(

V0y + Vx, 𝜎
)
∈ L

S+1
2

If (8) is seen as a SOC.

Table 2   Sample average approximations

Original SAA Type

E
𝛼
(−c⊤z) 𝛼 ln

∑S

s=1
pse

(−cs)⊤z∕𝛼 Convex

𝕍 (d⊤z) ⩽ 𝜎
2 ∑S

s=1
ps

�
(ds)⊤z −

∑S

s�=1
ps� (d

s�
)
⊤z
�2

⩽ 𝜎
2

Quadratic (CLA) or

Second order cone (SOC)

7  The entropic risk measure is shown to be convex in z in [52].

810	 R. Chicoisne

1 3

5.3 � Pricing problem

The structure of the pricing problem depends on the coupling constraint considered:
Given any dual vector (�1,0, �2,0, �3,0) ∈ ℝ

n0
+
×ℝ

n0
+
×ℝ

+
 corresponding to the

y-specific constraints y ⩾ 0 , y ⩽ u0 and (a0)⊤y ⩽ b0 , the pricing problem is:

Notice that considering (8) as a SOC makes the pricing problem separable in each
xt and y and also allows the use of the y-independency result in Proposition 2. More
importantly, using the linearized pricing each problem in xt is solvable in O(nt ln nt)
time: the objective function becomes linear and every problem in xt can be solved
with a dedicated algorithm (see Proposition 5).

Proposition 5  The following LP with p variables can be reduced to a continuous
knapsack problem, for which an optimal solution can be found in O(p ln p) time:

Proof  Appendix H. 	� ◻

We summarize In Table 3 the types of pricing problem we encounter with our
framework, and how to solve them.

5.4 � Master problem

From Table 1, we summarize in Table 4 the types of sets Sk we use in our experi-
ments and their implications for the master problems P(Sk

) . Notice that the con-
vex hull and the partitioning schemes hold a clear advantage wrt the others, as their
number of constraints is way lower than the rest.

Chasing the conic dual variables If we consider the variance constraint as a SOC
we must be able to retrieve conic dual variables for the master problem P(S) . Even
though nonlinear or linear conic solvers do exist, we could not find any general

𝜔(X, 𝜆) = min
x,y

𝛼0 ln

S�
s=1

pse
−(c

0s
)
⊤

y∕𝛼0 +

T�
t=1

𝛼t ln

S�
s=1

pse
−(cts)

⊤
xt∕𝛼t

−

�
𝜆
1,0
�⊤
y +

�
𝜆
2,0
�⊤�

y − u0
�
+ 𝜆

3,0
��

a0
�⊤
y − b0

�

+

⎧
⎪⎪⎨⎪⎪⎩

𝜆
4
�����V0y + Vx����22 − 𝜎

2
�

If (8) is seen as a CLA,

(𝜆
4
∈ ℝ

+
)

−

�
𝜆
4
�
⊤
�
V0y + Vx

�
− 𝜆

4
0
𝜎 If (8) is seen as SOC,��

𝜆
4, 𝜆4

0

�
∈ L

S+1
2

�

s.t. xt ∈ Xt, ∀t ∈ [T].

𝜔
∗
∶= min

z∈[0,𝜇]

{
𝛾
⊤z ∶ 𝛼

⊤z ⩽ 𝛽

}
.

811

1 3

Computational aspects of column generation for nonlinear…

purpose package for problems having both features and returning conic multipliers.
To circumvent this issue, we solve the master with an off the shelf nonlinear solver
by considering the quadratic constraint as a CLA, then use the following result to
obtain conic multipliers:

Proposition 6  For some 𝛾0 < 0 , consider the following optimization problem:

and its equivalent representation as a classic nonlinear optimization problem:

where their objective functions and constraints are convex and neither has a
Lagrangean duality gap. Given an optimal primal-dual pair (u∗, (�∗, �∗)) for (10)
then (u∗, (𝜋∗, 𝜆̂, 𝜆̂0)) is an optimal pair for (9), where: (𝜆̂, 𝜆̂0) ∶= 2𝜆∗(𝛾(u∗),−𝛾0).

Proof  Appendix I. 	� ◻

Proposition 6 indicates that we can always derivate SOC multipliers from the
multipliers of the constraint in nonlinear quadratic convex form.

(9)�
∗
∶= min

u

{
�(u) ∶ �(u) ⩽ 0,−

(
�(u), �0

)
∈ L2

}
,

(10)�
∗
∶= min

u

{
�(u) ∶ �(u) ⩽ 0, ||�(u)||2

2
− �

2
0
⩽ 0

}
,

Table 3   Types of pricing problems

Linearized Coupling cone Type Separable y-independent

Yes Any T knapsacks Yes Yes
No ℝ

+
Single NLP No No

L
S+1
2

T NLPs Yes Yes

Table 4   Master constraints ( y ∈ X0 and the variance constraint are always present)

S
k X ∩ conv(x̄l)

l
X ∩ cone(x̄l)

l
X ∩ lin(x̄l)

l P(J
k
)

xt ⩾ 0 – – k−1∑
l=0

𝜃l x̄
lt ⩾ 0

� ⩾ 0

xt ⩽ ut – k−1∑
l=0

𝜃l x̄
lt ⩽ ut

k−1∑
l=0

𝜃l x̄
lt ⩽ ut

�l ⩽ min
(j,t)∈Jk

l

ut
j
,∀l ∈ [Lk]

(at)⊤xt ⩽ bt – k−1∑
l=0

𝜃l(a
t
)
⊤x̄lt ⩽ bt

k−1∑
l=0

𝜃l(a
t
)
⊤x̄lt ⩽ bt

�Jk �∑
l=1

�l

∑
(j,t)∈Jk

l

at
j
⩽ bt

var. bnds. k k 0 2|Jk|
lin. cnst. 1 n + T 2n + T T

812	 R. Chicoisne

1 3

5.5 � Numerical enhancement

In preliminary experiments, solving the convex optimization problems at hand
as they are with an interior point method rapidly exceeds the capabilities of
an average workstation. This is due to the fact that the Hessian matrix of the
penalized objective can have many nonzero coefficients because of the entropic
risk measures and the variance constraint. This observation implies that the
linear system that is solved during each Newton step of the interior point method
can be overly demanding both in terms of memory and running time. Introducing
new variables and constraints, notice that we have the following identity: for any
t ∈ {0, ..., T} and any z ( xt or y) we have

In the same fashion, we can replace the variance constraint with

By using this transformation, the objective function eliminates the variables z from
the objective function and involves only the S variables vt

s
 . This way, the Hessian of

the Lagrangean function is a slightly larger matrix with (T + 1)S extra columns and
rows having way less nonzero coefficients: at most (T + 1)S2 of them come from the
entropies, and S from the variance constraint. For this reason and the fact that CG is
typically useful when there are only a few side constraints, we purposefully kept S
moderately small for our experiments.

In Appendix J, we briefly recall the mechanics of an iteration of a primal-
dual interior point scheme and showcase the sparsity patterns of the Newton step
for the pricing problem and the master problem in their original and enhanced
forms. We also show that on our testbed, we can divide at least by a factor 100
the number of nonzero coefficients in the Newton system at the cost of having
less than a percent of additional unknowns.

Chasing the dual variables for the enhanced model We must now be able to
catch the dual variables associated to the original constraints (depending only of
x and y) from the dual variables of the constraints in the enhanced formulation
(now also including v and w). We address this in a general setting in the next
Proposition, by showing that we can ignore the extra constraints and use the
multipliers as is:

Proposition 7  Given a proper cone K , consider:

Suppose there is a transformation with extra variables v and w such that for any
v = Vu , 𝜑(u) = 𝜑̃(v) and for any w = Wu , 𝛾(u) = 𝛾̃(w) , so that (11) can be rewritten
as:

𝛼t ln

S∑
s=1

pse
(−cts)

⊤
z∕𝛼t = min

vt

{
𝛼t ln

S∑
s=1

pse
vt
s
∕𝛼t ∶ vt

s
= −

(
cts
)
⊤

z,∀s ∈ [S]

}
.

||w||2
2
⩽ �

2 and w = V0y + Vx.

(11)�
∗
∶= min

u
{�(u) ∶ �(u) ⩽ 0,−�(u) ∈ K}.

813

1 3

Computational aspects of column generation for nonlinear…

If both are convex and neither has a Lagrangean duality gap, given an optimal
primal-dual pair ((ũ, ṽ, w̃), (𝜋̃, 𝜆̃, 𝛼̃, 𝛽)) for (12) then (ũ, (𝜋̃, 𝜆̃)) is optimal for (11).

Proof  Appendix K. 	� ◻

6 � Computational experience

The algorithms presented in this paper were coded in C programming language and
run over Dell PowerEdge C6420 cluster nodes with Intel Xeon Gold 6152 CPUs at
2.10GHz with 32Gb RAM each. All the convex NLPs are solved using the callable
library of IPOPT [49, 62], using as a subroutine the linear solver Pardiso [47, 48].

6.1 � Methods tested and nomenclature

We test our methods (1) on different sets S that use the convex hull (V), the conic
hull (C), the linear span (LR) or the partition-based linear span (LP), (2) using a
linearized pricing problem (L) or without (NL), (3) considering the variance
constraint as a conic (SOC) or as a classical nonlinear quadratic (CLA). The
y-independency result or the tailored algorithm for knapsack problems are always
used whenever it applies. For example, the scheme using the convex hull with
linearized pricing and considering the variance constraint as a SOC will be named
L-SOC-V. We summarize the different options tested in Table 5.

We do not test any non-linearized scheme if the variance constraint is considered
CLA, as the pricing problem is still not separable and can be as hard as P(X).

6.2 � Instances generated

In order to push our frameworks to their limits, we generate synthetic instances of
variable sizes. We consider T ∈ {1, 50} blocks of equal sizes nt = N ∈ {104, 105} .
There are n0 = 50 auxiliary variables and we generate S = 20 scenarios. The
supplies ut

j
 are uniformly drawn from {1, ..., 5} , and the costs and weights cts

j
 and at

are uniformly drawn from [1, 2]. The budgets are bt = 0.05 ⋅ (ut)⊤at , i.e. such that
each client can buy 5% of the assets. For some scenario s ∈ [S] , letting
x̂t ∈ argmaxxt{(c

ts
)
⊤xt ∶ xt ∈ Xt} and ŷ ∈ argmaxy{(c

0s
)
⊤y ∶ y ∈ X0} , we set

𝜎
2
∶= 0.1 ⋅ ||V0ŷ + Vx̂||2

2
 so that the variance constraint is binding.

Remark that for any value z and any utility random variable Z we have
E
�
(−Z) = E

�
(z − Z) − z , meaning that minimizing the entropic risk measure

means to avoid outcomes of Z such that z − Z is greater than � . Given a ref-
erence random variable Ẑ , by setting z = �(Ẑ) and 𝛼 = 𝛽 ⋅ (� (Ẑ))1∕2 , the clients
wish to avoid asset selections whose outcomes can make you lose more than �
standard deviations, compared to the expected return of the reference solution.
With this observation in mind, we set 𝛼t ∶= 0.7 ⋅ ||Vtx̂t||2 and 𝛼0 ∶= 0.7 ⋅ ||V0ŷ||2.

(12)𝜔
∗
∶= min

u,v,w
{𝜑̃(v) ∶ 𝜙(u) ⩽ 0, −𝛾̃(w) ∈ K, v = Vu, w = Wu}.

814	 R. Chicoisne

1 3

The vectors dt are the returns ct where all the components are zero, except for
60% of the assets bought in the referent (ŷ, x̂) (i.e. only these are considered in
the variance constraint), and the initial column x̄0 ∈ S

1—that is feasible for P(X)
—is:

Absolute and relative tolerances are respectively set to 10−6 and 0.1% and the runs
are stopped after 6 h.

6.3 � Computational results

In Tables 6, 7, 8 and 9, we report the number of iterations (it), the total execution
time (t), the master time (tmas), the pricing time (tpri), the best lower bound given
by a pricing problem at any time (LB), the best upper bound given by the objective
value of the last master (UB), the optimality gap (gap), and the number of variables
� defined by the last set Sk ( |S| ). The execution times are in seconds, the gaps in %
and LB and UB are scaled wrt to the upper bound of L-CLA-V. The entries in bold
font are the best of each column, except for the “t” column where it means that the
associated scheme went faster than solving the monolithic problem. If the time limit
is hit during the last iteration, we report the execution time at the end of the previous
one. If an algorithm stalls before giving any partial result, we mark the entry with
“*”.

Overall, every scheme is shown to always converge to solutions within the
optimality tolerance for the small and mid-sized instances (10K–500K main
variables: Tables 6, 7 and 8). Further, the execution time is mostly used to solve the
master problems for the linearized schemes but more evenly split with the pricing
time for the non-linearized schemes. We can see that using the convex hull with
a linearized pricing (L-SOC-V and L-CLA-V) performs 2–3 times faster than the
monolithic model. Along with using the partitioned linear span with a linearized
pricing (L-SOC-LP and L-CLA-LP), they are the only algorithms that were able to
terminate successfully or return a good quality solution in the allotted time for the
largest instance (Table 9, T = 50 , N = 100K ) with 5 million variables. This is due to
the fact that these schemes are the only ones that reduce substantially the size of our
master problem, be it by making the X constraints redundant for the convex hull, or
by shrinking the variable bounds into a small number of other variable bounds for
the partitioned linear span (See Table 4 in Subsection 5.4).

(
x̄0
)t
j
=

{
0 If dt

j
≠ 0

x̂t
j
Otherwise.

Table 5   Algorithms tested Parameter Possibilities

S V, C, LR , LP
Linearized pricing L, NL
Variance constraint SOC, CLA

815

1 3

Computational aspects of column generation for nonlinear…

We can see that—in our case—a linearized pricing is a crucial ingredient for a
successful scheme as we can use a tailored algorithm to solve it. Also, considering
the main side constraint as a SOC or a CLA does not make any difference when
linearizing the pricing. Even though the non-linearized schemes are not competitive
for large instances, we can see that their pricing problems provide excellent quality
columns and bounds and make the schemes converge in a few iterations. This phe-
nomenon is probably due to the reliability of the pricing problem on giving a “good”

Table 6   Aggregated results for T = 1 , N = 10.000

S lin cone it t tmas tpri LB UB gap |S|
V NL SOC 2 10 0.49 9.85 0.9992 0.9992 0.0000 2

L CLA 9 5 4.50 0.15 0.9992 1.0000 0.0845 9
SOC 9 5 4.81 0.13 0.9992 1.0000 0.0845 9

C NL SOC 2 9 1.40 7.59 0.9992 0.9992 0.0000 2
L CLA 9 11 11.10 0.11 0.9992 1.0000 0.0845 9

SOC 9 12 11.94 0.16 0.9992 1.0000 0.0845 9
LR NL SOC 2 11 2.92 8.34 0.9992 0.9992 0.0000 2

L CLA 9 18 18.27 0.10 0.9992 1.0000 0.0845 9
SOC 9 21 20.55 0.11 0.9992 1.0000 0.0845 9

LP NL SOC 2 5 0.83 4.04 0.9992 0.9992 0.0000 33
L CLA 7 10 10.11 0.07 0.9992 0.9996 0.0418 208

SOC 7 10 9.88 0.10 0.9992 0.9996 0.0418 208
Monolithic – 8 – – – 0.9992 – –

Table 7   Aggregated results for T = 1 , N = 100.000

S lin cone it t tmas tpri LB UB gap |S|
V NL SOC 2 205 3.60 201.52 0.9999 0.9999 0.0000 2

L CLA 7 29 27.59 0.93 0.9998 1.0000 0.0208 7
SOC 7 29 27.55 0.97 0.9998 1.0000 0.0208 7

C NL SOC 2 155 30.99 123.93 0.9999 0.9999 0.0000 2
L CLA 7 208 206.56 0.94 0.9998 1.0000 0.0208 7

SOC 7 208 206.66 0.94 0.9998 1.0000 0.0208 7
LR NL SOC 2 278 105.41 172.22 0.9999 0.9999 0.0000 2

L CLA 7 527 525.53 0.96 0.9998 1.0000 0.0208 7
SOC 7 527 526.32 0.93 0.9998 1.0000 0.0208 7

LP NL SOC 2 277 7.60 269.17 0.9999 0.9999 0.0000 33
L CLA 7 118 116.49 0.94 0.9998 1.0000 0.0158 203

SOC 7 118 116.39 0.98 0.9998 1.0000 0.0158 203
Monolithic – 111 – – – 0.9999 – –

816	 R. Chicoisne

1 3

column: By linearizing the objective function of the pricing problem, we somehow
lose some of the information that the nonlinearity of the pricing’s objective would
have carried along. One could make a parallel with bundle/proximal methods [11]
and stabilization techniques for CG [20, 46] where the objective function of the pric-
ing problem is penalized with a nonlinear term enforcing that the new column does
not make the dual variables stray too much away from the current dual incumbent.
Notice that using the variable aggregation scheme, the master problems are signifi-
cantly bigger than the others, thus making their solution slower, although the bounds
they return are also significantly better.

Table 8   Aggregated results for T = 50 , N = 10.000

S lin cone it t tmas tpri LB UB gap |S|
V NL SOC 2 481 22.08 459.02 0.9994 0.9994 0.0000 2

L CLA 11 339 328.07 7.15 0.9991 1.0000 0.0858 11
SOC 11 345 334.28 7.31 0.9991 1.0000 0.0858 11

C NL SOC 2 1192 719.59 471.89 0.9994 0.9994 0.0000 2
L CLA 11 5076 5065.19 6.66 0.9991 1.0000 0.0858 11

SOC 11 5404 5391.71 7.12 0.9991 1.0000 0.0858 11
LR NL SOC 2 3176 2765.16 410.87 0.9994 0.9994 0.0000 2

L CLA 11 16221 16213.82 6.28 0.9991 1.0000 0.0858 11
SOC 11 13514 13508.58 5.39 0.9991 1.0000 0.0858 11

LP NL SOC 2 2101 1561.09 538.02 0.9994 0.9994 0.0000 791
L CLA 9 6105 6094.70 5.62 0.9992 0.9996 0.0430 1763

SOC 9 6108 6097.89 5.65 0.9992 0.9996 0.0430 1763
Monolithic – 902 – – – 0.9994 – –

Table 9   Aggregated results for T = 50 , N = 100.000

S lin cone it t tmas tpri LB UB gap |S|
V NL SOC * * * * * * * *

L CLA 7 2303 2235.15 47.09 0.9996 1.0000 0.0444 7
SOC 7 2304 2236.46 46.78 0.9996 1.0000 0.0444 7

C NL SOC * * * * * * * *
L CLA * * * * * * * *

SOC * * * * * * * *
LR NL SOC * * * * * * * *

L CLA * * * * * * * *
SOC * * * * * * * *

LP NL SOC * * * * * * * *
L CLA 6 20769 20709.51 40.40 0.9996 1.0008 0.1153 454

SOC 4 8115 8079.25 25.38 0.9978 1.0054 0.7593 228
Monolithic – * – – – * – –

817

1 3

Computational aspects of column generation for nonlinear…

In Figs. 4 and 5, we show examples of progression of respectively the bounds
and gaps over time of the schemes associated to V and LP on the mid-sized instance
( T = 50 , N = 10K ). We can see that the bound/gap improvement is quite progres-
sive for the linearized schemes, whereas it takes only a few large steps in the nonlin-
earized schemes.

In Figs. 6 and 7, we show examples of progression of respectively the distance
between x̄k and Sk , and the largest “reduced costs” (see Subsection 3.4) in absolute
value over time of the schemes associated to V and LP on the mid-sized instance
( T = 50 , N = 10K ). This empirically confirms the theoretical results about the stop-
ping criterion x̄k ∈ S

k and the zero-reduced cost one presented in Proposition 4.
Interestingly, to some extent these values can be used to estimate the proximity of
the current solution from being optimal. We can make the same observation as for
the bounds/gap, where the evolution is more progressive for the linearized schemes
than the nonlinearized ones.

7 � Conclusions and future work

We propose a generic primal decomposition method that unifies a broad range of
existing schemes and opens the door for new exotic algorithmic frameworks. The
convergence rate of the algorithms we present is not studied but can be heavily

Fig. 4   Bounds vs. Time for T = 50 , N = 10.000

818	 R. Chicoisne

1 3

problem dependent. Several special cases of our methods have been proved to
converge under mild assumptions but more work is required to prove the convergence
of broader classes of algorithms. Extensive computational experiments should be
conducted on benchmark instances to gauge the advantages and inconvenients of
each of those schemes.

Delayed column generation We assumed here that some structure X is
exploitable: in an ongoing work, we explore the same kind of algorithm but relaxing
all the constraints. It leads to algorithms sharing similarities with delayed column
generation [7] and a simplex for nonlinear problems [65]. The pricing boils down to
check if the reduced costs are zero and pick as an entering column a variable whose
reduced cost is nonzero, while hardening significantly the master problem.

Non Lagrangean relaxations as pricing problems Instead of relying on
Lagrangean duality, be it in the information we have access to when solving the
master problem or the kind of pricing problem we solve, different relaxations can be
used to provide stronger bounds and attenuate unstable behaviors [36, 46]. We can
use e.g. surrogate relaxations [27, 30] where instead of relaxing the side constraints
in the objective, they are bundled into a single constraint ⟨�, g(x, y)⟩ ⩽ 0 . The pricing
problem becomes harder, but provides stronger dual bounds with weaker working
hypothesis. The master problems must be solved with a surrogate algorithm [37]
that returns optimal surrogate multipliers � .

Non-convex problems P(X) X can be a tractable relaxation of a combinatorial
problem P(X̃) : a choice of S defines the relaxation X of X̃ we work on. The strength

Fig. 5   Gap vs. Time for T = 50 , N = 10.000

819

1 3

Computational aspects of column generation for nonlinear…

of the bounds and the difficulty to solve the subproblems in our algorithms can vary
greatly from one choice of S to another [12, 19, 28, 29, 35, 57, 68].

Dual decomposition In an ongoing work, we provide Dual decomposition
schemes where—using the tight relationship between DW and the Benders
decomposition method—we present a constraint generation methodology where
the dual variables are decomposed and generated on the fly. Again, a variety of
sets S can be used, yielding different master problems e.g. the generalized Benders
decomposition [25] or constraint aggregation schemes [13, 22, 56].

Appendix A: Proof of Example 4

We necessarily have y2 = x3 = x4 = x5 = x6 = 0 , y1 = 1 − x1 and x2 = 1 , which
turns the SDP constraint into x1 ⩾ 0 and we have �(X) = 0 . The conic dual of the
latter problem is

�
�
∶= max

�

⎧⎪⎨⎪⎩
−�1 − �2 ∶

⎛⎜⎜⎝

�1 �4 �5

�4 �2 �6

�5 �6 �3

⎞
⎟⎟⎠
⪰ 0, 1 − �2 + 2�5 = 0, �1 = 0

⎫⎪⎬⎪⎭
.

Fig. 6   Column distance to S vs. Time for T = 50 , N = 10.000

820	 R. Chicoisne

1 3

We necessarily have �1 = �4 = �5 = 0 , �2 = 1 , which turns the SDP constraint
into �3 ⩾ �

2
6
 and we have 𝜔�

= −1 < 0 = 𝜔(X) , proving that P(X) does not satisfy
Assumption 1.

Now, by construction S ⊂ X and P(S) is a feasible LP that always satisfies
Assumption 1. 	� ◻

Appendix B: Proof of Proposition 1

We prove that some (x̃, ỹ) is strictly feasible for P(S) . Because −g(x̄, ȳ) ∈ relint C
and C is proper, there is 𝜌 > 0 such that B(−g(x̄, ȳ), 𝜌) ⊂ relint C . Consider (x̂, 𝜃̂)
strictly feasible for S and 𝜖 > 0 and x̃ as follows:

Because x̄ ∈ S and (x̂, 𝜃̂) is strictly feasible for S , there exists 𝜃̄ such that
𝜙(x̄, 𝜃̄) = 0 , −𝛾(x̄, 𝜃̄) ∈ K , 𝜙(x̂, 𝜃̂) = 0 and −𝛾(x̂, 𝜃̂) ∈ relint K . � being
linear, defining 𝜃 = 𝜃̄ + 𝜖(𝜃̂ − 𝜃̄) , we immediately have 𝜙(x̃, 𝜃) = 0 . Further,
𝜖 > 0 , K is proper, −𝛾(x̄, 𝜃̄) ∈ K and −𝛾(x̂, 𝜃̂) ∈ relint K so we obtain

𝜖 = min

{
1,

𝜌

L||x̂ − x̄||
}
, x̃ = x̄ + 𝜖(x̂ − x̄).

Fig. 7   Reduced Cost vs. Time for T = 50 , N = 10.000

821

1 3

Computational aspects of column generation for nonlinear…

−𝜖𝛾(x̂, 𝜃̂) − (1 − 𝜖)𝛾(x̄, 𝜃̄) ∈ relint K . Because � is K-convex and � ∈]0, 1] we
obtain −𝛾(x̃, 𝜃) ∈ relint K . We just proved that (x̃, 𝜃) is strictly feasible for S . We
finish by proving that (x̃, ȳ) is strictly feasible for P(S) : By definition we have
𝜌 ⩾ L𝜖||x̂ − x̄|| = L||x̃ − x̄|| = L||(x̃ − x̄;ȳ − ȳ)|| . Because g is L-Lipschitz, we
obtain that 𝜌 ⩾ ||g(x̃, ȳ) − g(x̄, ȳ)|| , meaning that −g(x̃, ȳ) ∈ B(−g(x̄, ȳ), 𝜌) ⊂ relint C .
Because P(S) is convex, Slater’s condition holds, thus finishing the proof. 	� ◻

Appendix C: Proof of Proposition 2

If L(X, �k) satisfies the P-property wrt y, the problem in y given some x ∈ X is
equivalent to the problem in y given x = xk , i.e. for any x ∈ X we have

Because P(Sk
) satisfies Assumption 1, (xk, yk) is optimal for L(Sk, �k) , i.e.

In consequence, yk ∈ argminy{f (x
k, y) + ⟨�k, g(xk, y)⟩} . Using equality (13) finishes

the proof. 	� ◻

Appendix D: Proof of Lemma 1

First, for any t ∈ [0, 1] and any pair (u1, u2) ∈ U × U we have:
t�(u1) + (1 − t)�(u2) − �(tu1 + (1 − t)u2) ∈ K . Given that � ∈ K

∗ we have
⟨�, t�(u1) + (1 − t)�(u2) − �(tu1 + (1 − t)u2)⟩ ⩾ 0 , meaning that

Appendix E: Proof of Lemma 2

The linear approximation of � at ū is 𝜓̄[ū](u) ∶= 𝜓(ū) + ⟨∇𝜓[ū], u − ū⟩ . By
definition, for every u ∈ U:

(13)
argmin

y

{
f (x, y) +

⟨
�
k, g(x, y)

⟩}

= argmin
y

{
f
(
xk, y

)
+

⟨
�
k, g

(
xk, y

)⟩}
.

�(S
k, �k) = min

x∈Sk ,y

{
f (x, y) +

⟨
�
k, g(x, y)

⟩}
= f

(
xk, yk

)
+

⟨
�
k, g

(
xk, yk

)⟩
.

t
⟨
�,�

(
u1
)⟩

⏟⏞⏞⏞⏟⏞⏞⏞⏟

�(u1)

+(1 − t)
⟨
�,�

(
u2
)⟩

⏟⏞⏞⏞⏟⏞⏞⏞⏟

�(u2)

⩾
⟨
�,�

(
tu1 + (1 − t)u2

)⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�(tu1+(1−t)u2)

.◻

822	 R. Chicoisne

1 3

implying that 𝜓̄[ū](u) = ⟨𝜆,𝜑(ū)⟩ + ⟨𝜆,D𝜑(ū)(u − ū)⟩ = ⟨𝜆, 𝜑̄[ū](u)⟩ . 	� ◻

Appendix F: Proof of Lemma 3

By convexity of U and optimality of u∗ , for any � ∈]0, 1] and any u ∈ U we have
�(u∗) ⩽ �(u∗ + �(u − u∗)) , i.e.

which implies that when � → 0 , for any u ∈ U we have ⟨∇�(u∗), u − u∗⟩ ⩾ 0 , i.e.

meaning that u∗ is optimal for minu∈U 𝜑̄[u
∗
](u) and implying 𝜔∗

= 𝜔̄[u∗] . 	� ◻

Appendix G: Proof of Proposition 3

First, notice that the following holds:

In consequence, we have that:

which is separable in x and y. Wlog we can assume that (14) attains its mini-
mum, otherwise the master problem is unbounded and we can stop. Under
this assumption, the first order optimality conditions in y for the master prob-
lem P(Sk

) are ∇yf (x
k, yk) + Dyg(x

k, yk)∗�k = 0 , in turn implying that for any y:

⟨∇𝜓[ū], u − ū⟩ = lim
𝜖→0

𝜓(ū + 𝜖(u − ū)) − 𝜓(ū)

𝜖

= lim
𝜖→0

⟨𝜆,𝜑(ū + 𝜖(u − ū))⟩ − ⟨𝜆,𝜑(ū)⟩
𝜖

=

�
𝜆, lim

𝜖→0

𝜑(ū + 𝜖(u − ū)) − 𝜑(ū)

𝜖

�
= ⟨𝜆,D𝜑(ū)(u − ū)⟩,

�(u∗ + �(u − u∗)) − �(u∗)

�

⩾ 0, ∀� ∈]0, 1],∀u ∈ U,

𝜑(u∗) + ⟨∇𝜑(u∗), u − u∗⟩
�����������������������������������

𝜑̄[u∗](u)

⩾ 𝜑(u∗) + ⟨∇𝜑(u∗), u∗ − u∗⟩
�������������������������������������

𝜑̄u∗

, ∀u ∈ U,

f̄
[
xk, yk

]
(x, y) =f

(
xk, yk

)
+

⟨
∇xf

(
xk, yk

)
, x − xk

⟩
+

⟨
∇yf

(
xk, yk

)
, y − yk

⟩

ḡ
[
xk, yk

]
(x, y) =g

(
xk, yk

)
+ Dxg

(
xk, yk

)(
x − xk

)
+ Dyg

(
xk, yk

)(
y − yk

)

(14)

𝜔̄

[
xk, yk

](
X, 𝜆k

)
=f

(
xk, yk

)
−

⟨
∇xf

(
xk, yk

)
, xk

⟩
−

⟨
∇yf

(
xk, yk

)
, yk

⟩

+

⟨
𝜆
k, g

(
xk, yk

)
− Dxg

(
xk, yk

)
xk − Dyg

(
xk, yk

)
yk
⟩

+min
x∈X

{⟨
∇xf

(
xk, yk

)
, x
⟩
+

⟨
𝜆
k,Dxg

(
xk, yk

)
x
⟩}

+min
y

{⟨
∇yf

(
xk, yk

)
, y
⟩
+

⟨
𝜆
k,Dyg

(
xk, yk

)
y
⟩}

,

823

1 3

Computational aspects of column generation for nonlinear…

⟨∇yf (x
k, yk), y⟩ + ⟨�k,Dyg(x

k, yk)y⟩ = 0 , meaning that the objective function of (14)
is identically zero. 	� ◻

Appendix H: Proof of Proposition 5

Let us define the following subsets of [p]:

First notice that we can fix beforehand the following variables:

Next, for every j ∈ J
−
 , we use the change of variable zj ← �j − zj , obtaining the

following problem:

where 𝛽 ∶= 𝛽 −
∑

j∈J
−
∪J

𝜇

𝛼j𝜇j and:

The latter is a knapsack problem with positive capacity 𝛽 and weights 𝛼̂j that can
be solved by sorting the remaining indices j ∈ J

+
∪ J

−
 in increasing disutility

𝛾̂j∕𝛼̂j and filling the capacity constraint until no variable is available or the capacity
constraint is tight. 	� ◻

Appendix I: Proof of Proposition 6

It is enough to show that (u∗, (𝜋∗, 𝜆̂, 𝜆̂0)) satisfies the KKT conditions for (9):

J
+
∶=

{
j ∈ [p] ∶ 𝛾j < 0, 𝛼j > 0

}
, J

−
∶=

{
j ∈ [p] ∶ 𝛾j > 0, 𝛼j < 0

}
,

J0 ∶=

{
j ∈ [p] ∶ 𝛾j, 𝛼j ⩾ 0

}
, J

𝜇
∶=

{
j ∈ [p] ∶ 𝛾j, 𝛼j ⩽ 0

}
.

z∗
j
=

{
�j If j ∈ J

�

0 If j ∈ J0.

𝜔
∗
∶=

∑
j∈J

−
∪J

𝜇

𝛾j𝜇j +min
z

∑
j∈J

+
∪J

−

𝛾̂jzj

s.t.:
∑

j∈J
+
∪J

−

𝛼̂jzj ⩽ 𝛽

zj ∈
[
0,𝜇j

]
, ∀j ∈ J

+
∪ J

−

𝛼̂j ∶=

{
𝛼j if j ∈ J

+

−𝛼j if j ∈ J
−

𝛾̂j ∶=

{
𝛾j if j ∈ J

+

−𝛾j if j ∈ J
−
.

(15a)�(u∗) ⩽ 0, −

(
�(u∗), �0

)
∈ L2

(15b)𝜋
∗
⩾ 0, 𝜙(u∗)

⊤
𝜋
∗
= 0

(15c)
(
𝜆̂, 𝜆̂0

)
∈ L2

824	 R. Chicoisne

1 3

 (15a) and (15b) are trivially satisfied. Given that −�0, �∗ ⩾ 0 , the remaining
conditions are equivalent to:

which are all implied by the KKT conditions for (10) at (u∗, (�∗, �∗)) . 	� ◻

Appendix J: Sparsity patterns for the enhanced models

Primal-dual interior point and Newton step Given a barrier parameter 𝜇 > 0 and
an optimization problem minu{�(u) ∶ �(u) ⩽ 0, Ru = s} , the barrier problem is
defined as minu{�(u) − �

∑p

i=1
ln(−�i(u)) ∶ Ru = s} . The first order optimality

conditions for the barrier problem are the following perturbed conditions:

The heavy works at each iteration of a primal-dual interior point algorithm occur
during the Newton step, which consists in approximately solve the latter system of
equations by solving in (Δu,Δ�,Δ�) its following first-order approximation:

Monolithic formulation After the sparsity patterns in Figs. 8, 9, Figure 10 summa-
rizes the number of nonzero coefficients present in the Newton step’s system.

The non-enhanced version has n2 + 10n + T + 2 nonzeroes, with 3n + T + 2
unknowns, while the enhanced version sums n(4S + 8) + S(S(T + 1) + 2T + 7) + 2 + T
nonzeroes, with 3n + 2ST + 4S + T + 2 unknowns. We summarize these results in
Table 10 to illustrate the benefits of using the enhanced version instead of the original
version (recall that we used S = 20):

(15d)𝛾(u∗)
⊤
𝜆̂ + 𝛾0𝜆̂0 = 0

(15e)∇𝜑(u∗) + D𝜙(u∗)
⊤
𝜋
∗
+ D𝛾(u∗)

⊤
𝜆̂ = 0.

(𝜆
∗
)
2
(
||𝛾(u∗)||2

2
− 𝛾

2
0

)
⩽ 0

𝜆
∗

(
||𝛾(u∗)||2

2
− 𝛾

2
0

)
= 0

∇𝜑(u∗) + D𝜙(u∗)
⊤
𝜋
∗
+ 2𝜆∗D𝛾(u∗)

⊤
𝛾(u∗) = 0,

∇𝜑(u) + R⊤
𝜋 + 𝛽

⊤D𝜙(u) = 0

𝜇 + 𝛽i𝜙i(u) = 0

Ru = s.

⎛⎜⎜⎜⎝

∇
2
𝜑(u)+

p∑
i=1

𝛽i∇
2
𝜙(u) D𝜙(u)⊤ R⊤

−diag(𝛽)D𝜙(u) − diag(𝜙(u)) 0

R 0 0

⎞⎟⎟⎟⎠

⎛
⎜⎜⎝

Δu

Δ𝛽

Δ𝜋

⎞⎟⎟⎠
+

⎛⎜⎜⎝

∇𝜑(u)+R⊤
𝜋+𝛽

⊤D𝜙(u)�
𝜇+𝛽i𝜙i(u)

�
i∈[p]

Ru − s

⎞⎟⎟⎠
=0

825

1 3

Computational aspects of column generation for nonlinear…

We can see that we can divide at least by a factor 100 the number of nonzero
coefficients in our instances at the cost of having less than a percent of additional
unknowns.

Pricing problems We only cover here the pricing problem when the variance
constraint is considered as conic because the pricing when considering it as a
single nonlinear constraint becomes very similar to the monolithic formulation.
Given that the problem is splittable in each xt (and x0 = y ), we successively solve
the pricing for each t ∈ {0, ..., T} , which is the problem for which we study the
sparsity pattern. As per Fig. 11, Fig. 12 summarizes the number of nonzero coef-
ficients present in the Newton step’s system.

The non-enhanced version has n2
t
+ 8nt + 1 nonzeroes, with 3nt + 1 unknowns,

while the enhanced version sums nt(8 + 2S) + S(S + 2) + 1 nonzeroes, with
3nt + 2S + 1 unknowns. We summarize these results in Table 11 to illustrate the
benefits of using the enhanced version instead of the original version, where we
can see again that we can divide at least by a factor 100 the number of nonzero
coefficients in our instances at the cost of having less than a percent of additional
unknowns.

Fig. 8   Number of nonzeroes per block: Non-enhanced model vs. enhanced

Table 10   Benefits of enhancing the master problem on our instances

Instance #unknowns #nonzeroes

T N n orig. enh. Ratio (%) orig. enh. Ratio (%)

1 104 104 30003 30123 100.400 108 9 ⋅ 105 0.880
1 105 105 300003 300123 100.040 1010 9 ⋅ 106 0.088
50 104 5 ⋅ 105 1500052 1502132 100.139 2.5 ⋅ 1011 4 ⋅ 107 0.018
50 105 5 ⋅ 106 15000052 15002132 100.014 2.5 ⋅ 1013 4 ⋅ 108 0.002

826	 R. Chicoisne

1 3

Appendix K: Proof of Proposition 7

The KKT conditions for (12) are

(16a)𝜙(ũ) ⩽ 0, −𝛾̃(w̃) ∈ K, ṽ = Vũ, w̃ = Wũ

(16b)𝜋̃ ⩾ 0, 𝜆̃ ∈ K
∗

(16c)𝜙(ũ)⊤𝜋̃ = 0,
⟨
𝛾̃(w̃), 𝜆̃

⟩
= 0

(16d)∇𝜑̃(ṽ) − 𝛼̃ = 0, D𝛾̃(w̃)∗𝜆̃ − 𝛽 = 0

(16e)D𝜙(ũ)⊤𝜋̃ + V∗
𝛼̃ +W∗

𝛽 = 0.

n
︷ ︸︸ ︷

1
︷︸︸︷

2n+ T + 1
︷ ︸︸ ︷

y x1 . . . xT V X0 X1 . . . XT

y

x1

...
. . .

xT

V

X0

X1

...
. . .

. . .

XT

Fig. 9   Sparsity pattern of the Newton step’s matrix for P without numerical enhancement

827

1 3

Computational aspects of column generation for nonlinear…

 Conditions (16a)–(16b)–(16c) represent respectively primal and dual feasibility
and complementary slackness for (11) at (ũ, (𝜋̃, 𝜆̃)) . We now prove that (16d)–(16e)
imply the last remaining KKT condition for (11): stationarity. Replacing (16d) in
(16e) we obtain:

(17)D𝜙(ũ)⊤𝜋̃ + V∗
∇𝜑̃(ṽ) +W∗D𝛾̃(w̃)∗𝜆̃ = 0.

n
︷ ︸︸ ︷

S(T + 1)
︷ ︸︸ ︷

S
︷ ︸︸ ︷

1
︷︸︸︷

2n+ T + 1
︷ ︸︸ ︷

S
︷ ︸︸ ︷

S(T + 1)
︷ ︸︸ ︷

y x1 . . . xT v0 v1 . . . vT w1 . . . wS V X0 X1 . . . XT V E0 E1 . . . ET

y

x1

...
. . .

. . .

xT

v0

v1

...
. . .

. . .

vT

w1
...

. . .
. . .

wS

V

X0

X1

...
. . .

. . .

XT

V . . .

E0

E1

...
. . .

. . .

ET

Fig. 10   Sparsity pattern of the Newton step’s matrix for P with numerical enhancement

Fig. 11   Number of nonzeroes per block: Non-enhanced model vs. enhanced

828	 R. Chicoisne

1 3

For any (u, v, w) such that Vu = v and Wu = w , we have 𝜑(u) = 𝜑̃(Vu) and
𝛾(u) = 𝛾̃(Wu) , implying that

 Using (18) at (u, v,w) = (ũ, ṽ, w̃) and replacing in (17) we get
D𝜙(ũ)⊤𝜋̃ + ∇𝜑(ũ) + D𝛾(ũ)∗𝜆̃ = 0 . 	� ◻

Acknowledgements  The author thanks Victor Bucarey, Bernard Fortz, Bernard Gendron (This paper is
dedicated to Bernard Gendron who passed away during July 2022), Gonzalo Muñoz, Fernando Ordóñez,
Dana Pizarro, Jupiler™ and two anonymous reviewers for their valuable comments on an early version
of this work. Powered@NLHPC: This research was partially supported by the supercomputing infrastruc-
ture of the NLHPC (ECM-02).

Data availability statement  The source codes used to generate the computational results of this work are
included in the supplementary material of the paper.

Declarations 

Conflict of interest  The author declares that he has no conflict of interest.

(18a)∇𝜑(u) = V∗
∇𝜑̃(Vu) = V∗

∇𝜑̃(v)

(18b)D𝛾(u) = D𝛾̃(Wu)W = D𝛾̃(w)W.

Fig. 12   Sparsity patterns for the t-th pricing problem

Table 11   Benefits of enhancing
the pricing problems on our
instances

instance #unknowns #nonzeroes

N = n
t

orig. enh. Ratio (%) orig. enh. Ratio (%)

104 30001 30041 100.133 108 4.8 ⋅ 105 0.480

105 300001 300041 100.013 1010 4.8 ⋅ 106 0.048

829

1 3

Computational aspects of column generation for nonlinear…

References

	 1.	 Acerbi, C., Simonetti, P.: Portfolio optimization with spectral measures of risk. arXiv preprint cond-
mat/0203607 (2002)

	 2.	 Ahmadi, A.A., Dash, S., Hall, G.: Optimization over structured subsets of positive semidefinite
matrices via column generation. Discret. Optim. 24, 129–151 (2017)

	 3.	 Álvarez, C., Mancilla-David, F., Escalona, P., Angulo, A.: A Bienstock–Zuckerberg-based algo-
rithm for solving a network-flow formulation of the convex hull pricing problem. IEEE Trans. Power
Syst. 35(3), 2108–2119 (2019)

	 4.	 Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price:
column generation for solving huge integer programs. Oper. Res. 46(3), 316–329 (1998)

	 5.	 Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press,
Princeton (2009)

	 6.	 Bergner, M., Caprara, A., Ceselli, A., Furini, F., Lübbecke, M.E., Malaguti, E., Traversi, E.: Auto-
matic Dantzig–Wolfe reformulation of mixed integer programs. Math. Program. 149(1–2), 391–424
(2015)

	 7.	 Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization, vol. 6. Athena Scientific Bel-
mont, MA (1997)

	 8.	 Bienstock, D., Zuckerberg, M.: A new LP algorithm for precedence constrained production schedul-
ing. Optimization Online pp. 1–33 (2009)

	 9.	 Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization: Theoreti-
cal and Practical Aspects. Springer Science & Business Media, Berlin, Germany (2006)

	10.	 Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
	11.	 Briant, O., Lemaréchal, C., Meurdesoif, P., Michel, S., Perrot, N., Vanderbeck, F.: Comparison of

bundle and classical column generation. Math. Program. 113(2), 299–344 (2008)
	12.	 Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs.

Math. Program. 120(2), 479–495 (2009)
	13.	 Chicoisne, R., Ordoñez, F., Espinoza, D.: Risk averse shortest paths: a computational study.

INFORMS J. Comput. 30(3), 539–553 (2018)
	14.	 Choi, E., Tcha, D.W.: A column generation approach to the heterogeneous fleet vehicle routing

problem. Comput. Oper. Res. 34(7), 2080–2095 (2007)
	15.	 Chou, C.A., Liang, Z., Chaovalitwongse, W.A., Berger-Wolf, T.Y., DasGupta, B., Sheikh, S., Ash-

ley, M.V., Caballero, I.C.: Column-generation framework of nonlinear similarity model for recon-
structing sibling groups. INFORMS J. Comput. 27(1), 35–47 (2015)

	16.	 Dantzig, G.B., Wolfe, P.: The decomposition algorithm for linear programs. Econom. J. Econom.
Soc. 767–778 (1961)

	17.	 Dentcheva, D., Ruszczyński, A.: Portfolio optimization with stochastic dominance constraints. J. Bank.
Financ. 30(2), 433–451 (2006)

	18.	 Desaulniers, G., Desrosiers, J., Dumas, Y., Marc, S., Rioux, B., Solomon, M.M., Soumis, F.: Crew pair-
ing at air France. Eur. J. Oper. Res. 97(2), 245–259 (1997)

	19.	 Dong, H., Anstreicher, K.: Separating doubly nonnegative and completely positive matrices. Math. Pro-
gram. 137(1–2), 131–153 (2013)

	20.	 Du Merle, O., Villeneuve, D., Desrosiers, J., Hansen, P.: Stabilized column generation. Discret. Math.
194(1–3), 229–237 (1999)

	21.	 Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Math. Program. 55(1–3), 293–318 (1992)

	22.	 Espinoza, D., Moreno, E.: A primal-dual aggregation algorithm for minimizing conditional value-at-
risk in linear programs. Comput. Optim. Appl. 59(3), 617–638 (2014)

	23.	 García, R., Marín, A., Patriksson, M.: Column generation algorithms for nonlinear optimization, I: con-
vergence analysis. Optimization 52(2), 171–200 (2003)

	24.	 García, R., Marín, A., Patriksson, M.: Column generation algorithms for nonlinear optimization, II:
numerical investigations. Comput. Oper. Res. 38(3), 591–604 (2011)

	25.	 Geoffrion, A.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)
	26.	 Giles, F.R., Pulleyblank, W.R.: Total dual integrality and integer polyhedra. Linear Algebra Appl. 25,

191–196 (1979)
	27.	 Glover, F.: Surrogate constraint duality in mathematical programming. Oper. Res. 23(3), 434–451

(1975)

830	 R. Chicoisne

1 3

	28.	 Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfi-
ability problems using semidefinite programming. J. ACM (JACM) 42(6), 1115–1145 (1995)

	29.	 Gorge, A., Lisser, A., Zorgati, R.: Generating cutting planes for the semidefinite relaxation of quadratic
programs. Comput. Oper. Res. 55, 65–75 (2015)

	30.	 Greenberg, H., Pierskalla, W.: Surrogate mathematical programming. Oper. Res. 18(5), 924–939 (1970)
	31.	 Khaniyev, T., Elhedhli, S., Erenay, F.S.: Structure detection in mixed-integer programs. INFORMS J.

Comput. 30(3), 570–587 (2018)
	32.	 Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for sto-

chastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002)
	33.	 Krokhmal, P., Palmquist, J., Uryasev, S.: Portfolio optimization with conditional value-at-risk objective

and constraints. J. Risk 4, 43–68 (2002)
	34.	 Levy, H., Markowitz, H.M.: Approximating expected utility by a function of mean and variance. Am.

Econ. Rev. 69(3), 308–317 (1979)
	35.	 Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25(1), 1–7 (1979)
	36.	 Lübbecke, M., Desrosiers, J.: Selected topics in column generation. Oper. Res. 53(6), 1007–1023

(2005)
	37.	 Müller, B., Muñoz, G., Gasse, M., Gleixner, A., Lodi, A., Serrano, F.: On generalized surrogate dual-

ity in mixed-integer nonlinear programming. In: International Conference on Integer Programming and
Combinatorial Optimization, pp. 322–337. Springer (2020)

	38.	 Muñoz, G., Espinoza, D., Goycoolea, M., Moreno, E., Queyranne, M., Rivera, O.: A study of the Bien-
stock–Zuckerberg algorithm: applications in mining and resource constrained project scheduling. Com-
put. Optim. Appl. 69(2), 501–534 (2018)

	39.	 Murphy, F.H.: A column generation algorithm for nonlinear programming. Math. Program. 5(1), 286–
298 (1973)

	40.	 Muts, P., Nowak, I., Hendrix, E.M.: On decomposition and multiobjective-based column and disjunc-
tive cut generation for MINLP. Optim. Eng. 22(3), 1389–1418 (2021)

	41.	 Nesterov, Y., Nemirovskii, A.: Interior-point polynomial algorithms in convex programming. SIAM
(1994)

	42.	 Ni, W., Shu, J., Song, M., Xu, D., Zhang, K.: A branch-and-price algorithm for facility location with
general facility cost functions. INFORMS J. Comput. 33(1), 86–104 (2021)

	43.	 Nocedal, J., Wright, S.: Numerical Optimization. Springer Science & Business Media, Berlin, Germany
(2006)

	44.	 Nowak, I., Breitfeld, N., Hendrix, E.M., Njacheun-Njanzoua, G.: Decomposition-based inner-and outer-
refinement algorithms for global optimization. J. Glob. Optim. 72(2), 305–321 (2018)

	45.	 Park, Y.W.: Optimization for l 1-norm error fitting via data aggregation. INFORMS J. Comput. 33(1),
120–142 (2021)

	46.	 Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: Automation and combination of linear-program-
ming based stabilization techniques in column generation. INFORMS J. Comput. 30(2), 339–360
(2018)

	47.	 Petra, C.G., Schenk, O., Anitescu, M.: Real-time stochastic optimization of complex energy systems on
high-performance computers. Comput. Sci. Eng. 16(5), 32–42 (2014)

	48.	 Petra, C.G., Schenk, O., Lubin, M., Gärtner, K.: An augmented incomplete factorization approach for
computing the Schur complement in stochastic optimization. SIAM J. Sci. Comput. 36(2), C139–C162
(2014)

	49.	 Pirnay, H., Lopez-Negrete, R., Biegler, L.: Optimal sensitivity based on IPOPT. Math. Program. Com-
put. 4(4), 307–331 (2012)

	50.	 Pisinger, W.D., Rasmussen, A.B., Sandvik, R.: Solution of large quadratic knapsack problems through
aggressive reduction. INFORMS J. Comput. 19(2), 280–290 (2007)

	51.	 Porumbel, D., Clautiaux, F.: Constraint aggregation in column generation models for resource-con-
strained covering problems. INFORMS J. Comput. 29(1), 170–184 (2017)

	52.	 Pratt, J.W.: Risk aversion in the small and in the large. Econom. J. Econom. Soc. 32(1/2), 122–136
(1964)

	53.	 Ruszczyński, A.: On convergence of an augmented Lagrangian decomposition method for sparse con-
vex optimization. Math. Oper. Res. 20(3), 634–656 (1995)

	54.	 Sadykov, R., Lazarev, A., Shiryaev, V., Stratonnikov, A.: Solving a freight railcar flow problem arising
in Russia. In: ATMOS-13th Workshop on Algorithmic Approaches for Transportation Modelling, Opti-
mization, and Systems-2013. Dagstuhl Open Access Series in Informatics (2013)

831

1 3

Computational aspects of column generation for nonlinear…

	55.	 Sadykov, R., Vanderbeck, F.: Column generation for extended formulations. EURO J. Comput. Optim.
1(1–2), 81–115 (2013)

	56.	 Song, Y., Luedtke, J.: An adaptive partition-based approach for solving two-stage stochastic programs
with fixed recourse. SIAM J. Optim. 25(3), 1344–1367 (2015)

	57.	 Sponsel, J., Dür, M.: Factorization and cutting planes for completely positive matrices by copositive
projection. Math. Program. 143(1–2), 211–229 (2014)

	58.	 Sun, Y., Andersen, M.S., Vandenberghe, L.: Decomposition in conic optimization with partially separa-
ble structure. SIAM J. Optim. 24(2), 873–897 (2014)

	59.	 Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Found. Trends
Optim. 1(4), 241–433 (2015)

	60.	 Vielma, J.P., Ahmed, S., Nemhauser, G.L.: A lifted linear programming branch-and-bound algorithm
for mixed-integer conic quadratic programs. INFORMS J. Comput. 20(3), 438–450 (2008)

	61.	 Von Hohenbalken, B.: Simplicial decomposition in nonlinear programming algorithms. Math. Pro-
gram. 13(1), 49–68 (1977)

	62.	 Wachter, A., Biegler, L.: On the implementation of a primal-dual interior point filter line search algo-
rithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

	63.	 Wang, J., Ralphs, T.: Computational experience with hypergraph-based methods for automatic decom-
position in discrete optimization. In: International Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems, pp. 394–402. Springer (2013)

	64.	 Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. J.
Sci. Comput. 78(1), 29–63 (2019)

	65.	 Zangwill, W.I.: The convex simplex method. Manag. Sci. 14(3), 221–238 (1967)
	66.	 Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., Wynn, A.: Fast admm for semidefinite

programs with chordal sparsity. In: 2017 American Control Conference (ACC), pp. 3335–3340. IEEE
(2017)

	67.	 Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., Wynn, A.: Chordal decomposition in oper-
ator-splitting methods for sparse semidefinite programs. Math. Program. 180(1), 489–532 (2020)

	68.	 Zheng, Y., Sootla, A., Papachristodoulou, A.: Block factor-width-two matrices and their applications to
semidefinite and sum-of-squares optimization. IEEE Transactions on Automatic Control (2022)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Renaud Chicoisne1 

1	 Clermont‑Auvergne INP, LIMOS, Université Clermont-Auvergne, 1 rue de la Chebarde,
63170 Aubière, France

http://orcid.org/0000-0002-5001-4350

	Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes
	Abstract
	1 Introduction
	1.1 Examples
	1.2 Preliminaries
	1.3 Main concept
	1.4 Working hypothesis
	1.5 Dantzig–Wolfe for LPs
	1.6 Decomposition methods and previous work
	1.7 Article outline
	1.8 Background notations

	2 A generic column generation algorithm
	2.1 General remarks
	2.2 How can the restricted problem maintain a zero duality gap?
	2.3 y-independent pricing problems

	3 A linearized column generation algorithm
	3.1 Additional assumptions and results
	3.2 A linearized algorithm
	3.3 y-independent pricing problems
	3.4 “Reduced costs”

	4 Relationship with existing schemes
	4.1 Dantzig–Wolfe
	4.2 Bienstock–Zuckerberg (BZ)
	4.3 Non-partitioned BZ
	4.4 How do we check if ?
	4.5 x-free master problems and constraint redundancy

	5 Risk-averse portfolio optimization problem
	5.1 Problem description
	5.2 Sample average approximation (SAA)
	5.3 Pricing problem
	5.4 Master problem
	5.5 Numerical enhancement

	6 Computational experience
	6.1 Methods tested and nomenclature
	6.2 Instances generated
	6.3 Computational results

	7 Conclusions and future work
	Appendix A: Proof of Example 4
	Appendix B: Proof of Proposition 1
	Appendix C: Proof of Proposition 2
	Appendix D: Proof of Lemma 1
	Appendix E: Proof of Lemma 2
	Appendix F: Proof of Lemma 3
	Appendix G: Proof of Proposition 3
	Appendix H: Proof of Proposition 5
	Appendix I: Proof of Proposition 6
	Appendix J: Sparsity patterns for the enhanced models
	Appendix K: Proof of Proposition 7
	Acknowledgements
	References

