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Abstract
Copositive optimization is a special case of convex conic programming, and it con-
sists of optimizing a linear function over the cone of all completely positive matri-
ces under linear constraints. Copositive optimization provides powerful relaxations 
of NP-hard quadratic problems or combinatorial problems, but there are still many 
open problems regarding copositive or completely positive matrices. In this paper, 
we focus on one such problem; finding a completely positive (CP) factorization for a 
given completely positive matrix. We treat it as a nonsmooth Riemannian optimiza-
tion problem, i.e., a minimization problem of a nonsmooth function over a Riemann-
ian manifold. To solve this problem, we present a general smoothing framework for 
solving nonsmooth Riemannian optimization problems and show convergence to a 
stationary point of the original problem. An advantage is that we can implement 
it quickly with minimal effort by directly using the existing standard smooth Rie-
mannian solvers, such as Manopt. Numerical experiments show the efficiency of our 
method especially for large-scale CP factorizations.
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1 Introduction

The space of n × n real symmetric matrices Sn is endowed with the trace inner prod-
uct ⟨A,B⟩ ∶= trace(AB) . A matrix A ∈ Sn is called completely positive if for some 
r ∈ ℕ there exists an entrywise nonnegative matrix B ∈ ℝn×r such that A = BB⊤ , 
and we call B a CP factorization of A. We define CPn as the set of n × n completely 
positive matrices, equivalently characterized as

where conv(S) denotes the convex hull of a given set S. We denote the set of n × n 
copositive matrices by COPn ∶= {A ∈ Sn ∣ x

⊤Ax ≥ 0 for all x ∈ ℝn
+
}. It is known 

that COPn and CPn are duals of each other under the trace inner product; moreover, 
both CPn and COPn are proper convex cones [1, Section2.2]. For any positive inte-
ger n, we have the following inclusion relationship among other important cones in 
conic optimization:

where S+
n
 is the cone of n × n symmetric positive semidefinite matrices and Nn is the 

cone of n × n symmetric nonnegative matrices. See the monograph [1] for a compre-
hensive description of CPn and COPn.

Conic optimization is a subfield of convex optimization that studies minimization 
of linear functions over proper cones. Here, if the proper cone is CPn or its dual cone 
COPn , we call the conic optimization problem a copositive programming problem. 
Copositive programming is closely related to many nonconvex, NP-hard quadratic 
and combinatorial optimizations [2]. For example, consider the so-called standard 
quadratic optimization problem,

where M ∈ Sn is possibly not positive semidefinite and e is the all-ones vector. 
Bomze et al. [3] showed that the following completely positive reformulation,

where E is the all-ones matrix, is equivalent to (1). Burer [4] reported a more gen-
eral result, where any quadratic problem with binary and continuous variables can 
be rewritten as a linear program over CPn . As an application to combinatorial prob-
lems, consider the problem of computing the independence number �(G) of a graph 
G with n nodes. De Klerk and Pasechnik [5] showed that

where A is the adjacency matrix of G. For surveys on applications of copositive pro-
gramming, see [2, 6–9].

The difficulty of the above problems lies entirely in the completely positive conic 
constraint. Note that because neither COPn nor CPn is self-dual, the primal-dual interior 

CPn ∶= {BB⊤ ∈ Sn ∣ B is a nonnegative matrix } = conv{xx⊤ ∣ x ∈ ℝ
n
+
},

CPn ⊆ S
+
n
∩Nn ⊆ S

+
n
⊆ S

+
n
+Nn ⊆ COPn,

(1)min{x⊤Mx ∣ e⊤x = 1, x ∈ ℝ
n
+
},

min{⟨M,X⟩ ∣ ⟨E,X⟩ = 1,X ∈ CPn},

�(G) = max{⟨E,X⟩ ∣ ⟨A + I,X⟩ = 1,X ∈ CPn},
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point method for conic optimization does not work as is. Besides this, there are many 
open problems related to completely positive cones. One is checking membership in 
CPn , which was shown to be NP-hard by [10]. Computing or estimating the cp-rank, as 
defined later in (3), is also an open problem. We refer the reader to [9, 11] for a detailed 
discussion of those unresolved issues.

In this paper, we focus on finding a CP factorization for a given A ∈ CPn , i.e., the 
CP factorization problem:

which seems to be closely related to the membership problem A ∈ CPn . Sometimes, 
a matrix is shown to be completely positive through duality, or rather, ⟨A,X⟩ ≥ 0 for 
all X ∈ COPn , but in this case, a CP factorization will not necessarily be obtained.

1.1  Related work on CP factorization

Various methods of solving CP factorization problems have been studied. Jarre and 
Schmallowsky [12] stated a criterion for complete positivity, based on the augmented 
primal dual method to solve a particular second-order cone problem. Dickinson and 
Dür [13] dealt with complete positivity of matrices that possess a specific sparsity pat-
tern and proposed a method for finding CP factorizations of these special matrices that 
can be performed in linear time. Nie [14] formulated the CP factorization problem as 
an A-truncated K-moment problem, for which the author developed an algorithm that 
solves a series of semidefinite optimization problems. Sponsel and Dür [15] considered 
the problem of projecting a matrix onto CPn and COPn by using polyhedral approxima-
tions of these cones. With the help of these projections, they devised a method to com-
pute a CP factorization for any matrix in the interior of CPn . Bomze [16] showed how 
to construct a CP factorization of an n × n matrix based on a given CP factorization of 
an (n − 1) × (n − 1) principal submatrix. Dutour Sikirić et  al. [17] developed a sim-
plex-like method for a rational CP factorization that works if the input matrix allows a 
rational CP factorization.

In 2020, Groetzner and Dür [18] applied the alternating projection method to the CP 
factorization problem by posing it as an equivalent feasibility problem (see (FeasCP)). 
Shortly afterwards, Chen et al. [19] reformulated the split feasibility problem as a dif-
ference-of-convex optimization problem and solved (FeasCP) as a specific application. 
In fact, we will solve this equivalent feasibility problem (FeasCP) by other means in 
this paper. In 2021, Boţ and Nguyen [20] proposed a projected gradient method with 
relaxation and inertia parameters for the CP factorization problem, aimed at solving

where B(0, �) ∶= {X ∈ ℝn×r ∣ ‖X‖ ≤ �} is the closed ball centered at 0. The authors 
argued that its optimal value is zero if and only if A ∈ CPn.

(CPfact)Find B ∈ ℝ
n×r s.t. A = BB⊤ and B ≥ 0,

(2)min
X

{‖A − XX⊤‖2 ∣ X ∈ ℝ
n×r
+

∩ B(0,
√
trace(A))},
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1.2  Our contributions and organization of the paper

Inspired by the idea of Groetzner and Dür [18], wherein CPfact is shown to be equiva-
lent to a feasibility problem called (FeasCP), we treat the problem (FeasCP) as a non-
smooth Riemannian optimization problem and solve it through a general Riemannian 
smoothing method. Our contributions are summarized as follows:

1. Although it is not explicitly stated in [18], (FeasCP) is actually a Riemannian 
optimization formulation. We propose a new Riemannian optimization technique 
and apply it to the problem.

2. In particular, we present a general framework of Riemannian smoothing for the 
nonsmooth Riemannian optimization problem and show convergence to a station-
ary point of the original problem.

3. We apply the general framework of Riemannian smoothing to CP factorization. 
Numerical experiments clarify that our method is competitive with other efficient 
CP factorization methods, especially for large-scale matrices.

In Sect. 2, we review the process to reconstruct CPfact into another feasibility prob-
lem; in particular, we take a different approach to this problem from those in other stud-
ies. In Sect. 3, we describe the general framework of smoothing methods for Riemann-
ian optimization. To apply it to the CP factorization problem, we employ a smoothing 
function named LogSumExp. Section 4 is a collection of numerical experiments for CP 
factorization. As a meaningful supplement, in Sect. 5, we conduct further experiments 
(FSV problem and robust low-rank matrix completion) to explore the numerical per-
formance of various sub-algorithms and smoothing functions on different applications.

2  Preliminaries

2.1  cp‑rank and cp‑plus‑rank

First, let us recall some basic properties of completely positive matrices. Generally, 
many CP factorizations of a given A may exist, and they may vary in their numbers of 
columns. This gives rise to the following definitions: the cp-rank of A ∈ Sn , denoted by 
cp(A) , is defined as

where cp(A) = ∞ if A ∉ CPn. Similarly, we can define the cp-plus-rank as

Immediately, for all A ∈ Sn , we have

(3)cp(A) ∶= min{r ∈ ℕ ∣ A = BB⊤,B ∈ ℝ
n×r,B ≥ 0},

cp+(A) ∶= min{r ∈ ℕ ∣ A = BB⊤,B ∈ ℝ
n×r,B > 0}.

(4)rank(A) ≤ cp(A) ≤ cp+(A).
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Every CP factorization B of A is of the same rank as A since rank(XX⊤) = rank(X) 
holds for any matrix X. The first inequality of (4) comes from the fact that for any 
CP factorization B,

The second is trivial by definition.
Note that computing or estimating the cp-rank of any given A ∈ CPn is still an open 

problem. The following result gives a tight upper bound of the cp-rank for A ∈ CPn in 
terms of the order n.

Theorem 2.1 (Bomze, Dickinson, and Still [21, Theorem 4.1]) For all A ∈ CPn , we 
have

The following result is useful for distinguishing completely positive matrices in 
either the interior or on the boundary of CPn.

Theorem 2.2 (Dickinson [22, Theorem 3.8]) We have

2.2  CP factorization as a feasibility problem

Groetzner and Dür [18] reformulated the CP factorization problem as an equivalent fea-
sibility problem containing an orthogonality constraint.

Given A ∈ CPn , we can easily get another CP factorization B̂ with r′ columns for 
every integer r′ ≥ r , if we also have a CP factorization B with r columns. The simplest 
way to construct such an n × r� matrix B̂ is to append k ∶= r� − r zero columns to B,  
i.e., B̂ ∶=

[
B, 0n×k

]
≥ 0. Another way is called column replication, i.e.,

where bi denotes the i-th column of B. It is easy to see that �B�B⊤ = BB⊤ = A. The 
next lemma is easily derived from the previous discussion, and it implies that there 
always exists an n × cpn CP factorization for any A ∈ CPn . Recall that definition of 
cpn is given in (5).

rank(A) = rank(B) ≤ the number of columns of B.

(5)cp(A) ≤ cpn ∶=

{
n for n ∈ {2, 3, 4}
1

2
n(n + 1) − 4 for n ≥ 5.

int(CPn) = {A ∈ Sn ∣ rank(A) = n, cp+(A) < ∞}

= {A ∈ Sn ∣ rank(A) = n,A = BB⊤,B ∈ ℝ
n×r,B ≥ 0,

bj > 0 for at least one column bj of B}.

(6)
B̂ ∶= [b1,… , bn−1,

1√
m
bn,… ,

1√
m
bn

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
m∶=r�−n+1 columns

],
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Lemma 2.3 Suppose that A ∈ Sn , r ∈ ℕ . Then r ≥ cp(A) if and only if A has a CP 
factorization B with r columns.

Let O(r) denote the orthogonal group of order r, i.e., the set of r × r orthogo-
nal matrices. The following lemma is essential to our study. Note that many authors 
have proved the existence of such an orthogonal matrix X (see, e.g., [23, Lemma 
2.1] and [18, Lemma 2.6]).

Lemma 2.4 Let B,C ∈ ℝn×r . BB⊤ = CC⊤ if and only if there exists 
X ∈ O(r) with BX = C.

The next proposition puts the previous two lemmas together.

Proposition 2.5 Let A ∈ CPn, r ≥ cp(A),A = B̄B̄⊤ , where B̄ ∈ ℝn×r may possibly be 
not nonnegative. Then there exists an orthogonal matrix X ∈ O(r) such that B̄X ≥ 0 
and A = (B̄X)(B̄X)⊤.

This proposition tells us that one can find an orthogonal matrix X which can turn 
a “bad” factorization B̄ into a “good” factorization B̄X . Let r ≥ cp(A) and B̄ ∈ ℝn×r 
be an arbitrary (possibly not nonnegative) initial factorization A = B̄B̄⊤ . The task of 
finding a CP factorization of A can then be formulated as the following feasibility 
problem,

We should notice that the condition r ≥ cp(A) is necessary; otherwise, (FeasCP) has 
no solution even if A ∈ CPn. Regardless of the exact cp(A) which is often unknown, 
one can use r = cpn in (5). Note that finding an initial matrix B̄ is not difficult. 
Since a completely positive matrix is necessarily positive semidefinite, one can use 
Cholesky decomposition or spectral decomposition and then extend it to r columns 
by using (6). The following corollary shows that the feasibility of (FeasCP) is pre-
cisely a criterion for complete positivity.

Corollary 2.6 Set r ≥ cp(A) , B̄ ∈ ℝn×r an arbitrary initial factorization of A. Then 
A ∈ CPn if and only if (FeasCP) is feasible. In this case, for any feasible solution X, 
B̄X is a CP factorization of A.

In this study, solving (FeasCP) is the key to finding a CP factorization, but it is 
still a hard problem because O(r) is nonconvex.

2.3  Approaches to solving (FeasCP)

Groetzner and Dür [18] applied the so-called alternating projections method to 
(FeasCP). They defined the polyhedral cone, P ∶= {X ∈ ℝr×r ∶ B̄X ≥ 0}, and 
rewrote (FeasCP) as

(FeasCP)Find X s.t. B̄X ≥ 0 and X ∈ O(r).
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The alternating projections method is as follows: choose a starting point X0 ∈ O(r) ; 
then compute P0 = projP(X0) and X1 = projO(r)(P0) , and iterate this process. Com-
puting the projection onto P amounts to solving a second-order cone problem 
(SOCP), while computing the projection onto O(r) amounts to a singular value 
decomposition. Note that we need to solve an SOCP alternately at every itera-
tion, which is still expensive in practice. A modified version without convergence 
involves calculating an approximation of projP(Xk) by using the Moore-Penrose 
inverse of B̄ ; for details, see [18, Algorithm 2].

Our way is to use the optimization form. Here, we denote by max(⋅) (resp. 
min(⋅) ) the max-function (resp. min-function)) that selects the largest (resp. small-
est) entry of a vector or matrix. Notice that −min(⋅) = max(−(⋅)). We associate 
(FeasCP) with the following optimization problem:

For consistency of notation, we turn the maximization problem into a minimization 
problem:

The feasible set O(r) is known to be compact [24, Observation 2.1.7]. In accordance 
with the extreme value theorem [25, Theorem 4.16], OptCP attains the global mini-
mum, say t. Summarizing these observations together with Corollary 2.6 yields the 
following proposition.

Proposition 2.7 Set r ≥ cp(A) , and let B̄ ∈ ℝn×r be an arbitrary initial factorization 
of A. Then the following statements are equivalent: 

1. A ∈ CPn.
2. (FeasCP) is feasible.
3. In OptCP, there exists a feasible solution X such that max(−B̄X) ≤ 0 ; alterna-

tively, min(B̄X) ≥ 0.
4. In OptCP, the global minimum t ≤ 0.

3  Riemannian smoothing method

The problem of minimizing a real-valued function over a Riemannian manifold 
M , which is called Riemannian optimization, has been actively studied during 
the last few decades. In particular, the Stiefel manifold,

Find X s.t. X ∈ P ∩O(r).

max
X∈O(r)

{min (B̄X)}.

(OptCP)min
X∈O(r)

{max (−B̄X)}.
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(when n = p , it reduces to the orthogonal group) is an important case and is our 
main interest here. We treat the CP factorization problem, i.e., OptCP as a problem 
of minimizing a nonsmooth function over a Riemannian manifold, for which vari-
ants of subgradient methods [26], proximal gradient methods [27], and the alternat-
ing direction method of multipliers (ADMM) [28] have been studied.

Smoothing methods [29], which use a parameterized smoothing function to approx-
imate the objective function, are effective on a class of nonsmooth optimizations in 
Euclidean space. Recently, Zhang, Chen and Ma [30] extended a smoothing steepest 
descent method to the case of Riemannian submanifolds in ℝn . This is not the first 
time that smoothing methods have been studied on manifolds. Liu and Boumal [31] 
extended the augmented Lagrangian method and exact penalty method to the Riemann-
ian case. The latter leads to a nonsmooth Riemannian optimization problem to which 
they applied smoothing techniques. Cambier and Absil [32] dealt with the problem of 
robust low-rank matrix completion by solving a Riemannian optimization problem, 
wherein they applied a smoothing conjugate gradient method.

In this section, we propose a general Riemannian smoothing method and apply it to 
the CP factorization problem.

3.1  Notation and terminology of Riemannian optimization

Let us briefly review some concepts in Riemannian optimization, following the notation 
of [33]. Throughout this paper, M will refer to a complete Riemannian submanifold of 
Euclidean space ℝn . Thus, M is endowed with a Riemannian metric induced from the 
Euclidean inner product, i.e., ⟨𝜉, 𝜂⟩x ∶= 𝜉⊤𝜂 for any �, � ∈ TxM , where TxM ⊆ ℝn is 
the tangent space to M at x. The Riemannian metric induces the usual Euclidean norm 
‖�‖x ∶= ‖�‖ =

√⟨�, �⟩x for � ∈ TxM . The tangent bundle TM ∶=
⨆

x∈M TxM is a 
disjoint union of the tangent spaces of M . Let f ∶ M → ℝ be a smooth function on 
M . The Riemannian gradient of f is a vector field gradf  on M that is uniquely defined 
by the identities: for all (x, v) ∈ TM,

where Df (x) ∶ TxM → Tf (x)ℝ ≅ ℝ is the differential of f at x ∈ M . Since M is an 
embedded submanifold of ℝn , we have a simpler statement for f that is also well 
defined on the whole ℝn:

where ∇f (x) is the usual gradient in ℝn and Projx denotes the orthogonal projec-
tor from ℝn to TxM . For a subset D ⊆ ℝn , the function h ∈ C1(D) is smooth, i.e., 
continuously differentiable on D. Given a point x ∈ ℝn and 𝛿 > 0 , B(x, �) denotes 
a closed ball of radius � centered at x. ℝ++ denotes the set of positive real numbers. 
We use subscript notation xi to select the ith entry of a vector and superscript nota-
tion xk to designate an element in a sequence {xk}.

St(n, p) = {X ∈ ℝ
n×p ∣ X⊤X = I},

Df (x)[v] = ⟨v, gradf (x)⟩x

gradf (x) = Projx(∇f (x)),
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3.2  Ingredients

Now let us consider the nonsmooth Riemannian optimization problem (NROP):

where M ⊆ ℝn and f ∶ ℝn → ℝ is a proper lower semi-continuous function (maybe 
nonsmooth or even non-Lipschitzian) on ℝn . For convenience, the term smooth Rie-
mannian optimization problem (SROP) refers to NROP when f (⋅) is continuously 
differentiable on ℝn . To avoid confusion in this case, we use g instead of f,

Throughout this subsection, we will refer to many of the concepts in [30].
First, let us review the usual concepts and properties related to generalized subdifferen-

tials in ℝn . For a proper lower semi-continuous function f ∶ ℝn → ℝ , the Fréchet subdif-
ferential and the limiting subdifferential of f at x ∈ ℝn are defined as

The definition of �̂�f (x) above is not the standard one: the standard definition follows 
[34, 8.3 Definition]. But these definitions are equivalent by [34, 8.5 Proposition]. 
For locally Lipschitz functions, the Clarke subdifferential at x ∈ ℝn , �◦f (x) , is the 
convex hull of the limiting subdifferential. Their relationship is as follows:

Notice that if f is convex, �f (x) and �◦f (x) coincide with the classical subdifferential 
in convex analysis [34, 8.12 Proposition].

Example 1 (Bagirov, Karmitsa, and Mäkelä [35, Theorem 3.23]) From a result on 
the pointwise max-function in convex analysis, we have

where ei ’s are the standard bases of ℝn and I(x) = {i ∣ xi = max(x)}.

Next, we extend our discussion to include generalized subdifferentials of a 
nonsmooth function on submanifolds M . The Riemannian Fréchet subdifferential 
and the Riemannian limiting subdifferential of f at x ∈ M (see, e.g., [30, Defini-
tion 3.1]) are defined as

(NROP)min
x∈M

f (x),

(SROP)min
x∈M

g(x).

�̂�f (x) ∶= {∇h(x) ∣ ∃𝛿 > 0 such that h ∈ C1(B(x, 𝛿)) and

f − h attains a local minimum at x on ℝ
n},

𝜕f (x) ∶= { lim
�→∞

v� ∣ v� ∈ �̂�f
(
x�
)
,
(
x� , f

(
x�
))

→ (x, f (x))}.

�̂�f (x) ⊆ 𝜕f (x) ⊆ 𝜕◦f (x).

�max(x) = conv{ei ∣ i ∈ I(x)},

�̂�Rf (x) ∶= {gradh(x)∣∃𝛿 > 0 such that h ∈ C1(B(x, 𝛿)) and f − h attains a local minimum at x on M},

𝜕Rf (x) ∶= { lim
�→∞

v� ∣v� ∈ �̂�Rf
(
x�
)
,
(
x� , f

(
x�
))

→ (x, f (x))}.
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If M = ℝn , the above definitions coincide with the usual Fréchet and limiting 
subdifferentials in ℝn . Moreover, it follows directly that, for all x ∈ M , one has 
�̂�Rf (x) ⊆ 𝜕Rf (x) . According to [30, Proposition 3.2], if x is a local minimizer of f on 
M , then 0 ∈ �̂�Rf (x) . Thus, we call a point x ∈ M a Riemannian limiting stationary 
point of NROP if

 In this paper, we will treat it as a necessary condition for a local solution of NROP 
to exist.

The smoothing function is the most important tool of the smoothing method.

Definition 3.1 (Zhang and Chen [36, Definition 3.1]) A function 
f̃ (⋅, ⋅) ∶ ℝn ×ℝ++ → ℝ is called a smoothing function of f ∶ ℝn → ℝ , if f̃ (⋅,𝜇) is 
continuously differentiable in ℝn for any 𝜇 > 0,

and there exist a constant 𝜅 > 0 and a function � ∶ ℝ++ → ℝ++ such that

Example 2 (Chen, Wets, and Zhang [37, Lemma 4.4]) The LogSumExp function, 
lse(x,�) ∶ ℝn ×ℝ++ → ℝ , given by

is the smoothing function of max(x) because we can see that
(i) lse(⋅,�) is smooth on ℝn for any 𝜇 > 0 . Its gradient ∇xlse(x,�) is given by 

�(⋅,�) ∶ ℝn → Δn−1,

where Δn−1 ∶= {x ∈ ℝn ∣
∑n

i=1
xi = 1, xi ≥ 0} is the unit simplex.

(ii) For all x ∈ ℝn and 𝜇 > 0 , we have max(x) < lse(x,𝜇) ≤ max(x) + 𝜇 log(n). 
Then, the constant � = log(n) and �(�) = � . The above inequalities imply that 
limz→x,�↓0 lse(z,�) = max(x).

Gradient sub-consistency or consistency is crucial to showing that any limit 
point of the Riemannian smoothing method is also a limiting stationary point of 
NROP.

Definition 3.2 (Zhang, Chen and Ma [30, Definition 3.4 & 3.9]) A smoothing 
function f̃  of f is said to satisfy gradient sub-consistency on ℝn if, for any x ∈ ℝn,

(7)0 ∈ �Rf (x).

lim
z→x,𝜇↓0

f̃ (z,𝜇) = f (x)

(8)|f̃ (x,𝜇) − f (x)| ≤ 𝜅𝜔(𝜇) with lim
𝜇↓0

𝜔(𝜇) = 0.

lse(x,�) ∶= � log(
∑n

i=1
exp(xi∕�)),

(9)∇xlse(x,𝜇) = 𝜎(x,𝜇) ∶=
1∑n

�=1
exp(x

�
∕𝜇)

[ exp(x1∕𝜇),… , exp(xn∕𝜇) ]
⊤,

(10)Gf̃ (x) ⊆ 𝜕f (x),
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where the subdifferential of f associated with f̃  at  x ∈ ℝn is given by

Similarly, f̃  is said to satisfy Riemannian gradient sub-consistency on M if, for any 
x ∈ M,

where the Riemannian subdifferential of f associated with  f̃  at x ∈ M is given by

If one substitutes the inclusion with equality in (10), then f̃  satisfies gradient 
consistency on ℝn , and similarly in (11) for M . Thanks to the following useful 
proposition from [30], we can induce gradient sub-consistency on M from that 
on ℝn if f is locally Lipschitz.

Proposition 3.3 (Zhang, Chen and Ma [30, Proposition 3.10]) Let f be a locally 
Lipschitz function and f̃  a smoothing function of f. For f̃  , if gradient sub-consistency 
holds on ℝn , then Riemannian gradient sub-consistency holds on M as well.

The next example illustrates Riemannian gradient sub-consistency on M for 
lse(x,�) in Example 2, since any convex function is locally Lipschitz continuous.

Example 3 (Chen, Wets, and Zhang [37, Lemma 4.4]) The smoothing function 
lse(x,�) of max(x) satisfies gradient consistency on ℝn . That is, for any x ∈ ℝn,

Note that the original assertion of [37, Lemma 4.4] is gradient consistency in the 
Clarke sense, i.e., �◦ max(x) = Glse(x).

3.3  Riemannian smoothing method

Motivated by the previous papers [30–32] on smoothing methods and Riemann-
ian manifolds, we propose a general Riemannian smoothing method. Algorithm 1 
is the basic framework of this general method.

Gf̃ (x) ∶= {u ∈ ℝ
n ∣ ∇xf̃

(
zk,𝜇k

)
→ u for some zk → x,𝜇k ↓ 0}.

(11)Gf̃ ,R(x) ⊆ 𝜕Rf (x),

Gf̃ ,R(x) = {v ∈ ℝ
n ∣ gradf̃

(
zk,𝜇k

)
→ v for some zk ∈ M, zk → x,𝜇k ↓ 0}.

�max(x) = Glse(x) = { lim
xk→x,�k↓0

�(xk,�k)}.
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Now let us describe the convergence properties of the basic method. First, let 
us assume that the function f̃ (x,𝜇k) has a minimizer on M for each value of �k.

Theorem  3.4 Suppose that each xk is an exact global minimizer of (12) in 
Algorithm 1. Then every limit point x∗ of the sequence {xk} is a global minimizer of 
the problem NROP.

Proof Let x̄ be a global solution of NROP, that is,

From the Definition 3.1 of the smoothing function, there exist a constant 𝜅 > 0 and a 
function � ∶ ℝ++ → ℝ++ such that, for all x ∈ M,

with lim�↓0 �(�) = 0. Substituting xk and combining with the global solution x̄ , we 
have that

By rearranging this expression, we obtain

Since xk minimizes f̃ (x,𝜇k) on M for each �k , we have that f̃ (xk,𝜇k) ≤ f̃ (x̄,𝜇k) , 
which leads to

The second inequality above follows from (13). Combining (14) and (15), we obtain

f (x̄) ≤ f (x) for all x ∈ M.

(13)−𝜅𝜔(𝜇) ≤ f̃ (x,𝜇) − f (x) ≤ 𝜅𝜔(𝜇)

f̃ (xk,𝜇k) ≥ f (xk) − 𝜅𝜔(𝜇k) ≥ f (x̄) − 𝜅𝜔(𝜇k).

(14)−𝜅𝜔(𝜇k) ≤ f̃ (xk,𝜇k) − f (x̄).

(15)f̃ (xk,𝜇k) − f (x̄) ≤ f̃ (x̄,𝜇k) − f (x̄) ≤ 𝜅𝜔(𝜇k).

(16)|f̃ (xk,𝜇k) − f (x̄)| ≤ 𝜅𝜔(𝜇k).
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Now, suppose that x∗ is a limit point of {xk} , so that there is an infinite subsequence 
K such that limk∈K xk = x∗. Note that x∗ ∈ M because M is complete. By taking the 
limit as k → ∞, k ∈ K , on both sides of (16), again by the definition of the smooth-
ing function, we obtain

Thus, it follows that f (x∗) = f (x̄). Since x∗ ∈ M is a point whose objective value is 
equal to that of the global solution x̄ , we conclude that x∗ , too, is a global solution.  
 ◻

This strong result requires us to find a global minimizer of each subproblem, 
which, however, cannot always be done. The next result concerns the convergence 
properties of the sequence f̃ (xk,𝜇k) under the condition that f̃  has the following 
additional property:

Example 4 The above property holds for lse(x,�) in Example 2; i.e., we have 
lse(x,𝜇2) < lse(x,𝜇1) on ℝn , provided that 0 < 𝜇2 < 𝜇1.

Note that under the equality,

the i-th component of �(x,�) can be rewritten as

For any fixed x ∈ ℝn , consider the derivative of a real function 
� → lse(x, ⋅) ∶ ℝ++ → ℝ . Then we have

where “ lse , � ” are shorthand for lse(x,�) and �(x,�) . For the last inequality above, 
we observe that � ∈ Δn−1 ; hence, the term 

∑n

i=1
xi�i is a convex combination of all 

entries of x, which implies that 
∑n

i=1
xi𝜎i ≤ max(x) < lse. This completes the proofs 

of our claims.

In [32], the authors considered a special case of Algorithm  1, wherein the 
smoothing function f̃ (x,𝜇) =

√
𝜇2 + x2 of |x| also satisfies (17) and a Riemannian 

conjugate gradient method is used for (12).

|f (x∗) − f (x̄)| = lim
k∈K

|f̃ (xk,𝜇k) − f (x̄)| ≤ lim
k∈K

𝜅𝜔(𝜇k) = 0.

(17)0 < 𝜇2 < 𝜇1 ⟹ f̃ (x,𝜇2) < f̃ (x,𝜇1) for all x ∈ ℝ
n.

n∑
l=1

exp(xl∕�) = exp{lse(x,�)∕�},

�i(x,�) = exp{(xi − lse(x,�))∕�}.

∇�lse(x,�) = lse∕� −

∑n

i=1
xi exp(xi∕�)

� exp (lse∕�)
=(lse −

∑n

i=1
xi exp{(xi − lse)∕�})∕�

=(lse −
∑n

i=1
xi�i)∕� ≤ 0,
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Theorem  3.5 Suppose that f ∗ ∶= infx∈M f (x) exists and the smoothing function 
f̃  has property (17). Let f k ∶= f̃ (xk,𝜇k) . Then the sequence {f k} generated by 
Algorithm 1 is strictly decreasing and bounded below by f ∗ ; hence,

Proof For each k ≥ 1 , xk is obtained by approximately solving

starting at xk−1 . Then at least, we have

Since 𝜇k = 𝜃𝜇k−1 < 𝜇k−1 , property (17) ensures

The claim that sequence {f k} is strictly decreasing follows from these two 
inequalities.

Suppose that, for all 𝜇 > 0 and for all x ∈ ℝn,

Then for each k,

which proves our claims.
Now, we show (18) is true if the smoothing function has property (17). Fix any 

x ∈ ℝn ; (17) implies that f̃ (x, ⋅) is strictly decreasing as � → 0. Actually, f̃ (x, ⋅) is 
monotonically increasing on 𝜇 > 0. On the other hand, from the definition of the 
smoothing function, we have that

Hence, we have inf𝜇>0 f̃ (x,𝜇) = f (x), as claimed.   ◻

Note that the above weak result does not ensure that {f k} → f ∗ . Next, for better con-
vergence (compared with Theorem 3.5) and an effortless implementation (compared 
with Theorem 3.4), we propose an enhanced Riemannian smoothing method: Algo-
rithm 2. This is closer to the version in [30], where the authors use the Riemannian 
steepest descent method for solving the smoothed problem (19).

lim
k→∞

|f k − f k−1| = 0.

min
x∈M

f̃ (x,𝜇k),

f̃ (xk−1,𝜇k) ≥ f̃ (xk,𝜇k) = f k.

f k−1 = f̃ (xk−1,𝜇k−1) > f̃ (xk−1,𝜇k).

(18)f̃ (x,𝜇) ≥ f (x).

f k = f̃ (xk,𝜇k) ≥ f (xk) ≥ inf
x∈M

f (x) = f ∗,

lim
𝜇↓0

f̃ (x,𝜇) = f (x).
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The following result is adapted from [30, Proposition 4.2 & Theorem  4.3]. 
Readers are encouraged to refer to [30] for a discussion on the stationary point 
associated with f̃  on M.

Theorem  3.6 In Algorithm  2, suppose that the chosen sub-algorithm has the 
following general convergence property for SROP:

Moreover, suppose that, for all �k , the function f̃ (⋅,𝜇k) satisfies the convergence 
assumptions of the sub-algorithm needed for g above and f̃  satisfies the Riemannian 
gradient sub-consistency on M . Then 

1. For each k, there exists an xk satisfying (20); hence, Algorithm 2 is well defined.
2. Every limit point x∗ of the sequence {xk} generated by Algorithm 2 is a Riemann-

ian limiting stationary point of NROP (see (7)).

Proof Fix any �k . By (21), we have lim inf
�→∞ ‖gradf̃ (x� ,𝜇k)‖ = 0 . Hence, there is 

a convergent subsequence of ‖gradf̃ (x� ,𝜇k)‖ whose limit is 0. This means that, for 
any 𝜖 > 0 , there exists an integer �� such that ‖gradf̃ (x�𝜖 ,𝜇k)‖ < 𝜖. If � = �k , we get 
xk = x�� . Thus, statement (1) holds.

Next, suppose that x∗ is a limit point of {xk} generated by Algorithm 2, so that 
there is an infinite subsequence K such that limk∈K xk = x∗. From (1), we have

and we find that gradf̃ (xk,𝜇k) → 0 for k ∈ K, xk ∈ M, xk → x∗,�k ↓ 0 . Hence,

(21)lim inf
�→∞

‖gradg(x�)‖ = 0.

lim
k∈K

‖gradf̃ (xk,𝜇k)‖ ≤ lim
k∈K

𝛿k = 0,
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  ◻

Now let us consider the selection strategy of the nonnegative sequence {�k} with 
�k → 0 . In [30], when �k+1 = ��k shrinks, the authors set

with an initial value of �0 and constant � ∈ (0, 1) . In the spirit of the usual smoothing 
methods described in [29], one can set

with a constant 𝛾 > 0 . The latter is an adaptive rule, because �k determines subprob-
lem (19) and its stopping criterion at the same time. The merits and drawbacks of 
the two rules require more discussion, but the latter seems to be more reasonable.

We conclude this section by discussing the connections with [32] and [30]. Our 
work is based on an efficient unification of them. [32] focused on a specific algo-
rithm and did not discuss the underlying generalities, whereas we studied a general 
framework for Riemannian smoothing. Recall that the “smoothing function” is the 
core tool of the smoothing method. In addition to what are required by its definition 
(see Definition 3.1), it needs to have the following “additional properties” (AP) in 
order for the algorithms to converge: 

 (AP1) Approximate from above, i.e., (17). (Needed in Algorithm 1)
 (AP2) (Riemannian) gradient sub-consistency, i.e., Definition 3.2. (Needed in Algo-

rithm 2)

We find that not all smoothing functions satisfy (AP1) and for some functions it is 
hard to prove whether (AP2) holds. For example, all the functions in Table  1 are 
smoothing functions of |x|, but only the first three meet (AP1); the last two do not. In 
[29], the authors showed that the first one in Table 1, f̃1(x,𝜇) , has property (AP2). 

0 ∈ Gf̃ ,R(x
∗) ⊆ 𝜕Rf (x

∗).

(22)�k+1 ∶= ��k

(23)�k ∶= ��k

Table 1  List of smoothing 
functions of the absolute value 
function |x| with � and �(�) 
in (8)

� �(�)

f̃1(x,𝜇) =

{ |x| if |x| > 𝜇

2
x2

𝜇
+

𝜇

4
if |x| ≤ 𝜇

2

1

4
�

f̃2(x,𝜇) =
√
𝜇2 + x2 1 �

f̃3(x,𝜇) = 2𝜇 log(1 + e
x

𝜇 ) − x 2 log(2) �

f̃4(x,𝜇) = x tanh(
x

𝜇
) , where tanh(z) is the 

hyperbolic tangent function.
1 �

f̃
5
(x,𝜇) = x erf(

x

𝜇
) , where 

erf(z) ∶=
2√
�
∫

z

0
e−t

2

dt is the Gauss error 
function.

2

e
√
�

�
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The others remain to be verified, but doing so will not be a trivial exercise. To a 
certain extent, Algorithm 1 as well as Theorem 3.5 guarantee a fundamental conver-
gence result even if one has difficulty in showing whether one’s smoothing function 
satisfies (AP2). Therefore, it makes sense to consider Algorithms 1 and 2 together 
for the sake of the completeness of the general framework.

Algorithm  2 expands on the results of [30]. It allows us to use any standard 
method of SROP, not just steepest descent, to solve the smoothed problem (19). 
Various standard Riemannian algorithms for SROP, such as the Riemannian con-
jugate gradient method [38] (which often performs better than Riemannian steepest 
descent), the Riemannian Newton method [39, Chapter 6], and the Riemannian trust 
region method [39, Chapter 7], have extended the concepts and techniques used in 
Euclidean space to Riemannian manifolds. As shown by Theorem  3.6, no matter 
what kind of sub-algorithm is implemented for (19), it does not affect the final con-
vergence as long as the chosen sub-algorithm has property (21). On the other hand, 
we advocate that the sub-algorithm should be viewed as a “Black Box” and the user 
should not have to care about the code details of the sub-algorithm at all. We can 
directly use an existing solver, e.g., Manopt [40], which includes the standard Rie-
mannian algorithms mentioned above. Hence, we can choose the most suitable sub-
algorithm for the application and quickly implement it with minimal effort.

4  Numerical experiments on CP factorization

The numerical experiments in Sects. 4 and 5 were performed on a computer 
equipped with an Intel Core i7-10700 at 2.90GHz with 16GB of RAM using Matlab 
R2022a. Our Algorithm 2 is implemented in the Manopt framework [40] (version 
7.0). The number of iterations to solve the smoothed problem (19) with the sub-
algorithm is recorded in the total number of iterations. We refer readers to the sup-
plementary material of this paper for the available codes.1

In this section, we describe numerical experiments that we conducted on CP fac-
torization in which we solved OptCP using Algorithm 2, where different Riemann-
ian algorithms were employed as sub-algorithms and lse(−B̄X,𝜇) was used as the 
smoothing function. To be specific, we used three built-in Riemannian solvers of 
Manopt 7.0 — steepest descent (SD), conjugate gradient (CG), and trust regions 
(RTR), denoted by SM_SD, SM_CG and SM_RTR, respectively. We compared our 
algorithms with the following non-Riemannian numerical algorithms for CP fac-
torization that were mentioned in Sect.  1.1. We followed the settings used by the 
authors in their papers.

• SpFeasDC_ls [19]: A difference-of-convex functions approach for solving the 
split feasibility problem, it can be applied to (FeasCP). The implementation 

1 Alternatively, https:// github. com/ GALVI NLAI/ Gener al- Riema nnian- Smoot hing- Method.

https://github.com/GALVINLAI/General-Riemannian-Smoothing-Method
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details regarding the parameters we used are the same as in the numerical experi-
ments reported in [19, Section 6.1].

• RIPG_mod [20]: This is a projected gradient method with relaxation and inertia 
parameters for solving (2). As shown in [20, Section 4.2], RIPG_mod is the best 
among the many strategies of choosing parameters.

• APM_mod [18]: A modified alternating projection method for CP factorization; 
it is described in Sect. 2.3.

We have shown that lse(x,�) is a smoothing function of max(x) with gradient con-
sistency. lse(⋅,�) of the matrix argument can be simply derived from entrywise 
operations. Then from the properties of compositions of smoothing functions [41, 
Proposition 1 (3)], we have that lse(−B̄X,𝜇) is a smoothing function of max(−B̄X) 
with gradient consistency. In practice, it is important to avoid numerical overflow 
and underflow when evaluating lse(x,�) . Overflow occurs when any xi is large and 
underflow occurs when all xi are small. To avoid these problems, we can shift each 
component xi by max(x) and use the following formula:

whose validity is easy to show.
The details of the experiments are as follows. If A ∈ CPn was of full rank, for 

accuracy reasons, we obtained an initial B̄ by using Cholesky decomposition. Oth-
erwise, B̄ was obtained by using spectral decomposition. Then we extended B̄ to r 
columns by column replication (6). We set r = cp(A) if cp(A) was known or r was 
sufficiently large. We used RandOrthMat.m [42] to generate a random starting point 
X0 on the basis of the Gram-Schmidt process.

For our three algorithms, we set �0 = 100, � = 0.8 and used an adaptive rule 
(23) of �k ∶= ��k with � = 0.5 . Except for RIPG_mod, all the algorithms termi-
nated successfully at iteration k, where min(B̄Xk) ≥ −10−15 was attained before 
the maximum number of iterations (5,000) was reached. In addition, SpFeasDC_
ls failed when L̄k > 1010 . Regarding RIPG_mod, it terminated successfully when 
‖A − XkX

⊤
k
‖2∕‖A‖2 < 10−15 was attained before at most 10,000 iterations for 

n < 100 , and before at most 50,000 iterations in all other cases. In the tables of this 
section, we report the rounded success rate (Rate) over the total number of trials, 
although the definitions of “Rate” in the different experiments (described in Sec-
tions 4.1-4.4) vary slightly from one experiment to the other. We will describe them 
later.

4.1  Randomly generated instances

We examined the case of randomly generated matrices to see how the methods 
were affected by the order n or r. The instances were generated in the same way 
as in [18, Section  7.7]. We computed C by setting Cij ∶= |Bij| for all i,  j,   where 
B is a random n × 2n matrix based on the Matlab command randn, and we took 
A = CC⊤ to be factorized. In Table  2, we set r = 1.5n and r = 3n for the values 
n ∈ {20, 30, 40, 100, 200, 400, 600, 800} . For each pair of n and r, we generated 50 

lse(x,�) = � log(
∑n

i=1
exp((xi −max(x))∕�)) +max(x),
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instances if n ≤ 100 and 10 instances otherwise. For each instance, we initialized 
all the algorithms at the same random starting point X0 and initial decomposition 
B̄ , except for RIPG_mod. Note that each instance A was assigned only one starting 
point.

Table 2 lists the average time in seconds ( Times ) and the average number of itera-
tions ( Iters ) among the successful instances. For our three Riemannian algorithms, 
Iters contains the number of iterations of the sub-algorithm. Table 2 also lists the 
rounded success rate (Rate) over the total number (50 or 10) of instances for each 
pair of n and r. Boldface highlights the two best results in each row.

As shown in Table 2, except for APM_mod, each method had a success rate of 1 
for all pairs of n and r. Our three algorithms outperformed the other methods on the 
large-scale matrices with n ≥ 100 . In particular, SM_CG with the conjugate-gradi-
ent method gave the best results.

4.2  A specifically structured instance

Let en denote the all-ones vector in ℝn and consider the matrix [18, Example 7.1],

Theorem 2.2 shows that An ∈ int(CPn) for every n ≥ 2. By construction, it is obvious 
that cp(An) = n . We tried to factorize An for the values n ∈ {10, 20, 50, 75, 100, 150} 
in Table 3. For each An , using r = cp(An) = n and the same initial decomposition 
B̄ , we tested all the algorithms on the same 50 randomly generated starting points, 
except for RIPG_mod. Note that each instance was assigned 50 starting points.

Table 3 lists the average time in seconds ( Times ) and the average number of itera-
tions ( Iters ) among the successful starting points. It also lists the rounded success 
rate (Rate) over the total number (50) of starting points for each n. Boldface high-
lights the two best results for each n.

We can see from Table  3 that the success rates of our three algorithms were 
always 1, whereas the success rates of the other methods decreased as n increased. 
Likewise, SM_CG with the conjugate-gradient method gave the best results.

4.3  An easy instance on the boundary of CP
n

Consider the following matrix from [43, Example 2.7]:

An =

(
0 e

⊤
n−1

en−1 In−1

)⊤(
0 e

⊤
n−1

en−1 In−1

)
∈ CPn.

A =

⎛
⎜⎜⎜⎜⎝

41 43 80 56 50

43 62 89 78 51

80 89 162 120 93

56 78 120 104 62

50 51 93 62 65

⎞
⎟⎟⎟⎟⎠
.
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The sufficient condition from [43, Theorem  2.5] ensures that this matrix is 
completely positive and cp(A) = rank(A) = 3. Theorem 2.2 tells us that A ∈ bd(CP5) , 
since rank(A) ≠ 5.

We found that all the algorithms could easily factorize this matrix. However, our 
three algorithms returned a CP factorization B whose smallest entry was as large as 
possible. In fact, they also maximized the smallest entry in the n × r symmetric fac-
torization of A, since OptCP is equivalent to

When we did not terminate as soon as min(B̄Xk) ≥ −10−15 , for example, after 1000 
iterations, our algorithms gave the following CP factorization whose the smallest 
entry is around 2.8573 ≫ −10−15:

4.4  A hard instance on the boundary of CP
n

Next, we examined how well these methods worked on a hard matrix on the bound-
ary of CPn . Consider the following matrix on the boundary taken from [44]:

Since A ∈ bd(CP5) and A is of full rank, it follows from Theorem  2.2 that 
cp+(A) = ∞ ; i.e., there is no strictly positive CP factorization for A. Hence, the 
global minimum of (OptCP), t = 0 , is clear. None of the algorithms could decom-
pose this matrix under our tolerance, 10−15 , in the stopping criteria. As was done in 
[18, Example7.3], we investigated slight perturbations of this matrix. Given

we factorized A� ∶= �A + (1− �)C for different values of � ∈ [0, 1) using 
r = 12 > cp5 = 11. Note that A� ∈ int(CP5) provided 0 ≤ 𝜆 < 1 and A� approached 
the boundary as � → 1 . We chose the largest � = 0.9999 . For each A�, we tested 

max
A=XX⊤,X∈ℝn×r

{min (X)}.

A = BB⊤, where B ≈

⎛
⎜⎜⎜⎜⎝

3.5771 4.4766 2.8573

2.8574 3.0682 6.6650

8.3822 7.0001 6.5374

5.7515 2.8574 7.9219

2.8574 6.7741 3.3085

⎞
⎟⎟⎟⎟⎠
.

A =

⎛⎜⎜⎜⎜⎝

8 5 1 1 5

5 8 5 1 1

1 5 8 5 1

1 1 5 8 5

5 1 1 5 8

⎞⎟⎟⎟⎟⎠
∈ bd(CP5).

MM⊤ =∶ C ∈ int(CP5) withM =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠
,
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all of the algorithms on 50 randomly generated starting points and computed the 
success rate over the total number of starting points.

Table 4 shows how the success rate of each algorithm changes as A� approaches 
the boundary. The table sorts the results from left to right according to overall 
performance. Except for SM_RTR, whose success rate was always 1, the success 
rates of all the other algorithms significantly decreased as � increased to 0.9999. 
Surprisingly, the method of SM_CG, which performed well in the previous exam-
ples, seemed unable to handle instances close to the boundary.

5  Further numerical experiments: comparison with [30, 32]

As described at the end of Sect.  3, the algorithms in [30] and [32] are both 
special cases of our algorithm. In this section, we compare them to show 
whether it performs better when we use other sub-algorithms or other 
smoothing functions. We applied Algorithm 2 to two problems: finding a sparse 
vector (FSV) in a subspace and robust low-rank matrix completion, which are 

Table 4  Success rate of CP factorization of A� for values of � from 0.6 to 0.9999

� SM_RTR SM_SD RIPG_mod SM_CG SpFeasDC_ls APM_mod

0.6 1 1 1 1 1 0.42
0.65 1 1 1 1 1 0.44
0.7 1 1 1 1 1 0.48
0.75 1 1 1 1 1 0.52
0.8 1 1 1 1 0.96 0.46
0.82 1 1 1 1 0.98 0.4
0.84 1 1 1 1 0.86 0.24
0.86 1 1 1 1 0.82 0.1
0.88 1 1 1 1 0.58 0.18
0.9 1 1 1 1 0.48 0.18
0.91 1 1 1 1 0.4 0.14
0.92 1 1 1 1 0.2 0.18
0.93 1 1 0.98 1 0.22 0.22
0.94 1 1 0.98 1 0.1 0.2
0.95 1 1 1 1 0.12 0.32
0.96 1 1 0.96 0.98 0.06 0.34
0.97 1 1 0.86 0.82 0.06 0.14
0.98 1 1 0.76 0.28 0.02 0
0.99 1 0.68 0.42 0 0 0
0.999 1 0 0.14 0 0 0
0.9999 1 0 0 0 0 0
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problems implemented in [30] and [32], respectively. Since they both involve 
approximations to the �1 norm, we applied the smoothing functions listed in 
Table 1.

We used the six solvers built into Manopt 7.0, namely, steepest descent; Barzilai-
Borwein (i.e., gradient-descent with BB step size); Conjugate gradient; trust regions; 
BFGS (a limited-memory version); ARC (i.e., adaptive regularization by cubics).

5.1  FSV problem

The FSV problem is to find the sparsest vector in an n-dimensional linear sub-
space W ⊆ ℝm ; it has applications in robust subspace recovery, dictionary learning, 
and many other problems in machine learning and signal processing [45, 46]. Let 
Q ∈ ℝm×n denote a matrix whose columns form an orthonormal basis of W: this 
problem can be formulated as

where Sn−1 ∶= {x ∈ ℝn ∣ ‖x‖ = 1} is the sphere manifold, and ‖z‖0 counts the num-
ber of nonzero components of z. Because this discontinuous objective function is 
unwieldy, in the literature, one instead focuses on solving the �1 norm relaxation 
given below:

where ‖z‖1 ∶= ∑
i
��zi�� is the �1 norm of the vector z.

Our synthetic problems of the �1 minimization model (24) were gener-
ated in the same way as in [30]: i.e., we chose m ∈ {4n, 6n, 8n, 10n} for 
n = 5 and m ∈ {6n, 8n, 10n, 12n} for n = 10 . We defined a sparse vector 
en ∶= (1,… , 1, 0,… , 0)⊤ ∈ ℝm , whose first n components are 1 and the remain-
ing components are 0. Let the subspace W be the span of en and some n − 1 ran-
dom vectors in ℝm . By mgson.m [47], we generated an orthonormal basis of W 
to form a matrix Q ∈ ℝm×n . With this construction, the minimum value of ‖Qx‖0 
should be equal to n. We chose the initial points by using the M.rand() tool of 
Manopt 7.0 that returns a random point on the manifold M and set x0 = abs(M.
rand()). The nonnegative initial point seemed to be better in the experiment. 
Regarding the the settings of our Algorithm 2, we chose the same smoothing func-
tion f̃1(x,𝜇) in Table  1 and the same gradient tolerance strategy (22) as in [30]: 
�0 = 1, � = 0.5, �0 = 0.1, � = 0.5. We compared the numerical performances when 
using different sub-algorithms. Note that with the choice of the steepest-descent 
method, our Algorithm 2 is exactly the same as the one in [30].

For each (n, m), we generated 50 pairs of random instances and random initial 
points. We claim that an algorithm successfully terminates if ‖Qxk‖0 = n , where 
xk is the k-th iteration. Here, when we count the number of nonzeros of Qxk , we 
truncated the entries as

min
x∈Sn−1

‖Qx‖0,

(24)min
x∈Sn−1

‖Qx‖1,

(25)(Qxk)i = 0 if ||(Qxk)i|| < 𝜏,
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where 𝜏 > 0 is a tolerance related to the precision of the solution, taking values from 
10−5 to 10−12 . Tables 5 and 6 report the number of successful cases out of 50 cases. 
Boldface highlights the best result for each row.

As shown in Tables  5 and 6, surprisingly, the conjugate-gradient method, 
which performed best on the CP factorization problem in Sect.  4, performed 

Table 5  Number of successes from 50 pairs of random instances and random initial points for the �
1
 

minimization model (24) and n = 5

(n, m) � Steepest-
descent

Barzilai-
Borwein

Conjugate-
gradient

Trust-regions BFGS ARC 

(5, 20) 10−5 21 19 0 22 23 23
10−6 21 19 0 22 23 23
10−7 21 19 0 22 23 23
10−8 16 19 0 22 23 23

(5, 30) 10−5 36 42 0 34 36 35

10−6 36 42 0 34 36 35

10−7 36 42 0 34 36 35

10−8 34 42 0 34 36 35
(5, 40) 10−5 44 47 1 44 47 45

10−6 44 47 0 44 47 45

10−7 44 47 0 44 47 45

10−8 43 47 0 44 47 45
(5, 50) 10−5 47 47 2 45 45 45

10−6 47 47 2 45 45 45

10−7 47 47 0 45 45 45

10−8 46 47 0 45 45 45
(5, 20) 10−9 0 19 0 22 23 23

10−10 0 19 0 22 23 23
10−11 0 19 0 22 23 19

10−12 0 18 0 22 22 17
(5, 30) 10−9 8 42 0 34 36 35

10−10 1 42 0 34 36 35

10−11 0 42 0 34 36 33

10−12 0 42 0 34 34 29
(5, 40) 10−9 3 47 0 44 47 45

10−10 2 47 0 44 47 45

10−11 1 47 0 44 47 44

10−12 0 46 0 44 44 36
(5, 50) 10−9 5 47 0 45 45 45

10−10 2 47 0 45 45 45

10−11 0 47 0 45 45 45

10−12 0 47 0 45 45 37
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worst on the FSV problem. In fact, it was almost useless. Moreover, although 
the steepest-descent method employed in [30] was not bad at obtaining low-
precision solutions with � ∈ {10−5, 10−6, 10−7, 10−8} , it had difficulty obtaining 
high-precision solutions with � ∈ {10−9, 10−10, 10−11, 10−12} . The remaining 
four sub-algorithms easily obtained high-precision solutions, with the 

Table 6  Number of successes from 50 pairs of random instances and random initial points for the �
1
 

minimization model (24) and n = 10

(n, m) � Steepest-
descent

Barzilai-
Borwein

Conjugate-
gradient

Trust-regions BFGS ARC 

(10, 60) 10−5 24 28 0 28 28 25

10−6 24 28 0 28 28 25

10−7 24 28 0 28 28 25

10−8 23 28 0 28 28 25
(10, 80) 10−5 39 37 1 40 39 40

10−6 39 37 0 40 39 40
10−7 39 37 0 40 39 40
10−8 39 37 0 40 39 40

(10, 100) 10−5 45 48 3 45 43 41

10−6 45 48 0 45 43 41

10−7 45 48 0 45 43 41

10−8 45 48 0 45 43 41
(10, 120) 10−5 44 46 1 44 44 43

10−6 44 46 0 44 44 43

10−7 44 46 0 44 44 43

10−8 44 46 0 44 44 43
(10, 60) 10−9 3 28 0 28 28 25

10−10 0 28 0 28 28 25

10−11 0 28 0 28 28 22

10−12 0 28 0 28 27 12
(10, 80) 10−9 5 37 0 40 39 40

10−10 0 37 0 40 39 40
10−11 0 37 0 40 39 39

10−12 0 37 0 40 37 30
(10, 100) 10−9 13 48 0 45 43 41

10−10 2 48 0 45 43 41

10−11 0 48 0 45 43 40

10−12 0 48 0 45 43 37
(10, 120) 10−9 14 46 0 44 44 43

10−10 0 46 0 44 44 43

10−11 0 46 0 44 44 43

10−12 0 46 0 44 43 40
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Barzilai-Borwein method performing the best in most occasions. Combined with 
the results in Sect. 4, this shows that in practice, the choice of sub-algorithm in 
the Riemannian smoothing method (Algorithm 2) is highly problem-dependent. 
For the other smoothing functions in Table 1, we obtained similar results as in 
Tables 5 and 6.

5.2  Robust low‑rank matrix completion

Low-rank matrix completion consists of recovering a rank-r matrix M of size m × n 
from only a fraction of its entries with r ≪ min(m, n) . The situation in robust low-rank 
matrix completion is one where only a few observed entries, called outliers, are per-
turbed, i.e.,

where M0 is the unperturbed original data matrix of rank r and S is a sparse matrix. 
This is a case of adding non-Gaussian noise for which the traditional �2 minimiza-
tion model,

is not well suited to recovery of M0 . Here, Mr ∶= {X ∈ ℝm×n ∣ rank(X) = r} 
is a fixed rank manifold, Ω denotes the set of indices of observed entries, and 
PΩ ∶ ℝm×n → ℝm×n is the projection onto Ω , defined as

In [32], the authors try to solve

because the sparsity-inducing property of the �1 norm leads one to expect exact 
recovery when the noise consists of just a few outliers.

In all of the experiments, the problems were generated in the same way as in [32]. In 
particular, after picking the values of m, n, r, we generated the ground truth U ∈ ℝm×r , 
V ∈ ℝn×r with independent and identically distributed (i.i.d.) Gaussian entries of zero 
mean and unit variance and M ∶= UV⊤ . We then sampled k ∶= �r(m + n − r) observed 
entries uniformly at random, where � is the oversampling factor. In our experiments, we 
set � = 5 throughout. We chose the initial points X0 by using the rank-r truncated SVD 
decomposition of PΩ(M).

Regarding the setting of our Algorithm  2, we tested all combinations of the five 
smoothing functions in Table 1 and six sub-algorithms mentioned before (30 cases in 
total). We set �0 = 100 and chose an aggressive value of � = 0.05 for reducing � , as in 
[32]. The stopping criterion of the loop of the sub-algorithm was set to a maximum of 
40 iterations or the gradient tolerance (23), whichever was reached first. We monitored 

M = M0 + S,

min
X∈Mr

‖‖PΩ(X −M)‖‖2

Zij
PΩ

⟼

{
Zij if (i, j) ∈ Ω

0 if (i, j) ∉ Ω.

min
X∈Mr

‖‖PΩ(X −M)‖‖1,
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the iterations Xk through the root mean square error (RMSE), which is defined as the 
error on all the entries between Xk and the original low-rank matrix M0 , i.e.,

5.2.1  Perfect low‑rank matrix completion

As in [32], we first tested all the methods on a simple perfect matrix M (without any 
outliers) of size 5000 × 5000 and rank 10. The results are shown in Figure 1. We can 
see that the choice of smoothing function does not have much effect on numerical 
performance. In terms of the number of iterations ((a)–(e)), our Algorithm 2 inher-
its the convergence of its sub-algorithm at least Q-superlinearly when trust regions 
or ARC are used. But the single iteration cost of trust regions and ARC is high; 
they are not efficient in terms of time. Specifically, the conjugate-gradient method 
employed in [32] stagnates at lower precision. Overall, Barzilai-Borwein performed 
best in terms of time and accuracy.

RMSE
�
Xk,M0

�
∶=

�∑m

i=1

∑n

j=1

�
Xk,ij −M0,ij

�2
mn

.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Fig. 1  Perfect low-rank matrix completion of a rank-10 5000 × 5000 matrix without any outliers using 
different smoothing functions in Table 1. a–e comprise the running iteration comparison; f–j comprise 
the time comparison
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5.2.2  Low‑rank matrix completion with outliers

Given a 500 × 500 matrix for which we observed the entries uniformly at random 
with an oversampling � of 5, we perturbed 5% of the observed entries by adding 
noise to them in order to create outliers. The added item was a random variable 
defined as O = S±1 ⋅N(�N , �

2
N
) where S±1 is a random variable with equal probabil-

ity of being equal to +1 or −1 , while N(�N , �
2
N
) is a Gaussian random variable of 

mean �N and variance �2
N

.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 2  Low-rank matrix completion with outliers for two rank-10 500 × 500 matrices by using 
different smoothing functions in Table 1. a–j corresponds to one matrix with outliers created by using 
�
N
= �

N
= 0.1 , while k–t corresponds to the other with outliers created by using �

N
= �

N
= 1 . a–e and 

k–o comprise the running iteration comparison; f–j and p–t comprise the time comparison
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Figure  2 reports the results of two 500 × 500 instances with outliers generated 
using �N = �N = 0.1 and �N = �N = 1 . Again, we can see that the choice of smooth-
ing function does not have much effect. In most cases, BFGS and trust regions were 
better than the other methods in terms of number of iterations, and BFGS was the 
fastest. Furthermore, the conjugate-gradient method employed in [32] still stagnated 
at solutions with lower precision, approximately 10−6 , while steepest descent, BFGS, 
and trust regions always obtained solutions with at least 10−8 precision.

(a) f̃1 (b) f̃2 (c) f̃3 (d) f̃4

(e) f̃5 (f) f̃1 (g) f̃2 (h) f̃3

(i) f̃4 (j) f̃5 (k) f̃1 (l) f̃2

(m) f̃3 (n) f̃4 (o) f̃5 (p) f̃1

(q) f̃2 (r) f̃3 (s) f̃4 (t) f̃5

Fig. 3  Low-rank matrix completion with outliers for two rank-10 5000 × 5000 matrices by using 
different smoothing functions in Table 1. a–j corresponds to one matrix with outliers created by using 
�
N
= �

N
= 0.1 , while k–t corresponds to the other with outliers created by using �

N
= �

N
= 1 . a–e and 

k–o comprise the running iteration comparison; f–j and p–t comprise the time comparison
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Next, we ran the same experiment on larger 5000 × 5000 matrices, with 5% 
outliers. Figure 3 illustrates the results of these experiments, with �N = �N = 0.1 and 
�N = �N = 1 . In most cases, trust regions still outperformed the other methods in terms 
of number of iterations, while BFGS performed poorly. Barzilai-Borwein and the 
conjugate-gradient method were almost as good in terms of time.

6  Concluding remarks

We examined the problem of finding a CP factorization of a given completely 
positive matrix and treated it as a nonsmooth Riemannian optimization problem. 
To this end, we studied a general framework of Riemannian smoothing for Rie-
mannian optimization. The numerical experiments clarified that our method can 
compete with other efficient CP factorization methods, in particular on large-
scale matrices.

Let us we summarize the relation of our approach to the existing CP factorization 
methods. Groetzner and Dür [18] and Chen et al. [19] proposed different methods to 
solve (FeasCP). Boţ and Nguyen [20] tried to solve another model (2). However, the 
methods they used do not belong to the Riemannian optimization techniques, but are 
rather Euclidean ones, since they treated the set O(r) ∶= {X ∈ ℝr×r ∶ X⊤X = I} as 
a usual constraint in Euclidean space. By comparison, we recognize the existence of 
manifolds, namely, the Stiefel manifold M = O(r) , and use optimization techniques 
specific to them. This change in perspective suggests the possibility of using the rich 
variety of Riemannian optimization techniques. As the experiments in Sect. 4 show, 
our Riemannian approach is faster and more reliable than the Euclidean methods.

In the future, we plan to extend Algorithm 2 to the case of general manifolds 
and, particularly, to quotient manifolds. This application is believed to be possi-
ble, although effort should be put into establishing analogous convergence results. 
In fact, convergence has been verified in a built-in example in Manopt 7.0 [40]: 
robust_pca.m computes a robust version of PCA on data and optimizes a 
nonsmooth function over a Grassmann manifold. The nonsmooth term consists of 
the l2 norm, which is not squared, for robustness. In robust_pca.m, Riemann-
ian smoothing with a pseudo-Huber loss function is used in place of the l2 norm.

As in the other numerical methods, there is no guarantee that Algorithm 2 will 
find a CP factorization for every A ∈ CPn . It follows from Proposition 2.7 that 
A ∈ CPn if and only if the global minimum of OptCP, say t, is such that t ⩽ 0 . 
Since our methods only converge to a stationary point, Algorithm 2 provides us 
with a local minimizer at best. We are looking forward to finding a global mini-
mizer of OptCP in our future work.

Supplementary information The online version contains supplementary material available at (https:// doi. 
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