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Abstract
Difference of Convex (DC) optimization problems have objective functions that are 
differences between two convex functions. Representative ways of solving these 
problems are the proximal DC algorithms, which require that the convex part of the 
objective function have L-smoothness. In this article, we propose the Bregman Prox-
imal DC Algorithm (BPDCA) for solving large-scale DC optimization problems 
that do not possess L-smoothness. Instead, it requires that the convex part of the 
objective function has the L-smooth adaptable property that is exploited in Bregman 
proximal gradient algorithms. In addition, we propose an accelerated version, the 
Bregman Proximal DC Algorithm with extrapolation (BPDCAe), with a new restart 
scheme. We show the global convergence of the iterates generated by BPDCA(e) to 
a limiting critical point under the assumption of the Kurdyka-Łojasiewicz property 
or subanalyticity of the objective function and other weaker conditions than those 
of the existing methods. We applied our algorithms to phase retrieval, which can 
be described both as a nonconvex optimization problem and as a DC optimization 
problem. Numerical experiments showed that BPDCAe outperformed existing Breg-
man proximal-type algorithms because the DC formulation allows for larger admis-
sible step sizes.

Keywords  Difference-of-convex optimization · Nonconvex optimization · 
Nonsmooth optimization · Bregman proximal DC algorithms · Bregman distances · 
Kurdyka-Łojasiewicz inequality
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1  Introduction

We are interested in solving Difference of Convex (DC) optimization problems:
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where f1 and f2 are convex functions on ℝ d , and C is the closure of C which is a 
nonempty, convex, and open set. Note that the function f1 − f2 is not always convex. 
Also, g may be nonsmooth, such as the �1-norm ‖x‖1 in [8, 20, 29], or alternatively, 
f2 may be nonsmooth [16]. Some interesting examples of (P) can be found in [28]. 
Although we will place some assumptions on C, it can be regarded as ℝ d for sim-
plicity. Applications of DC optimization are summarized in [13, 17, 26].

The DC Algorithm (DCA) (see for instance [17]) is a well-known iterative 
method for solving the DC optimization problems (P) . At each iteration, its compu-
tational burden mainly depends on the resolution of the subproblem,

where �k ∈ �cf2(x
k) ∶= {� ∈ ℝ

d � f2(y) − f (xk) − ⟨�, y − xk⟩ ≥ 0,∀y ∈ ℝ
d} is a 

(classical) subgradient of f2 at xk ∈ C . Solving subproblem (1) may be computation-
ally demanding unless f1 and g have simple structure or (P) is small-scale. When g is 
convex, the proximal DC Algorithm (pDCA) (see for instance [28]) is an alternative 
method of solving large-scale DC optimization problems. However, to guarantee 
global convergence of its iterates to a critical point, f1 needs to be L-smooth; i.e., its 
gradient needs to be globally Lipschitz continuous. Each step of pDCA is given by

where �k ∈ �cf2(x
k) , xk ∈ C , 𝜆 > 0 satisfies 0 < 𝜆L < 1 , and ‖ ⋅ ‖ denotes the Euclid-

ean norm. Since 𝜆 (< 1∕L) plays the role of a step size, finding a larger upper bound 
1∕L , i.e., finding a smaller L, is of fundamental importance to achieving fast con-
vergence. Wen et al.[28] proposed the proximal DC Algorithm with extrapolation 
(pDCAe) to accelerate pDCA with the extrapolation technique, which is used, for 
instance, in the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) of Beck 
and Teboulle [4] and in the Nesterov’s extrapolation technique [21, 22].

Bolte et al.[8], who incorporated the kernel generating distance (function) h and Breg-
man distances [9] into the algorithm framework, came up with the notion of the L-smooth 
adaptable property (see also [2]). This property is less restrictive than L-smoothness. A 
variant of the Bregman Proximal Gradient algorithm (BPG) proposed by Mukkamala et 
al.[20] iteratively estimates a small L, while Zhang et al.[29] proposed the Bregman Proxi-
mal Gradient algorithm with extrapolation (BPGe), which combines BPG with a line 
search step for extrapolating parameters.

In this paper, we propose two new algorithms, namely, the Bregman Proximal 
Difference of Convex Algorithm (BPDCA) and the Bregman Proximal Difference 
of Convex Algorithm with extrapolation (BPDCAe), which are inspired by pDCA(e) 
and BPG(e). These novel algorithms combine pDCA(e) with the Bregman distances. 
In the subproblem of BPDCA(e), the use of Bregman distances guarantees the accu-
racy of a linear approximation of f1 − f2.

(P) min
{
� (x) ∶= f1(x) − f2(x) + g(x) || x ∈ C

}
,

(1)xk+1 = argmin
x∈C

�
f1(x) − ⟨�k, x − xk⟩ + g(x)

�
,

(2)xk+1 = argmin
x∈C

�
g(x) + ⟨∇f1(xk) − �k, x − xk⟩ + 1

2�
‖x − xk‖2

�
,
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The novelty of our contributions can be better understood by comparing them with 
the existing work. As already mentioned, Bregman distances allow us to extend the class 
of functions to be minimized f1 from L-smooth in pDCAe [28] to the larger class of 
L-smooth adaptable pairs of functions (f1, h) . In addition, the function g does not need to 
be convex in the case of BPDCA. By assuming that either f2 or g are differentiable and 
that their gradients are locally Lipschitz continuous, the iterates of BPDCA(e) converge 
globally to a limiting stationary point (Theorems 2 and 7) or a limiting critical point (The-
orems 3 and 8), where the definitions of these convergent points are given in Definition 6. 
This means that either g or f2 can be nonsmooth.

Compared with BPG-type algorithms [8, 20, 29], BPDCA(e) well exploits the struc-
ture of the objective function. When applying these BPG-type algorithms to solve prob-
lem (P) , we decompose � into two functions. There are two naive ways to decompose � . 
First, we consider the decomposition � = f1 + (g − f2) to apply BPG. In this case, BPG 
solves its subproblem min{g(x) − f2(x) + ⟨∇f1(xk), x − xk⟩ + 1

�
Dh(x, x

k)} at the kth iter-
ation, where Dh is the Bregman distance associated with a kernel generating distance h 
(see Definition 2) and 𝜆 < 1∕L is a positive parameter. In general, it is difficult to effi-
ciently solve it because f2 often does not have simple structure such as separability. This 
fact is also true even if g is convex and separable, simultaneously. With BPDCA, we only 
need to solve its subproblem min{g(x) + ⟨∇f1(xk) − �k, x − xk⟩ + 1

�
Dh� (x, x

k)} , where 
�k ∈ �cf2(x

k) . If g is additionally convex, the subproblem becomes convex and hence is 
often efficiently solved. Moreover, if g and h are also separable, the subproblem is reduced 
to d independent one-dimensional convex optimization problems. Even without separa-
bility of h, it often has closed-form solution formulae as we mentioned in Sect. 5. As 
an alternative way of decomposition of � , we consider � = (f1 − f2) + g to apply BPG. 
In this case, to guarantee global convergence, the L-smooth adaptability of (f1 − f2, h) is 
required (see Definition 3). Meanwhile, for the global convergence of BPDCA(e), the L′
-smooth adaptability of (f1, h�) is required. Comparing these constants, L′ ≤ L in general, 
and then, we can expect substantial decrease in the objective function at each iteration 
(Lemma 5 and [8, Lemma 4.1]). This fact has dramatic consequences in practice, as we 
found in numerical experiments on phrase retrieval (Sect. 5.1).

The convergence of our algorithms and the monotonicity of the objective function are 
based on standard assumptions. Our new restart scheme (Sect. 3.2) plays an important 
role in guaranteeing the non-increasing property of the objective functions of BPDCAe 
without the need for a line search, as in [29]. We show global convergence under local 
Lipschitz continuity of the gradients and the Kurdyka-Łojasiewicz property or subana-
lyticity of the objective function. Additionally, we evaluated the rates of convergence of 
BPDCA(e).

To evaluate the performance of BPDCA(e), we applied them to phase retrieval, a well-
known application in nonconvex optimization. Phase retrieval arises in many fields of sci-
ence and engineering, such as X-ray crystallography and image processing [10, 24]. It 
can be formulated as a nonconvex optimization problem or DC optimization problem (P) , 
such as in [14]. It cannot be solved via pDCA or proximal algorithms, since the func-
tion we want to minimize is not L-smooth. When we formulated phase retrieval as a DC 
optimization problem, we obtained much smaller L-smooth adaptable parameters than 
the existing ones [8, Lemma 5.1], [20]. Thus, our algorithms outperformed BPG(e) in 
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our numerical experiment. Further experiments showed that, under the Gaussian model, 
BPDCAe had a higher success rate of phrase retrieval than that of Wirtinger flow [10]. 
Although the kernel generating distance h we utilized does not satisfy Assumption  4 
(i), the sequences generated by BPDCA(e) converged in the numerical experiments. 
Therefore, we conjecture that all convergence analyses can be carried out with weaker 
conditions.

This paper is organized as follows. Section  2 summarizes notions such as the 
limiting subdifferential, the Bregman distances, the L-smooth adaptable property, 
the Kurdyka-Łojasiewicz property, and the subanalytic functions. Section 3 intro-
duces our Bregman proximal-type algorithms under the assumption that (f1, h) has 
an L-smooth adaptable property. Section 4 (and Appendix A) establishes the global 
convergence of BPDCA(e) to a limiting stationary point or a limiting critical point 
of the problem (P) and analyzes its rate of convergence. Section 5 derives small val-
ues for the constant L and compares the performance of our algorithms with that of 
BPG(e). Section 6 summarizes our contributions and discusses future work.

2 � Preliminaries

Here, we review the important notions we will need in the subsequent sections.

2.1 � Subdifferentials

Definition 1  (Limiting Subdifferential [23]) For a proper and lower semicontinuous 
function f ∶ ℝ

d
→ (−∞,+∞] , the limiting subdifferential [23] of f at x ∈ dom f  is 

defined by

where xk
f
�����→ x means xk → x and f (xk) → f (x).

Note that when f is convex, the limiting subdifferential coincides with the (classical) 
subdifferential [23, Proposition 8.12], that is, �f (x) = �cf (x) for all x ∈ ℝ

d.

2.2 � Bregman distances

First, we define kernel generating distances and Bregman distances.

Definition 2  (Kernel Generating Distances [8] and Bregman Distances [9]) Let 
C be a nonempty, convex, and open subset of ℝ d . Associated with C, a function 
h ∶ ℝ

d
→ (−∞,+∞] is called a kernel generating distance if it meets the following 

conditions: 

�f (x) =

�
� ∈ ℝ

d �� ∃xk
f
�����→ x, �k → � such that lim inf

y→xk ,y≠xk

f (y) − f (xk) − ⟨�k, y − xk⟩
‖y − xk‖

≥ 0

�
,
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	 (i)	 h is proper, lower semicontinuous, and convex, with dom h ⊂ C and 
dom �h = C.

	 (ii)	 h is C1 on int dom h = C.

We denote the class of kernel generating distances by G(C) . Given h ∈ G(C) , the 
Bregman distance Dh ∶ dom h × int dom h → ℝ + is defined by

From the gradient inequality, h is convex if and only if Dh(x, y) ≥ 0 for any 
x ∈ dom h and y ∈ int dom h . When h is a strictly convex function, the equality 
holds if and only if x = y . When h =

1

2
‖ ⋅ ‖2 , Dh(x, y) =

1

2
‖x − y‖2 , which is the 

squared Euclidean distance.
In addition, the Bregman distances satisfy the three-point identity [8],

for any y, z ∈ int dom h , and x ∈ dom h.

2.3 � Smooth adaptable functions

Now let us define the notion of L-smooth adaptable.

Definition 3  (L-smooth adaptable [8]) Consider a pair of functions (f, h) satisfying 
the following conditions: 

	 (i)	 h ∈ G(C),
	 (ii)	 f ∶ ℝ

d
→ (−∞,+∞] is a proper and lower semicontinuous function with 

dom h ⊂ dom f  , which is C1 on C = int dom h.

The pair (f, h) is called L-smooth adaptable (L-smad) on C if there exists L > 0 such 
that Lh − f  and Lh + f  are convex on C.

Since our focus is on DC optimization, the function f1 in (P) is always convex. 
Thus, it will be enough to verify that Lh − f1 is convex on C to have (f1, h) L-smad 
on C.

From the L-smooth adaptable property comes the Descent Lemma [8].

Lemma 1  (Full Extended Descent Lemma [8]) A pair of functions (f, h) is L-smad 
on C = int dom h if and only if:

Dh(x, y) ∶= h(x) − h(y) − ⟨∇h(y), x − y⟩.

(3)Dh(x, z) − Dh(x, y) − Dh(y, z) = ⟨∇h(y) − ∇h(z), x − y⟩,

�f (x) − f (y) − ⟨∇f (y), x − y⟩� ≤ LDh(x, y), ∀x, y ∈ int dom h.
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2.4 � Kurdyka‑Łojasiewicz property and subanalytic functions

Given 𝜂 > 0 , let �� denote the set of all continuous concave functions 
� ∶ [0, �) → ℝ + that are C1 on (0, �) with positive derivatives and which satisfy 
�(0) = 0 . Here, we introduce the Kurdyka-Łojasiewicz property [7, 15], which 
we need when analyzing our algorithms:

Definition 4  (Kurdyka-Łojasiewicz property) Let f ∶ ℝ
d
→ (−∞,+∞] be a proper 

and lower semicontinuous function. 

	 (i)	 f is said to have the Kurdyka-Łojasiewicz (KL) property at x̂ ∈ dom 𝜕f  if there 
exist � ∈ (0,+∞] , a neighborhood U of x̂ , and a function � ∈ �� such that the 
following inequality holds: 

	 (ii)	 If f has the KL property at each point of dom �f  , then it is called a KL function.

Lemma 2  (Uniformized KL property [7]) Suppose that f ∶ ℝ
d
→ (−∞,+∞] is a 

proper and lower semicontinuous function and let �  be a compact set. If f is con-
stant on �  and has the KL property at each point of �  , then there exist positive sca-
lars 𝜖, 𝜂 > 0 , and � ∈ �� such that

for any x̂ ∈ 𝛤  and any x satisfying dist (x,𝛤 ) < 𝜖 and f (x̂) < f (x) < f (x̂) + 𝜂.

Next, we describe subanalytic functions.

Definition 5  (Subanalyticity [6]) 

	 (i)	 A subset A of ℝ d is called semianalytic if each point of ℝ d admits a neighbor-
hood V for which A ∩ V  assumes the following form: 

where the functions fij, gij ∶ V → ℝ are real-analytic for all 1 ≤ i ≤ p, 1 ≤ j ≤ q.
	 (ii)	 The set A is called subanalytic if each point of ℝ d admits a neighborhood V 

such that 

where B is a bounded semianalytic subset of ℝ d × ℝ
m for some m ≥ 1.

	 (iii)	 A function f ∶ ℝ
d
→ (−∞,+∞] is called subanalytic if its graph is a suba-

nalytic subset of ℝ d × ℝ.

(4)𝜙�(f (x) − f (x̂)) ⋅ dist (0, 𝜕f (x)) ≥ 1,

∀x ∈ U ∩ {x ∈ ℝ
d ∣ f (x̂) < f (x) < f (x̂) + 𝜂}.

𝜙�(f (x) − f (x̂)) ⋅ dist (0, 𝜕f (x)) ≥ 1,

p⋃

i=1

q⋂

j=1

{
x ∈ V || fij(x) = 0, gij(x) > 0

}
,

A ∩ V =
{
x ∈ ℝ

d || (x, y) ∈ B
}
,



899

1 3

New Bregman proximal type algorithms for solving DC optimization…

For instance, given a subanalytic set S, dist (x, S) is subanalytic, and every ana-
lytic function is subanalytic. Note that subanalytic functions are KL functions. 
See [5, 6] for further properties of subanalyticity.

3 � Proposed methods: Bregman Proximal DC Algorithms

We place the following assumptions on the DC optimization problem (P) . Recall 
that C = int dom h.

Assumption 1 

	 (i)	 h ∈ G(C) with C = dom h.
	 (ii)	 f1 ∶ ℝ

d
→ (−∞,+∞] is proper and convex with dom h ⊂ dom (f1 + g) , which 

is C1 on C.
	 (iii)	 f2 ∶ ℝ

d
→ (−∞,+∞] is proper and convex.

	 (iv)	 g ∶ ℝ
d
→ (−∞,+∞] is proper and lower semicontinuous with dom g ∩ C ≠ �.

	 (v)	 v(P) ∶= inf{𝛹 (x) | x ∈ C} > −∞.
	 (vi)	 For any 𝜆 > 0 , �g + h is supercoercieve, that is, 

Let x ∈ dom (f1 + g) , then f2(x) ≤ g(x) + f1(x) − v(P) < +∞ due to Assump-
tion 1 (v). Thus, x ∈ dom f2 , i.e., dom (f1 + g) ⊂ dom f2 . From Assumption 1 (ii), 
we have C ⊂ dom (f1 + g) ⊂ dom f2 . Note that Assumption 1 (iv) holds when C is 
compact [8].

3.1 � Bregman Proximal DC Algorithm (BPDCA)

To obtain the Bregman Proximal DC Algorithm (BPDCA) mapping for some 
𝜆 > 0 , we recast the objective function of (P) via a DC decomposition:

and, given x ∈ C = int dom h and � ∈ �cf2(x) , define the mapping,

Additionally, we put the following assumption on (P).

Assumption 2  For all x ∈ C and 𝜆 > 0 , we have

lim
‖u‖→∞

�g(u) + h(u)

‖u‖ = ∞.

� (u) = f1(u) − f2(u) + g(u) =
(
1

�
h(u) + g(u)

)
−
(
1

�
h(u) − f1(u) + f2(u)

)
,

T�(x) ∶= argmin
u∈C

�
g(u) + ⟨∇f1(x) − �, u − x⟩ + 1

�
Dh(u, x)

�
.
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Note that Assumption  2 is not so restrictive because it holds when C ≡ ℝ
d . 

Under Assumptions 1 and 2, we have the following lemma [8, Lemma 3.1].

Lemma 3  Suppose that Assumptions 1 and 2 hold, and let x ∈ C = int dom h . Then, 
the set T�(x) is a nonempty and compact subset of C for any 𝜆 > 0.

Note that when h is strictly convex, T�(x) is a singleton. Also, when g and h are 
separable, this mapping is easily computable since T�(x) can be decomposed into 
a single-valued optimization problem, and often has a closed-form solution. For 
instance, when h(x) = 1

2
‖x‖2 , for g(x) = ‖x‖1 , T�(x) becomes the soft-thresholding 

operator, or for g(x) = ‖x‖0 , the hard-thresholding operator. Other well-known 
examples where this mapping has a closed-form solution are when we use an appro-
priate h such as Burg entropy [2], Shannon entropy [3], or h(x) = 1

4
‖x‖4 + 1

2
‖x‖2 [8] 

for the corresponding g. Note that this h(x) is not separable. For further examples, 
see [12, Table 2.1].

The Bregman Proximal DC Algorithm (BPDCA), which we are proposing, is 
listed as Algorithm 1.

As a recurrent example, Dh(x, x
k) =

1

2
‖x − xk‖2 when h(x) = 1

2
‖x‖2 . In this case, 

if L is regarded as the Lipschitz constant for the gradient of f1 , subproblem  (5) 
reduces to subproblem (2). If f2 is C1 on C and the pair (f1 − f2, h) is L-smad, BPDCA 
reduces to BPG [8].

3.2 � Bregman Proximal DC Algorithm with extrapolation (BPDCAe)

Algorithm 2, which we are proposing, is an acceleration of BPDCA that uses the 
extrapolation technique [4, 21, 22] to solve the DC optimization problem (P).

T𝜆(x) ⊂ C, ∀x ∈ C.
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When �k ≡ 0 for all k ≥ 0 , BPDCAe reduces to BPDCA. Here, we prefer the 
popular choice for the coefficients �k (and �k ) given in [28] for acceleration. 
Accordingly, (6) guarantees that {𝛽k}∞k=0 ⊂ [0, 1) and supk≥0 𝛽k < 1 . These prop-
erties are needed to prove global subsequential convergence of the iterates (see 
Theorem  6 (ii)). Algorithm  2 introduces a new adaptive restart scheme, which 
resets �k and �k whenever

is satisfied for a fixed � ∈ [0, 1) . This adaptive restart scheme guarantees the non-
increasing property for BPDCAe (see Lemma 6). In addition, we can enforce this 
resetting every K iterations for a given positive integer K. In our numerical experi-
ments, we set {�k}∞k=0 as both the fixed and the adaptive restart schemes.

When C = int dom h = ℝ
d , yk always stays in C. However, when C ≠ ℝ

d and 
xk + �k(x

k − xk−1) ∉ C , Algorithm  2 enforces �k = 0 and BPDCAe is not accel-
erated at the kth iteration. This operation guarantees that yk always stays in C. 
In practice, however, the extrapolation technique may be valid and accelerates 
BPDCAe.

We define the following BPDCAe mapping for all x, y ∈ C = int dom h , and 
� ∈ (0, 1∕L):

where � ∈ �cf2(x) . Similarly to the case of BPDCA, we make an Assumption 3 and 
can prove Lemma 4 for S𝜆(x, y) ⊂ C.

(8)Dh(x
k, yk) > 𝜌Dh(x

k−1, xk),

S�(x, y) ∶= argmin
u∈C

�
g(u) + ⟨∇f1(y) − �, u − y⟩ + 1

�
Dh(u, y)

�
,



902	 S. Takahashi et al.

1 3

Assumption 3  For all x, y ∈ C and 𝜆 > 0 , we have

Lemma 4  Suppose that Assumptions  1 and 3 hold, and let x, y ∈ C = int dom h . 
Then, the set S�(x, y) is a nonempty and compact subset of C for any 𝜆 > 0.

4 � Convergence analysis

Throughout this section, we will assume that the pair of functions (f1, h) is L-smad 
on C.

4.1 � Properties of BPDCA

First, we show the decreasing property of BPDCA mapping for 0 < 𝜆L < 1 (the 
argument is adapted from [8, Lemma 4.1]).

Lemma 5  Suppose that Assumptions 1 and 2 hold. For any x ∈ C = int dom h and 
any x+ ∈ C = int dom h defined by

where � ∈ �cf2(x) and 𝜆 > 0 , it holds that

In particular, the sufficiently decreasing property in the objective function value � is 
ensured when 0 < 𝜆L < 1.

Proof  From the global optimality of x+ by taking u = x ∈ int dom h and � ∈ �cf2(x) , 
we obtain

Invoking the full Extended Descent Lemma (Lemma 1) for f1 , the definition of the 
subgradient for f2 , and the above inequality, we have

for � = f1 − f2 + g . The last statement follows with 0 < 𝜆L < 1 . 	�  ◻

S𝜆(x, y) ⊂ C, ∀x, y ∈ C.

(9)x+ ∈ argmin
u∈C

�
g(u) + ⟨∇f1(x) − �, u − x⟩ + 1

�
Dh(u, x)

�
,

(10)�� (x+) ≤ �� (x) − (1 − �L)Dh(x
+, x).

g(x+) + ⟨∇f1(x) − �, x+ − x⟩ + 1

�
Dh(x

+, x) ≤ g(x).

f1(x
+) − f2(x

+) + g(x+) ≤ f1(x) − f2(x) + ⟨∇f1(x) − �, x+ − x⟩ + LDh(x
+, x) + g(x+)

≤ f1(x) − f2(x) + LDh(x
+, x) + g(x) −

1

�
Dh(x

+, x)

= f1(x) − f2(x) + g(x) −
�
1

�
− L

�
Dh(x

+, x),
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Proposition 1 follows immediately from Lemma 5, as in [8].

Proposition 1  Suppose that Assumptions  1 and 2 hold. Let {xk}∞
k=0

 be a sequence 
generated by BPDCA with 0 < 𝜆L < 1 . Then, the following statements hold: 

	 (i)	 The sequence {� (xk)}∞
k=0

 is non-increasing.
	 (ii)	

∑∞

k=1
Dh(x

k, xk−1) < ∞ ; hence, the sequence {Dh(x
k, xk−1)}∞

k=0
 converges to 

zero.
	 (iii)	 min1≤k≤n Dh(x

k, xk−1) ≤
�

n

(
� (x0)−�∗

1−�L

)
 , where 𝛹∗ = v(P) > −∞ (by Assumption 1 

(v)).

4.2 � Convergence analysis of BPDCA

Suppose that the following conditions hold.

Assumption 4 

	 (i)	 dom h = ℝ
d and h is �-strongly convex on ℝ d.

	 (ii)	 ∇h and ∇f1 are Lipschitz continuous on any bounded subset of ℝ d.
	 (iii)	 The objective function � is level-bounded; i.e., for any r ∈ ℝ , the lower level 

sets {x ∈ ℝ
d | � (x) ≤ r} are bounded.

Since C = int dom h = ℝ
d under Assumption  4 (i), Assumptions  2 and 3 are 

automatically fulfilled. For nonconvex functions, we use the limiting subdifferential 
[23] (Definition 1). Inspired by Fermat’s rule [23, Theorem 10.1], we define the lim-
iting critical points and the limiting stationary points of �.

Definition 6  We say that x̃ is a limiting critical point of (P) with C ≡ ℝ
d if

The set of all limiting critical points of (P) is denoted by X  . In addition, we say that 
x̃ is a limiting stationary point of (P) with C ≡ ℝ

d if

Although the limiting stationary points are sometimes called the limiting critical 
points in some papers, for example [7, Definition 1 (iv)], we distinguish these two 
terms. The reasons are the following: When � is convex, we call x̃ a stationary point 
if it satisfies 0 ∈ 𝜕c𝛹 (x̃) . Because (12) is its natural extension by replacing �c� with 
�� , we use the terminology “limiting stationary point” after [11, Definition 6.1.4]. 
We similarly name x̃ satisfying (11): When g is convex, we call x̃ a critical point 
if it satisfies 0 ∈ ∇f1(x̃) − 𝜕cf2(x̃) + 𝜕cg(x̃) . Because (11) is its natural extension by 
replacing �cg with �g , we use the terminology “limiting critical point.”

(11)0 ∈ ∇f1(x̃) − 𝜕cf2(x̃) + 𝜕g(x̃).

(12)0 ∈ 𝜕𝛹 (x̃).
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The limiting stationary point is a first-order necessary condition for the 
local optimality. This relation is known as the generalized Fermat’s rule [23, 
Theorem  10.1]. We can deduce 𝜕(g − f2)(x) ⊆ 𝜕g(x) − 𝜕cf2(x) from [19, Cor-
ollary 3.4]. Plugging it into [23, Corollary 10.9], it generally holds that 
𝜕𝛹 (x) ⊆ ∇f1(x) − 𝜕cf2(x) + 𝜕g(x) for all x ∈ ℝ

d . It implies the limiting critical 
point is weaker than the limiting stationary point. When f2 is C1 on ℝ d , it holds 
that �� (x) ≡ ∇f1(x) − ∇f2(x) + �g(x) from [23, Corollary 10.9] or [18, Proposition 
1.107 (ii)] and the definition of the limiting subdifferentials of f2 and g. Thus, 
every limiting critical point is a limiting stationary point when f2 is C1.

Next, using Lemma  5 and Proposition  1, we will show global subsequential 
convergence of the iterates to a limiting critical point of the problem (P) . We can 
easily see that Theorem 1 (i) holds from the level-boundedness of �  . Theorem 1 
(iii) and (iv) will play an essential role in determining the global convergence and 
the rate of convergence of BPDCA.

Theorem 1  (Global subsequential convergence of BPDCA) Suppose that Assump-
tions  1,  2, and 4 hold. Let {xk}∞

k=0
 be a sequence generated by BPDCA with 

0 < 𝜆L < 1 for solving (P) . Then, the following statements hold: 

	 (i)	 The sequence {xk}∞
k=0

 is bounded.
	 (ii)	 The sequence {�k}∞

k=0
 is bounded.

	 (iii)	 limk→∞ ‖xk+1 − xk‖ = 0.
	 (iv)	 Any accumulation point of {xk}∞

k=0
 is a limiting critical point of (P).

Proof  (i) From Proposition 1, we obtain � (xk) ≤ � (x0) for all k ∈ ℕ , which shows 
that {xk}∞

k=0
 is bounded from Assumption 4 (iii).

(ii) From Assumption  1 (ii),  4 (i), and the convexity of f2 , dom f2 = ℝ
d and 

�cf2(x
k) ≠ � . Suppose, for the sake of proof by contradiction, that {�k}∞

k=0
 is 

unbounded, i.e., ‖�k‖ → ∞ as k → ∞ . By the definition of the subgradients of con-
vex functions, we have that, for any y ∈ ℝ

d , 

Assume for a moment that ‖�k‖ ≠ 0 . Letting {dk}∞
k=0

 be the subsequence given by 
dk = �k∕‖�k‖ and substituting xk + dk = xk + �k∕‖�k‖ into y in (13), we obtain 

which is also true when ‖�k‖ = 0 by defining dk = 0 . By taking k → ∞ , we obtain 

(13)f2(y) ≥ f2(x
k) + ⟨�k, y − xk⟩.

f2(x
k + dk) ≥ f2(x

k) +
�
�k, dk

�
= f2(x

k) + ‖�k‖,

(14)lim sup
k→∞

‖�k‖ ≤ lim sup
k→∞

�
f2(x

k + dk) − f2(x
k)
�
.
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We can take a compact set S such that {xk + dk}∞
k=0

⊂ S , since {xk + dk}∞
k=0

 is 
bounded. For x̄ ∈ argmaxx∈S f2(x) , since f2 is continuous because of its convexity on 
ℝ

d and {xk}∞
k=0

 is bounded, it holds that 

for some value f̄2 ≤ f2(x
k), k ≥ 0 . (14) and (15) contradict to ‖�k‖ → ∞.

(iii) From (10), we obtain 

where the last inequality holds since h is a �-strongly convex function from Assump-
tion 4 (i). Summing the above inequality from k = 1 to ∞ , we obtain 

which shows that limk→∞ ‖xk+1 − xk‖ = 0.
(iv) Let x̃ be an accumulation point of {xk}∞

k=0
 and let {xkj} be a subsequence such 

that limj→∞ xkj = x̃ . Then, from the first-order optimality condition of subprob-
lem (5) under Assumption 2, we have 

Therefore, 

From the boundedness of {xkj} and the Lipschitz continuity of ∇h on a bounded sub-
set of ℝ d , there exists A0 > 0 such that 

Therefore, using ‖xkj+1 − xkj‖ → 0 , we obtain 

Note that the sequence {�kj} is bounded due to (ii). Thus, by taking the limit as 
j → ∞ or more precisely, its subsequence, we can assume without loss of generality 
that limj→∞ 𝜉kj =∶ 𝜉 exists, which belongs to 𝜕cf2(x̃) since f2 becomes continuous 
due to its convexity on ℝ d . Using this and (18), we can take the limit of (17). Set-
ting ‖xkj+1 − xkj‖ → 0 and invoking the lower semicontinuity of g and ∇f1 , we obtain 

(15)lim sup
k→∞

(
f2(x

k + dk) − f2(x
k)
)
≤ f2(x̄) − f̄2 < ∞,

(16)
� (xk−1) − � (xk) ≥

�
1

�
− L

�
Dh(x

k, xk−1)

≥

�
1

�
− L

�
�

2
‖xk − xk−1‖2,

�
1

𝜆
− L

� ∞�

k=1

𝜎

2
‖xk − xk−1‖2 ≤ 𝛹 (x0) − lim inf

n→∞
𝛹 (xn) ≤ 𝛹 (x0) − v(P) < ∞,

0 ∈ �g(xkj+1) + ∇f1(x
kj ) − �kj +

1

�

(
∇h(xkj+1) − ∇h(xkj )

)
.

(17)�kj +
1

�

(
∇h(xkj ) − ∇h(xkj+1)

)
∈ �g(xkj+1) + ∇f1(x

kj ).

����
1

�

�
∇h(xkj ) − ∇h(xkj+1)

�����
≤

A0

�
‖xkj+1 − xkj‖.

(18)
1

�

(
∇h(xkj ) − ∇h(xkj+1)

)
→ 0.
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𝜉 ∈ 𝜕g(x̃) + ∇f1(x̃) . Therefore, 0 ∈ 𝜕g(x̃) + ∇f1(x̃) − 𝜕cf2(x̃) , which shows that x̃ is a 
limiting critical point of (P) . 	�  ◻

We can estimate the objective value at an accumulation point from 
lim infj→∞ � (xkj ) and lim supj→∞ � (xkj ) . Consequently, we can prove that �  is con-
stant on the set of accumulation points of BPDCA.

Proposition 2  Suppose that Assumptions 1, 2, and 4 hold. Let {xk}∞
k=0

 be a sequence 
generated by BPDCA with 0 < 𝜆L < 1 for solving (P) . Then, the following state-
ments hold: 

	 (i)	 � ∶= limk→∞ � (xk) exists.
	 (ii)	 � ≡ � on � , where � is the set of accumulation points of {xk}∞

k=0
.

Proof  (i) From Assumption 1 (v) and Proposition 1 (i), the sequence {� (xk)}∞
k=0

 is 
bounded from below and non-increasing. Consequently, � ∶= limk→∞ � (xk) exists.

(ii) Take any x̂ ∈ 𝛺 , that is limj→∞ xkj = x̂ . From (5), it follows that 

From the above inequality and the fact that f1 is convex at xk , we obtain 

Substituting kj for k and limiting j to ∞ , we have, from Proposition 1 (ii), 

which provides lim supj→∞ 𝛹 (xkj ) ≤ 𝛹 (x̂) from the continuity of −f2 since f2 is con-
vex. Combining this and the lower semicontinuity of � yields 𝛹 (xkj ) → 𝛹 (x̂) =∶ 𝜁 
as j → ∞ . Since x̂ ∈ 𝛺 is arbitrary, we conclude that � ≡ � on � . 	�  ◻

To discuss the global convergence of BPDCA, we will suppose either of the 
following two assumptions.

Assumption 5  f2 is continuously differentiable on an open set N0 ⊂ ℝ
d that con-

tains the set of all limiting critical points of � , i.e., X  . Furthermore, ∇f2 is locally 
Lipschitz continuous on N0.

Assumption 6  g is differentiable on ℝ d and ∇g is locally Lipschitz continuous on an 
open set N0 ⊂ ℝ

d that contains the set of all limiting stationary points of −�.

g(xk) + ⟨∇f1(xk−1) − 𝜉k−1, xk − xk−1⟩ + 1

𝜆
Dh(x

k, xk−1)

≤ g(x̂) + ⟨∇f1(xk−1) − 𝜉k−1, x̂ − xk−1⟩ + 1

𝜆
Dh(x̂, x

k−1).

g(xk) + f1(x
k) ≤ g(x̂) + ⟨∇f1(xk−1) − 𝜉k−1, x̂ − xk⟩ + 1

𝜆
Dh(x̂, x

k−1) −
1

𝜆
Dh(x

k, xk−1)

+ f1(x̂) + ⟨∇f1(xk), xk − x̂⟩.

lim sup
j→∞

(
g(xkj ) + f1(x

kj )
)
≤ g(x̂) + f1(x̂),
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Assumption 5 is nonrestrictive because many functions in [28], including the f2 
in our numerical experiments, satisfy it. Thus, let us discuss the global convergence 
of Algorithm 1 under Assumption 5 by following the argument presented in [28]. 
Note that every limiting critical point is a limiting stationary point from the differen-
tiability of f2 under Assumption 5.

Theorem  2  (Global convergence of BPDCA under the local differentiability of 
f2 ) Suppose that Assumptions 1, 2, 4, and 5 hold and that � is a KL function. Let 
{xk}∞

k=0
 be a sequence generated by BPDCA with 0 < 𝜆L < 1 for solving (P) . Then, 

the following statements hold: 

	 (i)	 limk→∞ dist (0, �� (xk)) = 0.
	 (ii)	 The sequence {xk}∞

k=0
 converges to a limiting stationary point of (P) ; moreover, ∑∞

k=1
‖xk − xk−1‖ < ∞.

Proof  (i) Since {xk}∞
k=0

 is bounded and � is the set of accumulation points of {xk}∞
k=0

 , 
we have 

From Theorem  1 (iv), we also have 𝛺 ⊆ X  . Thus, for any 𝜇 > 0 , there exists 
k0 > 0 such that dist (xk,𝛺) < 𝜇 and xk ∈ N0 for any k ≥ k0 , where N0 is defined in 
Assumption 5. As for N0 , since � is compact from the boundedness of {xk}∞

k=0
 , by 

decreasing � , if needed, we can suppose without loss of generality that ∇f2 is glob-
ally Lipschitz continuous on N ∶= {x ∈ N0 ∣ dist (x,𝛺) < 𝜇}.

The subdifferential of � at xk for k ≥ k0 is

Moreover, considering the first-order optimality condition of subproblem  (5), we 
have that, for any k ≥ k0 + 1,

since f2 is C1 on N  and xk−1 ∈ N  for any k ≥ k0 + 1 . Using the above and (20), we 
see that

From the global Lipschitz continuity of ∇f1,∇f2 , and ∇h , there exists A1 > 0 such 
that

(19)lim
k→∞

dist (xk,�) = 0.

(20)�� (xk) = ∇f1(x
k) − ∇f2(x

k) + �g(xk).

1

�

(
∇h(xk−1) − ∇h(xk)

)
− ∇f1(x

k−1) + ∇f2(x
k−1) ∈ �g(xk),

1

�

(
∇h(xk−1) − ∇h(xk)

)
+ ∇f1(x

k) − ∇f1(x
k−1) + ∇f2(x

k−1) − ∇f2(x
k) ∈ �� (xk).

(21)dist (0, �� (xk)) ≤ A1‖xk − xk−1‖,
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where k ≥ k0 + 1 . From Theorem  1 (iii), we conclude that 
limk→∞ dist (0, �� (xk)) = 0.

(ii) From Theorem 1 (iv), it is sufficient to prove that {xk}∞
k=0

 is convergent. Here, 
consider the case in which there exists a positive integer k > 0 such that � (xk) = � . 
From Proposition 1 (i) and Proposition 2 (i), the sequence {� (xk)}∞

k=0
 is non-increas-

ing and converges to � . Hence, for any k̂ ≥ 0 , we have 𝛹 (xk+k̂) = 𝜁 . By recall-
ing (16), we conclude that there exists a positive scalar A2 such that 

From  (22), we obtain xk = xk+k̂ for any k̂ ≥ 0 , meaning that {xk}∞
k=0

 is finitely 
convergent.

Next, consider the case in which 𝛹 (xk) > 𝜁 for all k ≥ 0 . Since {xk}∞
k=0

 is 
bounded, � is a compact subset of dom ��  and � ≡ � on � from Proposition 2 
(ii). From Lemma  2 and since �  is a KL function, there exist a positive scalar 
𝜖 > 0 and a continuous concave function � ∈ �� with 𝜂 > 0 such that

for all x ∈ U , where

From  (19), there exists k1 > 0 such that dist (xk,𝛺) < 𝜖 for any k ≥ k1 . Since 
{� (xk)}∞

k=0
 is non-increasing and converges to � , there exists k2 > 0 such that 

𝜁 < 𝛹 (xk) < 𝜁 + 𝜂 for all k ≥ k2 . Taking k̄ = max{k0 + 1, k1, k2} , then {xk}k≥k̄ 
belongs to U. Hence, from (23), we obtain

Since � is a concave function, we see that for any k ≥ k̄,

where the second inequality holds from  (24) and the fact that {� (xk)}∞
k=0

 is non-
increasing, and the last inequality holds from  (22). From the above inequality 
and (21), we obtain

Taking the square root of (25) and using the inequality of the arithmetic and geomet-
ric means, we find that

(22)� (xk−1) − � (xk) ≥ A2‖xk − xk−1‖2, ∀k ∈ ℕ.

(23)��(� (x) − �) ⋅ dist (0, �� (x)) ≥ 1,

U =
{
x ∈ ℝ

d || dist (x,𝛺) < 𝜖
}
∩
{
x ∈ ℝ

d || 𝜁 < 𝛹 (x) < 𝜁 + 𝜂
}
.

(24)𝜙�(𝛹 (xk) − 𝜁) ⋅ dist (0, 𝜕𝛹 (xk)) ≥ 1, ∀k ≥ k̄.

�
�(� (xk) − � ) − �(� (xk+1) − � )

�
⋅ dist (0, �� (xk))

≥ ��(� (xk) − �) ⋅ dist (0, �� (xk)) ⋅
�
� (xk) − � (xk+1)

�

≥ � (xk) − � (xk+1)

≥ A2‖xk+1 − xk‖2,

(25)‖xk+1 − xk‖2 ≤
A1

A2

�
�(� (xk) − � ) − �(� (xk+1) − �)

�
‖xk − xk−1‖.
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This shows that

Summing (26) from k = k̄ to ∞ , we have

which implies that 
∑∞

k=1
‖xk − xk−1‖ < ∞ , i.e., the sequence {xk}∞

k=0
 is a Cauchy 

sequence. Thus, {xk}∞
k=0

 converges to a limiting critical point of (P) from Theorem 1 
(iv). Because every limiting critical point is a limiting stationary point from the dif-
ferentiability of f2 , {xk}∞k=0 converges to a limiting stationary point of (P) . 	�  ◻

Next, suppose that Assumption 6 holds instead of Assumption 5. Here, we can 
show the global convergence of BPDCA by referring to [16, Theorem 3.4]. We 
will use subanalyticity instead of the KL property in the proof.

Theorem  3  (Global convergence of BPDCA under the local differentiabil-
ity of g) Suppose that Assumptions 1, 2, 4, and 6 hold and that � is subanalytic. 
Let {xk}∞

k=0
 be a sequence generated by BPDCA with 0 < 𝜆L < 1 for solving (P) . 

Then, the sequence {xk}∞
k=0

 converges to a limiting critical point of (P) ; moreover, ∑∞

k=1
‖xk − xk−1‖ < ∞.

Proof  Since g is differentiable, g is continuous on ℝ d . Since the convexity of f1 and 
f2 implies their continuity, � is continuous on ℝ d.

Let {�k}∞
k=0

 on ℝ d be a sequence of subgradients of f2 . From Theorem 1 (i) and (ii), 
{xk}∞

k=0
 and {�k}∞

k=0
 are bounded. Let x̃ be a limiting stationary point of −� and B(x̃, 𝜖0) 

be an open ball with center x̃ and radius 𝜖0 > 0 . Since ∇g is locally Lipschitz continu-
ous, and Assumption 4 (ii) holds, for 𝜆 > 0 , there exist 𝜅0 > 0 and 𝜖0 > 0 such that

From Assumption  1 (v), −� is finite. In addition, by recalling the continuity and 
subanalyticity of −� on B(x̃, 𝜖0) , we can apply [6, Theorem 3.1] to the subanalytic 
function −� and obtain 𝜈0 > 0 and �0 ∈ [0, 1) such that

‖xk+1 − xk‖ ≤

�
A1

A2

�
�(� (xk) − �) − �(� (xk+1) − �)

�
⋅

√
‖xk − xk−1‖

≤
A1

2A2

�
�(� (xk) − � ) − �(� (xk+1) − �)

�
+

1

2
‖xk − xk−1‖.

(26)

1

2
‖xk+1 − xk‖ ≤

A1

2A2

�
�(� (xk) − �) − �(� (xk+1) − �)

�
+

1

2
‖xk − xk−1‖ − 1

2
‖xk+1 − xk‖.

∞�

k=k̄

‖xk+1 − xk‖ ≤
A1

A2

𝜙(𝛹 (xk̄) − 𝜁 ) + ‖xk̄ − xk̄−1‖ < ∞,

(27)
����
∇
�
g +

1

𝜆
h
�
(u) − ∇

�
g +

1

𝜆
h
�
(v)

����
≤ 𝜅0‖u − v‖, ∀u, v ∈ B(x̃, 𝜖0).
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where 𝜁 = 𝛹 (x̃).
Let � be the set of accumulation points of {xk}∞

k=0
 . Since � is compact, � can 

be covered by a finite number of B(x̃j, 𝜖j) with x̃j ∈ 𝛺 and 𝜖j > 0 , j = 1,… , p . From 
Theorem 1 (iv), x̃j ∈ 𝛺, j = 1,… , p are limiting critical points of (P) . Hence, (27) 
with 𝜅j > 0 and 𝜖j > 0 and (28) with 𝜈j > 0 and �j ∈ [0, 1) hold for j = 1,… , p . Let-
ting 𝜖 > 0 be a sufficiently small constant, we obtain

From  (19), there exists k1 > 0 such that dist (xk,𝛺) < 𝜖 for any k ≥ k1 ; hence, 
xk ∈

⋃p

j=1
B(x̃j, 𝜖j) for any k ≥ k1 . From Theorem  1 (iii), letting 𝜖 > 0 be a suffi-

ciently small constant, there exists k2 > 0 such that ‖xk − xk+1‖ ≤
𝜖

2
 for any k ≥ k2 . 

Therefore, redefining 𝜖, 𝜖j, j = 1,… , p and relabeling if necessary, we can assume 
without loss of generality that

where 𝜖 = minj=1,…,p 𝜖j and k̄ = max{k1, k2} , which implies 
xk ∈ B(x̃jk , 𝜖jk∕2), jk ∈ {1,… , p} and hence xk+1 ∈ B(x̃jk , 𝜖jk ) . Thus, from (27) and (28), 
we have

where � = maxj=1,…,p �j, � = maxj=1,…,p �j , and � = maxj=1,…,p �j . From (5), we find 
that

which implies

where we have used �(−� )(xk) = �cf2(x
k) − ∇f1(x

k) − ∇g(xk) , which comes from 
the convexity of f2 . Using (29) and (30), we obtain

(28)�𝛹 (u) − 𝜁 �𝜃0 ≤ 𝜈0‖x̂‖, ∀u ∈ B(x̃, 𝜖0), x̂ ∈ 𝜕(−𝛹 )(u),

{
x ∈ ℝ

d || dist (x,𝛺) < 𝜖
}
⊂

p⋃

j=1

B(x̃j, 𝜖j).

xk ∈

p�

j=1

B

�
x̃j,

𝜖j

2

�
and ‖xk − xk+1‖ ≤

𝜖

2
, ∀k ≥ k̄,

(29)
����
∇
�
g +

1

�
h
�
(xk) − ∇

�
g +

1

�
h
�
(xk+1)

����
≤ �‖xk − xk+1‖,

(30)�𝛹 (xk) − 𝜁 �𝜃 ≤ 𝜈‖x̂k‖, x̂k ∈ 𝜕(−𝛹 )(xk), ∀k ≥ k̄,

0 = ∇g(xk+1) + ∇f1(x
k) − �k +

1

�

(
∇h(xk+1) − ∇h(xk)

)
,

∇g(xk+1) − ∇g(xk) +
1

�

(
∇h(xk+1) − ∇h(xk)

)
= �k − ∇f1(x

k) − ∇g(xk) ∈ �(−� )(xk),

(31)

�𝛹 (xk) − 𝜁 �𝜃 ≤ 𝜈
����
∇
�
g +

1

𝜆
h
�
(xk) − ∇

�
g +

1

𝜆
h
�
(xk+1)

����
≤ 𝜅𝜈‖xk − xk+1‖, ∀k ≥ k̄.
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Since the function t1−� is concave on [0,∞) , � (xk) − � ≥ 0 , (16), and (31), we find 
that, for all k ≥ k̄,

Summing (32) from k = k̄ to ∞ yields

which implies that 
∑∞

k=1
‖xk − xk−1‖ < ∞ , i.e., the sequence {xk}∞

k=0
 is a Cauchy 

sequence. Thus, {xk}∞
k=0

 converges to a limiting critical point of (P) from Theorem 1 
(iv). 	�  ◻

Finally, we will show the rate of convergence in a manner following [1, 28].

Theorem 4  (Rate of convergence under the local differentiability of f2 ) Suppose that 
Assumptions 1, 2, 4, and 5 hold. Let {xk}∞

k=0
 be a sequence generated by BPDCA 

with 0 < 𝜆L < 1 for solving (P) and suppose that {xk}∞
k=0

 converges to some x̃ ∈ X  . 
Suppose further that � is a KL function with � in the KL inequality (4) taking the 
form �(s) = cs1−� for some � ∈ [0, 1) and c > 0 . Then, the following statements hold: 

	 (i)	 If � = 0 , then there exists k0 > 0 such that xk is constant for k > k0;
	 (ii)	 If � ∈ (0,

1

2
] , then there exist c1 > 0, k1 > 0 , and � ∈ (0, 1) such that 

‖xk − x̃‖ < c1𝜂
k for k > k1;

	 (iii)	 If � ∈ (
1

2
, 1) , then there exist c2 > 0 and k2 > 0 such that ‖xk − x̃‖ < c2k

−
1−𝜃

2𝜃−1 
for k > k2.

Proof  (i) For the case of � = 0 , we will prove that there exists an integer k0 > 0 such 
that � (xk0 ) = � by assuming to the contrary that 𝛹 (xk) > 𝜁 for all k > 0 and show-
ing a contradiction. The sequence {� (xk)}∞

k=0
 converges to � due to Proposition 2 (i). 

In addition, from the KL inequality (24) and ��(⋅) = c , we can see that for all suf-
ficiently large k,

which contradicts Theorem 2 (i). Therefore, there exists k0 > 0 such that � (xk0 ) = � . 
Since {� (xk)}∞

k=0
 is non-increasing and converges to � , we have 𝛹 (xk0+k̄) = 𝜁 for all 

k̄ ≥ 0 . This, together with (22), lead us to conclude that there exists k0 > 0 such that 
xk is constant for k > k0.

(32)

(� (xk) − � )1−� − (� (xk+1) − � )1−� ≥ (1 − �)(� (xk) − � )−�(� (xk) − � (xk+1))

≥
1 − �

��‖xk − xk+1‖

�
1

�
− L

�
�

2
‖xk − xk+1‖2

=
(1 − �)�

2��

�
1

�
− L

�
‖xk − xk+1‖.

∞�

k=k̄

‖xk − xk+1‖ ≤
2𝜅𝜈

(1∕𝜆 − L)(1 − 𝜃)𝜎
(𝛹 (xk̄) − 𝜁 )1−𝜃 < ∞,

dist (0, �� (xk)) ≥
1

c
,
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(ii–iii) Next, consider the case � ∈ (0, 1) . If there exists k0 > 0 such that 
� (xk0 ) = � , then we can show that the sequence {xk}∞

k=0
 is finitely convergent in the 

same way as in the proof of (i). Therefore, for � ∈ (0, 1) , we only need to consider 
the case that 𝛹 (xk) > 𝜁 for all k > 0.

Define Rk = � (xk) − � and Sk =
∑∞

j=k
‖xj+1 − xj‖ , where Sk is well-defined due to 

Theorem 2 (ii). From (26), for any k ≥ k̄ , where k̄ is defined in (24), we obtain

On the other hand, since limk→∞ xk = x̃ and {� (xk)} is non-increasing and converges 
to � , the KL inequality (24) with �(s) = cs1−� ensures that, for all sufficiently large k,

From the definition of Sk and (21), we also have that, for all sufficiently large k,

Combining (34) and (35), we have R�
k
≤ A1 ⋅ c(1 − �)(Sk−1 − Sk) for all sufficiently 

large k. Raising the above inequality to the power of 1−�
�

 and scaling both sides by 

c, we find that cR1−�
k

≤ c(A1 ⋅ c(1 − �)(Sk−1 − Sk))
1−�

�  . Combining this with (33) and 
recalling �(Rk) = cR1−�

k
 , we find that, for all sufficiently large k,

where A3 =
A1

A2

c(A1 ⋅ c(1 − �))
1−�

� .

(ii) When � ∈ (0,
1

2
] , we have 1−�

�
≥ 1 . Since limk→∞ ‖xk+1 − xk‖ = 0 by Theo-

rem 1 (iii), limk→∞ Sk−1 − Sk = 0 . From these considerations and (36), we conclude 
that there exists k1 > 0 such that for all k ≥ k1 , Sk ≤ (A3 + 1)(Sk−1 − Sk) , which 
implies Sk ≤

A3+1

A3+2
Sk−1 . Therefore, for all k ≥ k1,

(iii) For � ∈ (
1

2
, 1) , 1−𝜃

𝜃
< 1 . From  (36) and limk→∞ Sk−1 − Sk = 0 , there exists 

k2 > 0 such that

(33)

Sk = 2

∞�

j=k

1

2
‖xj+1 − xj‖

≤ 2

∞�

j=k

�
A1

2A2

�
�(� (xj) − � ) − �(� (xj+1) − � )

�
+

1

2
‖xj − xj−1‖ − 1

2
‖xj+1 − xj‖

�

≤
A1

A2

�(� (xk) − � ) + ‖xk − xk−1‖

=
A1

A2

�(Rk) + Sk−1 − Sk.

(34)c(1 − �)R−�
k

dist (0, �� (xk)) ≥ 1.

(35)dist (0, �� (xk)) ≤ A1(Sk−1 − Sk).

(36)Sk ≤ A3(Sk−1 − Sk)
1−�

� + Sk−1 − Sk,

‖xk − x̃‖ ≤

∞�

j=k

‖xj+1 − xj‖ = Sk ≤ Sk1−1

�
A3 + 1

A3 + 2

�k−k1+1

.
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for all k ≥ k2 . Raising the above inequality to the power of �

1−�
 , for any k ≥ k2 we 

find that S
�

1−�

k
≤ A4(Sk−1 − Sk) , where A4 = (A3 + 1)

�

1−� . From [1, Theorem  2], we 
find that, for all sufficiently large k, there exists A5 > 0 such that Sk ≤ A5k

−
1−�

2�−1 . 	�  ◻

Using Theorem 3, we can obtain another rate of convergence in the same way 
as in the proof of [1, Theorem 2] or [16, Theorem 3.5].

Theorem 5  (Rate of convergence under the local differentiability of g) Suppose that 
Assumptions 1, 2, 4, and 6 hold. Let {xk}∞

k=0
 be a sequence generated by BPDCA 

with 0 < 𝜆L < 1 for solving (P) and suppose that {xk}∞
k=0

 converges to some x̃ ∈ X  . 
Suppose further that � is subanalytic. Let � ∈ [0, 1) be a Łojasiewicz exponent of x̃ . 
Then, the following statements hold: 

	 (i)	 If � = 0 , then there exists k0 > 0 such that xk is constant for k > k0;
	 (ii)	 If � ∈ (0,

1

2
] , then there exist c1 > 0, k1 > 0 , and � ∈ (0, 1) such that 

‖xk − x̃‖ < c1𝜂
k for k > k1;

	 (iii)	 If � ∈ (
1

2
, 1) , then there exist c2 > 0 and k2 > 0 such that ‖xk − x̃‖ < c2k

−
1−𝜃

2𝜃−1 
for k > k2.

4.3 � Properties of BPDCAe

Inspired by [29], we introduce the auxiliary function,

To show the decreasing property of HM , instead of � , with respect to {xk}∞
k=0

 , we 
further assume the convexity of g.

Assumption 7  The function g is convex.

Under the adaptive restart scheme (see (8)), we show the decreasing property 
of HM.

Lemma 6  Suppose that Assumptions 1, 3, and 7 hold. For any xk, yk ∈ C = int dom h 
and any xk+1 ∈ C = int dom h defined by

Sk ≤ A3(Sk−1 − Sk)
1−�

� + Sk−1 − Sk ≤ A3(Sk−1 − Sk)
1−�

� + (Sk−1 − Sk)
1−�

�

≤ (A3 + 1)(Sk−1 − Sk)
1−�

� ,

HM(x, y) = 𝛹 (x) +MDh(y, x), M > 0.

(37)xk+1 ∈ argmin
y∈ℝ

d

�
g(y) + ⟨∇f1(yk) − �k, y − yk⟩ + 1

�
Dh(y, y

k)
�
,
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where �k ∈ �cf2(x
k) , yk = xk + 𝛽k(x

k − xk−1), 𝜆 > 0 , and {𝛽k}∞k=0 ⊂ [0, 1) , it holds 
that

Furthermore, when 0 < 𝜆L < 1 and {�k}∞k=0 is given by the adaptive restart 
scheme (8),

In addition, when �
�
≤ M ≤

1

�
 for � ∈ [0, 1) , the auxiliary function HM is ensured to 

be non-increasing.

Proof  From the first-order optimality condition for (37), we obtain

From the convexity of g, we find that

Using the three-point identity (3) of the Bregman distances,

we have

From the convexity of f1 and Lemma 1, we find that

The above inequalities and the definition of the subgradient for f2 lead us to

which implies inequality  (38). If �k = 0 , then yk = xk and Dh(x
k, yk) = 0 . If 

�k ≠ 0 , since we chose the adaptive restart scheme, there is a � ∈ [0, 1) satisfying 

(38)�� (xk+1) ≤ �� (xk) + Dh(x
k, yk) − Dh(x

k, xk+1) − (1 − �L)Dh(x
k+1, yk).

(39)
HM(x

k+1, xk) ≤ HM(x
k, xk−1) −

(
1

�
−M

)
Dh(x

k, xk+1)

−
(
M −

�

�

)
Dh(x

k−1, xk) −
(
1

�
− L

)
Dh(x

k+1, yk).

0 ∈ �cg(x
k+1) + ∇f1(y

k) − �k +
1

�
(∇h(xk+1) − ∇h(yk)).

g(xk) − g(xk+1) ≥ ⟨−∇f1(yk) + �k −
1

�
(∇h(xk+1) − ∇h(yk)), xk − xk+1⟩.

1

�
⟨∇h(xk+1) − ∇h(yk), xk − xk+1⟩ = 1

�
(Dh(x

k, yk) − Dh(x
k, xk+1) − Dh(x

k+1, yk)),

g(xk) − g(xk+1) + f1(x
k) − f1(x

k+1) ≥ f1(x
k) − f1(x

k+1) + ⟨−∇f1(yk) + �k, xk − xk+1⟩

−
1

�

�
Dh(x

k, yk) − Dh(x
k, xk+1) − Dh(x

k+1, yk)
�
.

f1(x
k) − f1(x

k+1) − ⟨∇f1(yk), xk − xk+1⟩
= f1(x

k) − f1(y
k) − ⟨∇f1(yk), xk − yk⟩ − f1(x

k+1) + f1(y
k) + ⟨∇f1(yk), xk+1 − yk⟩

≥ −LDh(x
k+1, yk).

� (xk+1) ≤ � (xk) +
1

�
Dh(x

k, yk) −
1

�
Dh(x

k, xk+1) −
(
1

�
− L

)
Dh(x

k+1, yk),
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Dh(x
k, yk) ≤ �Dh(x

k−1, xk) . From the definition of HM(x
k, xk−1) and 0 < 𝜆L < 1 , we 

have

where the second inequality comes from  Dh(x
k, yk) ≤ �Dh(x

k−1, xk) . When 
�

�
≤ M ≤

1

�
 , we have

which shows that the sequence {HM}
∞
k=0

 is non-increasing. 	�  ◻

We can use Lemma 6 to prove Proposition 3.

Proposition 3  Suppose that Assumptions 1, 3, and 7 hold. Let {xk}∞
k=0

 be a sequence 
generated by BPDCAe with 0 < 𝜆L < 1 . Assume that the auxiliary function 
HM(x

k, xk−1) satisfies �
�
≤ M ≤

1

�
 for � ∈ [0, 1) . Then, the following statements hold: 

	 (i)	 The sequence {HM(x
k, xk−1)}∞

k=0
 is non-increasing.

	 (ii)	
∑∞

k=1
Dh(x

k−1, xk) < ∞ ; hence, the sequence {Dh(x
k−1, xk)}∞

k=0
 converges to 

zero.
	 (iii)	 min1≤k≤n Dh(x

k−1, xk) ≤
�

n(1−�)

(
� (x0) − �∗

)
 , where 𝛹∗ = v(P) > −∞  (by 

Assumption 1 (v)).

Proof  (i) The statement was proved in Lemma 6.
(ii) Modify (40) into 

where the last inequality comes from (1 − �L)Dh(x
k+1, yk) ≥ 0 . Let n be a positive 

integer. Summing the above inequality from k = 0 to n and letting 𝛹∗ = v(P) > −∞ , 
we find that 

(40)

HM(x
k+1, xk) ≤ HM(x

k, xk−1) +
1

�
Dh(x

k, yk) −
(
1

�
−M

)
Dh(x

k, xk+1)

−MDh(x
k−1, xk) −

(
1

�
− L

)
Dh(x

k+1, yk)

≤ HM(x
k, xk−1) −

(
1

�
−M

)
Dh(x

k, xk+1)

−
(
M −

�

�

)
Dh(x

k−1, xk) −
(
1

�
− L

)
Dh(x

k+1, yk),

HM(x
k+1, xk) ≤ HM(x

k, xk−1), ∀k ≥ 0,

�(HM(x
k+1, xk) − HM(x

k, xk−1)) ≤ − (1 − �M)Dh(x
k, xk+1) − (�M − �)Dh(x

k−1, xk)

− (1 − �L)Dh(x
k+1, yk)

≤ − (1 − �M)Dh(x
k, xk+1) − (�M − �)Dh(x

k−1, xk),
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where the second inequality comes from Dh(x
−1, x0) = 0 , x−1 = x0 , and 

Dh(x
n, xn+1) ≥ 0 . Note that xn+1 ∈ C by Assumption  3. By taking the limit as 

n → ∞ , we arrive at the former statement (ii). The latter statement directly follows 
from the former.

(iii) From (41), we immediately have 

		�   ◻

4.4 � Convergence analysis of BPDCAe

The proofs of Theorems 6, 7, 8, and Proposition 4 are given in the Appendix. They 
follow arguments that are similar to their BPDCA counterparts.

Theorem 6  (Global subsequential convergence of BPDCAe) Suppose that Assump-
tions 1, 3, 4, and 7 hold. Let {xk}∞

k=0
 be a sequence generated by BPDCAe with 

0 < 𝜆L < 1 for solving (P) . Assume that the auxiliary function HM(x
k, xk−1) satisfies 

�

�
≤ M ≤

1

�
 for � ∈ [0, 1) . Then, the following statements hold: 

	 (i)	 The sequence {xk}∞
k=0

 is bounded.
	 (ii)	 limk→∞ ‖xk+1 − xk‖ = 0.
	 (iii)	 Any accumulation point of {xk}∞

k=0
 is a limiting critical point of (P).

Proposition 4  Suppose that Assumptions  1, 3,  4, and 7 hold. Let {xk}∞
k=0

 be a 
sequence generated by BPDCAe with 0 < 𝜆L < 1 for solving (P) and �

�
≤ M ≤

1

�
 for 

� ∈ [0, 1) . Then, the following statements hold: 

	 (i)	 � ∶= limk→∞ � (xk) exists.
	 (ii)	 � ≡ � on � , where � is the set of accumulation points of {xk}∞

k=0
.

(41)

n∑

k=1

Dh(x
k−1, xk) =

n∑

k=0

Dh(x
k−1, xk) ≤

�
(
HM(x

0, x−1) − HM(x
n+1, xn)

)

1 − �

≤
�
(
� (x0) − � (xn+1)

)

1 − �

≤
�
(
� (x0) − �∗

)

1 − �
,

n min
1≤k≤n

Dh(x
k−1, xk) ≤

n∑

k=1

Dh(x
k−1, xk) ≤

�
(
� (x0) − �∗

)

1 − �
.
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Since HM(x, y) has a Bregman distance term, the subdifferential of HM(x, y) has 
a ∇h term. To prove Theorem  7, we should additionally suppose that there is a 
bounded subdifferential of the gradient ∇h [29].

Assumption 8  There exists a bounded u such that u ∈ �(∇h) on any bounded subset 
of ℝ d.

We can prove the following theorems by supposing the KL property or the suba-
nalyticity of the auxiliary function HM(x, y) in relation to x and y.

Theorem  7  (Global convergence of BPDCAe under the local differentiability of 
f2 ) Suppose that Assumptions 1, 3, 4, 5, 7, and 8 hold and that the auxiliary func-
tion HM(x, y) is a KL function satisfying �

�
≤ M ≤

1

�
 for � ∈ [0, 1) . Let {xk}∞

k=0
 be a 

sequence generated by BPDCAe with 0 < 𝜆L < 1 for solving (P) . Then, the follow-
ing statements hold: 

	 (i)	 limk→∞ dist ((0, 0), �HM(x
k, xk−1)) = 0.

	 (ii)	 The set of accumulation points of {(xk, xk−1)}∞
k=0

 is � ∶=
{
(x, x) || x ∈ �

}
 and 

HM ≡ � on �  , where � is the set of accumulation points of {xk}∞
k=0

.
	 (iii)	 The sequence {xk}∞

k=0
 converges to a limiting stationary point of (P) ; moreover, ∑∞

k=1
‖xk − xk−1‖ < ∞.

Theorem 8  (Global convergence of BPDCAe under the local differentiability of g) 
Suppose that Assumptions 1, 3, 4, 6, 7, and 8 hold and that the auxiliary function 
HM(x, y) is subanalytic satisfying �

�
≤ M ≤

1

�
 for � ∈ [0, 1) . Let {xk}∞

k=0
 be a sequence 

generated by BPDCAe with 0 < 𝜆L < 1 for solving (P) . Then, the sequence {xk}∞
k=0

 
converges to a limiting critical point of (P) ; moreover, 

∑∞

k=1
‖xk − xk−1‖ < ∞.

Finally, we have theorems regarding the convergence rate of BPDCAe, whose 
proof is almost identical to Theorems 4 and 5.

Theorem 9  (Rate of convergence under the local differentiability of f2 ) Suppose that 
Assumptions 1, 3, 4, 5, 7, and 8 hold. Let {xk}∞

k=0
 be a sequence generated by BPD-

CAe with 0 < 𝜆L < 1 for solving (P) and suppose that {xk}∞
k=0

 converges to some 
x̃ ∈ X  . Suppose further that the auxiliary function HM(x, y) satisfying �

�
≤ M ≤

1

�
 

for � ∈ [0, 1) is a KL function with � in the KL inequality  (4) taking the form 
�(s) = cs1−� for some � ∈ [0, 1) and c > 0 . Then, the following statements hold: 

	 (i)	 If � = 0 , then there exists k0 > 0 such that xk is constant for k > k0;
	 (ii)	 If � ∈ (0,

1

2
] , then there exist c1 > 0, k1 > 0 , and � ∈ (0, 1) such that 

‖xk − x̃‖ < c1𝜂
k for k > k1;

	 (iii)	 If � ∈ (
1

2
, 1) , then there exist c2 > 0 and k2 > 0 such that ‖xk − x̃‖ < c2k

−
1−𝜃

2𝜃−1 
for k > k2.
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Theorem 10  (Rate of convergence under the local differentiability of g) Suppose that 
Assumptions 1, 3, 4, 6, 7, and 8 hold. Let {xk}∞

k=0
 be a sequence generated by BPD-

CAe with 0 < 𝜆L < 1 for solving (P) and suppose that {xk}∞
k=0

 converges to some 
x̃ ∈ X  . Suppose further that the auxiliary function HM(x, y) satisfying �

�
≤ M ≤

1

�
 for 

� ∈ [0, 1) is subanalytic. Let � ∈ [0, 1) be a Łojasiewicz exponent of x̃ . Then, the fol-
lowing statements hold: 

	 (i)	 If � = 0 , then there exists k0 > 0 such that xk is constant for k > k0;
	 (ii)	 If � ∈ (0,

1

2
] , then there exist c1 > 0, k1 > 0 , and � ∈ (0, 1) such that 

‖xk − x̃‖ < c1𝜂
k for k > k1;

	 (iii)	 If � ∈ (
1

2
, 1) , then there exist c2 > 0 and k2 > 0 such that ‖xk − x̃‖ < c2k

−
1−𝜃

2𝜃−1 
for k > k2.

5 � Applications

5.1 � Application to phase retrieval

In phase retrieval, we are interested in finding a (parameter) vector x ∈ ℝ
d that 

approximately solves the system,

where the vectors ar ∈ ℝ
d describe the model and b = (b1, b2,… , bm)

T is a vector 
of (usually) noisy measurements. As described in [8, 10], the system  (42) can be 
formulated as a nonconvex optimization problem:

where � ≥ 0 is a trade-off parameter between the data fidelity criteria and the regu-
larizer g. We define g ∶ ℝ

d
→ ℝ , in particular g(x) = ‖x‖1.

In this case, the underlying space of (P) is C ≡ ℝ
d . Define f ∶ ℝ

d
→ ℝ as 

f (x) =
1

4

∑m

r=1

�
⟨ar, x⟩2 − br

�2 , which is a nonconvex differentiable function that 
does not admit a global Lipschitz continuous gradient. The objective function of the 
phase retrieval problem can be also reformulated as a difference between two convex 
functions such as in [14]. That is, f (x) = f1(x) − f2(x) , where

When we do not regard the phase retrieval (43) as a DC optimization problem, the 
Bregman Proximal Gradient algorithm (BPG) can be used instead [8]. Enhance-
ments using the extrapolation technique were proposed: the Bregman Proximal 

(42)⟨ar, x⟩2 ≃ br, r = 1, 2,… ,m,

(43)min

�
� (x) ∶=

1

4

m�

r=1

�
⟨ar, x⟩2 − br

�2
+ �g(x)

����
x ∈ ℝ

d

�
,

(44)f1(x) =
1

4

m�

r=1

⟨ar, x⟩4 +
1

4
‖b‖2 and f2(x) =

1

2

m�

r=1

br⟨ar, x⟩2.
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Gradient algorithm with extrapolation (BPGe) [29] and Convex-Concave Inertial 
BPG [20] for estimating L. For BPG(e), assuming L-smad for the pair (f1 − f2, h) 
using h(x) = 1

4
‖x‖4 + 1

2
‖x‖2 , L satisfies the following inequality [8, Lemma 5.1]:

On the other hand, for DC optimization problems, we define h ∶ ℝ
d
→ ℝ as

This function is simpler than the original nonconvex formulation. The function 
h(x) =

1

4
‖x‖4 is not �-strongly convex. Therefore, this function does not satisfy 

Assumption 4 (i).

Proposition 5  Let f1 and h be as defined above. Then, for any L satisfying

the function Lh − f1 is convex on ℝ d . Therefore, the pair (f1, h) is L-smad on ℝ d.

Proof  Let x ∈ ℝ
d . Since f1 and h are C2 on ℝ d , to guarantee the convexity of 

Lh − f1 , it is sufficient to find L > 0 such that L�min(∇
2h(x)) ≥ �max(∇

2f1(x)) , where 
�min(M) and �max(M) denote the minimal and maximal eigenvalues of a matrix M, 
respectively. Now, we have the Hessian for f1 and h:

Since ∇2h(x) ⪰ ‖x‖2Id , we obtain �min

�
∇2h(x)

�
≥ ‖x‖2 . From the well-known fact, 

�max(M) ≤ ‖M‖ , we have the following inequality:

Therefore, we obtain the desired result. 	�  ◻

Comparing the right hand side of (45) and that of (47), we can see that

The constant L has the important role of defining the step size, and thereby affects the 
performance of the algorithms. Note that even if ��

∑m

r=1
‖ar‖2araTr �� =

∑m

r=1
‖araTr ‖2 , 

the left-hand side of  (48) is always smaller than the right-hand side because 

(45)L ≥

m�

r=1

�
3‖araTr ‖

2 + ‖araTr ‖�br�
�
.

(46)h(x) =
1

4
‖x‖4.

(47)L ≥ 3
�����

m�

r=1

‖ar‖2araTr
�����
,

∇2f1(x) = 3

m�

r=1

⟨ar, x⟩2araTr and ∇2h(x) = ‖x‖2Id + 2xxT.

�max

�
∇2f1(x)

�
≤ 3

�����

m�

r=1

⟨ar, x⟩2araTr
�����
≤ 3

�����

m�

r=1

‖ar‖2araTr
�����
‖x‖2 ≤ L‖x‖2 ≤ L�min(∇

2h(x)).

(48)3
�����

m�

r=1

‖ar‖2araTr
�����
≤

m�

r=1

�
3‖araTr ‖

2 + ‖araTr ‖�br�
�
.
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∑m

r=1
‖araTr ‖�br� ≥ 0 . When h(x) = 1

4
‖x‖4 + 1

2
‖x‖2 , the subproblems of BPG(e) 

have a closed-form solution formula [8, Proposition 5.1]. When h(x) = 1

4
‖x‖4 , sub-

problems (5) and (7) also have a closed-form solution formula, which is obtained by 
slightly modifications of those in BPG(e).

In this application, the functions f1, f2, g , and h satisfy Assumptions from 1 to 8 
excepting Assumption 4 (i) and 6. In particular, Assumption 4 (i) is not satisfied for 
our choice h(x) = 1

4
‖x‖4 , but it is satisfied if we replace it by h(x) = 1

4
‖x‖4 + 1

2
‖x‖2 . 

Finally, � and HM are KL functions due to their semi-algebraicity [1]. Therefore, 
in this application, Assumption  6 is not required for the global convergence of 
BPDCAe.

5.2 � Lower bound on the L‑smooth adaptable parameter in the Gaussian model

We dealt with the following Gaussian model. We generated the elements of m vec-
tors ar ∈ ℝ

d and the ground truth x̃ ∈ ℝ
d , which was a sparse vector (sparsity of 

5%), independently from the standard Gaussian distribution. Then, we generated 
br = ⟨ar, x̃⟩2, r = 1, 2,… ,m from ar and x̃.

From the linearity of the expectation, we consider the expectation of ∇2f1,

Since the elements of ar are independently generated from the standard Gaussian 
distribution, the j-th diagonal element of the above matrix is given by

The non-diagonal (j, k) elements are

Moreover, noting that h(x) = 1

4
‖x‖4 , we obtain �

�
⟨a

r
, x⟩2a

r
a
T

r

�
= ‖x‖2I

d
+ 2xxT

= ∇2
h(x) . The expectation of the Hessian of f1(x) is thus given by 

�[∇2f1(x)] = 3m∇2h(x).
Under the Gaussian model, we can reduce the lower bound of L given in Proposi-

tion 5 with high probability by applying [10, Lemma 7.4] as shown in the following 
proposition.

Proposition 6  Let the functions f1 and h be given by  (44) and  (46), respectively. 
Moreover, assume that the vectors ar are independently distributed according to the 
Gaussian model with a sufficiently large number of measurements. Let � and � be a 
fixed positive numerical constant and c(⋅) be a sufficiently large numerical constant 

�
�
∇2f1(x)

�
= 3

m�

r=1

�
�
⟨ar, x⟩2araTr

�
.

�

�
⟨ar, x⟩2a2r,j

�
= �

�
a4
r,j
x2
j
+

d�

k=1,k≠j

a2
r,j
a2
r,k
x2
k

�
= 3x2

j
+

d�

k=1,k≠j

x2
k
= 2x2

j
+ ‖x‖2.

�
�
⟨ar, x⟩2ar,jar,k

�
= �

�
2a2

r,j
a2
r,k
xjxk

�
= 2xjxk.
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that depends on � ; this means that the number of samples obeys m ≥ c(�) ⋅ d log d in 
the Gaussian model. Then, for any L satisfying

the function Lh − f1 is convex on ℝ d and hence the pair (f1, h) is L-smad on ℝ d with 
probability at least 1 − 5e−�d − 4∕d2.

Proof  Consider the expectation of 
∑m

r=1
ara

T
r
 . Since the elements of ar are indepen-

dently generated from the standard Gaussian distribution, for any y ∈ ℝ
d , we have

From (50), for any y ∈ ℝ
d , we have

We can easily find that

which implies that

From (51) and (52), we have

From [10, Lemma 7.4], (49), and (53), we conclude that

with probability at least 1 − 5e−�d − 4∕d2 . From ∇2h(x) ⪰ ‖x‖2Id and (54), we have 
∇2f1(x) ⪯ L∇2h(x) , which proves that Lh − f1 is convex with probability at least 
1 − 5e−�d − 4∕d2 . Therefore, the pair (f1, h) is L-smad on ℝ d . 	�  ◻

Remark 1  Since each element of ar independently follows the standard Gaussian 
distribution, ‖ar‖2 follows the chi-squared distribution with d degrees of freedom. 

(49)L ≥ 9
‖‖‖‖‖

m∑

r=1

ara
T
r

‖‖‖‖‖
+ �,

(50)yT�

�
m�

r=1

ara
T
r

�
y =

m�

r=1

�
�
⟨ar, y⟩2

�
=

m�

r=1

d�

j=1

y2
j
=

m�

r=1

‖y‖2.

(51)

yT�[∇2f1(x)]y = 3

m�

r=1

�
‖x‖2‖y‖2 + 2⟨x, y⟩2

�
≤ 9‖x‖2

m�

r=1

‖y‖2 = 9‖x‖2yT�
�

m�

r=1

ara
T
r

�
y.

9

m∑

r=1

ara
T
r
⪯ 9

‖‖‖‖‖

m∑

r=1

ara
T
r

‖‖‖‖‖
Id,

(52)9�

[
m∑

r=1

ara
T
r

]
⪯ 9

‖‖‖‖‖

m∑

r=1

ara
T
r

‖‖‖‖‖
Id.

(53)�[∇2f1(x)] ⪯ 9‖x‖2
�����

m�

r=1

ara
T
r

�����
Id.

(54)∇2f1(x) ⪯ �[∇2f1(x)] + �‖x‖2Id ⪯ L‖x‖2Id
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Thus, we can show ‖ar‖2 ≥ 3 with high probability for sufficiently large d. It implies 
that the bound given in Proposition 6 is smaller than that given in Proposition 5.

5.3 � Performance results for phase retrieval with the Gaussian model

Here, we summarize the results for the Gaussian model. All numerical experiments 
were performed in Python 3.7 on an iMac with a 3.3 GHz Intel Core i5 Processor and 8 
GB 1867 MHz DDR3 memory.

First, let us examine the results for Bregman proximal-type algorithms, i.e., BPG 
[8], BPGe [29], BPDCA (Algorithm 1), and BPDCAe (Algorithm 2). We compared the 
averages of 100 random instances in terms of the number of iterations, CPU time, and 
accuracy (Tables 1 and 2). Let x̂ be a recovered solution and x̃ be the ground truth gen-
erated according to the method described in Sect. 5.2. In order to compare the objec-
tive function values, we took the difference log10 |𝛹 (x̂) − 𝛹 (x̃)| to be the accuracy. 
In the numerical experiments, 𝛹 (x̂) > 𝛹 (x̃) . The termination criterion was defined as 
‖xk − xk−1‖∕max{1, ‖xk‖} ≤ 10−6 . The equation numbers under each algorithm in 
Tables 1 and 2 indicate the value of � ; that is, we set � = 1∕L for L satisfying the equa-
tions. For the restart schemes, we used the adaptive restart scheme with � = 0.99 and 
the fixed restart scheme with K = 200 . We set � = 1 for the regularizer g in (43). We 
forcibly stopped the algorithms when they reached the maximum number of iterations 
(50,000). Table 2 compares the results of BPGe and BPDCAe under the same settings 
as the results in Table 1. BPDCA with (49) was the fastest among the algorithms with-
out extrapolation (Table 1). On the other hand, the extrapolation method makes each 
algorithm faster (Table 2).

We can conclude that, at least for phase retrieval, BPDCA has a clear advantage 
over BPG because of its reformulation as a nonconvex DC optimization problem (44), 
which permits choosing a smaller L in (47) instead of (45). In particular, for the Gauss-
ian model, we can use a smaller L in (49) with high probability. The extrapolation tech-
nique can further enhance performance. Also, we can see that the iterates of BPDCA(e) 
globally converge to their optimal solutions despite that the kernel generating distance 
h  (46) does not satisfy Assumption  4 (i). This suggests that this condition may be 
relaxed in some cases.

Next, we compared the empirical probability of success for BPDCAe and Wirtinger 
flow [10], which is a well-known algorithm for phase retrieval. Here we took x0 in 
BPDCAe to be the value calculated in the initialization step of the Wirtinger flow. 
The empirical probability of success in Fig. 1 is an average over 100 trials. We regard 
that the algorithms succeeded if the relative error ‖x̂ − x̃‖∕‖x̃‖ falls below 10−5 after 
2,500 iterations. The dimension d was fixed at 128, and we varied the number of meas-
urements m. We used the adaptive restart scheme with � = 0.99 and the fixed restart 
scheme with K = 200 . We set � = 0 ; i.e., we solved (43) without its regularizer. From 
the figure, we can see that BPDCAe with the initialization step of the Wirtinger flow 
achieved almost 100% success rate when m∕d ≥ 6 and obtained more stable results 
than those of Wirtinger flow.
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6 � Conclusions

We proposed two Bregman proximal-type algorithms for solving DC optimization 
problems (P) . One is the Bregman Proximal DC Algorithm (BPDCA), the other is 
BPDCA with extrapolation (BPDCAe). Proximal-type algorithms including ours 

Table 1   Average number of 
iterations, CPU time, and 
accuracy for BPG [8] and 
BPDCA using 100 random 
instances of phase retrieval 
(over the Gaussian model) for 
different values of L 

Algorithm m d Iteration CPU-Time (s) Accuracy

BPG [8] (45) 10,000 10 3757 1.638 2.901
50 50,000 37.761 1.977

100 50,000 46.920 5.312
200 50,000 91.925 7.737

20,000 10 3689 2.539 −2.569
50 50,000 76.020 2.007

100 50,000 121.966 5.523
200 50,000 191.780 8.057

30,000 10 3764 3.698 −2.387
50 50,000 104.947 2.257

100 50,000 175.143 5.678
200 50,000 287.735 8.227

BPDCA (47) 10,000 10 265 0.102 −4.374
50 1415 0.520 −3.212

100 3274 2.129 −2.656
200 8111 10.416 −2.061

20,000 10 255 0.157 −4.350
50 1299 1.182 −3.193

100 2833 4.283 −2.642
200 6572 18.198 −2.057

30,000 10 256 0.233 −4.335
50 1257 1.790 −3.156

100 2696 6.484 −2.596
200 6012 25.666 −2.010

BPDCA (49) 10,000 10 68 0.025 −5.127
50 92 0.034 −4.627

100 115 0.075 −4.380
200 152 0.192 −4.108

20,000 10 65 0.040 −5.137
50 84 0.077 −4.691

100 98 0.149 −4.476
200 121 0.335 −4.229

30,000 10 65 0.059 −5.166
50 81 0.115 −4.728

100 93 0.223 −4.515
200 110 0.465 −4.285
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are effective on large-scale problems. In addition, our algorithms assume that the 
function f1 has the L-smooth adaptable property in relation to the kernel generat-
ing distance h, instead of L-smoothness. The restart condition for our adaptive 
restart scheme is different from the existing ones.

Table 2   Average number of 
iterations, CPU time, and 
accuracy for BPGe [29] and 
BPDCAe using 100 random 
instances of phase retrieval 
(over the Gaussian model) for 
different values of L 

Algorithm m d Iteration CPU-Time (s) Accuracy

BPGe [29] (45) 10,000 10 297 0.124 −3.904
50 2614 1.209 −0.428

100 6214 5.949 0.974
200 23,940 44.218 2.426

20,000 10 285 0.198 −3.653
50 1941 2.871 −0.375

100 6054 15.376 1.250
200 21,138 82.086 2.734

30,000 10 294 0.290 −3.362
50 1880 3.826 −0.199

100 6002 21.271 1.411
200 21,434 123.504 2.806

BPDCAe (47) 10,000 10 67 0.025 −5.205
50 203 0.075 −3.802

100 332 0.218 −3.451
200 581 0.740 −2.941

20,000 10 62 0.038 −5.071
50 179 0.165 −4.152

100 302 0.458 −3.694
200 501 1.394 −3.110

30,000 10 59 0.054 −4.852
50 169 0.242 −4.054

100 278 0.670 −3.448
200 446 1.891 −2.987

BPDCAe (49) 10,000 10 32 0.013 −5.649
50 42 0.015 −5.371

100 49 0.032 −5.087
200 61 0.078 −5.135

20,000 10 29 0.018 −5.550
50 38 0.035 −5.317

100 43 0.065 −4.919
200 52 0.144 −5.051

30,000 10 29 0.026 −5.558
50 38 0.056 −5.446

100 41 0.098 −4.908
200 50 0.210 −5.115
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We conducted convergence analyses of our algorithms. Assuming the Kurdyka-
Łojasiewicz property or subanalyticity of the objective function together with some 
standard assumptions, we established that the iterates generated by BPDCA(e) globally 
converge to a limiting stationary point or a limiting critical point and derived their con-
vergence rates.

We applied our algorithms to phase retrieval. The numerical experiments demon-
strated that BPDCAe is faster than the other Bregman-type algorithms. For the Gauss-
ian model, BPDCAe offered more stable results than Wirtinger flow [10]. We con-
clude that BPDCAe is a powerful method for solving large-scale and structured DC 
optimization problems. Although the kernel generating distance h (46) does not satisfy 
Assumption 4 (i), the sequences generated by BPDCA(e) converged in the numerical 
experiments. Therefore, we conjecture that most of the convergent results can be dem-
onstrated under weaker conditions. As future work, since g in BPDCA does not need to 
be convex, we will attempt to prove the monotonicity of the auxiliary function of BPD-
CAe (Lemma 6) without assuming Assumption 7.

Other Bregman proximal-type algorithms have been proposed. Mukkamala et 
al.[20] chose the L-smad parameters by using a line search. As this parameter is gener-
ally difficult to estimate accurately, we can utilize this line search in our algorithms.

For constrained problems, Wang et al.[27] proposed the Bregman alternating direc-
tion methods with multipliers. Tu et al.[25] also developed a Bregman-type algorithm 
for solving linearly constrained DC optimization problems. These variational methods 
may inspire further improvements and extensions.

Fig. 1   Empirical probability of success based on 100 trials for BPDCAe and Wirtinger flow [10] using 
the same initialization step (of the Wirtinger flow). We set d = 128 and varied the number m of measure-
ments
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Appendix: proof of convergence theorems for BPDCAe

Proof of Theorem 6

(i)  Since HM(x
k, xk−1) ≤ HM(x

0, x−1) for all k ∈ ℕ from Proposition  3 (i), with 
x0 = x−1 , we obtain 

which shows that {xk}∞
k=0

 is bounded due to Assumption 4 (iii).
(ii) From (39), we obtain 

where the last inequality holds because h is a �-strongly convex function and the 
first two terms are nonnegative. Summing the above inequality from k = 0 to ∞ , we 
obtain 

which shows that limk→∞ ‖xk+1 − xk‖ = 0 due to 1
𝜆
− L > 0 and supk>0 𝛽k < 1.

(iii)  Let x̃ be an accumulation point of {xk}∞
k=0

 and let {xkj} be a subsequence 
such that limj→∞ xkj = x̃ . Then, from the first-order optimality condition of subprob-
lem (7) under Assumption 3, we have 

Therefore, we obtain 

From the boundedness of {xkj} and the Lipschitz continuity of ∇h and ∇f1 on a 
bounded subset of ℝ d , there exists A0 > 0 such that 

� (xk) ≤ � (xk) +MDh(x
k−1, xk) = HM(x

k, xk−1) ≤ HM(x
0, x−1) = � (x0),

HM(x
k, xk−1) − HM(x

k+1, xk) ≥
�
1

�
−M

�
Dh(x

k, xk+1) +
�
M −

�

�

�
Dh(x

k−1, xk)

+
�
1

�
− L

�
Dh(x

k+1, yk)

≥
�(1 − �L)

2�

�
‖xk+1 − xk‖2 − �k‖xk − xk−1‖2

�
,

𝜎(1 − 𝜆L)

2𝜆

�
∞�

k=0

(1 − 𝛽k+1)‖xk+1 − xk‖2 − 𝛽1‖x0 − x1‖2
�

≤ HM(x
0, x−1) − lim inf

n→∞
HM(x

n+1, xn)

= 𝛹 (x0) − lim inf
n→∞

�
𝛹 (xn+1) +MDh(x

n, xn+1)
�

≤ 𝛹 (x0) − v(P) < ∞,

0 ∈ �cg(x
kj+1) + ∇f1(y

kj ) − �kj +
1

�

(
∇h(xkj+1) − ∇h(ykj )

)
.

(55)

�kj + ∇f1(x
kj+1) − ∇f1(y

kj ) +
1

�

(
∇h(ykj ) − ∇h(xkj+1)

)
∈ �cg(x

kj+1) + ∇f1(x
kj+1).
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Therefore, using ‖xkj+1 − xkj‖ → 0 and ‖xkj − xkj−1‖ → 0 , we obtain 

Note that the sequence {�kj} is bounded as shown in Theorem  1 (ii), and the 
sequence {xkj} is bounded and converges to x̃ . Thus, by taking the limit as j → ∞ 
or more precisely, its subsequence, we can assume without loss of generality that 
limj→∞ 𝜉kj =∶ 𝜉 exists, which belongs to 𝜕cf2(x̃) since f2 is continuous. Using this 
and (56), we take the limit of (55). Invoking ‖xkj+1 − xkj‖ → 0 and the continuity of 
g and ∇f1 , we obtain 𝜉 ∈ 𝜕cg(x̃) + ∇f1(x̃) . Therefore, 0 ∈ 𝜕cg(x̃) + ∇f1(x̃) − 𝜕cf2(x̃) , 
which shows that x̃ is a limiting critical point of (P).	�  ◻

Proof of Proposition 4

(i) From Assumption 1 (v) and Proposition 3 (i), the sequence {HM(x
k, xk−1)}∞

k=0
 is 

bounded from below and non-increasing. Consequently, using limk→∞ Dh(x
k−1, xk) = 0 

from Proposition 3 (ii), we obtain limk→∞ HM(x
k, xk−1) = limk→∞ � (xk) =∶ �.

(ii) Take any x̂ ∈ 𝛺 , that is limj→∞ xkj = x̂ . From (7), it follows that 

From the above inequality and the fact that f1 is convex at xk , we obtain 

where the second inequality comes from − 1

�
Dh(x

k, yk−1) ≤ 0 and 1
𝜆
Dh(y

k−1, x̂) ≥ 0 . 
Since ∇h is continuous, we have 

Substituting kj for k in (57) and limiting j to ∞ , we have, from Proposition 3 (ii), 

����
∇f1(x

kj+1) − ∇f1(y
kj ) +

1

�

�
∇h(ykj ) − ∇h(xkj+1)

�����
≤ A0‖xkj+1 − ykj‖.

(56)∇f1(x
kj+1) − ∇f1(y

kj ) +
1

�

(
∇h(ykj ) − ∇h(xkj+1)

)
→ 0.

g(xk) + ⟨∇f1(yk−1) − 𝜉k−1, xk − yk−1⟩ + 1

𝜆
Dh(x

k, yk−1)

≤ g(x̂) + ⟨∇f1(yk−1) − 𝜉k−1, x̂ − yk−1⟩ + 1

𝜆
Dh(x̂, y

k−1).

(57)

g(xk) + f1(x
k) ≤ g(x̂) + ⟨∇f1(yk−1) − 𝜉k−1, x̂ − xk⟩ + 1

𝜆
Dh(x̂, y

k−1) −
1

𝜆
Dh(x

k, yk−1)

+ f1(x̂) + ⟨∇f1(xk), xk − x̂⟩

≤ g(x̂) + ⟨∇f1(yk−1) − 𝜉k−1, x̂ − xk⟩ + 1

𝜆
Dh(x̂, y

k−1) +
1

𝜆
Dh(y

k−1, x̂)

+ f1(x̂) + ⟨∇f1(xk), xk − x̂⟩,

lim
j→∞

�
Dh(x̂, y

kj−1) + Dh(y
kj−1, x̂)

�
≤ lim

j→∞
‖∇h(ykj−1) − ∇h(x̂)‖‖ykj−1 − x̂‖ = 0.

lim sup
j→∞

(
g(xkj ) + f1(x

kj )
)
≤ g(x̂) + f1(x̂),
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which provides lim supj→∞ 𝛹 (xkj ) ≤ 𝛹 (x̂) from the continuity of −f2 . Combining 
this and the lower semicontinuity of � yields 𝛹 (xkj ) → 𝛹 (x̂) =∶ 𝜁 as j → ∞ . Since 
x̂ ∈ 𝛺 is arbitrary, we conclude that � ≡ � on �.	�  ◻

Proof of Theorem 7

(i)  Let 𝜇 > 0, k0 > 0 , N0 , and N ∶= {x ∈ N0 | dist (x,𝛺) < 𝜇} as defined in the 
proof of Theorem 2 (i).

We begin by considering the subdifferential of HM at xk for k ≥ k0 + 1 , and obtain

Moreover, considering the first-order optimality condition of subproblem  (7), for 
any k ≥ k0 + 1 , we have

since f2 is C1 on N  and xk−1 ∈ N  whenever k ≥ k0 + 1 . Using the above relation 
and  (58), for a bounded Uk ∈ �(∇h(xk)) which exists by Assumption  8, we also 
obtain

Due to the global Lipschitz continuity of ∇f1,∇f2 , and ∇h on N0 , and the bounded-
ness of Uk from Assumption 8, we see that there exist A0 > 0 , A1 > 0 , and A2 > 0 
such that

where k ≥ k0 + 1 . Since ‖xk − xk−1‖ → 0 and ‖xk−1 − xk−2‖ → 0 , we conclude the 
claim (i).

(ii) Suppose that x̂ ∈ 𝛺 , xkj → x̂ , and xkj−1 → x̂ as in Proposition 4 (ii). Therefore, 
the set of accumulation points of {(xk, xk−1)}∞

k=0
 is �  . From Propositions 3 and 4, 

Additionally, from Proposition  4 (ii), for any (x̂, x̂) ∈ 𝛶 , x̂ ∈ 𝛺 , we have 
HM(x̂, x̂) = 𝛹 (x̂) = 𝜁 . Since x̂ is arbitrary, we conclude that HM ≡ � on � .

(iii) The proof is similar to Theorem 2 (ii).	�  ◻

(58)�HM(x
k, xk−1) = ∇f1(x

k) − ∇f2(x
k) + �cg(x

k) −M�(∇h(xk))(xk−1 − xk).

1

�

(
∇h(yk−1) − ∇h(xk)

)
− ∇f1(y

k−1) + ∇f2(x
k−1) ∈ �cg(x

k),

1

�

(
∇h(yk−1) − ∇h(xk)

)
+ ∇f1(x

k) − ∇f1(y
k−1)

+ ∇f2(x
k−1) − ∇f2(x

k) +MUk(xk − xk−1) ∈ �HM(x
k, xk−1).

dist ((0, 0), �HM(x
k, xk−1)) ≤ A0‖xk − yk−1‖ + A1‖xk − xk−1‖

≤ A2

�
‖xk − xk−1‖ + ‖xk−1 − xk−2‖

�
,

lim
k→∞

HM(x
k, xk−1) = lim

k→∞
� (xk) +M lim

k→∞
Dh(x

k−1, xk) = � .
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Proof of Theorem 8

Let k1, �i, �i , and �i be defined similarly to the proof of Theorem 3. Using the differ-
entiability of g and [6, Theorem 3.1], we have

where 𝜁 = HM(x̃, x̃) = 𝛹 (x̃), x̃ ∈ 𝛺 , � = max
j=1,…,p �i, � = max

j=1,…,p �i , and � = maxj=1,

… , p�
i
 . From (7), we obtain

which implies

for some bounded Uk ∈ �(∇h(xk)) and �(−H
M
)(xk, xk−1) = �cf2(x

k) +M�(∇h(xk))

(xk−1 − xk) − ∇f1(x
k) − ∇g(xk) . Using  (59),  (60), Assumption  4, and the bounded-

ness of �(∇h(xk)) from Assumption 8, we obtain C > 0 such that

where the second inequality comes from ∇h(xk+1) − ∇h(yk) = ∇h(xk+1) − ∇h(xk)

+∇h(xk) − ∇h(yk) . The rest of the proof is similar to Theorem 3	�  ◻
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(59)
���∇g(x

k) − ∇g(xk+1)
��� ≤ �‖xk − xk+1‖,

(60)�HM(x
k, xk−1) − 𝜁 �𝜃 ≤ 𝜈‖x̂k‖, x̂k ∈ 𝜕(−H)(xk, xk−1), ∀k ≥ k1 + 1,

0 = ∇g(xk+1) + ∇f1(y
k) − �k +

1

�

(
∇h(xk+1) − ∇h(yk)

)
,

∇g(xk+1) − ∇g(xk) + ∇f1(y
k) − ∇f1(x

k) +
1

�

(
∇h(xk+1) − ∇h(yk)

)
+MUk(xk−1 − xk)

= �k +MUk(xk−1 − xk) − ∇f1(x
k) − ∇g(xk) ∈ �(−HM)(x

k, xk−1),

�HM(x
k, xk−1) − � ��

≤ �
����
∇g(xk+1) − ∇g(xk) + ∇f1(y

k) − ∇f1(x
k) +

1

�

�
∇h(xk+1) − ∇h(yk)

�
+MUk(xk − xk−1)

����
≤ C(‖xk − xk+1‖ + ‖xk−1 − xk‖), ∀k ≥ k1 + 1,
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