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Abstract
An Adagrad-inspired class of algorithms for smooth unconstrained optimization 
is presented in which the objective function is never evaluated and yet the gradi-
ent norms decrease at least as fast as O(1∕

√

k + 1) while second-order optimality 
measures converge to zero at least as fast as O(1∕(k + 1)1∕3) . This latter rate of con-
vergence is shown to be essentially sharp and is identical to that known for more 
standard algorithms (like trust-region or adaptive-regularization methods) using 
both function and derivatives’ evaluations. A related “divergent stepsize” method 
is also described, whose essentially sharp rate of convergence is slighly inferior. It 
is finally discussed how to obtain weaker second-order optimality guarantees at a 
(much) reduced computational cost.

Keywords  Second-order optimality · Objective-function-free optimization (OFFO) · 
Adagrad · Global rate of convergence · Evaluation complexity

1  Introduction

This paper considers an a priori unexpected but fundamental and challenging ques-
tion: is evaluating the value of the objective function necessary for obtaining (com-
plexity-wise) efficient minimization algorithms which find second-order approxi-
mate minimizers? This question arose as a natural consequence of the somewhat 
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surprising results of [14], where it was shown that OFFO (i.e. Objective-Function 
Free Optimization) algorithms1 exist which converge to first-order points at a global 
rate which in order identical to that to well-known methods using both gradient and 
objective function evaluations. That these algorithms include the deterministic ver-
sion of Adagrad [10], a very popular method for deep learning applications, was an 
added bonus and a good motivation.

We show here that, from the point of view of evaluation complexity alone, evalu-
ating the value of the objective function during optimization is also unnecessary2 for 
finding approximate second-order minimizers at a (worst-case) cost entirely compa-
rable to that incurred by familiar and reliable techniques such as second-order trust-
region or adaptive regularization methods. This conclusion is coherent with that of 
[14] for first-order points and is obtained by exhibiting an OFFO algorithm whose 
global rate of convergence is proved to be O(1∕

√

k + 1) for the gradients’norm and 
O(1∕(k + 1)1∕3) for second-order measures. The new ASTR2 algorithm is of the 
adaptively scaled trust-region type, as those studied in [14]. The key difference is 
that it now hinges on a scaling technique which depends on second-order informa-
tion, when relevant.

A further motivation for our analysis is the folklore observation that algorithms 
which use function values (often in linesearches or other acceptance tests for a new 
iterate) are significantly less robust than OFFO counterparts, essentially because the 
accuracy necessary for the former methods to work well is significantly higher than 
that requested on derivatives’ values. Thus OFFO algorithms, like the one discussed 
in this paper, merit, in our view, a sound theoretical consideration.

The paper is organized as follows. Section 2 presents the new ASTR2 class of 
algorithms and discusses some of its scaling-independent properties. The complex-
ity analysis of a first, Adagrad-like, subclass of ASTR2 is then presented in Sect. 3. 
Another subclass of interest is also considered and analyzed in Sect. 4. Sect. 5 dis-
cusses how weaker optimality conditions may be guaranteed by the ASTR2 algo-
rithms at significantly reduced computational cost. Conclusions and perspectives are 
finally presented in Sect. 6

2 � The ASTR2 class of minimization methods

2.1 � Approximate first‑ and second‑order optimality

We consider the nonlinear unconstrained optimization problem

(2.1)min
x∈ℝn

f (x)

2  The authors are well aware that this is a theoretical statement, as it may be impractical to evaluate 
derivatives without first evaluating the function itself.

1  For which the only source of information on the problem at hand is the value of the gradient.
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where f is a function from ℝn to ℝ . More precisely, we assume that 

AS.1:	 the objective function f(x) is twice continuously differentiable;
AS.2:	 its gradient g(x)

def
=∇1

x
f (x) and Hessian H(x)

def
=∇2

x
f (x) are Lipschitz continuous 

with Lipschitz constant L1 and L2 , respectively, that is 

 for all x, y ∈ ℝ
n;

AS.3:	 there exists a constant flow such that f (x) ≥ flow for all x ∈ ℝ
n.

As our purpose is to find approximate first- and second-order minimizers, we need 
to clarify these concepts. In this paper we choose to follow the “ strong � ” concept 
of optimality discussed in [4, 6] or [5, Chapters 12–14]. It is based on the quantity

where Tf ,2(x, d) is the second-order Taylor expansion of f at x, that is

Observe that ��
f ,j
(x) is interpreted as the maximum decrease of the local j-th order 

Taylor model of the objective function f at x, within a ball of radius � . Importantly 
for our present purposes, the evaluation of ��

f ,2
(x) does not require the evaluation of 

f(x), as it can be rewritten as

Moreover, computing ��
f ,2
(x) is a standard trust-region step calculation, for which 

many efficient methods exist (see [7, Chapter 7], for instance).
The next result recalls the link between the � optimality measure and the more 

standard ones.

Lemma 2.1  [5, Theorems 12.1.4 and 12.1.6] Suppose that f is twice continuously 
differentiable. Then

	 (i)	 for any 𝛿 > 0 and any x ∈ ℝ
n , we have that

and so ��
f ,1
(x) = 0 if and only if g(x) = 0;

	 (ii)	 we have that

‖g(x) − g(y)‖ ≤ L1‖x − y‖ and ‖H(x) − H(y)‖ ≤ L2‖x − y‖

(2.2)��
f ,2
(x) = f (x) − min

‖d‖≤� Tf ,2(x, d),

Tf ,1(x, d) = f (x) + g(x)Td and Tf ,2(x, d) = f (x) + g(x)Td + 1

2
dTH(x)d.

(2.3)��
f ,2
(x) = max

‖d‖≤�−
�

g(x)Td + 1

2
dTH(x)d

�

.

(2.4)
‖g(x)‖ =

��
f ,1
(x)

�
,

𝜙𝛿
f ,2
(x) = 0 for some 𝛿 > 0, then g(x) = 0 and 𝜆min[H(x)] ≥ 0,
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and so any such x is a first- and second-order minimizer;
	 (iii)	 if ��1

f ,1
(x) ≤ �1 �1 (and so (2.5) holds with j = 1 ), then ‖g(x)‖ ≤ �1;

	 (iv)	 if ��
f ,2
(x) ≤ 1

2
�2�

2 , then �min[H(x)] ≥ −�2 (and so (2.5) holds for j = 2 ) and 
‖g(x)‖ ≤ ��(x)

√

�2 , where �(x) depends on (the eigenvalues of) H(x).

Note also that computing ��
f ,1
(x) simply results from (2.4) and that, in particular, 

�1
f ,1
(x) = ‖g(x)‖ . Computing ��

f ,2
(x) is a standard Euclidean trust-region step calcu-

lation (see [7, Chapter 7], for instance).
For j ∈ {1, 2} , we then say that an iterate xk is an �-approximate minimizer if

where � = (�1,… , �j) . There are two ways to express how fast an algorithm tends 
to such points in the worst case. The first (the “ �-orders”) is to assume � is given 
and then give a bound on the maximum number of iterations and evaluations that 
are needed to satisfy (2.5). In this paper we focus on the second (the “k-orders”), 
where one instead gives an upper bound3 on ��

f ,j
(xk) as a function of k (for speci-

fied j and �).

2.2 � The ASTR2 class

After these preliminaries, we now introduce the new ASTR2 class of algorithms. 
Methods in this class are of “adaptively scaled trust-region” type, a term we now 
briefly explain. Classical trust-region algorithms (see [7] for an in-depth coverage 
or [21] for a more recent survey) are iterative. At each iteration, they define a local 
model of the objective function which is deemed trustable within the “trust region”, 
a ball of given radius centered at the current iterate. A step and corresponding trial 
point are then computed by (possibly approximately) minimizing this model in the 
trust region. The objective function value is then computed at the trial point, and 
this point is accepted as the new iterate if the ratio of the achieved reduction in the 
objective function to that predicted by the model is sufficiently large. The radius of 
the trust region is then updated using the value of this ratio. As is clear from this 
description, these methods are intrinsically dependent of the evaluation of the objec-
tive function, and therefore not suited to our Objective-Function Free Optimization 
(OFFO) context. Here we follow [14] in interpreting the mechanism designed for the 
Adagrad methods [10] as an alternative trust-region design not using function evalu-
ations. In this interpretation, the trial point is always accepted and the trust-region 
radius is determined by the gradient sizes, in a manner reminiscent also of [11]. 
In this approach, one uses scaling factors to determine the radius (hence the name 
of Adaptively Scaled Trust Region) at each iteration. Given these factors, which 
we will denote, at iteration k, by wL

k
 and wQ

k
 , we may then state the ASTR2 class 

(2.5)��
f ,i
(xk) ≤ �i

�i

i
for some � ∈ (0, 1] and all 1 ≤ i ≤ j,

3  Converging to zero.
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of algorithms as shown ASTR2. This algorithm involves requirements on the step 
which are standard (and practical) for trust-region methods.

A few additional comments on this algorithm are now in order. 

1.	 The algorithms in the ASTR2 class belong to the OFFO framework: the objective 
function is never evaluated (remember that �1

f ,j
(x) can be computed without any 

such evaluation, the same being obviously true for Δqk , ΔqCk  and ΔqE
k
).

2.	 Given our focus on k-orders of convergence, the algorithm does not include a 
termination criterion. It is however easy, should one be interested in �-orders 
instead, to test (2.5) for � = 1 and the considered �1 and �2 at the end of Step 1, 
and then terminate if this condition holds.

3.	 Despite their somewhat daunting statements, conditions (2.9)–(2.12) are relatively 
mild and have been extensively used for standard trust-region algorithms, both in 
theory and practice. Condition (2.10) defines the so-called “Cauchy decrease”, 
which is the decrease achievable on the quadratic model Tf ,2(xk, s) in the steep-
est descent direction [7, Section 6.3.2]. Conditions (2.11) and (2.12) define the 
“eigen-point decrease”, which is that achievable along uk , a ( �-approximate) 
eigenvector associated with the smallest Hessian eigenvalue [7, Section 6.6] when 
this eigenvalue is negative. We set ΔqE

k
= 0 for consistency when Hk is positive 

semi-definite. We discuss in Sect. 5 how they can be ensured in practice, possibly 
approximately, for instance by the GLTR algorithm [13].

4.	 The computation of �k can be reused to compute sQ
k
 , should it be necessary. If 

Δk > 1 , the model minimization may be pursued beyond the boundary of the unit 
ball. If Δk < 1 , backtracking is also possible [7, Section 10.3.2].

Algorithm 2.1  ASTR2

Step 0:	� Initialization. A starting point x0 is given. The constants �,� ∈ (0, 1] and 
� ≥ 1 are also given. Set k = 0.

Step 1:	� Compute derivatives.Compute gk = g(xk) and Hk = H(xk) , as well as 
�k

def
=�1

f ,2
(xk) and �̂k

def
= min[�k, �].

Step 2:	� Define the trust-region radii.Set 

 where wL
k
= wL(x0,… , xk) and wQ

k
= wQ(x0,… , xk).

Step 3:	� Step computation.If 

 then set 

(2.6)ΔL
k
=

‖gk‖

wL
k

and Δ
Q

k
=

�̂k

w
Q

k

(2.7)‖gk‖
2 ≥ �̂3

k
,
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 Otherwise, set sk = s
Q

k
 , where sQ

k
 is such that 

 where 

 and ΔqE
k
= 0 if �min[Hk] ≥ 0 , or 

 with uk satisfying 

 if 𝜆min[Hk] < 0.

Step 4:	� New iterate.Define 

 increment k by one and return to Step 1.

5.	 Note that two scaling factors are updated from iteration to iteration: one for first-
order models and one for second-order ones. It does indeed make sense to trust 
these two types of models in region of different sizes, as Taylor’s theory suggests 
second-order models may be reasonably accurate in larger neighbourhoods.

6.	 A “componentwise” version where the trust region is defined in the ‖ ⋅ ‖∞ norm 
is possible with 

 and 

(2.8)sk = sL
k
= −

gk

wL
k

.

(2.9)‖s
Q

k
‖ ≤ Δ

Q

k
and Δqk = f (xk) − Tf ,2(xk, s

C
k
) ≥ � max

�

ΔqC
k
,ΔqE

k

�

(2.10)
ΔqC

k
= max

�≥0
�‖gk‖≤ΔQ

k

�

f (xk) − Tf ,2(xk,−�gk)
�

(2.11)
ΔqE

k
= max

�≥0
�≤ΔQ

k

[

f (xk) − Tf ,2(xk, �uk)
]

(2.12)uT
k
Hkuk ≤ � �min[Hk], uT

k
gk ≤ 0 and ‖uk‖ = 1,

(2.13)xk+1 = xk + sk,

�i,k = max

[

�k,−min
|�|≤1

(

�gi,k +
1

2
�2[Hk]i,i

)

]

ΔL
i,k

=
|gi,k|

wL
i,k

and Δ
Q

i,k
=

min[�,�i,k]

w
Q

i,k

,
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 where gi,k denotes the ith component of gk , and where wL
i,k

 , wQ

i,k
 and Δi,k are the 

ith components of wL
k
 , wQ

k
 and Δk (now vectors in ℝn ). We will not explicitly 

consider this variant to keep our notations reasonably simple.
Our assumption that the gradient and Hessian are Lipschitz continuous (AS.2) 
ensures the following standard result.

Lemma 2.2  [1] or [5, Theorem A.8.3] Suppose that AS.1 and AS.2 hold. Then

and

The first step in analyzing the convergence of the ASTR2 algorithm is to derive 
bounds on the objective function’s change from iteration to iteration, depending on 
which step (linear with sk = sL

k
 , or quadratic with sk = s

Q

k
 ) is chosen. We start by 

a few auxiliary results on the relations between first- and second-order optimality 
measures.

Lemma 2.3  Suppose that H is an n × n symmetric positive semi-definite matrix and 
g ∈ ℝ

n , and consider the (convex) quadratic q(d) = ⟨g, d⟩ + 1

2
⟨d,Hd⟩ . Then

Proof  From the definition of the gradient, we have that

But ⟨g, d⟩ defines the supporting hyperplane of q(d) at d = 0 and thus the convexity 
of q implies that q(d) ≥ ⟨g, d⟩ for all d. Hence

and (2.16) follows. 	�  ◻

Lemma 2.4  Suppose that

where

(2.14)f (xk + sL
k
) − f (xk) ≤ ⟨gk, s

L
k
⟩ +

L1

2
‖sL

k
‖

2

(2.15)f (xk + s
Q

k
) − f (xk) ≤ −Δqk +

L2

6
‖s

Q

k
‖

3.

(2.16)�1
q,2
(0) =

�

�

�

�

min
‖d‖≤1 q(d)

�

�

�

�

≤ ‖g‖.

‖g‖ =
�

�

�

�

min
‖d‖≤1⟨g, d⟩

�

�

�

�

.

�

�

�

�

min
‖d‖≤1 q(d)

�

�

�

�

≤ �

�

�

�

min
‖d‖≤1⟨g, d⟩

�

�

�

�

(2.17)0 < 𝜂k ≤ 1

2
𝜙k
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Then

Proof  Observe first that (2.17) implies that 𝜆min[Hk] < 0 and �k = |

|

�min[Hk]
|

|

 . Let dk 
be a solution of the optimization problem defining �k , i.e.,

so that �k = fk − Tf ,2(xk, dk) . Since 𝜆min[Hk] < 0 , it is known from trust-region the-
ory [7, Corollary.2.2] that dk may be chosen such that ‖dk‖ = 1 . Now define

and note that q0(d) is convex by construction. Then, at dk,

and (2.17) implies that q0(dk) < 0 . Moreover,

where we used the convexity of q0 to deduce the the first inequality, and Cauchy-
Schwarz with ‖dk‖ ≤ 1 to derive the second. This proves (2.19). 	�  ◻

Using these results, we may now prove a crucial property on objective function 
change. For this purpose, we partition the iterations in two sets, depending which 
type of step is chosen, that is

Lemma 2.5  Suppose that AS.1 and AS.2 hold. Then

and

Proof  Suppose first that sk = sL
k
 . Then (2.14), (2.8) and (2.6) ensure that

(2.18)�k
def
= min

(

0,−�min[Hk]

)

.

(2.19)1

2
�k ≤ ‖gk‖.

dk = argmin
‖d‖≤1Tf ,2(xk, d),

q0(d)
def
=⟨gk, d⟩ +

1

2
⟨d, (Hk − �min[Hk]I)d⟩ = Tf ,2(xk, d) − fk + �k‖d‖

2

q0(dk) = −�k + �k

1

2
�k ≤ −q0(dk) ≤ −⟨gk, dk⟩ ≤ ‖gk‖,

K
L = {k ≥ 0 ∣ sk = sL

k
} and K

Q = {k ≥ 0 ∣ sk = s
Q

k
}.

(2.20)fk+1 − fk ≤ −
‖gk‖

2

wL
k

+
L1

2

‖gk‖
2

(wL
k
)2

for k ∈ K
L

(2.21)

fk+1 − fk ≤ −
�

4�
min

[

1

2(1 + L1)
,
1

w
Q

k

,
1

(w
Q

k
)2

]

�̂3
k
+

L2

6

�̂3
k

(w
Q

k
)3

for k ∈ K
Q.
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giving (2.20).
Suppose now that sk = s

Q

k
 , i.e. k ∈ K

Q . Then, because of (2.9)–(2.12), the 
decrease Δqk in the quadratic model Tf ,2(xk, s) at sk is at least a fraction � of the 
maximum of the Cauchy and eigen-point decreases given by ΔqC

k
 and ΔqE

k
 . Standard 

trust-region theory (see [7, Lemmas 6.3.2 and 6.6.1] for instance) then ensures that, 
for possibly non-convex Tf ,2(xk, s),

where we used the bound ‖Hk‖ ≤ L1 and (2.6) to derive the last inequality. If 
�k ≤ 1

2
�k , then, using Lemma 2.4 and the inequality �k ≥ �̂k,

Now �̂3
k
≤ ��̂2

k
 and thus

If instead 𝜂k > 1

2
𝜙k ≥ 1

2
�𝜙k , then

Given that, if k ∈ K
Q , ‖sk‖ ≤ Δ

Q

k
= �̂k∕w

Q

k
 , we deduce (2.21) from (2.15), (2.23) 

and (2.24). 	�  ◻

Observe that neither (2.20) nor (2.21) guarantees that the objective function val-
ues are monotonically decreasing.

3 � An Adagrad‑like algorithm for second‑order optimality

We first consider a choice of scaling factors directly inspired by the Adagrad algo-
rithm [10] and assume that, for some 𝜍 > 0 , �, � ∈ (0, 1) , �L, �Q ∈ (0, 1] and all 
k ≥ 0,

(2.22)fk+1 − fk ≤ −
‖gk‖

2

wL
k

+
L1

2
(ΔL

k
)2 = −

‖gk‖
2

wL
k

+
L1

2

‖gk‖
2

(wL
k
)2
,

Δqk ≥ � max

�

1
2
min

�

‖gk‖
2

1 + ‖Hk‖
, ‖gk‖Δ

Q

k

�

,
�k
2
(Δ

Q

k
)2
�

≥ �
2
max

�

min

�

‖gk‖
2

1 + L1
,
‖gk‖�̂k

w
Q

k

�

,
�k�̂

2
k

(w
Q

k
)2

�

Δqk ≥ �

2
min

�

‖gk‖
2

1 + L1
,
‖gk‖�̂k

w
Q

k

�

≥ �

2
min

�

( 1

2
�̂k)

2

1 + L1
,
( 1

2
�̂k)�̂k

w
Q

k

�

.

(2.23)Δqk ≥ �

2
min

(

�̂3
k

4�(1 + L1)
,

�̂3
k

2�w
Q

k

)

.

(2.24)Δqk ≥ �

2

�k�̂
2
k

(w
Q

k
)2

≥ �

2

( 1

2
�̂k)�̂

2
k

(w
Q

k
)2

.
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and

Note that selecting the parameters �L and �Q strictly less than one allows the scal-
ing factors wL

k
 and wQ

k
 to be chosen in an interval at each iteration without any 

monotonicity.
We now present a two technical lemmas which will be necessary in our analy-

sis. The first states useful results for a specific class of inequalities.

Lemma 3.1  Let a ≥ 1

2
� and b ≥ 1

2
� . Suppose that, for some �a ≥ 1 , �b ≥ 1 , � ≥ 0 , 

� ∈ (0, 1) , and � ∈ (0, 1

3
)

where A(a) and B(b) are given, as a function of � and � , by 

𝜇 < 1

2
� =

1

2
𝜇 > 1

2

A(a) a
1−2� log(2a) 0

  and  

𝜈 < 1

3
� =

1

3
𝜈 > 1

3

B(k) b
1−3� log(2b) 0

Then there exists positive constants �a and �b only depending on �a , �b , � , � and � 
such that

(3.1)wL
k
∈ [𝜗Lŵ

L
k
, ŵL

k
] where ŵL

k
=

⎛

⎜

⎜

⎜

⎝

𝜍 +

k
�

�=0
�∈KL

‖gk‖
2

⎞

⎟

⎟

⎟

⎠

𝜇

(3.2)w
Q

k
∈ [𝜗Qŵ

Q

k
, ŵ

Q

k
] where ŵ

Q

k
=

⎛

⎜

⎜

⎜

⎝

𝜍 +

k
�

�=0
�∈KQ

�𝜙3
k

⎞

⎟

⎟

⎟

⎠

𝜈

.

(3.3)a1−� + b1−2� ≤ �aA(a) + �bB(b) + �

Table 1   Lemmas for 
combinations of � and �

𝜇 < 1

2
� =

1

2
𝜇 > 1

2

𝜈 < 1

3
Lemma 7.4 Lemma 7.7 Lemma 7.5

� = 1

3
Lemma 7.7 Lemma 7.8 Lemma 7.7

𝜈 > 1

3
Lemma 7.5 Lemma 7.7 Lemma 7.2
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Proof  This result is proved by comparing the value of the left- and right-hand sides 
for possibly large a and b. The details are given in Lemmas 7.2–7.8 in appendix, 
whose results are then combined as shown in Table 1. The details of the constants 
�a and �b for the various cases are explicitly given in the statements of the relevant 
lemmas.

The second auxiliary result is a bound extracted from [14] (see also [9, 20] for 
the case � = 1).

Lemma 3.2  Let {ck} be a non-negative sequence, 𝜍 > 0 , 𝛼 > 0 , � ≥ 0 and define, for 
each k ≥ 0 , dk =

∑k

j=0
cj . If � ≠ 1 , then

Otherwise,

Note that, if 𝛼 > 1 , then the bound (3.5) can be rewritten as

whose right-hand side is positive.
Armed with the above results, we are now in position to specify particular 

choices of the scaling factors wk and derive the convergence properties of the 
resulting variants of ASTR2.

Theorem  3.3  Suppose that AS.1–AS.3 hold and that the ASTR2 algorithm is 
applied to problem (2.1), where wL

k
 and wQ

k
 are given by (3.1) and (3.2), respectively. 

Then there exists a positive constant � ASTR2 only depending on the problem-related 
quantities x0 , flow , L1 and L2 and on the algorithmic parameters � , � , � , � and � such 
that

and therefore that

(3.4)a ≤ �a and b ≤ �b.

(3.5)
k
∑

j=0

cj

(� + dj)
�
≤ 1

(1 − �)
((� + dk)

1−� − �1−�).

(3.6)
k
∑

j=0

cj

(� + dj)
≤ log

(

� + dk

�

)

.

k
∑

j=0

cj

(� + dj)
�
≤ 1

� − 1

(

�1−� − (� + dk)
1−�

)

,

(3.7)average j∈{0,…,k}‖gj‖
2 ≤ � ASTR2

k + 1
and average j∈{0,…,k}�̂

3
j
≤ � ASTR2

k + 1
,

(3.8)min
j∈{0,…,k}

‖gj‖ ≤ � ASTR2

(k + 1)
1

2

and min
j∈{0,…,k}

�̂j ≤ � ASTR2

(k + 1)
1

3

.
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Proof  To simplify notations in the proof, define

Consider first an iteration index j ∈ K
L Then (2.20) (expressed for for j ≥ 0 ), (3.1) 

and the inequality � ≤ 1 give that

Suppose now that j ∈ K
Q . Then (2.21) and (3.2) imply that

Suppose now that

which implies that

Then combining (3.10) and (3.11), the inequality � ≥ 1 and AS.3, we deduce that, 
for all k ≥ 0,

But, by definition, aj ≤ ak and bj ≤ bk for j ≤ k , and thus, for all k ≥ 0,

We now have to bound the last two terms on the right-hand side of (3.13). Using 
(3.1) and Lemma 3.2 with {ck} = {‖gk‖

2}k∈KL and � = 2� , gives that

(3.9)
ak = 2

k
�

j=0

j∈KL

‖gj‖
2 and bk = 2

k
�

j=0

j∈KQ

�̂3
k
.

(3.10)

f (xj+1) − f (xj) ≤ −
�

2

‖gj‖
2

wL
j

+
L1

2�2
L

‖gj‖
2

(wL
j
)2

≤ −
�

2

‖gj‖
2

(� + 1

2
aj)

� +
L1

2�2
L

‖gj‖
2

(� + 1

2
aj)

2�
.

(3.11)

fj+1 − fj ≤ −
�

4�
min

⎡

⎢

⎢

⎣

�̂3
j

2(1 + L1)
,

�̂3
j

(� + 1

2
bj)

�

�̂3
j

(� + 1

2
bj)

2�

⎤

⎥

⎥

⎦

+
L2

6�3
Q

�̂3
j

(� + 1

2
bj)

3�
,

(3.12)aj > 2𝜍 and bj > max

[

1, 2𝜍,
(

2(1 + L1)
)

1

𝜈

]

,

wL
j
≤ a

�

j
, w

Q

j
≤ b�

j
and 2(1 + L1) ≤ b�

j
.

f (x0) − flow ≥ �

4�

⎡

⎢

⎢

⎢

⎢

⎣

k
�

j=0

j∈KL

‖gj‖
2

a
�

j

+

k
�

j=0
j∈Kq

�̂3
j

b2�
j

⎤

⎥

⎥

⎥

⎥

⎦

−
L1

2�2
L

k
�

j=0

j∈KL

‖gj‖
2

(wL
k
)2

−
L2

6�3
Q

k
�

j=0

j∈KQ

�̂3
j

(w
Q

k
)3
.

(3.13)

a
1−�

k
+ b1−2�

k
≤ 4�(f (x0) − flow)

�
+

2�L1

��2
L

k
�

j=0

j∈KL

‖gj‖
2

(wL
k
)2

+
2�L2

3��3
Q

k
�

j=0

j∈KQ

�̂3
j

(w
Q

k
)3
.
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if 𝜇 < 1

2
 , and

if � = 1

2
 and

if 𝜇 > 1

2
 . Similarly, using (3.2) and Lemma  3.2 with {ck} = {�̂3

k
}k∈KQ and � = 3� 

yields that

if 𝜈 < 1

3
,

if � = 1

3
 , and

if 𝜈 > 1

3
 . Moreover, unless ak < 1 , the argument of the logarithm in the right-hand 

side of (3.15) satisfies

(3.14)

k
�

j=0

k∈KL

‖gj‖
2

(wL
k
)2

≤ 1

�2
L
(1 − 2�)

⎛

⎜

⎜

⎜

⎝

�

� +

k
�

j=0

k∈KL

‖gk‖
2
�1−2�

− �1−2�

⎞

⎟

⎟

⎟

⎠

≤ a
1−2�

k

�2
L
(1 − 2�)

(3.15)

k
�

j=0

k∈KL

‖gj‖
2

(wL
j
)2

≤ 1

�2
L

log

⎛

⎜

⎜

⎝

� +
∑k

j=0,k∈KL ‖gk‖
2

�

⎞

⎟

⎟

⎠

≤ 1

�2
L

log

�

� + ak

�

�

(3.16)

k
�

j=0

k∈KL

‖gj‖
2

(wL
k
)2

≤ 1

�2
L
(2� − 1)

⎛

⎜

⎜

⎜

⎝

�1−2� −
�

� +

k
�

j=0

k∈KL

‖gk‖
2
�1−2�

⎞

⎟

⎟

⎟

⎠

≤ �1−2�

�2
L
(2� − 1)

(3.17)
k
�

j=0

k∈KQ

�3
j

(w
Q

k
)3

≤ 1

�3
Q
(1 − 3�)

⎛

⎜

⎜

⎜

⎝

�

� +

k
�

j=0

k∈KQ

�̂3
k

�1−3�
− �1−3�

⎞

⎟

⎟

⎟

⎠

≤ b1−3�
k

�3
Q
(1 − 3�)

(3.18)

k
�

j=0

k∈KQ

�̂3
j

(w
Q

j
)3

≤ 1

�3
Q

log

⎛

⎜

⎜

⎝

� +
∑k

j=0,k∈KQ �̂3
k

�

⎞

⎟

⎟

⎠

≤ 1

�3
Q

log

�

� + bk

�

�

(3.19)
k
�

j=0

k∈KQ

�̂3
j

(w
Q

k
)3

≤ 1

�3
Q
(3� − 1)

⎛

⎜

⎜

⎜

⎝

�1−3� −
�

� +

k
�

j=0

k∈KQ

�̂3
j

�

⎞

⎟

⎟

⎟

⎠

≤ �1−3�

�3
Q
(3� − 1)

(3.20)1 ≤ � + ak

�
≤ 1 + ak ≤ 2ak.
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Similarly, unless bk < 1 , the argument of the logarithm in the right-hand side of 
(3.18) satisfies

Moreover, we may assume, without loss of generality, that L1 and L2 are large 
enough to ensure that

Because of these observations and since (3.13) together with one of (3.14)–(3.16) 
and one of (3.17)–(3.19) has the form of condition (3.3), we may then apply 
Lemma 3.1 for each k ≥ 0 with a = ak , b = bk and the following associations:

∙ for � ∈ (0, 1

2
) , � ∈ (0, 1

3
):

∙ for � = 1

2
 , � ∈ (0, 1

3
):

∙ for � ∈ ( 1

2
, 1) , � ∈ (0, 1

3
):

∙ for � ∈ (0, 1

2
) , � = 1

3
:

∙ for � = 1

2
 , � = 1

3
:

∙ for � ∈ ( 1

2
, 1) , � = 1

3
:

∙ for � ∈ (0, 1

2
) , � ∈ ( 1

3
, 1):

(3.21)1 ≤ � + bk

�
≤ 1 + bk ≤ 2bk.

2�L1 ≥ ��2
L

and 2�L2 ≥ 3��3
Q
.

�a =
2�L1

��2
L

(1 − 2�), �b =
2�L2

3��3
Q
(1 − 3�)

, � =
4�(f (x0) − flow)

�
;

�a =
2�L1

��2
L

, �b =
2�L2

3�3
Q
�(1 − 3�)

, � =
4�(f (x0) − flow)

�
;

�a = 1, �b =
2�L2

3��3
Q
(1 − 3�)

, � =
4�(f (x0) − flow)

�
+

2�L1

��2
L

⋅
�1−2�

2� − 1
;

�a =
2�L1

��2
L
(1 − 2�)

, �b =
2�L2

3��3
Q

, � =
4�(f (x0) − flow)

�
;

�a =
2�L1

��2
L

, �b =
2�L2

3��3
Q

, � =
4�(f (x0) − flow)

�
;

�a =
2�L1

��2
L

, �b =
2�L2

3�3
Q
�
, � =

4�(f (x0) − flow)

�
+

2�L1

��2
L

⋅
�1−2�

2� − 1
;
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∙ for � = 1

2
 , � ∈ ( 1

3
, 1):

∙ for � ∈ ( 1

2
, 1) , � ∈ ( 1

3
, 1):

As a consequence of applying Lemma 3.1, we obtain that there exists positive con-
stants4 �1rst ≥ 1 and �2nd ≥ 1 only depending on problem-related quantities and on 
� , � , � and � such that, for all k ≥ 0,

We also have, from the mechanism of Step 3 of the algorithm [see (2.7)] and (3.9), 
that

and

These two inequalities in turn imply that, for all k ≥ 0,

and the desired results follow with � ASTR2 = 1

2
(�1rst + �2nd ).

�a =
2�L1

��2
L
(1 − 2�)

, �b = 1, � =
4�(f (x0) − flow)

�
+

2�L2

3��3
Q

⋅
�1−3�

3� − 1
;

�a =
2�L1

��2
L

, �b = 1, � =
4�(f (x0) − flow)

�
+

2�L2

3��3
Q

⋅
�1−3�

3� − 1
;

�a = 1, �b = 1, � =
4�(f (x0) − flow)

�
+

2�L1

��2
L

⋅
�1−2�

2� − 1
+

2�L2

3��3
Q

⋅
�1−3�

3� − 1
.

(3.22)ak ≤ �1rst and bk ≤ �2nd .

k
�

j=0

‖gj‖
2 =

k
�

j=0

j∈KL

‖gj‖
2 +

k
�

j=0

j∈KQ

‖gj‖
2 ≤

k
�

j=0

j∈KL

‖gj‖
2

+

k
�

j=0

j∈KQ

�̂3

j
≤ 1

2
(ak + bk) ≤ 1

2
(�

1rst
+ �

2nd
)

k
�

j=0

�̂3
j
=

k
�

j=0

j∈KL

�̂3
j
+

k
�

j=0

j∈KQ

�̂3
j
≤

k
�

j=0

j∈KL

‖gj‖
2 +

k
�

j=0

j∈KQ

�̂3
j
≤ 1

2
(ak + bk) ≤ 1

2
(�1rst + �2nd ).

(k + 1) average j∈{0,…,k}‖gj‖
2 ≤ 1

2
(�1rst + �2nd ) and

(k + 1) average j∈{0,…,k}�̂
3
j
≤ 1

2
(�1rst + �2nd ),

4  We choose them to be at least one, in order to cover the cases where ak ≤ 1 or bk ≤ 1 mentioned before 
(3.20) and (3.21).
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Comments: 

1.	 Note that �𝜙k < 𝜙k only when 𝜙k > 𝜉 . Thus, if �k is bounded5, one can 
choose � large enough to ensure that �k = �̂k for all k, and therefore that 
minj{0,…,k} �j ≤ � ASTR2 ∕(k + 1)

1

3 . In practice, � can be used to tune the algo-
rithm’s sensitivity to second-order information.

2.	 If the k-orders of convergence specified by (3.8) are translated in �-orders, that is 
numbers of iterations/evaluations to achieve ‖g(xk‖ ≤ �1 and �k = �̂k ≤ �2 , where 
�1 and �2 are precribed accuracies, we verify that at most O(�−2

1
) of them are 

needed to achieve the first of these conditions, while at most O(�−3
2
) are needed 

to achieve the second. As a consequence, at most O(max[�−2
1
, �−3

2
]) iterations/

evaluations are needed to satisfy both conditions. These orders are identical to 
the sharp bounds known for the familiar trust-region methods (see [2, 16] or [5, 
Theorems 2.3.7 and 3.2.6]6), or, for second-order optimality7, for the Adaptive 
Regularization method (see [18, 5, Theorem 3.3.2]). This is quite remarkable 
because function values are essential in these two latter classes of algorithms to 
enforce descent, itself a crucial ingredient of existing convergence proofs.

3.	 While (3.8) is adequate to allow a meaningful comparison of the global conver-
gence rates with standard algorithms, as we just discussed, we note that (3.7) is 
at least as strong, because the average is of course a majorant of the minimum. 
As it turns out, it provides (order)-equivalent bounds. To see this, we first note 
that, for k > 0 and � ∈ (0, 1) , 

 where �(⋅) is the Riemann zeta function (see [19, (25.2.8)] for the first equality), 
so that 

 and therefore 

k
�

i=1

1

i�
=

k1−�

1 − �
+ �(�) + � �

∞

k

x − ⌊x⌋

x1+�
dx

≤ k1−�

1 − �
+ �(�) + � �

∞

k

1

x1+�
dx

=
k1−�

1 − �
+ �(�) + �2

k�

1

k

k
∑

i=1

1

i�

1

k�

= k�−1
k
∑

i=1

1

i�
≤ 1

1 − �
+

�(�)

k1−�
+

�2

k

6  This second of these theorems quotes an O(max[�−2
1
�−1
2
, �−3

2
]) order bound known for standard trust-

region methods using first and second derivatives.
7  Adaptive Regularization algorithms are faster for finding first-order points, as they find such points in 
O(�

−3∕2

1
) evaluations of the objective function and its gradient [18, 5, Theorem 3.3.9].

5  Which is the case if ‖gk‖ ≤ �g (as we will require in Sect.  4) since then 
�k ≤ ‖gk‖ +

1

2
‖Hk‖ ≤ �g +

1

2
L
1
.
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 for � ∈ { 1

2
, 1

3
} (the two cases of interest here).

4.	 The expression of the constants in Theorem 3.3 is very intricate. However it 
is remarkable that they do not explicitly depend on the problem dimension. 
Although a good sign, this does not tell the whole story and caution remains 
advisable, because the Lipschitz constants L1 and L2 may themselves hide this 
(potentially severe) dependence.

5.	 It is also remarkable that the bounds (3.7) and (3.8) specify the same order of 
global convergence irrespective of the values of � and � in (0, 1), although these 
values do affect the constants involved.

6.	 The condition (2.7) determining the choice of a linear (in KL ) or quadratic (in KQ ) 
step is only used at the very end of the theorem’s proof, after (3.22) has already 
been obtained. This means that other choice mechanisms are possible without 
affecting this last conclusion, which is enough to derive bounds on ‖gj‖2 and �̂3

j
 

averaged on iterations in KL and KQ , respectively (rather than on all iterations).

We now show that the bound (3.8) is essentially sharp (in the sense of [3], mean-
ing that a lower bound on evaluation complexity exists which is arbitrarily close 
to its upper bound) by following ideas of [5, Theorem 2.2.3] in an argument par-
allel to that used in [14] for the first-order bound.

Theorem  3.4  The bound (3.8) is essentially sharp in that, for each �, � ∈ (0, 1) , 
�L = �Q = 1 and each � ∈ (0, 2

3
) , there exists a univariate function f�,�,� satisfying 

AS.1–AS.3 such that, when applied to minimize f�,�,� from the origin, the ASTR2 
algorithm with (3.1)–(3.2) produces second-order optimality measures given by

Proof  We start by constructing {xk} for which f�,�,�(xk) = fk , ∇1
x
f�,�,�(xk) = gk and 

∇2
x
f�,�,�(xk) = Hk for associated sequences of function, gradient and Hessian values 

{fk} , {gk} and {Hk} , and then apply Hermite interpolation to exhibit the function 
f�,�,� itself. We select an arbitrary 𝜍 > 0 and define, for k ≥ 0,

from which we deduce, using (2.2), that, for k > 0,

Since 𝜙3
k
> 0 = ‖gk‖

2 , we set

1

k

k
∑

i=1

1

i�
= O

(

1

k�

)

(3.23)�k = �̂k = min
j∈{0,…,k}

�̂j =
1

(k + 1)
1

3
+�
.

(3.24)gk
def
=0, and Hk = −

2

(k + 1)
1

3
+�
,

�k = �̂k =
1

(k + 1)
1

3
+�
.
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which is the exact minimizer of the quadratic model within the trust region, yielding 
that, for k ≥ 0,

where we used the fact that 𝜍 +
∑k

j=0
�𝜙3
j
> 𝜍 + �𝜙0 > 1 to deduce the last inequality. 

We then define, for all k ≥ 0,

and

Observe that the sequence {fk} is decreasing and that, for all k ≥ 0,

where we used (3.28) and (3.26). Hence (3.28) implies that

Also note that, using (3.28),

while, using (3.24),

Moreover, using the fact that 1∕x
1

3
+� is a convex function of x over [1,+∞) , and that 

from (3.25) sk ≥ 1

(k+1)
1

3
+�
(�+k+1)�

 , we derive that, for k ≥ 0,

(3.25)sk = s
Q

k

def
=

1

(k + 1)
1

3
+�[� +

∑k

j=0
�̂3
j
]�
,

(3.26)Δqk
def
=
�

�

�

gksk +
1

2
Hks

2
k

�

�

�

=
1

(k + 1)1+3�
�

� +
∑k

j=0
�̂3
j
)
�2�

≤ 1

(k + 1)1+3�
,

(3.27)x0 = 0, xk+1 = xk + sk (k ≥ 0)

(3.28)f0 = �(1 + 3�), fk+1 = fk − Δqk (k ≥ 0).

(3.29)fk+1 = f0 −

k
∑

k=0

Δqk ≥ f0 −

k
∑

k=0

1

(k + 1)1+3�
≥ f0 − �(1 + 3�),

(3.30)fk ∈ [0, f0] for all k ≥ 0.

(3.31)|fk+1 − fk + Δqk| = 0,

(3.32)|gk+1 − gk| = 0 (k ≥ 0).
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These last bounds with (3.30), (3.31) and (3.32) allow us to use standard Hermite 
interpolation on the data given by {fk} , {gk} and {Hk} : see, for instance, Theo-
rem A.9.1 in [5] with p = 2 and

(the second term in the max bounding |fk| because of (3.30) and the third bounding 
|gk| and |Hk| because of (3.24)). We then deduce that there exists a twice continu-
ously differentiable function f�,�,� from ℝ to ℝ with Lipschitz continuous gradient 
and Hessian (i.e. satisfying AS.1 and AS.2) such that, for k ≥ 0,

Moreover, the range of f�,�,� is constant independent of � , hence guaranteeing AS.3. 
The definitions (3.24), (3.25), (3.27) and (3.28) imply that the sequences {xk} , {fk} , 
{gk} and {Hk} can be seen as generated by the ASTR2 algorithm applied to f�,�,� , 
starting from x0 = 0.

|Hk+1 − Hk| = 2

|

|

|

|

|

|

1

(k + 2)
1

3
+�

−
1

(k + 1)
1

3
+�

|

|

|

|

|

|

≤ 2
(

1

3
+ �

)

1

(k + 1)
4

3
+�

≤ 8

3

(� + k + 1)�

(k + 1)(k + 1)
1

3
+�(� + k + 1)�

≤ 8

3

(� + k + 1)�

k + 1
sk

≤ 8

3
(� + 2)�sk.

�f = max
[

8

3
(� + 2)� , f0, 2

]

f�,�,�(xk) = fk, ∇1
x
f�,�,�(xk) = gk and ∇2

x
f�,�,�(xk) = Hk.

Fig. 1   The function f�,�,�(x) (left), its gradient ∇1

x
f�,�,�(x) (middle) and its Hessian ∇2

x
f�,�,�(x) (right) plot-

ted as a function of x, for the first 10 iterations of the ASTR2 algorithm with (3.1)–(3.2) ( � = 1

2
 , � = 1

3
 , 

� = � = 1

100
 , �

L
= �

Q
= 1)



592	 S. Gratton, P. L. Toint 

1 3

Figure  1 shows the behaviour of f�,�,�(x) for � = 1

2
 , � = 1

3
 , �L = �Q = 1 and 

� = � = 1

100
 , its gradient and Hessian, as resulting from the first 10 iterations of the 

ASTR2 algorithm with (3.1)–(3.2). (We have chosen to shift f0 to 100 in order to 
avoid large numbers on the vertical axis of the left panel.) Due to the slow con-
vergence of the series 

∑

j 1∕j
1

1+3∕100 , illustrating the boundeness of f0 − fk+1 would 
require many more iterations. One also notes that the gradient is not monotonically 
increasing, which implies that f�,�,�(x) is nonconvex, as can be verified in the left 
panel. Note that the unidimensional nature of the example is not restrictive, since it 
is always possible to make the value of its objective function and gradient independ-
ent of all dimensions but one. Also note that, as was the case in [14], the argument 
of Theorem 3.4 fails for � = 0 since then the sums in (3.29) diverge when k tends to 
infinity.

Note that, because

one deduces that

which, when compared to (3.8), reflects the (slight) difference in strength between 
(3.7) and (3.8).

4 � A “divergent stepsize” ASTR2 subclass

A “divergent stepsize” first-order method was analyzed in [14], motivated by its good 
practical behaviour in the stochastic context [15]. For coherence, we now present and 
analyze a similar variant, this time for second-order optimality. This requires the fol-
lowing additional assumption. 

AS.4:	 there exists a constant 𝜅g > 0 such that, for all x, ‖g(x)‖∞ ≤ �g.

Theorem  4.1  Suppose that AS.1–AS.3 and AS.4 hold and that the ASTR2 algo-
rithm is applied to problem (2.1), where, the scaling factors wi,k are chosen such 

k
∑

j=0

1

(j + 1)
1

3
+�

≥ �
k

0

dj

(j + 2)
1

3
+�

=
3

2 + 3�

[

k + 2

(k + 2)
1

3
+�

− 2

]

≥ 3

2(2 + 3�)

[

k + 1

(k + 1)
1

3
+�

− 2

]

,

average j∈{0,…,k}�̂j ≥ 3

2(2 + 3�)

[

1

(k + 1)
1

3
+�

−
2

k + 1

]

,
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that, for some power parameters 0 < 𝜈1 ≤ 𝜇1 < 1 and 0 < 𝜈2 ≤ 𝜇2 <
1

2
 , some con-

stants � ∈ (0, 1] and �w ≥ max[1, �] , all i ∈ {1,… , n} and all k ≥ 0,

Let �k

def
= min[1,max[‖gk‖

2,�3
k
]] . Then, for any � ∈ (0, 1

4
�) and k > j𝜃,

where

and

Proof  Consider an arbitrary � ∈ (0, 1

4
�) and note that AS.4, (4.1) and the definition 

of �̂k imply that

If we define j� by (4.3), we immediately obtain from AS.4 and Lemma 2.5 (where 
we neglect the first term in the right-hand sides of (2.20) and (2.21)) that

If we choose j > j𝜃 , one then verifies that the definition of j� in (4.3), the bounds 
(2.20) and (2.21) and the definition (4.1) together ensure that

Using now the mechanism of Step 3, the definition of �k , (4.1) and the inequality 
�w ≥ 1 , we obtain that, for j > j𝜃

(4.1)
0 < 𝜍 (k + 1)𝜈1 ≤ wL

k
≤ 𝜅w (k + 1)𝜇1 and 0 < 𝜍 (k + 1)𝜈2 ≤ w

Q

k
≤ 𝜅w (k + 1)𝜇2 .

(4.2)min
j∈{j� ,…,k}

�k ≤ �
⋄
(�)

(k + 1)max[�1,2�2]

k − j�
≤ �

⋄
(�)(j� + 1)

(k + 1)1−max[�1,2�2]
,

(4.3)

j�
def
= max

[

(

L1

2�(1 − �)

)
1

�1

,

(

2(1 + L1)

�

)
1

�2

,

(

L2

3�( 1

4
� − �)

)
1

�2

,

(

L2�

3�2( 1

4
� − �)

)
1

2�2

]

�
⋄
(�)

def
=

{

�2
w

�

(

f (x0) − flow + (j� + 1)max

[

L1�
2
g

2�2
,
L2�

3

3�3

])}
1

3

.

(4.4)wL
k
∈ [��, �w(k + 1)�1 ] and w

Q

k
∈ [�� , �w(k + 1)�2 ].

(4.5)f (xj�+1) ≤ f (x0) + (j� + 1)� over where � over = max

[

L1�
2
g

2�2
,
L2�

3

3�3

]

.

f (xj+1) − f (xj) ≤
⎧

⎪

⎪

⎨

⎪

⎪

⎩

−�
‖gk‖

2

wL
k

if j ∈ K
L
,

−�
�3

k

(w
Q

k
)2

if j ∈ K
Q
.
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As a consequence, we obtain from (4.5) and the summation of (4.6) for 
j ∈ {j� + 1,… , k} that, for k > j𝜃,

We therefore deduce, using AS.3, that

and (4.2) follows. 	�  ◻

This theorem gives a bound on the rate at which the combined optimality 
measure �k tends to zero, and this bound is slightly worse than but close to what 
we obtained in the previous section whenever max[�1, 2�2] approaches zero.

Using the methodology of Theorem 3.4, we now show that the bound (4.2) is 
also essentially sharp.

Theorem  4.2  The bound (4.2) is essentially sharp in that, for each � = (�1,�2) , 
each � = (�1, �2) with 0 < 𝜈1 ≤ 𝜇1 < 1 and 0 < 𝜈2 ≤ 𝜇2 <

1

2
 and each 

� ∈ (0, 1 − 1

3
(1 − 2�2)) , there exists a univariate function h�,�,� satisfying AS.1–AS.4 

such that, when applied to minimize h�,�,� from the origin, the ASTR2 algorithm 
with (4.1) produces second-order optimality measures given by

Proof  As above, we start by defining, for k ≥ 0 , � = 1

3
(1 − 2�2) + � , 

wk = �w(k + 1)�2 , and, for k ≥ 0,

which then implies, using (2.2) that, for k > 0,

Given these definitions and because �𝜙3
k
> 0 = ‖gk‖

2 , we set

(4.6)f (xj) − f (xj+1) ≥ ��j min

[

1

wL
k

,
1

(w
Q

k
)2

]

≥ ��j

�2
w
(j + 1)max[�1,2�2]

.

f (x0) − f (xj+1) ≥ −(j� + 1)� over +

k
∑

j=j�+1

��j

�2
w
(j + 1)max[�1,2�2]

.

(k − j�) min
j�,max+1,…,k

�j ≤
k
∑

j=j�+1

�j ≤ �2
w
(k + 1)max[�1,2�2]

�

[

f (x0) − flow + (j� + 1)� over

]

,

(4.7)�k = �̂k = �k = min
j∈{0,…,k}

�j =
1

(k + 1)
1

3
(1−2�2)+�

.

(4.8)gk
def
=0 and Hk = −

2

(k + 1)�
,

(4.9)�k = �̂k =
1

(k + 1)�
.

(4.10)sk = s
Q

k

def
=

1

(k + 1)� [�w(k + 1)�2]
=

1

�w(k + 1)�+�2

,
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yielding that, for k > 0,

where we used the fact that �w ≥ 1 to deduce the last inequality. We then define, for 
all k ≥ 0,

and

where �(⋅) is the Riemann zeta function. Note that, since 𝛾 > 1 − 2𝜇2 , the argument 
3� + 2�2 of � is strictly larger than one and �(3� + 2�2) is finite. Observe also that 
the sequence {hk} is decreasing and that, for all k ≥ 0,

where we used (3.28) and (3.26). Hence (3.28) implies that

Also note that, using (3.28),

while, using (3.24),

Moreover, using the fact that 1∕x� is a convex function of x over [1,+∞) and (4.10), 
we derive that, for k ≥ 0,

(4.11)

Δq0
def
=

1

(� + 1)2�
and Δqk

def
=
|

|

|

gksk +
1

2
Hks

2
k

|

|

|

=
1

�2
w
(k + 1)3�+2�2

≤ 1

(k + 1)3�+2�2

,

(4.12)x0 = 0, xk+1 = xk + sk (k > 0)

(4.13)h0 = �(3� + 2�2) and hk+1 = hk − Δqk (k ≥ 0),

(4.14)hk+1 = h0 −

k
∑

k=0

Δqk ≥ h0 −

k
∑

k=0

1

(k + 1)3�+2�2

≥ h0 − �(3� + 2�2),

(4.15)hk ∈ [0, h0] for all k ≥ 0.

(4.16)|hk+1 − hk + Δqk| = 0,

(4.17)|gk+1 − gk| = 0 (k ≥ 0).

Fig. 2   The function h�,�,�(x) (left), its gradient ∇1

x
h�,�,�(x) (middle) and its Hessian ∇2

x
h�,�,�(x) (right) 

plotted as a function of x, for the first 10 iterations of the ASTR2 algorithm with (4.2) ( � = � = ( 1

2
, 1

3
))
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This bound with (4.15), (4.16) and (4.17) once more allow us to use standard Her-
mite interpolation on the data given by {hk} , {gk} and {Hk} , as stated in [5, Theo-
rem A.9.1] with p = 2 and

(the second term in the max bounds |hk| because of (4.15) and the third bounds both 
|gk| and |Hk| because of (4.8)). As a consequence, there exists a twice continuously 
differentiable function h�,�,� from ℝ to ℝ with Lipschitz continuous gradient and 
Hessian (i.e. satisfying AS.1 and AS.2) such that, for k ≥ 0,

Moreover, the ranges of h�,�,� and its derivatives is constant independent of � , hence 
guaranteeing AS.3 and AS.4. Thus (4.8), (4.10), (4.12) and (4.13) imply that the 
sequences {xk} , {hk} , {gk} and {Hk} can be seen as generated by the ASTR2 algo-
rithm applied to h�,�,� , starting from x0 = 0 . The first bound of (4.7) then results 
from (4.9)and the definition of �.

The behaviour of h�,�,� is illustrated in Figure 2. It is qualitatively similar to that 
of f�,�,� shown in Figure  1, although the decrease in objective-value is somewhat 
slower, as expected. As in Sect. 3, note that the inequality

implies that

which has the same flavour as the second bound of (3.23).

5 � Second‑order optimality in a subspace

While the ASTR2 algorithms guarantee second-order optimality conditions, they 
come at a computational price. The key of this guarantee is of course that signif-
icant negative curvature in any direction of ℝn must be exploited, which requires 
evaluating the Hessian. In addition, the optimality measure �k and the step sk must 
also be computed. However, these computational costs may be judged excessive, 
so the question arises whether a potentially cheaper algorithm is able to ensure a 

|Hk+1 − Hk| = 2
|

|

|

|

1

(k + 2)�
−

1

(k + 1)�

|

|

|

|

≤ 2�

(k + 1)1+�
≤ 2��w(k + 1)�2

k + 1
sk ≤ 2��wsk.

�f = max
[

2��w, h0, 2
]

h�,�,�(xk) = hk, ∇1
x
h�,�,�(xk) = gk and ∇2

x
h�,�,�(xk) = Hk.

k
∑

j=0

1

(j + 1)�
≥ �

k

0

dj

(j + 2)�
=

1

1 − �

[

k + 2

(k + 2)�
− 1

]

≥ 1

2(1 − �)

[

k + 1

(k + 1)�
− 2

]

average j∈{0,…,k}�j ≥ 1

2(1 − �)

[

1

(k + 1)
1

3
(1−2�2)+�

−
2

k + 1

]

,
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“degraded” or weaker form of second-order optimality. Fortunately, the answer is 
positive: one can guarantee second-order optimality in subspaces of ℝn at lower cost.

The first step is to assume that a subspace Sk is of interest at iteration k. Then, 
instead of computing �k from (2.3), one can choose to calculate

Because the dimension of Sk may be much smaller than n, the cost of this computa-
tion may be significantly smaller than that of computing �k . The measure �Sk

k
 may 

for instance be obtained using a Krylov-based method, as conjugate gradients [17], 
GLRT [13] or variants thereof, where the minimum of the model Tf ,2(x, d) within 
the trust region is derived iteratively in a sequence of nested Krylov subspaces 
of increasing dimension, which tend to contain vector along which curvature is 
extreme [12, Chapter 9], thereby improving the quality of the second-order guaran-
tee compared to random subspaces. This process may then be terminated before the 
subspaces fill ℝn , should the calculation become too expensive or a desired accuracy 
be reached. In addition, there is no need for nk , the dimension of the final Krylov 
space at iteration k to be constant: it is often kept very small when far from opti-
mality. This technique has the added benefit that the full Hessian is not evaluated, 
but only nk Hessian-times-vector products are needed, again significantly reducing 
the computational burden. Calculating the step sQ

k
 for k ∈ K

Q once �Sk

k
 is known is 

also cheaper in a space of dimension nk much less than n, especially since only a �
-approximation is needed (see the comments after the algorithm).

Importantly, the theory developped in the previous sections is not affected by 
the transition from ℝn to Sk , except that now the complexity bounds (3.7)–(3.8) and 
(4.2) are no longer expressed using �̂k but now involve �̂Sk

k
= min[1,�

Sk

k
] instead. 

While clearly not as powerful as the complete second-order guarantee in ℝn , weaker 
guarantees based on (Krylov) subspaces are often sufficient in practice and make 
the ASTR2 algorithm more affordable. Note that, in the limit, one can even choose 
Sk = {0} for all k, in which case we can set Hk = 0 for all k and we do not obtain any 
second-order guarantee (but the first-order complexity bounds remain valid, recov-
ering results of [14]).

6 � Conclusions

We have introduced an OFFO algorithm whose global rate of convergence to 
first-order minimizers is O((k + 1)−

1

2 ) while it converges to second-order ones as 
O((k + 1)−

1

3 ) . These bounds are equivalent to the best known bounds for second-
order optimality for algorithms using objective-function evaluations, despite the lat-
ter exploiting significantly more information. Thus we conclude that, from the point 
of view of evaluation complexity at least, evaluating values of the objective function 
is an unnecessary effort for efficiently finding second-order minimizers. We have 
also discussed another closely related algorithm, whose global rates of convergence 

�
Sk

k
= max

‖d‖≤1
d∈Sk

−
�

g(x)Td + 1

2
dTH(x)d

�

.
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can be nearly as good. We have finally considered how weaker second-order guaran-
tees may be obtained at a much reduced computational cost.

We expect that extending our proposal to convexly constrained cases (for instance 
to problems involving bounds on the variables) should be possible. As in [7, Chap-
ter 12], the idea would be to restrict the model minimization at each iteration to the 
intersection of the trust region with the feasible domain, but this should of course be 
verified.

It is clearly too early to assess whether the new algorithms will turn out to be 
of practical interest. In the form with � = 1 , they are undoublty quite conservative 
because of the monotonic nature of the scaling factors (and hence of the trust-region 
radius) and because, for locally convex functions (for which a second-order guar-
antee is not needed), ‖gk‖ ≥ �k , yielding a linear step. Whether less conservative 
variants with similar or better complexity can be designed is the object of ongoing 
research.

Appendix: technical lemmas

Lemma 7.1  Let w > 0 and suppose that

for some � ∈ (0, 1) and � such that

Then

where W−1(⋅) is the second branch of the Lambert function [8].

Proof  First note that (7.1) is equivalent to

Setting now u = (2w)� , one obtains that

But �(u) is convex for u > 0 and tends to infinity if u tends to zero or to infinity. 
Moreover, it achieves its minimum at umin = �2�∕� , at which it takes the value

(7.1)w� ≤ � log(2w).

(7.2)𝛽 >
3𝛼

2𝛼
.

(7.3)w ≤ �(�, �)
def
=

[

−
�

�
W−1

(

−
�

� 2�

)]
1

�

,

1

2�
(2w)� ≤ �

�
log

(

(2w)�
)

.

(7.4)�(u)
def
=

1

2�
u −

�

�
log(u) ≤ 0.
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where the inequality results from (7.2). Hence �(u) has two real roots u1 ≤ u2 and 
the set of u for which (7.4) holds is bounded above by u2 . By definition,

which is

Defining now z = −
�

� 2�
u2 , we obtain that

By definition of the Lambert function, this gives that

which is well-defined because (7.2) implies that − �

� 2�
∈ [−

1

e
, 0) . Since w = u

1

� ∕2 , 
this implies (7.3).

Lemma 7.2  Let a ≥ 0 and b ≥ 0 . Suppose that, for some � ∈ (0, 1

2
) , � ∈ (0, 1

3
) and 

some �a,0, �b,0 and �0 ≥ 0,

Then

Proof  Obvious from the inequalities �a,0a
1−� ≤ �a,0a

1−� + �b,0b
1−2� and 

�b,0b
1−2� ≤ �a,0a

1−� + �b,0b
1−2�.

Lemma 7.3  Let a ≥ 0 and b ≥ 0 . Suppose that, for some � ∈ (0, 1

2
) , some 𝜃a,1 > 0 

and some �1 ≥ 0,

Then

𝜔(umin) =
𝛽

𝛼

(

1 − log

(

𝛽 2𝛼

𝛼

))

< 0,

log(u2) −
�

� 2�
u2 = 0,

u2e
−

�

� 2�
u2 = 1.

zez = −
�

� 2�
.

u2 = −
𝛽 2𝛼

𝛼
z = −

𝛽2𝛼

𝛼
W−1

(

−
𝛼

𝛽 2𝛼

)

> 0

(7.5)�a,0a
1−� + �b,0b

1−2� ≤ �0.

a ≤
(

�0
�a,0

)
1

1−�

and b ≤
(

�0
�b,0

)
1

1−2�

.

(7.6)a1−� ≤ �a,1a
1−2� + �1.

a ≤ max
[

(2�1)
1

1−� , (2�a,1)
1

�

]

.
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Symmetrically, if � ∈ (0, 1

3
) , 𝜃b,1 > 0 and

then

Proof  Suppose first that �a,1a1−2� ≤ �1 . Then a1−� ≤ 2�1 and thus a ≤ (2�1)
1

1−� Sup-
pose now that 𝜃a,1a1−2𝜇 > 𝜃1 . Then a1−� ≤ 2�a,1a

1−2� , that is a ≤ (2�a)
1

� . The proof 
of the second part is similar.

Lemma 7.4  Let a ≥ 0 and b ≥ 0 . Suppose that, for some � ∈ (0, 1

2
) , � ∈ (0, 1

3
) and 

some 𝜃a, 𝜃b > 0 and �2 ≥ 0,

Then

and

Proof  Suppose first that

Then, from Lemma 7.2,

Suppose now that (7.9) fails, and thus that

Assume also that

Then,

(7.7)b1−2� ≤ �b,1b
1−3� + �1,

b ≤ max
[

(�1)
1

1−2� , (2�b,1)
1

�

]

.

(7.8)a1−� + b1−2� ≤ �a,2a
1−2� + �b,2b

1−3� + �2.

a ≤ max

[

(

�2
�a,2

)
1

1−2�

, 2
1

1−�
(

2�b,2
)

1−2�

�(1−�) ,
(

4�a,2
)

1

�

]

b ≤ max

[

(

�2
�b,2

)
1

1−3�

, 2
1

1−2�

(

2�a,2
)

1−�

�(1−2�) ,
(

4�b,2
)

1

�

]

.

(7.9)�a,2a
1−2� + �b,2b

1−3� ≤ �2.

(7.10)a ≤
(

�2
�a,2

)
1

1−2�

and b ≤
(

�2
�b,2

)
1

1−3�

.

(7.11)�a,2a
1−2� + �b,2b

1−3� + �2 ≤ 2�a,2a
1−2� + 2�b,2b

1−3� .

(7.12)a >
(

2𝜃a,2
)

1

𝜇 and b >
(

2𝜃b,2
)

1

𝜈 .
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and so, using (7.8) and (7.11),

which is impossible. Hence (7.12) cannot hold, and at least one of its inequalities 
must fail. Suppose that it is the first, that is

Then (7.8) and (7.11) give that

and we may apply Lemma 7.3 with �b,1 = 2�b,2 and �1 = 2�a,2�
1−2�

1
 to deduce that

Symmetrically, we deduce that if the second inequality of (7.12) fails, that is if

then, applying Lemma 7.3 with �a,1 = 2�a,2 and �1 = 2�b,2�
1−3�
2

,

Combining the two cases yieldsCombining the two cases yields the desired result.

Lemma 7.5  Let a ≥ 0 and b ≥ 0 . Suppose that, for some � ∈ (0, 1

2
) , � ∈ ( 1

3
, 1) and 

some 𝜃a,3 > 0 , �3 ≥ 0,

Then

Symmetrically, if 𝜃b,3 > 0 and

then

2𝜃a,2a
1−2𝜇 + 2𝜃b,2b

1−3𝜈 < a1−𝜇 + b1−2𝜈

a1−𝜇 + b1−2𝜈 ≤ 𝜃a,2a
1−2𝜇 + 𝜃b,2b

1−3𝜈 + 𝜃2 < a1−𝜇 + b1−2𝜈 ,

(7.13)a ≤ (

2�a,2
)

1

�
def
=�1.

b1−2� ≤ a1−� + b1−2� ≤ 2�a,2�
1−2�

1
+ 2�b,2b

1−3�

b ≤ max

[

(

4�a,2�
1−2�

1

)
1

1−2�
,
(

4�b,2
)

1

�

]

.

b ≤ (

2�b,2
)

1

�
def
=�2,

a ≤ max

[

(

4�b,2�
1−3�
2

)
1

1−� ,
(

4�a,2
)

1

�

]

.

(7.14)a1−� + b1−2� ≤ �a,3a
1−2� + �3.

a ≤ max
[

(2�3)
1

1−� , (2�a,3)
1

�

]

= �a,3 and b ≤ (

�a,3�
1−2�

a,3
+ �3

)
1

1−2�
.

a1−� + b1−2� ≤ �b,3b
1−3� + �3,
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Proof  From (7.14), we have that

and we may apply Lemma 7.3 with �a,1 = �a,3 and �1 = �3 to deduce that

From the inequality b1−2� ≤ a1−� + b1−2� and (7.14), we also obtain that

Lemma 7.6  Let a > 0 and b > 0 . Suppose that, for some � ∈ (0, 1

3
] , some �a,4 ≥ 1 

and some �4 ≥ 0,

Then

Symmetrically, if �b,4 ≥ 1 , � ∈ (0, 1

2
] and

then

Proof  Suppose first that �a,4 log(2a) ≤ �4 . Then

Otherwise, (7.15) gives that

from which one deduces using Lemma  7.1 with � = 1

2
 and � = 2�a,4 (which is 

allowed since 2𝜃a,4 ≥ 2 > 3∕2
5

2 implies (7.2)) that

b ≤ max
[

(2�3)
1

1−2� , (2�b,3)
1

�

]

= �b,3 and a ≤ (

�b,3�
1−3�
b,3

+ �3

)
1

1−�
.

a1−� ≤ a1−� + b1−2� ≤ �a,3a
1−2� + �2

a ≤ max
[

(

2�3
)

1

1−� , (2�a,3)
1

�

]

def
=�a.

b ≤ (

�a,3�
1−2�
a

+ �3
)

1

1−2� .

(7.15)a
1

2 + b1−2� ≤ �a,4 log(2a) + �4.

a ≤ max

[

1

2
e

�4
�a,4 , �

(

1

2
, 2�a,4

)

]

= �a,4 and b ≤ (

�a,4 log(2�a,4) + �4

)
1

1−2�
.

a1−� + b
1

3 ≤ �b,4 log(2b) + �4,

b ≤ max

[

1

2
e

�4
�b,4 , �

(

1

2
, 2�b,4

)

]

= �b,4 and a ≤ (

�b,4 log(2�b,4) + �4)
)

1

1−�
.

(7.16)a ≤ 1

2
e

�4
�a,4 .

a
1

2 ≤ a
1

2 + b1−2� ≤ 2�a,4 log(2a),

a ≤ �( 1

2
, 2�a,4),



603

1 3

OFFO minimization algorithms for second‑order optimality…

where �(⋅, ⋅) is defined in (7.3). This inequality and (7.16) give the desired bound 
on a. Substituting this in (7.15) gives the bound on b. The proof of the symmet-
ric statement is similar, in which the use of Lemma  7.1 is now allowed because 
𝜃b,4 ≥ 1 > 1∕2

4

3 again implies (7.2).

Lemma 7.7  Let a > 0 and b ≥ 0 . Suppose that, for some � ∈ (0, 1

3
) , some �a,5 ≥ 1 , 

𝜃b,5 > 0 and some �5 ≥ 0,

Then

and

with �a = �
(

1

2
, 2�a,5

)

 . Symmetrically, if �a,5 ≥ 1 , � ∈ (0, 1

2
) , b > 0 and

then

and

with �b = �
(

1

2
, 2�b,5

)

.

Proof  Suppose first that,

Then

(7.17)a
1

2 + b1−2� ≤ �a,5 log(2a) + �b,5b
1−3� + �5,

a ≤ max

⎡

⎢

⎢

⎣

1

2
e

�5
�a,5 , �( 1

2
, 4�a,5)

1

2
e

�b,5 (2�b,5 )

1−3�

�

�a,5

⎤

⎥

⎥

⎦

b ≤ max

[

(

�5
�b,5

)
1

1−3�

,
(

2�a,5 log(2�a)
)

1

1−2� ,
(

4�b,5

)
1

�
, (2�b,5)

1

�

]

.

a1−� + b
1

3 ≤ �a,5a
1−2� + �b,5 log(2b) + �5,

a ≤ max

[

(

�5
�a,5

)
1

1−2�

,
(

2�b,5 log(2�b)
)

1

1−� ,
(

4�a,5

)
1

�
, (2�a,5)

1

�

]

b ≤ max

⎡

⎢

⎢

⎣

1

2
e

�5
�b,5 , �( 1

2
, 4�b,5)

1

2
e

�a,5(2�a,5 )

1−2�

�

�b,5

⎤

⎥

⎥

⎦

(7.18)�a,5 log(2a) + �b,5b
1−3� ≤ �5.
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Suppose now that (7.18) fails. Then, from (7.17),

If

we obtain, using Lemma 7.1 (which we may apply because �a,5 ≥ 1 > 3∕2
5
2  ), (7.20) 

and (7.17) that

which is impossible. Hence one of the inequalities of (7.21) must be violated. Sup-
pose that

Using Lemma 7.1 again and (7.20), this implies that

and we deduce from Lemma 7.3 with �b,1 = 2�b,5 and �1 = 2�a,5 log(2�a) that

If we now suppose that b ≤ (2�b,5)
1

� , then (7.20) ensures that

and we now obtain from Lemma 7.6 with �a,4 = 2�a,5 and �4 = 2�b,5(2�b,5)
1−3�

�  that

 	�  ◻

Lemma 7.8  Let a > 0 and b > 0 . Suppose that, for some �a,6 ≥ 1 , �b,6 ≥ 1 and some 
�6 ≥ 0,

(7.19)a ≤ 1

2
e

�5
�a,5 and b ≤

(

�5
�b,5

)
1

1−3�

.

(7.20)a
1

2 + b1−2� ≤ 2�a,5 log(2a) + 2�b,5b
1−3� .

(7.21)a > 𝜎
(

1

2
, 2𝜃a,5

)

and b > (2𝜃b,5)
1

𝜈 ,

a
1

2 + b1−2𝜈 ≤ 2𝜃a,5 log(2a) + 2𝜃b,5b
1−3𝜈 < a

1

2 + b1−2𝜈 ,

a ≤ �
(

1

2
, 2�a,5

)def
=�a.

b1−2� ≤ a
1

2 + b1−2� ≤ 2�a,5 log(2�a) + 2�b,5b
1−3�

b ≤ max

[

(

2�a,5 log(2�a)
)

1

1−2� ,
(

4�b,5

)
1

�

]

.

a
1

2 ≤ a
1

2 + b1−2� ≤ 2�a,5 log(2a) + 2�b,5(2�b,5)
1−3�

� ,

a ≤ max

⎡

⎢

⎢

⎣

1

2
e

�b,5 (2�b,5 )

1−3�

�

�a,5 , �
�

1

2
, 4�a,5

�

⎤

⎥

⎥

⎦

.

(7.22)a
1

2 + b
1

3 ≤ �a,6 log(2a) + �b,6 log(2b) + �6,



605

1 3

OFFO minimization algorithms for second‑order optimality…

where 2a ≥ � and 2b ≥ � . Then

and

Proof  Suppose first that

Then

and hence

Suppose now that (7.23) fails, and thus (7.22) implies that

Assume also that

Then, using (7.22) and (7.25),

which is impossible. Hence one of the inequalities of (7.26) must fail. If 
a ≤ �

(

1

2
, 2�a,6

)

, then (7.22) gives that

and Lemma 7.6 with �b,4 = 2�b,6 and �4 = �a,6 log
(

2�
(

1

2
, 2�a,6

)

)

 then implies that

Symmetrically, if b < 𝜎
(

1

3
, 2𝜃b,6

)

, then

a ≤ max

[

1

2
e

�6+| log(�)|

�a,6 , �( 1

2
, 2�a,6), �(

1

3
, 2�b,6)e

�b,6

2�a,6 , �( 1

3
, 4�a,6)

]

b ≤ max

[

1

2
e

�6+| log(�)|

�b,6 , �( 1

2
, 2�b,6), �(

1

3
, 2�ba6)e

�a,6

2�b,6 , �( 1

3
, 4�b,6)

]

.

(7.23)�a,6 log(2a) + �b,6 log(2b) ≤ �6.

�a,6 log(2a) ≤ �6 + | log(�)| and �b,6 log(2b) ≤ �6 + | log(�)|

(7.24)a ≤ 1

2
e

�6+| log(�)|

�a,6 and b ≤ 1

2
e

�6+| log(�)|

�b,6 .

(7.25)a
1

2 + b
1

3 ≤ 2�a,6 log(2a) + 2�b,6 log(2b).

(7.26)a > 𝜎
(

1

2
, 2𝜃a,6

)

and b > 𝜎
(

1

3
, 2𝜃b,6

)

.

a
1

2 + b
1

3 ≤ 2𝜃a,6 log(2a) + 2𝜃b,6 log(2b) < a
1

2 + b
1

3 ,

b
1

3 ≤ a
1

2 + b
1

3 ≤ �a,6 log
(

2�
(

1

2
, 2�a,6

)

)

+ 2�b,6 log(2b).

b ≤ max

[

1

2
e

�a,6 log(2�(
1

2
,2�a,6 ))

2�b,6 , �
(

1

2
, 4�b,6

)

]

= max

[

�
(

1

2
, 2�a,6

)

e

�a,6

2�b,6 , �
(

1

2
, 4�b,6

)

]

.
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