
Vol.:(0123456789)

Computational Optimization and Applications (2022) 83:651–691
https://doi.org/10.1007/s10589-022-00396-6

1 3

Some modified fast iterative shrinkage thresholding
algorithms with a new adaptive non‑monotone stepsize
strategy for nonsmooth and convex minimization problems

Hongwei Liu1 · Ting Wang1 · Zexian Liu2

Received: 14 October 2020 / Accepted: 30 June 2022 / Published online: 26 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
The “ fast iterative shrinkage-thresholding algorithm " (FISTA) is one of the most
famous first order optimization schemes, and the stepsize, which plays an important
role in theoretical analysis and numerical experiment, is always determined by a
constant relating to the Lipschitz constant or by a backtracking strategy. In this
paper, we design a new adaptive non-monotone stepsize strategy (NMS), which
allows the stepsize to increase monotonically after finite iterations. It is remarkable
that NMS can be successfully implemented without knowing the Lipschitz constant
or without backtracking. And the additional cost of NMS is less than the cost of
some existing backtracking strategies. For using NMS to the original FISTA
(FISTA_NMS) and the modified FISTA (MFISTA_NMS), we show that the conver-
gence results stay the same. Moreover, under the error bound condition, we show
that FISTA_NMS achieves the rate of convergence to o

(

1

k6

)

 and MFISTA_NMS

enjoys the convergence rate related to the value of parameter of t
k
 , that is o

(

1

k2(a+1)

)

;
and the iterates generated by the above two algorithms are convergent. In addition,
by taking advantage of the restart technique to accelerate the above two methods, we
establish the linear convergences of the function values and iterates under the error
bound condition. We conduct some numerical experiments to examine the effective-
ness of the proposed algorithms.

Keywords  FISTA · Proximal-based method · Adaptive non-monotone stepsize
strategy · Inertial forward-backward algorithms · Convergence rate · Convex
optimization

Mathematics Subject Classification  94A12 · 65K10 · 94A08 · 90C06 · 90C25

 *	 Ting Wang
	 wangting_7640@163.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-022-00396-6&domain=pdf

652	 H. Liu et al.

1 3

1  Introduction

We consider the nonsmooth optimization problem:
(P) min

x∈Rn
F(x) = f (x) + g(x).

The following assumptions are made throughout the paper:

(A)	 g ∶ Rn
→]−∞,+∞] is a proper, convex, “ proximal-friendly ” [11] and lower

semi-continuous function.
(B)	 f ∶ Rn

→]−∞,+∞[is a smooth convex function and continuously differenti-
able with Lipschitz continuous gradient, i.e., there exists a Lipschitz constant Lf
such that for every x, y ∈ Rn, ‖∇f (x) − ∇f (y)‖ ≤ Lf‖x − y‖ and ‖⋅‖ denotes the
standard Euclidean norm.

(C)	 Problem (P) is solvable, i.e., X∗ ∶= argminF ≠ �, and for x∗ ∈ X∗ we set
F∗ ∶= F(x∗).

Problem (P) arises in many contemporary applications such as machine learning
[24], compressed sensing [13], and image processing [8]. And due to the impor-
tance and the popularity of the problem (P), various attempts have been made
to solve it efficiently, especially when the problem instances are of large scale.
One popular class of methods for solving problem (P) are first-order methods due
to their cheap iteration cost and good convergence properties. Among them, the
proximal gradient (PG) method [14, 17, 22] is arguably the most fundamental
one, in which the basic iteration is

where prox�g(⋅) = argmin
x

�

g(x) +
1

2�
‖x − ⋅‖

2
�

 denotes the proximal operator of �g ,

and �k indicates the stepsize and has an upper bound relating to Lipschitz constant.
The convergence of PG has been well studied in the literature under various contexts
and frameworks (The detailed information can be referred to [7, 9, 18, 20]). How-
ever, PG can be slow in practice, see, for example, [23].

Various ways have thus been made to accelerate the proximal gradient algo-
rithm. By performing the extrapolation technique, a prototypical algorithm takes
the following form:

where �k is the extrapolation parameter satisfying 0 ≤ �k ≤ 1 , �k+1 ∈]0, 1
/

Lf], and

Here Q(x, y) is the approximation function of F(x) at the given point y, where

(1)xk+1 = prox�kg
(

xk − �k∇f
(

xk
))

, �k ∈]0, 1
/

Lf],

(2)
yk+1 = xk + �k

(

xk − xk−1
)

,

xk+1 = p�k+1g
(

yk+1
)

,

(3)p�g(y) = argmin
x

{

Q�(x, y)
}

= prox�g(y − �∇f (y)).

653

1 3

Some modified fast iterative shrinkage thresholding algorithms…

One representative algorithm that takes the form of (2) and with the extrapolation
parameter

is the fast iterative shrinkage-thresholding algorithm (FISTA), which was proposed
by Beck and Teboulle [5] and was based on the idea that was introduced and devel-
oped by Nesterov [21] for minimizing a smooth convex function. The stepsize �k can
be dynamically updated to estimate the Lipschitz constant Lf by a backtracking step-
size rule. FISTA is a very effective algorithm that keeps the simplicity of schemes
like PG and improves the convergence rate of objective function value to O

(

k−2
)

 for
solving the problem (P), hence, it has become a standard algorithm [17] and moti-
vates subsequent studies on the extrapolation scheme (2), see, for example, [6, 19,
22, 23, 29, 32]. Though FISTA is surprisingly efficient, the convergence of the
whole iterative sequence generated by FISTA is still unclear [12, 30]. Chambolle
and Dossal [12] established the convergence of the sequence generated by FISTA
with the new parameter �k =

k−1

k+a
 for a fixed a > 2 and the assumption �k ∈]0,

1

Lf
], for

problem (P). Furthermore, Attouch and Peypouquet [1] proved that the convergence
rate of function values generated by the algorithm in [12] is o

(

k−2
)

 and they consid-
ered the convergence of iterates and the rate of convergence of function values for
the scheme of (2) with various options of extrapolation parameter �k in [2]. In addi-
tion, in [3], the authors showed that the algorithm in [12] with a ∈ (0, 2) enjoys the
convergence rates of function value as O

(

k
−

2(a−1)

3

)

 . Under the convex setting, Wen,
Chen and Pong [30] established the R-linear convergence of the sequences generated
by (2) with a parameter sup 𝛾k < 1 based on the error bound condition. However, the
stepsize in these algorithms such as [1–3, 12, 30] is directly related to the Lipschitz
constant, which results in that the algorithm implementation as well as the theoreti-
cal analysis rely heavily on the Lipschitz constant.

Backtracking for estimating Lipschitz constant works well in practice but the
principal drawback is that the stepsize �k generated by the backtracking strategy in
FISTA is non-increasing. This non-increasing property can substantially limit the
performance of FISTA when a small stepsize is encountered early in the algorithm
since this causes the stepsize taken at that point, and at all subsequent iterates, to be
very small. Scheinberg, Goldfarb and Bai [27] developed a new backtracking strat-
egy, which allows stepsize to increase. This new backtracking strategy [27] starts
with a new initial value at the beginning of each iteration, rather than the stepsize of
last iteration like the backtracking in FISTA, and estimates the local Lipschitz con-
stant Lk, which is often smaller than Lf . Hence, 1

Lk
 may be a better estimate for the

stepsize than 1
Lf
. With this new backtracking strategy, they proposed a new version of

accelerated FISTA (FISTA_BKTR), which reduces the number of iteration greatly

(4)Q�(x, y) = g(x) + f (y) + ⟨∇f (y), x − y⟩ +
1

2�
‖x − y‖2, ∀x ∈ Rn.

(5)�k =
tk − 1

tk+1
, where t1 = 1, tk+1=

1+
√

1 + 4t2
k

2

654	 H. Liu et al.

1 3

and the calculating cost is much less than the one in backtracking rule of original
FISTA, and the convergence result is still O

(

1
/

k2
)

.

It is natural that each time the backtracking step operates, the calculating cost of
algorithm will increase. Although both of the mentioned backtracking strategies
work well, we still pursue to develop a stepsize strategy, which does not use the
backtracking procedure and can bring some numerical improvements and some new
theoretical results. In this paper, we exploit a new adaptive non-monotone stepsize
technique (NMS) to determine �k in (2), where the stepsize increases monotonically
after finite iterations. We prove that FISTA with NMS keeps O

(

1
/

k2
)

 convergence
rate of the objective function values, which is similar to original FISTA and FISTA_
BKTR. By using the new choice of tk in [12] and the new adaptive non-monotone
technique, we present a modified FISTA (MFISTA) with NMS which also achieves
o
(

1

k2

)

 convergence rate of the objective function values. Also, the convergence of
the iterative sequence is established without depending on the Lipschitz constant Lf
unlike the analysis in [12]. Meanwhile, we prove that both of those two algorithms
with NMS enjoy o

(

1

k

)

 convergent rates of the norm of subdifferential of the objec-
tive function. Furthermore, under the error bound condition, we prove that FISTA
and MFISTA with NMS can achieve some improved convergence rates for objective
function values and the sequence of iterates is convergent; we also take advantage of
the restart technique in [23] to accelerate the above FISTA methods with NMS, and
establish the linear convergences of the function values and iterative sequence under
the error bound condition.

The reminder of the paper is organized as follows. In Sect. 2, we provide a new
adaptive non-monotone stepsize strategy. In Sect. 3, we propose an algorithm
FISTA_NMS by combining FISTA with the new adaptive non-monotone technique,
which ensures the similar convergence rate of the objective function values with
FISTA, and a faster convergence rate of the norm of subdifferential of function value
than FISTA (See Sect. 3.1 for details). Also, with a small modification, we present
a MFISTA_NMS which has similar theoretical results like [1, 12, 26] (See Sect. 3.2
for details). In Sect. 3.3, under the error bound condtion, we show that FISTA_NMS
and MFISTA_NMS enjoy improved convergence results. In Sect. 4, we use the
restart technique in [23] to accelerate the above methods and establish the linear
convergences of the function values and iterates under the error bound condition.
Numerical results are reported in Sect. 5. In the last section, conclusions and discus-
sions are presented.

2 � Adaptive non‑monotone stepsize strategy

In this section, we present a new adaptive non-monotone stepsize strategy.
We first state the algorithm of FISTA with backtracking [5] and the detailed algo-

rithm of FISTA_BKTR [27] as follows.

Denote the computations of tk+1 ∶=
1+
√

1+4�kt
2
k

2
 and yk+1 ∶= xk +

tk−1

tk+1

(

xk − xk−1
)

by (tk+1, yk+1) = FistaStep

(

xk, xk−1, tk, �k
)

 . And in following two algorithms,

655

1 3

Some modified fast iterative shrinkage thresholding algorithms…

p�kg
(

yk
)

 is defined in (3) with � ∶= �k, y ∶= yk and Q�k

(

p�kg
(

yk
)

, yk
)

 is defined in
(4) with � ∶= �k, y ∶= yk and x ∶= p�kg

(

yk
)

.

Since that (6) holds if �k ≤ 1

Lf
 , we have that 𝜆k >

𝜂

Lf
, which means that the

lower bound of stepsize is related to Lf  , and �k in Algorithm 1 can be seen as an
estimate for the global Lipschitz constant. It is easy to obtain that there are at
most log 1

�

(

�0Lf
)

+ 1 backtracking steps at each iteration [27]. Each time the back-
tracking performs, p�kg

(

yk
)

 and f
(

p�kg
(

yk
))

 must be recomputed, that is the main
cost of FISTA_backtracking.

To obtain larger stepsize than Algorithm 1, The following Algorithm 2 pro-
poses a new backtracking step rule, which starts with a new initial value at the
beginning of each iteration and can be reduced to Algorithm 1 if we set �0

k
= �k−1.

We see that the updating rule of �k is equivalent to �k =
�k

�k+1
 and �k in Algo-

rithm 2 is an estimate for the local Lipschitz constant, while the �k in Algorithm 1
is an estimate of the global Lipschitz constant. Similar to the analysis of Algo-
rithm 1, the lower bound of stepsize is related to the local Lipschitz constant Lk
for ∇f (x) restricted to the interval

[

p�kg
(

yk
)

, yk
]

 for any �k ≤ 1

Lk
, which is less than

or equal to Lf  . If the backtracking step is performed, the values of f
(

yk
)

 , ∇f
(

yk
)

 ,
p�kg

(

yk
)

 and f
(

p�kg
(

yk
))

 must be recomputed. Here, we can see that computation
of f

(

yk
)

 and ∇f
(

yk
)

 will be additional costs over against Algorithm 1 for the case
that ∇f is non-linear; otherwise, those computation can be negligible. Since the
option of initial stepsize is related to the number of backtracking steps closely,
based on the idea of Nesterov [22], the author chose �0

k
=

�k−1

�
(� ≥ �) to reduce

the total number of backtracking steps to [1 + ln �

ln �
](Iter + 1) +

1

ln �
[ln

��0

�∕Lf
]+, where

Iter means the total number of iterations of Algorithm 2.

656	 H. Liu et al.

1 3

Although Algorithm 2 greatly reduces the number of cycle of the internal loop,
and generates better stepsize, it still may have additional costs per backtracking
step, especially, when the function f is non-linear, the computations of f

(

yk
)

 ,
∇f

(

yk
)

 , p�kg
(

yk
)

 and f
(

p�kg
(

yk
))

 will occupy the CPU time. Hence, we design
a stepsize strategy that directly gives the stepsize at each iteration, which avoids
any extra computations due to line search. We present the adaptive non-monotone
stepsize strategy as follows.

In Algorithm 3, we use the condition

to control the increase or decrease of the stepsize �k . When the condition (9) does
not holds, the stepsize �k is determined by (7), which implies that 𝜆k+1 < 𝜆k. Con-
versely, �k+1 ≥ �k . The

∞
∑

k=1

Ek is called control series, which can be corrected adap-

tively for better control of stepsize growth. For the choice of Ek, we will discuss later
in this section.

It is remarkable that it is not required to know the Lipschitz constant or use
a line search procedure when one uses Algorithm 3 to determine the stepsize
�k. Now we study some important properties of the stepsize

{

�k
}

 generated by
Algorithm 3.

Lemma 2.1  Let
{

�k
}

 be the sequence generated by Algorithm 3. We have that the
sequence

{

�k
}

 is convergent, and

Proof  First, we prove that ∀k ≥ 1 , �k ≥ min
{

�1,
�1

Lf

}

 holds by induction.
For k = 1, the conclusion is obvious. Suppose that the conclusion holds true for

some k = p ≥ 1. Then, for k = p + 1, there are two situations:

(1)	 �p+1 is generated by (7). We obtain

(9)⟨∇f (x) − ∇f (y), x − y⟩ ≤ �0

�
‖x − y‖2 where �0 ∈]0, 1[

(10)�k ≥ �min ∶= min

{

�1,
�1

Lf

}

, ∀k ≥ 1.

657

1 3

Some modified fast iterative shrinkage thresholding algorithms…

 the inequality follows from the fact that f is Lipschitz continuous gradient.
(2)	 �p+1 is generated by (8). We obtain

 From (11) and (12), we conclude that ∀k ≥ 1 , �k ≥ min
{

�1,
�1

Lf

}

 holds for
∀k ≥ 1.

Denote that

where (⋅)+ = max{0, ⋅}, (⋅)− = −min{0, ⋅}. Following the fact that

we have

which implies that
∑∞

i=1

�

ln �i+1 − ln �i
�+ is convergent from the fact that

∑∞

i=1
Ei is

a convergent nonnegative series.
The convergence of

∑∞

i=1

�

ln �i+1 − ln �i
�− also can be proved as follows.

Assume by contradiction that
∑∞

i=1

�

ln �i+1 − ln �i
�−
= +∞ . Based on the conver-

gence of
∑∞

i=1

�

ln �i+1 − ln �i
�+ and the equality

we can easily deduce lim
k→∞

ln �k = −∞ , which is a contradiction with
𝜆k ≥ min

{

𝜆1,
𝜇1

Lf

}

> 0 . As a result,
∑∞

i=1

�

ln �i+1 − ln �i
�− is a convergent series.

Then, in view of (16), we obtain the sequence
{

�k
}

 is convergent. 	� ◻

Lemma 2.2  For the sequence
{

�k
}

 generated by Algorithm 3, there exists a positive
integerk̂ ≥ 1 such that condition (9) holds constantly for every k > k̂.

Proof  Suppose the conclusion is not true, i.e. there exists a sequence
{

kj
}

, where
kj → ∞, such that

(11)�p+1 = �1

‖

‖

‖

xp − yp
‖

‖

‖

2

⟨

∇f
(

xp
)

− ∇f
(

yp
)

, xp − yp
⟩ ≥ �1

Lf
,

(12)�p+1 ≥ �p ≥ min

(

�1,
�1

Lf

)

.

(13)ln �i+1 − ln �i =
(

ln �i+1 − ln �i
)+

−
(

ln �i+1 − ln �i
)−
,

(14)ln �i+1 − ln �i ≤ ln
(

1 + Ei

) ≤ Ei,∀i ≥ 1,

(15)
(

ln �i+1 − ln �i
)+ ≤ Ei,∀i = 1, 2,⋯ ,

(16)

ln �k+1 − ln �1 =

k
∑

i=1

(

ln �i+1 − ln �i
)

=

k
∑

i=1

(

ln �i+1 − ln �i
)+

−

k
∑

i=1

(

ln �i+1 − ln �i
)−

658	 H. Liu et al.

1 3

Combining this with the fact

which follows from Lemma 2.1, we obtain

which is a contradiction. Therefore, (9) will hold constantly after finite iterations k̂. 	
� ◻

For the rest of this article, we always denote that k0 = k̂ + 1 is the first positive inte-
ger such that �k satisfies the condition (9), which means that condition (9) holds for
any k ≥ k0. It follows from Lemma 2.2 that the stepsize

{

�k
}

 generated by Algorithm 3
increases monotonically after k̂ steps.

According to Lemmas 2.1 and 2.2, we can easily obtain the following conclusion.

Corollary 2.1  For the sequence
{

�k
}

 generated by Algorithm 3, denote that
lim
k→∞

�k = �∗. Then, for any k ≥ 1, we have 𝜆k ≤ 𝜆max ∶= max
{

𝜆1,⋯ , 𝜆k̂, 𝜆
∗
}

.

Now, we discuss the choice of Ek. In Algorithm 3, we set Ek ∶=
wk

kp
(p > 1), where

{

wi

}

 is a nonnegative bounded sequence. Generally, we set the value of p close to 1.
For the choice of wk, we can adjust the value of wk based on the angle between the vec-
tors xk − xk−1 and xk−1 − xk−2. If the value ⟨xk−xk−1,xk−1−xk−2⟩

‖
xk−xk−1‖‖xk−1−xk−2‖

 is close to 1, it may be
caused by a small stepsize, then, we may want to use a larger stepsize in the next itera-
tion. Hence, we can set the value of wk adaptively. In the following, we give the details
for setting wk.

Set wk = �1, if ⟨xk − xk−1, xk−1 − xk−2⟩ ≤ 0.9�
�

xk − xk−1
�

�

�

�

xk−1 − xk−2
�

�

;

set wk = �3, if ⟨xk − xk−1, xk−1 − xk−2⟩ ≥ 0.98�
�

xk − xk−1
�

�

�

�

xk−1 − xk−2
�

�

;

set wk = �2, otherwise, where 0 < 𝜂1 < 𝜂2 < 𝜂3. In the numerical experiment,
�1 = 1, �2 = 2, �3 = 10.

(17)

‖

‖

‖

xkj − ykj
‖

‖

‖

2

<
𝜆kj

𝜇0

⟨

∇f
(

xkj

)

− ∇f
(

ykj

)

, xkj − ykj

⟩

=
𝜆kj

𝜆kj+1

1

𝜇0

𝜆kj+1

⟨

∇f
(

xkj

)

− ∇f
(

ykj

)

, xkj − ykj

⟩

=
𝜆kj

𝜆kj+1

𝜇1

𝜇0

‖

‖

‖

xkj − ykj
‖

‖

‖

2

.

(18)lim
j→∞

𝜆kj

𝜆kj+1

𝜇1

𝜇0

=
𝜇1

𝜇0

< 1,

(19)‖

‖

‖

xkj − ykj
‖

‖

‖

2

<
‖

‖

‖

xkj − ykj
‖

‖

‖

2

, for j is suff iciently large,

659

1 3

Some modified fast iterative shrinkage thresholding algorithms…

3 � FISTA‑type algorithm with the adaptive non‑monotone stepsize

Based on the adaptive non-monotone stepsize strategy, we present a class of FISTA-
type algorithms with non-monotone stepsize (FISTA-type_NMS) and show its con-
vergence results under different inertial terms. The algorithm scheme is as follows:

We first show some key results and the theoretical analysis of the algorithms pro-
posed in this paper relies heavily on it. For ease of description, we define the follow-
ing sequences.

Notation 3.1  Let
{

xk
}

 and
{

yk
}

 be generated by the Algorithm 4 and x∗ be a fixed
minimizer of F. Then, for the convergence of objective function values holds, the
sequence

{

�k
}

 tends to zero when k goes to infinity

The sequence
{

�k
}

 means the local variation of the sequence
{

xk
}

and the sequence
{

�k

}

, denoting the distance between
{

yk
}

 and
{

p�kg
(

yk
)}

, is

and we define �k as the distance between
{

xk
}

 and a fixed minimizer {x∗}

Lemma 3.1  [5] For any y ∈ Rn, one has z = p�g(y) if and only if there exists
�(y) ∈ �g(z) the subdifferential of g(⋅), such that

Lemma 3.2  For any y ∈ Rn,�0 ∈]0, 1], if y and p�g(y) satisfy the condition (9),
then, for any x ∈ Rn,

(20)vk ∶= F
(

xk
)

− F(x∗).

(21)�k ∶=
1

2
‖

‖

xk − xk−1
‖

‖

2
,

(22)�k ∶=
1

2
‖

‖

xk − yk
‖

‖

2
,

(23)�k ∶=
1

2
‖

‖

xk − x∗‖
‖

2
.

∇f (y) +
1

�
(z − y) + �(y) = 0.

(24)F(x) − F
(

p𝜆g(y)
) ≥ 𝜇̄

𝜆

‖

‖

‖

p𝜆g(y) − y
‖

‖

‖

2

+
1

𝜆

⟨

y − x, p𝜆g(y) − y
⟩

,

660	 H. Liu et al.

1 3

where 𝜇̄ = 1 −
𝜇0

2
, if f is a quadratic function; 𝜇̄ = 1 − 𝜇0, if f is a non-quadratic

function.

Proof  Since f, g are convex, we have

where �(y) = −∇f (y) −
1

�

(

p�g(y) − y
)

∈ �g
(

p�g(y)
)

, and �g(⋅) denotes the subdiffer-
ential of g(⋅). Then,

Denote

The proof is derived by dividing into two cases.

(1)	 In the case that f is a quadratic function, without loss of generality, assume that

 It is easy to obtain that

 Then,

(25)
f (x) ≥ f (y) + ⟨x − y,∇f (y)⟩,

g(x) ≥ g
�

p�g(y)
�

+
�

x − p�g(y), �(y)
�

,

(26)

F(x) − F
�

p�g(y)
�

= f (x) + g(x) − f
�

p�g(y)
�

− g
�

p�g(y)
�

≥ f (y) + ⟨x − y,∇f (y)⟩ +
�

p�g(y) − x,∇f (y) +
1

�

�

p�g(y) − y
�

�

− f
�

p�g(y)
�

= f (y) − f
�

p�g(y)
�

+
�

p�g(y) − y,∇f (y)
�

+
1

�

�

p�g(y) − x, p�g(y) − y
�

= f (y) − f
�

p�g(y)
�

+
�

p�g(y) − y,∇f (y)
�

+
1

�

�

y − x, p�g(y) − y
�

+
1

�

�

�

�

p�g(y) − y
�

�

�

2

.

(27)
� = f (y) − f

(

p�g(y)
)

+
⟨

p�g(y) − y,∇f (y)
⟩

+
1

�

⟨

y − x, p�g(y) − y
⟩

+
1

�

‖

‖

‖

p�g(y) − y
‖

‖

‖

2

.

(28)f (x) =
1

2
xTAx + bTx,∇f (x) = Ax + b.

(29)f (x) − f (y) =
1

2
⟨∇f (x) + ∇f (y), x − y⟩.

661

1 3

Some modified fast iterative shrinkage thresholding algorithms…

(2)	 In the case that f is a non-quadratic function,

 The last inequalities of (30) and (31) are from the condition (9).
By combining (26), (27), (30) and (31), we can easily obtain (24). 	� ◻

Remark 3.1  when 𝜇̄ ≥ 1

2
, the result (24) of Lemma 3.2 reduces to the Lemma 2.3 in

[5]

which plays a crucial role for the analysis of FISTA.

We always choose the value range of �0 ∈]0, 1[for the quadratic function and
�0 ∈]0,

1

2
[for the non-quadratic function, i.e. 𝜇̄ >

1

2
, which means that Lemma 3.2 is

a result stronger than Lemma 2.3 of [5].
Further, it follows from the identity

and (24) that

Independent of the inertial term, we can obtain the following inequality:

Lemma 3.3  Let
{

xk
}

,
{

yk
}

 be generated by the Algorithm 4. Then, for any
k ≥ k0 ∶= k̂ + 1, where k̂ is defined in Lemma 2.2, we have

(30)

� =
1

2

⟨

∇f (y) + ∇f
(

p�g(y)
)

, y − p�g(y)
⟩

+
⟨

∇f (y), p�g(y) − y
⟩

+
1

�

⟨

y − x, p�g(y) − y
⟩

+
1

�

‖

‖

‖

p�g(y) − y
‖

‖

‖

2

=
1

2

⟨

∇f (y) − ∇f
(

p�g(y)
)

, p�g(y) − y
⟩

+
1

�

⟨

y − x, p�g(y) − y
⟩

+
1

�

‖

‖

‖

p�g(y) − y
‖

‖

‖

2

≥ 1

�

(

1 −
�0

2

)

‖

‖

‖

p�g(y) − y
‖

‖

‖

2

+
1

�

⟨

y − x, p�g(y) − y
⟩

.

(31)

� ≥ ⟨

∇f
(

p�g(y)
)

, y − p�g(y)
⟩

+
⟨

∇f (y), p�g(y) − y
⟩

+
1

�

⟨

y − x, p�g(y) − y
⟩

+
1

�

‖

‖

‖

p�g(y) − y
‖

‖

‖

2

=
⟨

∇f (y) − ∇f
(

p�g(y)
)

, p�g(y) − y
⟩

+
1

�

⟨

y − x, p�g(y) − y
⟩

+
1

�

‖

‖

‖

p�g(y) − y
‖

‖

‖

2

≥ 1

�

(

1 − �0

)

‖

‖

‖

p�g(y) − y
‖

‖

‖

2

+
1

�

⟨

y − x, p�g(y) − y
⟩

.

(32)F(x) − F
(

p�g(y)
) ≥ 1

2�

‖

‖

‖

p�g(y) − y
‖

‖

‖

2

+
1

�

⟨

y − x, p�g(y) − y
⟩

,

(33)⟨a − b, a − c⟩ =
1

2
‖a − b‖2 +

1

2
‖a − c‖2 −

1

2
‖b − c‖2

(34)

F
�

p𝜆g(y)
�

+

�

�

�

p𝜆g(y) − x
�

�

�

2

2𝜆
≤ F(x) +

‖y − x‖2

2𝜆
−

�

2𝜇̄ − 1

2𝜆

�

�

�

�

p𝜆g(y) − y
�

�

�

2

≤ F(x) +
‖x − y‖2

2𝜆
, ∀x ∈ Rn, 𝜇̄ >

1

2
.

662	 H. Liu et al.

1 3

where �k = �kt
2
k
− �k+1tk+1

(

tk+1 − 1
)

, uk = tkxk −
(

tk − 1
)

xk−1 − x∗ and vk is defined
in (20).

Proof  Invoking Lemmas 2.2 and 3.2, we obtain that (24) holds for every
k ≥ k0 ∶= k̂ + 1, where k̂ is defined in Lemma 2.2.

Denote that uk = tkxk −
(

tk − 1
)

xk−1 − x∗. We apply the inequality (24)
at the points

(

x ∶= xk, y ∶= yk+1
)

 with � ∶= �k+1, and likewise at the points
(

x ∶= x∗, y ∶= yk+1
)

, to get

where
{

vk
}

 is defined in (20). Multiplying the first inequality above by
(

tk+1 − 1
)

 and
adding it to the second inequality, we have

Further, multiplying (37) by tk+1, we obtain

	� ◻

3.1 � FISTA algorithm with the adaptive non‑monotone stepsize

In this subsection, we consider the parameter

in the setting of Algorithm 4, which will be called the FISTA algorithm with the
adaptive non-monotone stepsize (FISTA_NMS).

𝜆kt
2
k
vk − 𝜆k+1t

2
k+1

vk+1 − 𝜌kvk

≥ 1

2

(

‖

‖

uk+1
‖

‖

2
− ‖

‖

uk
‖

‖

2
)

+
(

𝜇̄ −
1

2

)

‖

‖

‖

tk+1
(

xk+1 − yk+1
)

‖

‖

‖

2

,

(35)
𝜆k+1

(

vk − vk+1
) ≥ 𝜇̄‖

‖

xk+1 − yk+1
‖

‖

2
+
⟨

xk+1 − yk+1, yk+1 − xk
⟩

,

−𝜆k+1vk+1 ≥ 𝜇̄‖
‖

xk+1 − yk+1
‖

‖

2
+
⟨

xk+1 − yk+1, yk+1 − x∗
⟩

,

(36)
𝜆k+1

((

tk+1 − 1
)

vk − tk+1vk+1
)

≥ 𝜇̄tk+1
‖

‖

xk+1 − yk+1
‖

‖

2
+
⟨

xk+1 − yk+1, tk+1yk+1 −
(

tk+1 − 1
)

xk − x∗
⟩

.

(37)

𝜆kt
2
k
vk − 𝜆k+1t

2
k+1

vk+1 −
(

𝜆kt
2
k
− 𝜆k+1tk+1

(

tk+1 − 1
))

vk

≥ 𝜇̄
‖

‖

‖

tk+1
(

xk+1 − yk+1
)

‖

‖

‖

2

+
⟨

tk+1
(

xk+1 − yk+1
)

, tk+1yk+1 −
(

tk+1 − 1
)

xk − x∗
⟩

=
1

2

‖

‖

‖

tk+1
(

xk+1 − yk+1
)

‖

‖

‖

2

+
⟨

tk+1
(

xk+1 − yk+1
)

, tk+1yk+1 −
(

tk+1 − 1
)

xk − x∗
⟩

+
(

𝜇̄ −
1

2

)

‖

‖

‖

tk+1
(

xk+1 − yk+1
)

‖

‖

‖

2

=
1

2

(

‖

‖

uk+1
‖

‖

2
− ‖

‖

uk
‖

‖

2
)

+
(

𝜇̄ −
1

2

)

‖

‖

‖

tk+1
(

xk+1 − yk+1
)

‖

‖

‖

2

.

(38)t1 = 1 and tk+1 =
1 +

√

1 + 4
(

�k
/

�k+1
)

t2
k

2

663

1 3

Some modified fast iterative shrinkage thresholding algorithms…

Since

it’s easy to show that

Hence, (39) is an appropriate parameter option for Algorithm 4. In the following, we
firstly prove a trivial fact about this

{

tk
}

.

Lemma 3.4  Let
{

tk
}

 be generated by FISTA_NMS. Then, we obtain that
1
/

tk = �
(

1
/

k
)

.

Proof  Rearranging the expression of tk+1 , we have
2
√

�k+1tk+1 =
√

�k+1 +
�

�k+1 + 4�kt
2
k
. Denote that wk =

√

�ktk, then

it is easy to get that
{

wk

}

 increasing monotonically.
The following proves that lim

k→∞
wk = +∞. Suppose that lim

k→∞
wk = w < +∞. Using

Lemmas 2.1 and 2.2, denoted lim
k→∞

𝜆k = 𝜆∗ > 0, we have 2w =
√

�∗ +
√

�∗ + 4w2,
which implies a contradiction that 4w2 − 4w

√

�∗ = 4w2. Therefore, lim
k→∞

wk = +∞.

Using the Stolz theorem, we deduce

tk+1 − tk =
1 +

√

1 + 4
�k

�k+1
t2
k

2
− tk

=
−4

(

1 −
�k

�k+1

)

t2
k
+ 4tk

2
(√

1 + 4
�k

�k+1
t2
k
+ 2tk − 1

)
≥ −4tk + 4tk

2
(√

1 + 4
�k

�k+1
t2
k
+ 2tk − 1

)
= 0,

(39)�k =
tk − 1

tk+1
≤ tk − 1

tk
= 1 −

1

tk
≤ 1.

(40)2wk+1 =
√

�k+1 +

�

�k+1 + 4w2
k
,

664	 H. Liu et al.

1 3

Hence, we have 1
/

tk = �
(

1
/

k
)

. 	� ◻

Next, we will show that FISTA_NMS enjoys the O
(

1
/

k2
)

 convergence rate of
the objective function values and o

(

1

k

)

 convergence rate of the norm of subdif-
ferential of function value.

Theorem 3.1  (Convergence rate) Let
{

xk
}

,
{

yk
}

 be generated by FISTA_NMS.
Then,

(a)

(b) The series
∑∞

k=1
k2�
�

xk − yk
�

�

2 is convergent and lim infk→∞ k1.5‖
‖

xk − yk
‖

‖

= 0.

Proof  Define the quantities ak = �kt
2
k
vk, bk =

1

2
‖

‖

uk
‖

‖

2
, where vk was defined in (20)

and uk was defined in the statement of Lemma 3.3. Since tk+1 =
1+

√

1+4
(

�k

/

�k+1

)

t2
k

2
 ,

one have that �k = �kt
2
k
− �k+1

(

t2
k+1

− tk+1
)

= 0. Then, the inequality in Lemma 3.3

can be rewritten as

It is not difficult to show that there exists a constant c > 0 such that

which implies that �kt2kvk ≤ c. Applying (10), we have

(41)

lim
k→∞

tk

k
= lim

k→∞

wk
√

�kk
=

1
√

�∗
lim
k→∞

�

wk+1 − wk

�

(41)
=

1
√

�∗
lim
k→∞

1

2

�

√

�k+1 +

�

�k+1 + 4w2
k

�

− wk

=
1

√

�∗
lim
k→∞

1

2

�

�

�k+1 + 4w2
k
−
�

2wk −
√

�k+1

�

�

=
1

√

�∗
lim
k→∞

1

2

⎛

⎜

⎜

⎜

⎝

4wk

√

�k+1
�

�k+1 + 4w2
k
+
�

2wk −
√

�k+1

�

⎞

⎟

⎟

⎟

⎠

=
1

√

�∗
lim
k→∞

⎛

⎜

⎜

⎜

⎝

2
√

�k+1
�

�k+1
�

w2
k
+ 4 + 2 −

�

�k+1
�

w2
k

⎞

⎟

⎟

⎟

⎠

=
1

2
.

(42)F
(

xk
)

− F(x∗) ≤ O
(

1
/

k2
)

, ∀x∗ ∈ X∗ and ∀k ≥ 1.

(43)
ak − ak+1 ≥ (

bk+1 − bk
)

+
(

𝜇̄ −
1

2

)

‖

‖

‖

tk+1
(

xk+1 − yk+1
)

‖

‖

‖

2 ≥ bk+1 − bk, ∀k ≥ k0.

(44)ak + bk ≤ ak0 + bk0 ≤ c,

665

1 3

Some modified fast iterative shrinkage thresholding algorithms…

then, Lemma 3.4 yields the result that F
(

xk
)

− F(x∗) ≤ O
(

1
/

k2
)

.

Rearranging (44) we see that

Summing the inequality from k = k0 to k = N, we obtain that

where 𝜇̄ −
1

2
> 0 based on the choice of �0. Then, from ak + bk > 0 and Lemma 3.4

we have
∞
∑

k=1

k2�
�

xk − yk
�

�

2 is convergent.

Further, we can obtain that lim inf
k→∞

k1.5‖
‖

xk − yk
‖

‖

= 0. Suppose that there exists a

constant c such that lim inf
k→∞

k3‖
‖

xk − yk
‖

‖

2
= c > 0, then for k is sufficiently large, we

have k3‖
‖

xk − yk
‖

‖

2
>

c

2
, which means that k2‖

‖

xk − yk
‖

‖

2
>

c

2k
. Summing the inequal-

ity from k = 1 to k = ∞, we obtain that
∑+∞

k=1
k2�
�

xk − yk
�

�

2
>
∑+∞

k=1
c

2k
, which is a

contradiction since the left side of the inequality is a convergent series, but the right
side is a divergent series. 	� ◻

Remark 3.2  Denote �k = ∇f
(

xk
)

−
1

�k

(

xk − yk + �k∇f
(

yk
))

. Based on Lemma 3.1,

we have �k ∈ �F
(

xk
)

. It follows from Lemmas 2.1, 3.4, the conclusion
lim
k→∞

k2‖
‖

xk − yk
‖

‖

2
= 0 and the fact that ‖

‖

�k
‖

‖

≤ (

Lf + 1
/

�min

)

‖

‖

xk − yk
‖

‖

 that

lim
k→∞

k‖
‖

�k
‖

‖

= 0, which implies that ‖
‖

�k
‖

‖

= o
(

1

k

)

. However, for the FISTA, we

deduce that t2
k
‖

‖

xk − yk
‖

‖

2 is bounded from the proof of Lemma 4.1 in [5], i.e.
‖

‖

�k
‖

‖

= O
(

1

k

)

. Hence, it seems that the sequence
{

‖

‖

�k
‖

‖

}

 generated by FISTA_NMS

converges to zero faster than the one generated by FISTA. In Sect. 5, the numerical
performances can verify this.

In following theorem, we will show that the sequence
{

xk
}

 has at least one accumu-
lation point, and any accumulation point belongs to X∗.

(45)vk=F
(

xk
)

− F(x∗) ≤ c

�kt
2
k

≤ c

�mint
2
k

,

(

ak + bk
)

−
(

ak+1 + bk+1
) ≥ (

𝜇̄ −
1

2

)

‖

‖

‖

tk+1
(

xk+1 − yk+1
)

‖

‖

‖

2

, ∀k ≥ k0.

(46)
(

ak0 + bk0

)

−
(

aN+1 + bN+1
) ≥ (

𝜇̄ −
1

2

)

N
∑

k=k0

‖

‖

‖

tk+1
(

xk+1 − yk+1
)

‖

‖

‖

2

,

666	 H. Liu et al.

1 3

Theorem 3.2  For ∀k ≥ 1, we have the sequence
{

xk
}

 generated from FISTA_NMS
is bounded, and all the accumulation points of

{

xk
}

 belong to X∗.

Proof  From (45), we have that bk ≤ c for any k ≥ k0.
With the definition of bk and triangle inequality, we see that

Let M0 = max
(

2c,
‖

‖

‖

xk0 − x∗
‖

‖

‖

)

. Then, we can easily prove that ‖
‖

xk − x∗‖
‖

≤ M0 by

induction, which implies
{

xk
}

 is bounded. Assume that
{

xkj

}

 is a convergent subse-
quence of

{

xk
}

 and lim
j→∞

xkj = x̄.

In view of (43) and F is lower semi-continuous, we see that

Combining this with the fact that F(x̄) ≥ F(x∗), we have F(x̄) = F(x∗), which means
that x̄ ∈ X∗. 	� ◻

3.2 � Modified FISTA algorithm with the adaptive non‑monotone stepsize

In the previous subsection, for the FISTA Algorithm with adaptive non-monontone
stepsize strategy (FISTA_NMS), we proved that convergence rate of the function val-
ues remains O

(

1

k2

)

, however, same as the original FISTA algorithm, the convergence
of iterates generated by FISTA_NMS is still unknown. As mentioned in Sect. 1, Cham-
bolle and Dossal [12] exploited a new �k =

tk−1

tk+1
 with tk =

k+a−1

a
, a > 2 for original

FISTA, and established the convergence of the iterates generated by FISTA with this
new parameter �k and a constant stepsize �k ≡ 1

Lf
 (MFISTA). Attouch and Peypouquet

[1] proved that the convergence rate of function values of MFISTA is actually o
(

1

k2

)

,

better than O
(

1

k2

)

 of FISTA. Moreover, MFISTA has a better numerical performance
than FISTA.

In order to establish the convergence of iterates generated by FISTA_NMS, and
accelerate its convergence speed, we consider the parameter

which satisfies that �k = (k − 1)∕(k + a) ≤ 1. Hence, (50) is a good parameter option
for Algorithm 4, which will be called the modified FISTA algorithm with the new
adaptive non-monotone stepsize (MFISTA_NMS).

From Theorem 3.1, we can see that if the sequence
{

tk
}

 satisfies

(47)

�

�

xk − x∗�
�

≤
√

2bk

tk
+

�

1 −
1

tk

�

�

�

xk−1 − x∗�
�

≤
√

2c

tk
+

�

1 −
1

tk

�

�

�

xk−1 − x∗�
�

.

(48)F(x̄) ≤ lim inf
j→∞

F
(

xkj

)

= lim
j→∞

F
(

xkj

)

= F(x∗).

(49)tk =
k + a − 1

a
, a > 2,

667

1 3

Some modified fast iterative shrinkage thresholding algorithms…

where t1 = 1 and
{

�k
}

 is generated by the Algorithm 3, then the objective function
values generated by Algorithm 4 has the O

(

1
/

k2
)

 convergence rate. Particularly,

�k = 0 for tk+1 =
1+

√

1+4
(

�k

/

�k+1

)

t2
k

2
. The following result is based on the analysis of

�k.

Lemma 3.5  Let
{

xk, yk
}

 be the sequences generated via MFISTA_NMS. Assume
that

∞
∑

k=1

Ek is a convergent nonnegative series and
{

Ek

}

 is decreasing monotonically.

We obtain the following conclusions.

(a)	 The series
∞
∑

k=1

k
�

F
�

xk
�

− F(x∗)
�

 is convergent.

(b)	 The series
∞
∑

k=1

k2�
�

xk − yk
�

�

2 is convergent and lim inf
k→∞

k1.5‖
‖

xk − yk
‖

‖

= 0.

Proof  Based on the assumption that
∞
∑

k=1

Ek is a convergent nonnegative series and
{

Ek

}

 is decreasing monotonically, we can easily obtain that lim
k→∞

kEk = 0. Then, for
any k > k̂, the following equality

yields that lim
k→∞

�k

k
=

a−2

a2
�∗ ≥ �3, where �3 =

(a−2)

a2
�min. Note the fourth equality fol-

lows from the fact that the stepsize
{

�k
}

 increases monotonically after k̂ step.
Invoking the inequality in Lemma 3.3 and combining lim

k→∞

�k

k
≥ �3, then, for all k

is sufficiently large, we have �k
k
≥ �3

2
 and

where uk = tkxk −
(

tk − 1
)

xk−1 − x∗ and vk is defined in (20). We rearrange (52) into

(50)�k = �kt
2
k
− �k+1

(

t2
k+1

− tk+1
) ≥ 0,

(51)

�k−1 =
1

a2

(

�k−1(k + a − 2)2 − �k(k − 1)(k + a − 1)
)

=
1

a2

(

�k−1(k + a − 2)2 − �k
(

(k + a − 2)2 + (2 − a)(k + a − 2) + 1 − a
))

=
1

a2

((

�k−1 − �k
)

(k + a − 2)2 + �k((a − 2)(k + a − 2) + a − 1)
)

=
1

a2

(

−|
|

�k−1 − �k
|

|

(k + a − 2)2 + �k((a − 2)(k + a − 2) + a − 1)
)

=
1

a2

(

−�k−1 ⋅ Ek−1 ⋅ (k + a − 2)2 + �k((a − 2)(k + a − 2) + a − 1)
)

(52)
𝜆kt

2
k
vk − 𝜆k+1t

2
k+1

vk+1

≥ 1

2

(

‖

‖

uk+1
‖

‖

2
− ‖

‖

uk
‖

‖

2
)

+
(

𝜇̄ −
1

2

)

‖

‖

‖

tk+1
(

xk+1 − yk+1
)

‖

‖

‖

2

+
𝜔3

2
kvk,

668	 H. Liu et al.

1 3

and

Summing the above two inequalities from k = Ns to k = N, where Ns is sufficiently

large, yields that
∞
∑

k=1

k
�

F
�

xk
�

− F(x∗)
�

 and
∞
∑

k=1

t2
k
�

�

xk − yk
�

�

2 are convergent. With the

definition of tk =
k+a−1

a
(a > 2), we can further obtain that

∞
∑

k=1

k2�
�

xk − yk
�

�

2 is conver-

gent. In addition, we can also show that lim inf
k→∞

k1.5‖
‖

xk − yk
‖

‖

= 0. 	� ◻

Remark 3.3  Recalling that �F
(

xk
)

∋ �k = ∇f
(

xk
)

−
1

�k

(

xk − yk + �k∇f
(

yk
))

. It fol-

lows that
∞
∑

k=1

k2�
�

�k
�

�

2 is convergent from Lemma 3.5 (b), which is stronger than the

fact in [1] that ‖
‖

�k
‖

‖

= o
(

1

k

)

 for MFISTA.

Lemma 3.6  Let
{

xk
}

 be generated by MFISTA_NMS. Then, the series
∞
∑

k=1

k�k is con-

vergent, where �k is defined in (21).

Proof  From (34) with x ∶= xk, y ∶= yk+1, we have that

where �k = (k − 1)∕(k + a), vk ∶= F
(

xk
)

− F(x∗) is defined in (20) and
�k ∶=

1

2
‖

‖

xk − xk−1
‖

‖

2 is defined in (21).
Multiplying this inequality by (k + a)2 and summing from k = Ns to k = N, where

Ns is sufficiently large, leads to

i.e.,

(

�kt
2
k
vk +

1

2
‖

‖

uk
‖

‖

2
)

−
(

�k+1t
2
k+1

vk+1 +
1

2
‖

‖

uk+1
‖

‖

2
) ≥ �3

2
kvk,

(

𝜆kt
2
k
vk +

1

2
‖

‖

uk
‖

‖

2
)

−
(

𝜆k+1t
2
k+1

vk+1 +
1

2
‖

‖

uk+1
‖

‖

2
) ≥ (

𝜇̄ −
1

2

)

‖

‖

‖

tk+1
(

xk+1 − yk+1
)

‖

‖

‖

2

.

(53)
�k+1

�k+1
− �2

k

�k

�k
≤ vk − vk+1,∀k ≥ k0,

(54)

−
(

Ns − 1
)2 �Ns

�Ns

+
[

(

Ns + a
)2

−
(

Ns + 1 − 1
)2
]

�Ns+1

�Ns+1

+
[

(

Ns + 1 + a
)2

−
(

Ns + 2 − 1
)2
]

�Ns+2

�Ns+2

+⋯ +
[

(N − 1 + a)2 − (N − 1)2
] �N

�N
+ (N + a)2

�N+1

�N+1

≤ (

Ns + a
)2
vNs

+
[

(

Ns+1 + a
)2

−
(

Ns + a
)2
]

vNs+1

+
[

(

Ns+2 + a
)2

−
(

Ns + 1 + a
)2
]

vNs+2

+⋯ +
[

(N + a)2 − (N − 1 + a)2
]

vN − (N + a)2vN+1,

669

1 3

Some modified fast iterative shrinkage thresholding algorithms…

From Lemma 3.5 (a) and a > 2, the series
∞
∑

k=1

k
�k

�k
 is convergent. Further, we obtain

that
∞
∑

k=1

k�k is convergent by using lim
k→∞

𝜆k = 𝜆∗ > 0. 	� ◻

Next, we construct the convergence rate of function values generated by
MFISTA_NMS.

Theorem 3.3  For the sequence
{

xk
}

 generated by MFISTA_NMS, we have

F
(

xk
)

− F(x∗) = o
(

1

k2

)

 and ‖
‖

xk − xk−1
‖

‖

= o
(

1

k

)

.

Proof  Recalling the definitions of
{

vk
}

 in (20) and
{

�k
}

 in (21). Denote �k = vk +
�k

�k
.

From (53) and �k ≤ 1 , we can easily deduce that �k+1 ≤ �k for k ≥ k0 . Multiply-
ing by (k + 1)2 we have

Then, we have

Since
∞
∑

k=1

k�k is convergent from Lemma 3.5 (a) and Lemma 3.6, we get that

We also can prove that
∑+∞

k=1

�

(k + 1)2𝜙k+1 − k2𝜙k

�−
< +∞. Otherwise, based on

(58) and the equality

we can get that lim
k→∞

(k + 1)2�k+1 = −∞, which is a contradiction with the fact that
k2�k ≥ 0. Hence, in view of (59), we have that

{

k2�k

}

 is convergent. Further, we
have lim inf

k→∞
k2�k = 0 by using the convergence of

∑∞

k=1
k�k. Hence, lim

k→∞
k2�k = 0,

which implies F
(

xk
)

− F(x∗) = o
(

1

k2

)

 and ‖
‖

xk − xk−1
‖

‖

= o
(

1

k

)

 by Lemma 2.1. 	� ◻

Now, we give the proof of convergence of the sequence
{

xk
}

 generated by
MFISTA_NMS. Before that, we give some auxiliary results.

(55)
(N + a)2

�N+1

�N+1
−
�

Ns − 1
�2 �Ns

�Ns

+
N
∑

k=Ns+1

a(2k − 2 + a)
�k

�k

≤ �

Ns + a
�2
vNs

− (N + a)2v
N+1

+
N
∑

k=Ns+1

(2k + 2a − 1)vk.

(56)(k + 1)2�k+1 ≤ (k + 1)2�k = k2�k + (2k + 1)�k.

(57)
(

(k + 1)2�k+1 − k2�k

)+ ≤ (2k + 1)�k.

(58)
∑+∞

k=1

(

(k + 1)2𝜙k+1 − k2𝜙k

)+
< +∞.

(59)
(k + 1)2�k+1 − �1

=
∑k

i=1

(

(i + 1)2�i+1 − i2�i

)+
−
∑k

i=1

(

(i + 1)2�i+1 − i2�i

)−
,

670	 H. Liu et al.

1 3

Lemma 3.7  For ∀k ≥ 1, we have the sequence
{

xk
}

 generated from MFISTA_NMS

is bounded, and all the accumulation points of
{

xk
}

 belong to X∗.

Proof  The proof is similar to the Theorem 3.2.

Lemma 3.8  For any x∗ ∈ X∗, and the sequence
{

xk
}

 generated by MFISTA_NMS,
we have �k =

1

2
‖

‖

xk − x∗‖
‖

2 is convergent.

Proof  Recalling (52) in the proof of Lemma 3.5, we have ak + bk ≥ ak+1 + bk+1 for

all k ≥ k0, where ak ∶= �kt
2
k
vk and bk ∶=

1

2

‖

‖

‖

(

tk − 1
)(

xk − xk−1
)

+
(

xk − x∗
)

‖

‖

‖

2

.
Combining this and the fact that ak + bk ≥ 0, we can easily deduce that the sequence
{

ak + bk
}

 is convergent.
With Lemma 2.1, the definition of tk in (50) and lim

k→∞
k2
(

F
(

xk
)

− F(x∗)
)

= 0 from

Theorem 3.3, we obtain that lim
k→∞

ak = 0, which implies that
{

bk
}

 is convergent.

From the definition of
{

bk
}

, we see that

It follows from (50) and Theorem 3.3 that the first item of (60) converges to zero,
i.e.,

In addition, from (50), Theorem 3.3 and the fact from Lemma 3.7 that ‖
‖

xk − x∗‖
‖

 is
bounded, we have

With (60), (61), (62) and the fact that
{

bk
}

 is convergent, we can obtain that
�k =

1

2
‖

‖

xk − x∗‖
‖

2 is convergent.

Theorem 3.4  The sequence
{

xk
}

 generated by MFISTA_NMS converges to a mini-
mizer of F.

Proof  From Lemma 3.7, we have lim
j→∞

xkj = x̄ ∈ X∗. And with the result of Lemma
3.8, we have ‖

‖

xk − x̄‖
‖

2 is convergent by using x̄ to replace x∗. Then one can easily
deduce that the sequence

{

‖

‖

xk − x̄‖
‖

2
}

 converges to zero, which implies
{

xk
}

 con-
verges to a minimizer of F. 	� ◻

(60)

bk =
1

2

‖

‖

‖

(

tk − 1
)(

xk − xk−1
)

+
(

xk − x∗
)

‖

‖

‖

2

=
1

2

(

tk − 1
)2
‖

‖

xk − xk−1
‖

‖

2
+
⟨(

tk − 1
)(

xk − xk−1
)

,
(

xk − x∗
)⟩

+
1

2
‖

‖

xk − x∗‖
‖

2
.

(61)lim
k→∞

1

2

(

tk − 1
)2
‖

‖

xk − xk−1
‖

‖

2
= 0.

(62)lim
k→∞

⟨(

tk − 1
)(

xk − xk−1
)

,
(

xk − x∗
)⟩

= 0.

671

1 3

Some modified fast iterative shrinkage thresholding algorithms…

It is worth mentioning that the biggest difference between MFISTA_NMS and
MFISTA is that MFISTA_NMS is not required to do any assumption relating to the
Lf  , while the condition � ∈]0,

1

Lf
] in MFISTA plays an important role in algorithm

implementation and theoretical analysis.
Meanwhile, it is unclear that whether the iterative sequence generated by

MFISTA with the backtracking stepsize converges. However, MFISTA_NMS keeps
the similar theoretical results with MFISTA and guarantees in addition the conver-
gence rate of objective function values and the convergence of iterative sequence.

3.3 � The convergence results for FISTA_NMS and MFISTA_NMS under the error
bound condition

In the above analysis, we proved that for the FISTA_NMS and MFISTA_NMS,
function values keep similar convergence rates with FISTA and MFISTA, how-
ever, the convergence of the iterates generated by FISTA or FISTA_NMS has not
been established so far. Note that the convergence of the iterates generated by
FISTA is a puzzling question in the study of numerical optimization methods,
meanwhile, the linear convergence rate of function values always be expected, but
there is no effective way to prove it. Recently, in [19], under the error bound con-
dition, the authors proposed a comparison method to prove the convergence of
iterates generated by FISTA and o

(

1

k6

)

 rate of convergence for the function val-
ues. Moreover, the convergence rate of function values generated by MFISTA can
be improved to o

(

1

k2(1+a)

)

.

In this subsection, based on the idea of the proof in [19], we will derive that
FISTA_NMS and MFISTA_NMS enjoy similar results (See Corollary 3.1 and
Corollary 3.2). It is worth emphasizing that the main difference between our set-
ting and the setting of [19] is that we use the adaptive non-monotone stepsize
strategy but a constant stepsize was used in [19]. Although there are large over-
laps with Theorem 2.6, Corollary 3.5 and Corollary 3.6 in [19], there are some
subtle differences. Here, we present the detailed proofs for self-containedness and
the convenience of the readers.

Now, we recall the error bound condition which is a key ingredient in proving
convergence of iterative methods.

Assumption 3.1  (Error bound condition) For any � ≥ F∗ ∶= inf
x∈Rn

F(x), there exist
𝜀 > 0 and 𝜏 > 0 such that

whenever
‖

‖

‖

‖

p 1

Lf
g(x) − x

‖

‖

‖

‖

< 𝜀 and F(x) ≤ �.

(63)dist(x,X∗) ≤ 𝜏
‖

‖

‖

‖

p 1

Lf
g(x) − x

‖

‖

‖

‖

672	 H. Liu et al.

1 3

Major contributions on developing and using error bound condition to derive
convergence rate of iterative descent algorithms have been developed in a series
of papers [4, 15, 16, 28, 30].

Lemma 3.9  [22, Lemma 2] For 𝜆1 ≥ 𝜆2 > 0, we have

where p�g(⋅) is defined in (3).

Lemma 3.10  Suppose that Assumption 3.1 holds. Let
{

xk
}

 be generated by Algo-
rithm 4 and x∗ ∈ X∗. Then, for k is sufficiently large, there exists 𝜏1 > 0 such that

Proof  Setting �0 = F
(

xk0+1
)

+
1

2�k0+1

‖

‖

‖

xk0+1 − xk0
‖

‖

‖

2

. From Lemma 2.1, we obtain that
1

Lf
≥ �min

�1

, �min

�1

≤ �k

�1

 and �k
�1

≥ �k, then, combining with Lemma 3.9, the nonexpansive-
ness property of the proximal operator and the fact that ∇f is Lipschitz continuous,
we obtain that

Applying the inequality (34) at the point x ∶= xk, y ∶= yk+1 and � ∶= �k+1, we
obtain that for k ≥ k0,

where the second inequality follows the facts that �k ≤ 1 and �k ≤ �k+1, the latter
relation was proved in Lemma 2.2.

It follows from (66) that for k ≥ k0,
{

F
(

xk+1
)

+
1

2�
‖

‖

xk+1 − xk
‖

‖

2
}

 is non-increas-

ing, and
∑+∞

k=k0
�

�

xk+1 − yk+1
�

�

2
< +∞ due to the convergence of

{

�k
}

. Then, we get

(64)‖

‖

‖

p�1g(x) − x
‖

‖

‖

≥ ‖

‖

‖

p�2g(x) − x
‖

‖

‖

and

‖

‖

‖

p�1g(x) − x
‖

‖

‖

�1
≤

‖

‖

‖

p�2g(x) − x
‖

‖

‖

�2
,

F
(

xk+1
)

− F(x∗) ≤ �1
‖

‖

yk+1 − xk+1
‖

‖

2
.

(65)

‖

‖

‖

‖

p 1

Lf
g

(

xk
)

− xk
‖

‖

‖

‖

≤ �1

Lf�min

‖

‖

‖

‖

p �min

�1
g

(

xk
)

− xk
‖

‖

‖

‖

≤ �1

Lf�min

‖

‖

‖

‖

p �k

�1
g

(

xk
)

− xk
‖

‖

‖

‖

≤ 1

Lf�min

‖

‖

‖

p�kg
(

xk
)

− xk
‖

‖

‖

=
1

Lf�min

‖

‖

‖

p�kg
(

xk
)

− p�kg
(

yk
)

‖

‖

‖

≤ 1

Lf�min

(

1 + �kLf
)

‖

‖

xk − yk
‖

‖

.

(66)

2𝜇̄ − 1

2𝜆k+1

‖

‖

xk+1 − yk+1
‖

‖

2

≤
(

F
(

xk
)

+
𝛾2
k

2𝜆k+1

‖

‖

xk − xk−1
‖

‖

2

)

−

(

F
(

xk+1
)

+
1

2𝜆k+1

‖

‖

xk+1 − xk
‖

‖

2

)

≤
(

F
(

xk
)

+
1

2𝜆k

‖

‖

xk − xk−1
‖

‖

2

)

−

(

F
(

xk+1
)

+
1

2𝜆k+1

‖

‖

xk+1 − xk
‖

‖

2

)

,

673

1 3

Some modified fast iterative shrinkage thresholding algorithms…

that for k is sufficiently large, F
(

xk
) ≤ �0 and there exists a 𝜀0 > 0 such that

‖

‖

‖

‖

p 1

Lf
g

(

xk
)

− xk
‖

‖

‖

‖

< 𝜀0 by (65). Hence, combining with Assumption 3.1, we have for

�0 = F
(

xk0+1
)

+
1

2�k0+1

‖

‖

‖

xk0+1 − xk0
‖

‖

‖

2

, there exists 𝜏0 > 0, for k is sufficiently large,

such that

In addition, applying the inequality (34) at the point y ∶= yk+1, � ∶= �k+1 with
x∗
k+1

∈ X∗ satisfying dist
(

xk+1,X
∗
)

=
‖

‖

‖

xk+1 − x∗
k+1

‖

‖

‖

, we obtain

Then, combining (67), (65) and Corollary 2.1, we have for k is sufficiently large,

where �1 =
1

�min

(

1

2
+

�0

�minLf

(

1 + �∗Lf
)

)

. 	� ◻

Lemma 3.11  Suppose that there exists a nonnegative sequence
{

sk
}

 such that for k

is sufficiently large, �k =
sk−1

sk+1
≥ �k, where �k =

tk−1

tk+1
 and lim

k→+∞
�k = 1. Then, we have

lim
k→∞

sk = +∞ and lim sup
k→∞

s2
k+1

−s2
k

s2
k

≤ 0.

Proof  The proof is similar to Lemma 2.5 in [19]. 	� ◻

The following theorem is largely similar to [19, Theorem 2.6], here, we still give a
complete proof since our setting is equipped with the adaptive non-monotone stepsize,
which is different from constant stepsize be used in [19].

Theorem 3.5  Suppose that Assumption 3.1 holds and there exists a nonnegative
sequence

{

sk
}

 such that for k is sufficiently large, �k =
sk−1

sk+1
≥ �k, where �k =

tk−1

tk+1
 and

lim
k→+∞

�k = 1. Then, we have that F
(

xk+1
)

− F(x∗) = o
(

1

s2
k+1

)

 and

‖

‖

xk+1 − xk
‖

‖

= O
(

1

sk+1

)

.

(67)dist
(

xk,X
∗
) ≤ �0

‖

‖

‖

‖

p 1

Lf
g

(

xk
)

− xk
‖

‖

‖

‖

.

F
(

xk+1
)

− F(x∗) ≤ 1

2�k+1

‖

‖

‖

yk+1 − x∗
k+1

‖

‖

‖

2

−
1

2�k+1

‖

‖

‖

xk+1 − x∗
k+1

‖

‖

‖

2

=
1

2�k+1

‖

‖

yk+1 − xk+1
‖

‖

2
+

1

�k+1

⟨

yk+1 − xk+1, xk+1 − x∗
k+1

⟩

≤ 1

2�k+1

‖

‖

yk+1 − xk+1
‖

‖

2
+

1

�k+1

‖

‖

yk+1 − xk+1
‖

‖

dist
(

xk+1,X
∗
)

.

(68)F
(

xk+1
)

− F(x∗) ≤ �1
‖

‖

yk+1 − xk+1
‖

‖

2
,

674	 H. Liu et al.

1 3

Proof  Denote that Ek = s2
k+1

(

F
(

xk
)

− F(x∗)
)

+
s2
k

2�k

‖

‖

xk − xk−1
‖

‖

2
. Applying inequal-

ity (34) at the point x ∶= xk, y ∶= yk+1 and � ∶= �k+1, we have for k ≥ k0,

By the supposed condition, we have �2
k
≤ �2

k
 for any k ≥ k1, where k1 is sufficiently

large, then,

Multiplying by s2
k+1

, we have

Then, combining with the inequality in Lemma 3.10 and Corollary 2.1, we have

Since lim sup
k→∞

s2
k+2

−s2
k+1

s2
k+1

≤ 0 from Lemma 3.11, we have (s
2
k+1

−s2
k+2)

s2
k+1

≥ −
2𝜇̄−1

4𝜏1𝜆max

 for k is

sufficiently large, then, (71) implies that, for k is sufficiently large,

which means that
{

Ek

}

 is nonincreasing and convergent and
∞
∑

k=1

s2
k+1

�

F
�

xk+1
�

− F(x∗)
�

 is convergent. Hence, F
(

xk+1
)

− F(x∗) = o
(

1

s2
k+1

)

 holds

ture.

(69)

F
(

xk+1
)

− F(x∗) +
2𝜇̄ − 1

2𝜆k+1

‖

‖

xk+1 − yk+1
‖

‖

2
+

1

2𝜆k+1

‖

‖

xk+1 − xk
‖

‖

2

≤ F
(

xk
)

− F(x∗) +
𝛾2
k

2𝜆k

‖

‖

xk − xk−1
‖

‖

2
.

(70)

F
(

xk+1
)

− F(x∗) +
2𝜇̄ − 1

2𝜆k+1

‖

‖

xk+1 − yk+1
‖

‖

2
+

1

2𝜆k+1

‖

‖

xk+1 − xk
‖

‖

2

≤ F
(

xk
)

− F(x∗) +
𝛼2
k

2𝜆k

‖

‖

xk − xk−1
‖

‖

2
.

Ek+1 +
(

s2
k+1

− s2
k+2

)(

F
(

xk+1
)

− F(x∗)
)

+
2𝜇̄ − 1

2𝜆k+1
s2
k+1

‖

‖

xk+1 − yk+1
‖

‖

2

≤ s2
k+1

(

F
(

xk
)

− F(x∗)
)

+

(

sk − 1
)2

2𝜆k

‖

‖

xk − xk−1
‖

‖

2

= s2
k+1

(

F
(

xk
)

− F(x∗)
)

+
s2
k

2𝜆k

‖

‖

xk − xk−1
‖

‖

2

−
2sk − 1

2𝜆k

‖

‖

xk − xk−1
‖

‖

2 ≤ Ek, ∀k ≥ k1.

(71)Ek+1 +

((

s2
k+1

− s2
k+2

)

s2
k+1

+
2𝜇̄ − 1

2𝜏1𝜆max

)

s2
k+1

(

F
(

xk+1
)

− F(x∗)
) ≤ Ek.

(72)Ek+1 +
2𝜇̄ − 1

4𝜏1𝜆max

s2
k+1

(

F
(

xk+1
)

− F(x∗)
) ≤ Ek,

675

1 3

Some modified fast iterative shrinkage thresholding algorithms…

Further, since the convergence of
{

Ek

}

, we have
{

s2
k+1

‖

‖

xk+1 − xk
‖

‖

2
}

 is bounded,

which means that ‖
‖

xk+1 − xk
‖

‖

≤ O
(

1

sk+1

)

, i.e., there exists a constant c1 > 0 such that

for k is sufficiently large, ‖
‖

xk+1 − xk
‖

‖

≤ c1

sk+1
. 	� ◻

Corollary 3.1  Suppose that Assumption 3.1 holds. Let
{

xk
}

 be generated by FISTA_
NMS and x∗ ∈ X∗. Then,

(1)	 F
(

xk
)

− F(x∗) = o
(

1

k6

)

 and ‖
‖

xk − xk−1
‖

‖

= O
(

1

k3

)

.

(2)	
{

xk
}

 converges to x̄ ∈ X∗ at the O
(

1

k2

)

 rate of convergence.

Proof  Denote that s1 = s2 = 1 and sk =
(k−1)3

(∫ k−1

1

ln x

x2
dx
)2 , ∀k ≥ 3. Based on the proof of

Corollary 3.5 in [19], we have �k ≥ �k for k is sufficiently large and sk ∼ k3. Then,
By Theorem 3.5, we can get that F

(

xk
)

− F(x∗) = o
(

1

k6

)

 and there exists a c′ > 0

such that for sufficiently large k, ‖
‖

xk+1 − xk
‖

‖

≤ c�

k3
. Then, we can deduce that

Then,

	� ◻

Corollary 3.2  Suppose that Assumption 3.1 holds. Let
{

xk
}

 be generated by
MFISTA_NMS and x∗ ∈ X∗. Then,

(1)	 F
(

xk
)

− F(x∗) = o
(

1

k2(a+1)

)

 and ‖
‖

xk − xk−1
‖

‖

= O
(

1

ka+1

)

.

(2)	
{

xk
}

 converges to x̄ ∈ X∗ at the O
(

1

ka

)

 rate of convergence.

Proof  For a ≥ 1, denote sk = (k + a − 1)a+1; otherwise, denote s1 = s2 = 1, and
sk =

(k+a−1)a+1

∫ k−1

1

ln x

x1+a
dx
, ∀k ≥ 3. Based on the proof of Corollary 3.6 in [19], we have �k ≤ �k

for k is sufficiently large and sk = O
(

ka+1
)

. Then, By Theorem 3.5, we can get that
F
(

xk
)

− F(x∗) = o
(

1

k2(a+1)

)

 and there exists a c′′ > 0 such that for sufficiently large k,

‖

‖

xk+1 − xk
‖

‖

≤ c��

ka+1
. Then, we can deduce that

∀p > 1,
‖

‖

‖

xk+p − xk
‖

‖

‖

≤ ∑k+p

i=k+1
‖

‖

xi − xi−1
‖

‖

≤ c�
∑k+p

i=k+1

1

i3
≤ c� �

k+p

k

1

x3
dx.

‖

‖

xk − x̄‖
‖

≤ c�

2k2
.

676	 H. Liu et al.

1 3

Then,

	� ◻

It is noted that the stepsize �k generated by Algorithm 3 increases monotonically
after finite iterations, while the stepsize �k generated by backtracking of FISTA_
BKTR may increases or decreases in the backtracking process. Meanwhile, we
cannot obtain a similar inequality with (34) based on FISTA_BKTR. Hence, using
the same idea of proof in [19], backtracking of FISTA_BKTR can not obtain the
results in Corollaries 3.1 and 3.2, and to our knowledge, there aren’t similar results
in the literature. From this point of view, FISTA with �k generated by the new step-
size strategy (Algorithm 3) enjoys better theoretical properties than Algorithm 2
(FISTA_BKTR).

To further illustrate this point, we consider a restart technique, which is crucially
important in improving the theoretical results and accelerating the numerical perfor-
mance of the algorithm, to improve our algorithms in next section.

4 � Restart FISTA algorithm with the adaptive non‑monotone stepsize
strategy

O’Donoghue and Candès [23] introduced two simple heuristic adaptive restart tech-
niques that can improve the convergence rate of accelerated gradient schemes. One
restart technique is fixed restarting, that restarts the algorithm every K iterations and
takes the last point generated by the algorithm as the starting point. Another is the
adaptive restart, which restarts the algorithm based on the following schemes: 1)
function scheme: F

(

xk
)

> F
(

xk−1
)

; 2)gradient scheme:
(

yk − xk
)T(

xk − xk−1
)

> 0.

O’Donoghue and Candès pointed out that both of the two adaptive restart
schemes perform similarly well. But when the iteration point is close to the mini-
mum, the algorithm with the gradient restart technique is more numerically stable.
Therefore, we combine the fixed restarting with the gradient restart technique to
improve the performance of FISTA_NMS and MFISTA_NMS in this section.

We present algorithms as follows.

∀p > 1,
‖

‖

‖

xk+p − xk
‖

‖

‖

≤ ∑k+p

i=k+1
‖

‖

xi − xi−1
‖

‖

≤ c��
∑k+p

i=k+1

1

ia+1
≤ c�� �

k+p

k

1

xa+1
dx.

‖

‖

xk − x̄‖
‖

≤ c��

aka
.

677

1 3

Some modified fast iterative shrinkage thresholding algorithms…

The schemes of FISTA_BKTR and MFISTA_BKTR combining the restart
strategy separately, namely FISTA_BKTR_restart and MFISTA_BKTR_restart,
are similar to the above two algorithms, here we omit the unnecessary details.
In the following, we prove that under the error bound condition, the sequences
generated by Algorithm 6 and Algorithm 7 are R-linearly convergent; Moreover,
the corresponding sequences of objective function values are also R-linearly con-
vergent. Note that whether the FISTA_BKTR with restart strategy enjoys similar
convergence results is unknown.

Before proceeding with the convergence results, we give some auxiliary con-
clusions as follows.

Definition 4.1  [25] Let the iterative sequence
{

xk
}

 generated by an algorithm con-
verges to x∗ in some norm. If there is a positive constant � ∈ (0, 1) which is inde-
pendent of the iterative number k, such that

then the sequence
{

xk
}

 is said to be Q-linear convergence. If there is a positive con-
stant � ∈ (0, 1) such that

lim
k→∞

‖

‖

xk+1 − x∗‖
‖

‖

‖

xk − x∗‖
‖

= �,

678	 H. Liu et al.

1 3

then the sequence
{

xk
}

 is said to be R-linear convergence.

Lemma 4.1  [25] The sequence
{

xk
}

 is said to be R-linear convergence if there is a
sequence of nonnegative scalars

{

qk
}

 such that

Lemma 4.2  Let
{

Ak

}

,
{

Bk

}

 and
{

Ck

}

 be three nonnegative sequences. Suppose that
there exist 0 < 𝜏 < 1, l > 0 and kl > 0 such that Ak+1 + Bk+1 + Ck+1 ≤ Ak + �Bk and
Ak ≤ lCk hold for any k > kl , we have

{

Ak+1 + �Bk+1

}

 converges Q-linearly to zero,
where � = min

(

1

1+
1

l

, �

)

 . And both of
{

Ak

}

 and
{

Bk

}

 converges Q-linearly to zero.

Proof  We can easy to deduce that for any k > kl,

Denote � = min

(

1

1+
1

l

, �

)

 and � = max

(

1

1+
1

l

, �

)

. Using the definitions of � and �

and (74), we obtain

which means that
{

Ak + �Bk

}

 converges Q-linearly to zero.
Further, we can deduce that

{

Ak

}

 and
{

Bk

}

 converge R-linearly to zeros using
Lemma 4.1. □ 	� ◻

Notation 4.1  Since Algorithm 5 and Algorithm 6 are special instances of Algo-
rithm 4, then, similar to the Notation 3.1 in Sect. 3, we define the similar sequences
{

vk
}

,
{

�k
}

 and
{

�k

}

, which are defined in (20),(21) and (22) respectively, for
{

xk
}

and

{

yk
}

 generated by Algorithm 5 and Algorithm 6.

Theorem 4.1  Suppose that Assumption 3.1 holds. Then, both of the sequences
{

xk
}

generated by the Algorithm 6 and Algorithm 7 are convergent and converges R-line-
arly to their limits. Also,

{

F
(

xk
)}

 converges R-linearly to F(x∗).

Proof  For the tk generated by Algorithm 6, it follows from

lim sup
k→∞

‖

‖

xk − x∗‖
‖

1

k = �,

‖

‖

xk − x∗‖
‖

≤ qk for all k, and
{

qk
}

converges Q−linearly to zero.

(74)
(

1 +
1

l

)

Ak+1 + Bk+1 ≤ Ak + �Bk.

(75)

Ak+1 + �Bk+1 ≤ Ak+1 +

(

1

1 +
1

l

)

Bk+1 ≤
(

1

1 +
1

l

)

Ak

+

(

�

1 +
1

l

)

Bk ≤ �
(

Ak + �Bk

)

,

679

1 3

Some modified fast iterative shrinkage thresholding algorithms…

that there exists a M̂ such that tk ≤ M̂. Based on Lemma 2.1 and Corollary 2.1, we
have

holds for k is sufficiently large. Then, similar with (40), it’s easy to show that

From Algorithm 7, it is obvious that 𝛾k =
k−1

k+a
≤ K−1

K+a
< 1. Thus, for Algorithm 6 or

Algorithm 7, there exists a 𝛾̄ such that 𝛾k ≤ 𝛾̄ < 1.

Denote Ns is a sufficiently large positive integer. Recalling the definitions of
{

vk
}

and

{

�k
}

 in (20) and (21). Let � = vNs
+

�Ns

�Ns

+ F(x∗). From the Assumption 3.1, we
can deduce that for this �, there exist 𝜀 > 0 and 𝜏 > 0 such that
dist(x,X∗) ≤ 𝜏

‖

‖

‖

‖

p 1

Lf
g(x) − x

‖

‖

‖

‖

 holds for
‖

‖

‖

‖

p 1

Lf
g(x) − x

‖

‖

‖

‖

< 𝜀 and F(x) ≤ �.

Recalling the definition of
{

�k+1

}

 in (22). From (34), we obtain that

it is easy to get

which means that for k is sufficiently large,
{

vk +
�k

�k

}

 is nonincreasing. This together

with the fact that
{

vk +
�k

�k

}

 is bounded below deduce that
{

vk +
�k

�k

}

 is convergent.
Moreover, it follows from (78) that

which implies that for k ≥ Ns

(76)
tk+1 − 1 =

√

1 + 4
(

𝜆k

𝜆k+1

)

t2
k
− 1

2
≤

√

1 + 4t2
k
− 1

2
< tk, ∀ k is suff iciently large

0 ≤ 1 −
𝜆k

𝜆k+1
≤ 1

M̂
≤ 1

tk
,

𝛾k =
tk − 1

tk+1
≤ tk − 1

tk
= 1 −

1

tk
≤ M̂ − 1

M̂
< 1.

(77)vk+1 +
𝛿k+1

𝜆k+1
+

2𝜇̄ − 1

𝜆k+1
𝛤k+1 ≤ vk + 𝛾̄2

𝛿k

𝜆k
,

(78)vk+1 +
�k+1

�k+1
≤ vk +

�k

�k
,

vk +
�k

�k
≤ vNs

+
�Ns

�Ns

(79)F
(

xk
) ≤ �.

680	 H. Liu et al.

1 3

Based on Lemma 3.9, the nonexpansiveness property of the proximal operator [9],
∇f is Lipschitz continuous and �min ≤ �k ≤ �∗ for k is sufficiently large, we deduce
that

See the detailed proof in (65).
Recalling (77), for k ≥ Ns we have

Summing from k = Ns to k = N and letting N → ∞, we obtain that
∞
∑

k=1

�k, i.e.
∞
∑

k=1

�

�

xk − yk
�

�

2 is convergent from Lemma 2.1. Then, combining with (80), we have

Following (79) and (81), we have F
(

xk
) ≤ � and

‖

‖

‖

‖

p 1

Lf
g

(

xk
)

− xk
‖

‖

‖

‖

< 𝜀 hold for k is

sufficiently large. Then, combining with (63), there exists 𝜏2 > 0 for k is sufficiently
large,

From (34) with y ∶= yk+1 and � ∶= �k+1, we have

Choose x to be an x∗
k+1

∈ X∗ satisfying ‖‖
‖

x∗
k+1

− xk+1
‖

‖

‖

= dist
(

xk+1,X
∗
)

, then,

where �3=
1+(�2)

2

�min

 and the last inequality is from (82) and Lemma 2.1, i.e.,

holds.

(80)
‖

‖

‖

‖

p 1

Lf
g

(

xk
)

− xk
‖

‖

‖

‖

≤ �1

�minLf

(

1 + �∗Lf
)

‖

‖

xk − yk
‖

‖

.

(

2𝜇̄ − 1

𝜆k+1

)

𝛤k+1 ≤
(

vk +
𝛿k

𝜆k

)

−

(

vk+1 +
𝛿k+1

𝜆k+1

)

.

(81)lim
k→∞

‖

‖

‖

‖

p 1

Lf
g

(

xk
)

− xk
‖

‖

‖

‖

= 0.

(82)dist
(

xk,X
∗
) ≤ �2

‖

‖

xk − yk
‖

‖

.

(83)
F
�

xk+1
� ≤ F(x) +

‖
x−yk+1‖

2

2�k+1
= F(x) +

‖
x−xk+1+xk+1−yk+1‖

2

2�k+1

≤ F(x) +
1

�k+1

�

�

�

x − xk+1
�

�

2
+ �

�

xk+1 − yk+1
�

�

2
�

.

(84)

F
(

xk+1
)

− F(x∗) ≤ 1

�k+1

(

‖

‖

‖

x∗
k+1

− xk+1
‖

‖

‖

2

+ ‖

‖

xk+1 − yk+1
‖

‖

2

)

=
1

�k+1

(

dist2
(

xk+1,X
∗
)

+ ‖

‖

xk+1 − yk+1
‖

‖

2
)

≤ �3
‖

‖

xk+1 − yk+1
‖

‖

2
,

(85)�k+1 ≤ 2�3�k+1

681

1 3

Some modified fast iterative shrinkage thresholding algorithms…

It follows from (77) and (85) and Lemma 4.2 that
{

vk + �
�k

�k

}

 converges Q-line-

arly to zero. And F(xk) converges R-linearly to F(x∗),
{

‖

‖

xk+1 − xk
‖

‖

2
}

 converges
R-linearly to zero.

With the R-linear convergence of
{

‖

‖

xk+1 − xk
‖

‖

2
}

, we obtain that there exist
0 < c̄ < 1 and M1 > 0, such that

Consequently, for any m2 > m1 > 0, we have

showing that
{

xk
}

 is a Cauchy sequence and hence convergent. Denoting its limit by
x∗and passing to the limit as m2 → ∞ in the above relation, we see further that

that means that the sequence
{

xk
}

 converges R-linearly to its limit. 	� ◻

Remark 4.1  Under the error bound condition, Wen et al. [30] proved that for FISTA
equipping with the restart scheme and the constant stepsize 1

Lf
, the sequences

{

xk − x∗
}

 and
{

F
(

xk
)

− F(x∗)
}

 converge R-linearly to zero. In Theorem 4.1, we
show similar results hold for FISTA and MFISTA with stepsize generated by Algo-
rithm 3 based on the error bound condition and restart scheme. The proposed algo-
rithm implementations are independent of Lf . In the proof of Theorem 4.1, the main
contribution of Algorithm 3 is that it generates a stepsize sequence which is conver-
gent and increases monotonically after finite iterations. We see that backtracking
strategy in FISTA_BKTR does not have this property, hence, it is not clear whether
FISTA_BKTR can obtain the linear convergence.

5 � Numerical experiments

5.1 � Performance comparison of FISTA algorithms based on different stepsize
strategies

We conduct numerical experiments to demonstrate effectiveness of our algorithms
by testing the following six algorithms:

–	 FISTA_NMS
–	 MFISTA_NMS(a = 4)
–	 FISTA_BKTR
–	 MFISTA_BKTR(a = 4)

‖

‖

xk − xk−1
‖

‖

≤ M1c̄
k.

‖

‖

‖

xm2
− xm1

‖

‖

‖

≤
m2
∑

k=m1+1

‖

‖

xk − xk−1
‖

‖

≤ M1 ⋅
c̄m1

1 − c̄

‖

‖

‖

xm1
− x∗

‖

‖

‖

≤ M1 ⋅
c̄m1

1 − c̄

682	 H. Liu et al.

1 3

–	 FISTA_backtracking
–	 SpaRSA: This algorithm is a non-monotone proximal gradient method, whose

description can be found in [31].

Termination condition: The inequality ‖
‖

�k
‖

‖

≤ � is often used to be the termina-
tion condition for all comparison algorithms, where
�k = ∇f

(

xk
)

−
1

�k

(

xk − yk + �k∇f
(

yk
))

∈ �F
(

xk
)

. However, we notice that if F is
flat, the distance between two iterates will be very far but the value of ‖

‖

�k
‖

‖

 is close
to 0; and vice versa. Hence, we terminate the test algorithms when
min

(

‖

‖

�k
‖

‖

, ‖
‖

xk − xk−1
‖

‖

) ≤ �.

Test Function: The numerical experiments are conducted on the following two
types of test functions: (1) the l1-regularized least squares problem; (2) the l1−
regularized logistic regression. It’s obvious that the first problem is the case that f
is a quadratic function, thus we need to restrict the parameter 𝜇1 < 𝜇0 < 1; for the
latter that f is a non-quadratic function, 𝜇1 < 𝜇0 < 1∕2. In the numerical experi-
ment, we set Ek =

wk

k1.1
, ∀k ≥ 1 be the control series for the new adaptive non-mono-

tone stepsize strategy, parameter wk same as the setting we introduced in Sect. 2;
�0 = 0.99,�1 = 0.95 for the test function (1), �0 = 0.49,�1 = 0.45 for the test func-
tion (2); � = 1e − 5. For the backtracking scheme, we set � = 0.5; For the BKTR
scheme, we set � = 0.5 and �0

k
=

�k−1

0.8
.

Table 1   Comparison of algorithms for solving (86) with n = 800,m = 8000, s = 80, � = 1

Iter Mult Time

� = 1, s = 80 FISTA_NMS 3287 6576 24.5598
FISTA_BKTR 3101 15394 56.1681
FISTA_backtracking 9113 36489 132.9190
SpaRSA 10001 20005 74.8957
MFISTA_NMS 2850 5702 21.3633
MFISTA_BKTR 2495 12385 45.2483

683

1 3

Some modified fast iterative shrinkage thresholding algorithms…

5.1.1 � l
1
‑regularized least squares problem

l1-regularized least squares problem is described as follows:

where the linear operator A and observation b is generated by the following scheme:

A = randn(n,m);

xstar = ones(m, 1);

Set s ∶ The number of non − zero elements of xstar

I = randperm(m); xstar(I(1 ∶ m − s)) = 0;

b = A ∗ xstar+0.1 ∗ randn(n, 1);

In the numerical experiments, we take n = 800,m = 8000.

Note that in this linear inverse problem, ∇f (x) = AT (Ax − b), which is linear,
hence, we can directly compute ∇f

(

yk
)

 by linear relationship between ∇f
(

xk−1
)

 and
∇f

(

xk−2
)

; since Ayk − b can be computed by linear relationship between Axk−1 − b
and Axk−2 − b, so the computation of f

(

yk
)

=
1

2
‖

‖

Ayk − b‖
‖

2 can be almost negligible.

(86)min
x

F(x) =
1

2
‖Ax − b‖2 + �‖x‖1,

0 20 40 60 80 100 120 140

Time

10-6

10-4

10-2

100

102

104

106
n=800,m=8000,s=80

FISTA_NMS
FISTA_BKTR
FISTA_backtracking
SpaRSA
MFISTA_NMS
MFISTA_BKTR

0 20 40 60 80 100 120 140

Time

10-15

10-10

10-5

100

105

1010
n=800,m=8000,s=80

FISTA_NMS
FISTA_BKTR
FISTA_backtracking
SpaRSA
MFISTA_NMS
MFISTA_BKTR

Fig. 1   Performance profile for the convergences of ‖
‖

�
k
‖

‖

 and F
(

x
k

)

− F(x∗) with � = 1

Table 2   Comparison of algorithms for solving (86) with n = 800,m = 8000, s = 80,� = 0.1

Iter Mult Time

� = 0.1, s = 80 FISTA_NMS 10028 20058 77.7090
FISTA_BKTR 9718 48252 175.6361
FISTA_backtracking 34635 138580 502.9829
SpaRSA 50001 100005 373.1670
MFISTA_NMS 7631 15264 56.8800
MFISTA_BKTR 7534 37407 136.6205

684	 H. Liu et al.

1 3

Through numerical experiments, we find that for FISTA_backtracking and FISTA_
BKTR, the condition F

(

p�kg
(

yk
)) ≤ Q�k

(

p�kg
(

yk
)

, yk
)

 is difficult to distinguish if we
set � too small, which means that these two backtracking schemes are not suitable
for applications with high precision requirements like medical imaging. We consider
the influence of such factors like sparsity

(

s

m

)

 and regularization parameter � on the
algorithms. The selection of regularization parameter is separately � = 1 and

Time

10-6

10-4

10-2

100

102

104

106
n=800,m=8000,s=80

FISTA_NMS
FISTA_BKTR
FISTA_backtracking
SpaRSA
MFISTA_NMS
MFISTA_BKTR

0 100 200 300 400 500 600 0 100 200 300 400 500 600

Time

10-15

10-10

10-5

100

105

1010
n=800,m=8000,s=80

FISTA_NMS
FISTA_BKTR
FISTA_backtracking
SpaRSA
MFISTA_NMS
MFISTA_BKTR

Fig. 2   Performance profile for the convergences of ‖
‖

�
k
‖

‖

 and F
(

x
k

)

− F(x∗) with � = 0.1

Table 3   Comparison of algorithms for solving (86) with n = 800,m = 8000, s = 200,� = 1

Iter Mult Time

� = 1, s = 200 FISTA_NMS 29125 58252 220.8459
FISTA_BKTR 29728 147714 547.6624
FISTA_backtracking 47226 188938 705.4287
SpaRSA 100001 200005 765.5658
MFISTA_NMS 16894 33790 128.2840
MFISTA_BKTR 14213 70687 264.4558

0 100 200 300 400 500 600 700 800

Time

10-8

10-6

10-4

10-2

100

102

104

106
n=800,m=8000,s=200

FISTA_NMS
FISTA_BKTR
FISTA_backtracking
SpaRSA
MFISTA_NMS
MFISTA_BKTR

0 100 200 300 400 500 600 700 800

Time

10-15

10-10

10
-5

100

105

1010
n=800,m=8000,s=200

FISTA_NMS
FISTA_BKTR
FISTA_backtracking
SpaRSA
MFISTA_NMS
MFISTA_BKTR

Fig. 3   Performance profile for the convergences of ‖
‖

�
k
‖

‖

 and F
(

x
k

)

− F(x∗) with � = 1

685

1 3

Some modified fast iterative shrinkage thresholding algorithms…

� = 0.1. Iter denotes the total number of iterations and Mult denotes the number of
matrix–vector product for compute Ax − b and Time denotes the CPU time.

From Table 1, 2, 3, we see that under the setting of different parameters and
different sparsity, our algorithms FISTA_NMS and MFISTA_NMS hava signifi-
cant improvment over FISTA_backtracking and SpaRSA, and comparing with
FISTA_BKTR and MFISTA_BKTR, we see that FISTA_BKTR is a little better
than FISTA_NMS for the total number of iterations, but much more than FISTA_
NMS for the number of matrix–vector product, the comparison with other two
algorithms MFISTA_NMS and MFISTA_BKTR shows similar results. In order to
more intuitively show the effectiveness of our algorithms, we plot how ‖

‖

�k
‖

‖

 and
F
(

xk
)

− F(x∗) change during the progress of the six algorithms, where F∗ be the
smallest terminating F

(

xk
)

 among all methods.
From Figs. 1, 2, 3, we can see that even if regularization parameter selection

and sparsity are different, FISTA_NMS has a significant improvement over the
FISTA_BKTR, FISTA_backtracking and SpaRSA for the given test problems. In
particular, at the maximum iteration point, SpaRSA is far from the optimal value,

Table 4   Comparison of algorithms for solving “heart_test”

Iter Fval Gval Time

FISTA_NMS 81255 81255 162510 8.0257
FISTA_BKTR 75631 199956 175608 11.8186
MFISTA_NMS 23598 23598 47196 2.3079
MFISTA_BKTR 20463 54100 47512 3.1921

Time

10-6

10-4

10-2

100

102
heart_test

FISTA_NMS
MFISTA_NMS
FISTA_BKTR
MFISTA_BKTR

0 2 4 6 8 10 12 0 2 4 6 8 10 12

Time

10-12

10-10

10-8

10-6

10-4

10-2

100
heart_test

FISTA_NMS
MFISTA_NMS
FISTA_BKTR
MFISTA_BKTR

Fig. 4   Performance profile for solving “heart_test”

Table 5   Comparison of algorithms for solving “sonar_test”

Iter Fval Gval Time

FISTA_NMS 1038 1038 2076 0.1278
FISTA_BKTR 911 2406 2114 0.1696
MFISTA_NMS 730 730 1460 0.0878
MFISTA_BKTR 540 1422 1251 0.0994

686	 H. Liu et al.

1 3

it needs more iterations to meet the termination condition, and the correspond-
ing Mult and Time will increase. Moreover, we can see that MFISTA_NMS is
more efficient than MFISTA_BKTR, which means that our stepsize strategy is
also effective for the modified algorithm MFISTA. Numerical experiments show
that the new adaptive nonmonotone stepsize strategy is very useful for improving
algorithm performances and our algorithms are very suitable for practical appli-
cation problems such as sparse signal processing.

Since numerical performance of BKTR is better than backtracking and BB
stepsize, in the following computational experiments, we just compare NMS
and BKTR strategies with same algorithm schemes like FISTA and MFISTA for
solving the sparse logistic regression problem to better illustrate the efficiency of
NMS.

Time

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100
sonar_test

FISTA_NMS
MFISTA_NMS
FISTA_BKTR
MFISTA_BKTR

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Time

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
sonar_test

FISTA_NMS
MFISTA_NMS
FISTA_BKTR
MFISTA_BKTR

Fig. 5   Performance profile for solving “sonar_test”

Table 6   Comparison of algorithms for solving “mushroom”

Iter Fval Gval Time

FISTA_NMS 121 121 242 0.0361
FISTA_BKTR 106 250 231 0.0461
MFISTA_NMS 99 99 198 0.0259
MFISTA_BKTR 126 300 276 0.0484

Time

10-8

10-6

10-4

10-2

100

102
mushroom

FISTA_NMS
MFISTA_NMS
FISTA_BKTR
MFISTA_BKTR

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Time

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
mushroom

FISTA_NMS
MFISTA_NMS
FISTA_BKTR
MFISTA_BKTR

Fig. 6   Performance profile for solving “mushroom”

687

1 3

Some modified fast iterative shrinkage thresholding algorithms…

5.1.2 � Sparse logistic regression

Consider the question

where x ∈ Rm, hi ∈ Rm, li ∈ {−1, 1}, i = 1,⋯ , n, and � = 1e − 2. The problem
sparse logistic regression is a popular problem in machine learning applications,
where f (x) = 1

n

n
∑

i=1

log
�

1 + exp
�

−li⟨hi, x⟩
��

 is non-linear. Define Kij = −lihij, and

set f̃ (y) =
m
∑

i=1

log
�

1 + exp
�

yi
��

. Then f (x) = f̃ (Kx), and Lf =
4

n
‖

‖

KTK‖
‖

. Initial point

x0= zeros(m, 1). We take three datasets ‘heart_test’, ‘sonar_test’ and ‘mushroom’
from LIBSVM [10]. We report the number of iterations (Iter), calculation of func-
tion value (Fval), calculation of gradient value (Gval) and CPU time (Time)
(Tables 4, 5, 6).

The algorithms for solving the Sparse logistic regression problem obtain simi-
lar results, i.e., though the number of iterations of algorithms with NMS is slightly
worse than algorithms with BKTR, we can see that the algorithms with NMS are
obviously better from the calculation times of function and gradient values and
CPU time. Hence, FISTA_NMS outperforms the FISTA_BKTR, and meanwhile,

(87)min
x

F(x) ∶=
1

n

n
�

i=1

log
�

1 + exp
�

−li⟨hi, x⟩
��

+ �‖x‖1,

Table 7   Comparison of algorithms with restart scheme and without restart scheme for solving (86) with
n = 800,m = 8000

Iter Mult Time

� = 1, s = 80 FISTA_NMS 3700 7402 28.4569
FISTA_NMS_restart 678 1358 5.2647
MFISTA_NMS 2967 5936 22.8726
MFISTA_NMS_restart 776 1554 5.9951
FISTA_BKTR_restart 632 3133 11.7834
MFISTA_BKTR_restart 683 3388 12.7432

� = 0.1, s = 80 FISTA_NMS 10461 20924 81.0398
FISTA_NMS_restart 2512 5026 19.4928
MFISTA_NMS 8000 16002 62.0796
MFISTA_NMS_restart 2711 5424 21.1646
FISTA_BKTR_restart 2270 11269 43.3095
MFISTA_BKTR_restart 2356 11694 44.4426

� = 1, s = 200 FISTA_NMS 32581 65164 262.3714
FISTA_NMS_restart 13689 27380 110.0113
MFISTA_NMS 16832 33666 132.1907
MFISTA_NMS_restart 13342 26686 106.2211
FISTA_BKTR_restart 8984 44701 179.8750
MFISTA_BKTR_restart 10623 52859 218.2645

688	 H. Liu et al.

1 3

MFISTA_NMS is more efficient than the MFISTA_BKTR. Observe that sometimes
FISTA_NMS is faster than MFISTA_BKTR for some test problems, like the Sparse
logistic regression with "mushroom" dataset (Figs. 4, 5, 6).

5.2 � Performance comparison of FISTA algorithms with restart based on different
stepsize strategies

The main goal of our experiments in this subsection is to test that our algorithms
combining with the Restart scheme are still effective. The test functions and the
related parameter settings are same as Sect. 5.1.

First, we compare the following four algorithms: FISTA_NMS; FISTA_NMS_
restart; MFISTA_NMS and MFISTA_NMS_restart. We can see that using the
restart strategy, both of our algorithms’ performances can be greatly improved,
which shows from Table 7 that Iter, Mult and Time for solving the l1-regularized
least squares problem be greatly reduced; and from Table 8 that Iter, Fval, Gval
and Time for solving the Sparse logistic regression be greatly reduced. Further, by
comparing FISTA_BKTR_restart, MFISTA_BKTR_restart, FISTA_NMS_restart
and MFISTA_NMS_restart, the numerical results elaborate that: after incorporating
restart strategy into all the comparison algorithms, our algorithms are still superior
to the other two comparison algorithms, which shows the stability of our algorithms.

Table 8   Comparison of algorithms with restart scheme and without restart scheme for solving (87)

Iter Fval Gval Time

heart_test FISTA_NMS 81305 81305 162610 7.8653
FISTA_NMS_restart 7876 7876 15752 0.7712
MFISTA_NMS 23586 23586 47172 2.2660
MFISTA_NMS_restart 9536 9536 19072 0.9202
FISTA_BKTR_restart 7046 18626 16358 1.0999
MFISTA_BKTR_restart 7689 20326 17851 1.1962

sonar_test FISTA_NMS 1081 1081 2162 0.1567
FISTA_NMS_restart 237 237 474 0.0383
MFISTA_NMS 660 660 1320 0.0941
MFISTA_NMS_restart 235 235 470 0.0364
FISTA_BKTR_restart 211 552 487 0.0495
MFISTA_BKTR_restart 170 446 393 0.0391

mushroom FISTA_NMS 114 114 228 0.0366
FISTA_NMS_restart 72 72 144 0.0251
MFISTA_NMS 115 115 230 0.0361
MFISTA_NMS_restart 58 58 116 0.0224
FISTA_BKTR_restart 87 199 186 0.0418
MFISTA_BKTR_restart 86 195 183 0.0361

689

1 3

Some modified fast iterative shrinkage thresholding algorithms…

6 � Conclusion

In this paper, we introduce a new adaptive non-monotone stepsize strategy (NMS),
which does not execute line search and is independent of the Lipschitz constant. Based
on NMS, we propose FISTA_NMS that has O

(

1

k2

)

 convergence rate of the objective
function values, which is similar to FISTA. We construct the convergence of iterates
generated by MFISTA_NMS based on the new adaptive non-monotone stepsize with-
out depending on the Lipschitz constant. Also, the convergence rate of objective func-
tion values shares o

(

1

k2

)

 . Further, our algorithms FISTA_NMS and MFISTA_NMS
achieve similar convergence rates in the norm of subdifferential of objective function.
Under error bound condition, we prove that FISTA_NMS and MFISTA_NMS have
improved convergence results, i.e., for FISTA_NMS, convergence rates of function val-
ues and iterates can be achieved to o

(

1

k6

)

 and O
(

1

k2

)

; for MFISTA_NMS, that are

o
(

1

k2(a+1)

)

 and o
(

1

ka

)

. In addition, we improve our algorithms and give the proof of the
linear convergence of function values and iterates by combining our algorithms with
the restart strategy. Note that FISTA and MFISTA with backtracking schemes can not
achieve the same results, which means that NMS has theoretical advantages. We dem-
onstrate the performances of our schemes on some numerical examples to show that
our stepsize strategy outperforms the backtracking.

Acknowledgements  The work was supported by the National Natural Science Foundation of China (No.
11901561), the Natural Science Foundation of Guangxi (No. 2018GXNSFBA281180) and the Postdoc-
toral Fund Project of China (Grant No. 2019M660833), Guizhou Provincial Science and Technology Pro-
jects (No. QKHJC-ZK[2022]YB084).

Data availability  Data sharing is not applicable to this article as no new data were created or analyzed in
this study.

References

	 1.	 Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forwardbackward
method is actually faster than 1

k2
 . SIAM J. Optim. 26, 1824–1834 (2016)

	 2.	 Attouch, H., Cabot, A.: Convergence rates of inertial forward-backward algorithms. SIAM J.
Optim. 28, 849–874 (2018)

	 3.	 Apidopoulos, V., Aujol, J., Dossal, C.: Convergence rate of inertial Forward–Backward algo-
rithm beyond Nesterov’s rule. Math. Program. 180, 137–156 (2020)

	 4.	 Beck, A., Teboulle, M.: A linearly convergent dual-based gradient projection algorithm for quad-
ratically constrained convex minimization. Math. Oper. Res. 31, 398–417 (2006)

	 5.	 Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems. SIAM J. Imaging Sci. 2, 183–202 (2009)

	 6.	 Becker, S.R., Candès, E.J., Grant, M.C.: Templates for convex cone problems with applications
to sparse signal recovery. Math. Prog. Comp. 3, 165–218 (2011)

	 7.	 Bello, C., Jose, Y., Nghia, T.T.A.: On the convergence of the forward-backward splitting method
with linesearches. Optim. Method Softw. 31, 1209–1238 (2016)

	 8.	 Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging
Vis. 20, 89–97 (2004)

	 9.	 Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale
Model. Simul. 4, 1168–1200 (2005)

690	 H. Liu et al.

1 3

	10.	 Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM. Trans. Intell.
Syst. Technol. 2, 1–27 (2011)

	11.	 Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Fixed-Point
Algorithms for Inverse Problems in Science and Engineering. Springer, New York (2011)

	12.	 Chambolle, A., Dossal, C.: On the convergence of the iterates of the fast iterative shrinkage-
thresholding algorithm. J. Optim. Theory Appl. 166, 968–982 (2015)

	13.	 Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)
	14.	 Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J.

Numer. Anal. 16, 964–979 (1979)
	15.	 Luo, Z.Q., Tseng, P.: Error bound and the convergence analysis of matrix splitting algorithms for

the affine variational inequality problem. SIAM J. Optim. 2, 43–54 (1992)
	16.	 Luo, Z.Q.: New error bounds and their applications to convergence analysis of iterative algo-

rithms. Math. Program. 88, 341–355 (2000)
	17.	 Lorenz, D.A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions. J.

Math. Imaging Vis. 51, 311–325 (2015)
	18.	 Liang, J., Fadili, J., Peyré, G.: Convergence rates with inexact non-expansive operators. Math.

Program. 159, 403–434 (2016)
	19.	 Liu, H.W., Wang, T., Liu, Z.X.: Convergence rate of inertial forward-backward algorithms based

on the local error bound condition. arXiv:​2007.​07432
	20.	 Molinari, C., Liang, J., Fadili, J.: Convergence rates of forward-douglas-rachford splitting

Method. J. Optim. Theory Appl. 182, 606–639 (2019)
	21.	 Nesterov, Y.: A method for solving the convex programming problem with convergence rate

O

(

1

k2

)

 . Dokl. Akad. Nauk SSSR 269, 543–547 (1983)
	22.	 Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140, 125–

161 (2013)
	23.	 O’Donoghue, B., Candès, E.: Adaptive restart for accelerated gradient schemes. Found. Comput.

Math. 15, 715–732 (2015)
	24.	 Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. MIT Press, Cambridge

(2012)
	25.	 Sun, W.Y., Yuan, Y.X.: Optimization Theory and Methods: Nonlinear Programming. Springer,

Berlin (2010)
	26.	 Su, W., Boyd, S., Candès, E.J.: A differential equation for modeling Nesterov’s accelerated gra-

dient method: Theory and insights. J. Mach. Learn. Res. 17, 1–43 (2016)
	27.	 Scheinberg, K., Goldfarb, D., Bai, X.: Fast first-order methods for composite convex optimiza-

tion with backtracking. Found. Comput. Math. 14, 389–417 (2014)
	28.	 Tseng, P.: Approximation accuracy, gradient methods, and error bound for structured convex

optimization. Math. Program. 125, 263–295 (2010)
	29.	 Tao, S., Boley, D., Zhang, S.: Local linear convergence of ISTA and FISTA on the LASSO prob-

lem. SIAM J. Optim. 26, 313–336 (2016)
	30.	 Wen, B., Chen, X.J., Pong, T.K.: Linear convergence of proximal gradient algorithm with extrapo-

lation for a class of nonconvex nonsmooth minimization problems. SIAM J. Optim. 27, 124–145
(2017)

	31.	 Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation.
IEEE T. Signal Proces. 57, 2479–2493 (2009)

	32.	 Wang, T., Liu, H.: Convergence results of a new monotone Inertial Forward-Backward Splitting
algorithm under the local Hölder error bound condition. Appl. Math. Optim. (2022). https://​doi.​org/​
10.​1007/​s00245-​022-​09859-y

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/2007.07432
https://doi.org/10.1007/s00245-022-09859-y
https://doi.org/10.1007/s00245-022-09859-y

691

1 3

Some modified fast iterative shrinkage thresholding algorithms…

Authors and Affiliations

Hongwei Liu1 · Ting Wang1 · Zexian Liu2

	 Hongwei Liu
	 hwliu@mail.xidian.edu.cn

	 Zexian Liu
	 liuzexian2008@163.com

1	 School of Mathematics and Statistics, Xidian University, Xi’an 710126, China
2	 School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China

	Some modified fast iterative shrinkage thresholding algorithms with a new adaptive non-monotone stepsize strategy for nonsmooth and convex minimization problems
	Abstract
	1 Introduction
	2 Adaptive non-monotone stepsize strategy
	3 FISTA-type algorithm with the adaptive non-monotone stepsize
	3.1 FISTA algorithm with the adaptive non-monotone stepsize
	3.2 Modified FISTA algorithm with the adaptive non-monotone stepsize
	3.3 The convergence results for FISTA_NMS and MFISTA_NMS under the error bound condition

	4 Restart FISTA algorithm with the adaptive non-monotone stepsize strategy
	5 Numerical experiments
	5.1 Performance comparison of FISTA algorithms based on different stepsize strategies
	5.1.1 -regularized least squares problem
	5.1.2 Sparse logistic regression

	5.2 Performance comparison of FISTA algorithms with restart based on different stepsize strategies

	6 Conclusion
	Acknowledgements
	References

