
Vol.:(0123456789)

Computational Optimization and Applications (2022) 83:1–27
https://doi.org/10.1007/s10589-022-00389-5

1 3

Block coordinate descent for smooth nonconvex
constrained minimization

E. G. Birgin1  · J. M. Martínez2

Received: 26 November 2021 / Accepted: 17 June 2022 / Published online: 9 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
At each iteration of a block coordinate descent method one minimizes an approxi-
mation of the objective function with respect to a generally small set of variables
subject to constraints in which these variables are involved. The unconstrained case
and the case in which the constraints are simple were analyzed in the recent litera-
ture. In this paper we address the problem in which block constraints are not simple
and, moreover, the case in which they are not defined by global sets of equations and
inequations. A general algorithm that minimizes quadratic models with quadratic
regularization over blocks of variables is defined and convergence and complexity
are proved. In particular, given tolerances 𝛿 > 0 and 𝜀 > 0 for feasibility/comple-
mentarity and optimality, respectively, it is shown that a measure of (�, 0)-critical-
ity tends to zero; and the number of iterations and functional evaluations required
to achieve (�, �)-criticality is O(�−2) . Numerical experiments in which the proposed
method is used to solve a continuous version of the traveling salesman problem are
presented.

Keywords  Coordinate descent methods · Convergence · Complexity

AMS Subject Classifications:  90C30 · 65K05 · 49M37 · 90C60 · 68Q25

This work was presented by J. M. Martínez at the 5th China-Brazil Symposium on Applied and
Computational Mathematics, that was held in Songshan Lake Science City from August 23rd to
24th, 2021.

 *	 E. G. Birgin
	 egbirgin@ime.usp.br

	 J. M. Martínez
	 martinez@ime.unicamp.br

1	 Department of Computer Science, Institute of Mathematics and Statistics, University of São
Paulo, Rua do Matão, 1010, Cidade Universitária, São Paulo, SP 05508‑090, Brazil

2	 Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific
Computing (IMECC), State University of Campinas, Campinas, SP 13083‑859, Brazil

http://orcid.org/0000-0002-7466-7663
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-022-00389-5&domain=pdf

2	 E. G. Birgin, J. M. Martínez

1 3

1  Introduction

The structure of many practical problems suggests the employment of Block
Coordinate Descent (BCD) methods for Optimization. At each iteration of a BCD
method only a block of variables is modified with the purpose of obtaining suf-
ficient decrease of the objective function.

Wright [11] surveyed traditional approaches and modern advances on the defi-
nition and analysis of Coordinate Descent methods. His analysis addresses mostly
unconstrained problems in which the objective function is convex. The case in
which a smooth function is minimized over a closed and convex set with a sepa-
rable structure was considered in [7]. Although the Coordinate Descent paradigm
is very natural and is implicitly used in different mathematical contexts, a classi-
cal example by Powell [10] showed that convergence results cannot be achieved
under excessively naive implementations.

In a recent report [2] it was shown that, requiring sufficient descent based on
regularization, the drawbacks represented by Powell’s example can be removed.
In that paper it was also shown that methods based on high-order regularization
can be defined in which convergence and worst-case complexity can be proved.
However, the main results shown in [2] indicate that it is not worthwhile to use
Taylor-like models of order greater than 2 because complexity is dominated by
the necessity of keeping consecutive iterations close enough, a requirement that
is hard to achieve if models and regularizations are of high order. This is the
reason why, in the present paper, we restrict ourselves to quadratic models of the
objective function and quadratic regularization.

The novelty of our approach relies on the extension of the techniques of [2] to
the case in which there are arbitrary constraints at every block. As a consequence,
at each iteration of BCD we minimize a problem with (probably) a small number
of variables that must satisfy arbitrary constraints. Moreover, the block feasible
set may not be defined by a global set of equalities and inequalities, as usually in
constrained optimization. Instead, equalities and inequalities that define the feasi-
ble set are local in nature in a sense that will be defined below, making it possible
more general domains than the ones defined by global equalities and inequalities.

This paper is organized as follows. In Sect. 2 the definition of the optimiza-
tion problem is given. In Sect. 3 we define the BCD method for solving the main
problem. In Sect. 4 we prove convergence and complexity results. In Sect. 5 we
explain how to solve subproblems. Experiments are shown in Sects. 6 and 7 we
state conclusions and lines for future research.

Notation. ‖ ⋅ ‖ denotes the Euclidean norm. ∇i denotes the gradient with
respect to the ith block of coordinates. ℕ = {0, 1, 2,…}.

3

1 3

Block coordinate descent for smooth nonconvex constrained…

2 � The problem

Assume that f ∶ ℝ
n
→ ℝ , ni ≥ 1 for all i = 1,… , nblocks , and

∑nblocks
i=1

ni = n . Let us
write xT = (xT

1
,… , xT

nblocks
)T , where xi ∈ ℝ

ni for all i = 1,… , nblocks , so

The problem considered in the present work is given by

The assumption below includes conditions on the sets Ωi and on the way they are
described.

Assumption A1  For all i = 1,… , nblocks the set Ωi ⊂ ℝ
ni is closed and bounded.

Moreover, for all i = 1,… , nblocks , there exist open sets Ai,j , j = 1,… , nops(i) , such
that

and there exist ng(i, j) smooth functions

such that

The constraints gi,j,�(xi) ≤ 0 are said to be constitutive of Ωi in the open covering
set Ai,j . The explicit inclusion of equality constraints in (2,3) offers no difficulty and
we state the case with only inequalities for the sole purpose of simplifying the nota-
tion. See Fig. 1 for an example of a set Ωi , the open covering Ai,j and functions gi,j,�.

In Fig. 1, sets A1,j for j = 1, 2, 3, 5 (four out of the five open circles) are such
that ng(1, j) = 2 ; while sets A1,j for j = 6, 7, 8, 9, 10 (the open rectangles) are such
that ng(1, j) = 1 . In all cases, constitutive constraints are linear. Sets A1,11 and A1,12
are not displayed in the picture for clarity. They are two congruent open triangles
that cover the interior of Ω1 that appears uncovered in the picture; and they are
such that ng(1, 11) = ng(1, 12) = 0 . The “internal kink” at A1,4 makes the constitu-
tive constraint of A1,4 to deserve special consideration. In A1,4 the feasible region is
the complement of a set defined by constraints of the form a1x1 + b1x2 + c1 ≥ 0 and
a2x1 + b2x2 + c2 ≥ 0 . Let us write z1 = a1x1 + b1x2 + c1 and z2 = a2x1 + b2x2 + c2 .
Then, in the plane (z1, z2) the feasible region is, locally, the complement of the
non-negative orthant. Define �(z1, z2) = (z1z2)

2 if z1 ≥ 0 and z2 ≥ 0 , whereas
�(z1, z2) = −(z1z2)

2 otherwise. Then, the feasible region is, locally, given by
�(z1, z2) ≤ 0 ; i.e. ng(1, 4) = 1 and the constitutive constraint is given by �.

In Sect. 6, we illustrate our method using a problem in which the sets Ωi are sim-
ple nonconvex polygons. A small set Ωi of this type is depicted in Fig. 1. Let us
show here that we can cover Ωi with open sets Aij , and define constitutive constraints,

f (x) = f (x1,… , xn) = f (x1,… , xnblocks).

(1)Minimize f (x1,… , xnblocks) subject to xi ∈ Ωi, i = 1,… , nblocks.

Ωi ⊂ ∪
nops(i)

j=1
Ai,j

(2)gi,j,� ∶ Ai,j → ℝ, � = 1,… , ng(i, j)

(3)Ωi ∩ Ai,j = {xi ∈ Ai,j | gi,j,�(xi) ≤ 0, � = 1,… , ng(i, j)}.

4	 E. G. Birgin, J. M. Martínez

1 3

in such a way that, if x̄ is a (local or global) minimizer of a smooth function �(x1, x2)
over Ωi , then there exists Aij containing x̄ such that the KKT conditions with respect
to the constitutive constraints in Aij are satisfied; see Assumption A7 in Sect. 5. In
fact, the form described here for defining the open sets Aij and the constitutive con-
straints clearly satisfies Assumption A1 and also satisfies Assumption A6 in Sect. 5.

The idea is to cover the polygon with the following open sets: (a) The interior of
Ωi ; (b) Open sets whose intersection with Ωi is an open side of the boundary (a side
of the boundary that does not contains the extreme vertices); (c) Convex open sets
whose intersection with the boundary of Ωi is a vertex plus a fraction of the two seg-
ments that connect the vertex with its two neighbors. In Case (a) there are no consti-
tutive constraints. In Case (b) there is only one constitutive constraint, which defines
a half-plane. In Case (c), the corresponding open set is divided in a region contained
in Ωi and a region that is not contained in Ωi . If the region contained in Ωi is convex
the constitutive constraints are linear and define the intersection of two half-planes.
Otherwise the expression of the constitutive constraints is not relevant and could be,
for example, as the constraint � mentioned in the example in Fig. 1.

In Cases (a) and (b) it is straightforward that a local minimizer of � must sat-
isfy KKT conditions. Analogously, KKT conditions also hold in Case (c) if the
region contained in Ωi is convex. In fact, in these three situations constitutive
constraints are naturally linear, a condition under which minimizers are necessar-
ily KKT points [9]. Therefore, we only need to analyze Case (c) when the region
contained in Ω is not convex. In this case, by the geometry of the feasible region
in a neighborhood of x̄ , there exist linearly independent directions v1 and v2 such

Fig. 1   Illustration of a set Ω1 (dashed red) covered by nops(1) = 12 open sets A1,1,… ,A1,12 (Color figure
online)

5

1 3

Block coordinate descent for smooth nonconvex constrained…

that ±v1 and ±v2 are feasible directions. Since x̄ is a minimizer, we must have
∇𝜓(x̄)Tv1 ≥ 0 , ∇𝜓(x̄)T (−v1) ≥ 0 , ∇𝜓(x̄)Tv2 ≥ 0 , and ∇𝜓(x̄)T (−v2) ≥ 0 , implying
that ∇𝜓(x̄) = 0 . So x̄ is a KKT point with null multipliers.

3 � Block coordinate descent method

In this section we present the main algorithm designed for solving (1). At each
iteration k of the Block Coordinate Descent (BCD) method, given the current
iterate xk = ((xk

1
)T ,… , (xk

nblocks
)T)T , we choose ik ∈ {1,… , nblocks} and compute xk+1

ik

by approximately solving

i.e. we approximately minimize the function f fixing the blocks xj such that j ≠ ik .
For j ≠ ik , we define xk+1

j
= x

k
j
 . The sense in which problem (4) is solved only

approximately is clarified below.
The algorithmic parameters of BCD are the sufficient descent parameter � ,

which defines progress of the objective function and implicitly penalizes the dis-
tance between consecutive iterates, the tolerance � with respect to complemen-
tarity conditions, the parameter � that defines sufficient descent of the model at
each iteration, and the minimal positive regularization parameter �min . The model
Hessian matrices Bk may be used to mimic available second derivative informa-
tion but do not play any significant role from the point of view of complexity
or convergence and the choice Bk = 0 is always possible. At Step 2 of the algo-
rithm we choose the block of variables with respect to which we wish to improve
the objective function. In general, we minimize approximately a quadratic model
increasing the regularizing parameter as far as the sufficient condition (10) is
not satisfied. Alternatively, we employ the true objective function as a model,
because such alternative is possible in many practical problems.

Algorithm 3.1  Assume that 𝛼 > 0 , � ≥ 0 , 𝜃 > 0 , 𝜎min > 0 , and x
0
i
∈ Ωi for

i = 1,… , nblocks are given. Initialize the iteration number k ← 0 .

Step 1.	� Set � ← 0 , choose ik ∈ {1,… , nblocks} , and define Bk ∈ ℝ
nik ×ℝ

nik
symmetric.

Step 2.	� Find jk ∈ {1,… , nops(ik)} and xtrial
ik

∈ Aik ,jk
 such that if 𝜎 > 0 then Alterna-

tive 1 holds while if � = 0 then either Alternative 1 or Alternative 2 holds.
Alternative 1:

 and there exist �ik ,jk ,�
≥ 0 for � = 1,… , ng(ik, jk) for which

(4)
Minimize

xik
∈ℝni f (x1,… , xnblocks) subject to xik ∈ Ωik

and xj = x
k
j
for all j ≠ ik,

(5)∇ik
f (xk)T (xtrial

ik
− x

k
ik
) +

1

2
(xtrial

ik
− x

k
ik
)TBk(x

trial

ik
− x

k
ik
) +

�

2
‖xtrial

ik
− x

k
ik
‖2 ≤ 0

6	 E. G. Birgin, J. M. Martínez

1 3

 and

Alternative 2: There exist �ik ,jk ,�
≥ 0 for � = 1,… , ng(ik, jk) for which

 and

Step 3.	� Test the sufficient descent condition

 If (10) holds, then define �k = � , xk+1
ik

= xtrial
ik

 and xk+1
i

= xk
i
 for all i ≠ ik , set

k ← k + 1 and go to Step 1. Otherwise, set � ← max{�min, 2�} and go to Step 2.

Remark  We will see that, from the theoretical point of view, Alternative 2 is not
necessary. Convergence and complexity theoretical results follow without any dif-
ficulty with Alternative 1 only. Alternative 2 was included because, in many cases,
a procedure exists to find a global minimizer with respect to a single block. So, in
Alternative 2 we allow the algorithm to choose such minimizer, with the only condi-
tion that it must satisfy KKT conditions in the block. However, note that the test (10)
is still necessary and cannot be eliminated. The reason is that its fulfillment implies
that the difference between consecutive iterations tends to zero and this feature is
essential for the convergence of coordinate search methods. See the counterexample
in [10] and the discussion with only box constraints in [2].

4 � Convergence and complexity

In this section we prove convergence and complexity results. We say that
(x1,… , xnblocks) is (�, �)-critical if there exist open sets Ai,j ( i = 1,… , nblocks ,
j = 1,… , nops(i) ) satisfying Assumption A1 such that, for all i = 1,… , nblocks , xi
satisfies the KKT conditions for the minimization of f (x1,… , xnblocks) restricted
to the constitutive constraints of Ai,j , j = 1… , nops(i) , with tolerance 𝜀 > 0 and
satisfies complementarity and feasibility with respect to the same constraints with

(6)

���∇ik
f (xk) + Bk(x

trial

ik
− x

k
ik
) + �(xtrial

ik
− x

k
ik
)

+

ng(ik ,jk)�

�=1

�ik ,jk ,�
∇gik ,jk ,�(x

trial

ik
)

������
≤ �‖xtrial

ik
− x

k
ik
‖

(7)min{�ik ,jk ,�
,−gik ,jk ,�(x

trial

ik
)} ≤ �, � = 1,… , ng(ik, jk).

(8)
‖‖‖‖‖‖
∇ik

f (xk
1
,… , xtrial

ik
,… , xk

nblocks
) +

ng(ik ,jk)∑

�=1

�ik ,jk ,�
∇gik ,jk ,�(x

trial

ik
)

‖‖‖‖‖‖
= 0

(9)min{�ik ,jk ,�
,−gik ,jk ,�(x

trial

ik
)} ≤ 0, � = 1,… , ng(ik, jk).

(10)f (xk
1
,… , xtrial

ik
,… , xk

nblocks
) ≤ f (xk) − �‖xtrial

ik
− x

k
ik
‖2.

7

1 3

Block coordinate descent for smooth nonconvex constrained…

tolerance 𝛿 > 0 . Under proper assumptions we prove that, given � ≥ 0 (which is
a parameter of the algorithm BCD), the natural measure of (�, 0)-criticality tends
to zero and the number of iterations and evaluations that are necessary to obtain
(�, �)-criticality is O(�−2).

In Assumption A2 we state that the gradients of the objective function must
satisfy Lipschitz conditions.

Assumption A2  There exists 𝛾 > 0 such that, for all xik and xtrial
ik

 computed at
Algorithm 3.1,

and

Moreover, if xk1 differs from xk2 in only one block idif f,

for all i = 1,… , nblocks.

Assumption A3 merely states that model Hessians should be uniformly
bounded.

Assumption A3  There exist cB > 0 such that for all k ∈ ℕ,

Assumptions A2 and A3 are sufficient to prove that every iteration of BCD is
well defined, as sufficient descent (10) is obtained increasing the regularization
parameter � a finite number of times.

Lemma 4.1  Assume that Assumptions A2 and A3 hold and that, for all k ∈ ℕ, the
computation of jk and xtrial

ik
 according to Step 2 of BCD is possible. Then, the test

(10) is satisfied after at most

increases of � at Step 3. Moreover,

Proof  If the test (10) is satisfied when Step 2 is executed with � = 0 , then the thesis
holds trivially. So, we need to consider only the case in which 𝜎 > 0 and, in conse-
quence, jk and xtrial

ik
 satisfy Alternative 1. By (12) in Assumption A2,

(11)‖∇ik
f (xk) − ∇ik

f (xk
1
,… , xtrial

ik
,… , xk

nblocks
)‖ ≤ �‖xik − x

trial

ik
‖

(12)
f (xk

1
,… , xtrial

ik
,… , xk

nblocks
) ≤ f (xk) + ∇ik

f (xk)T (xtrial
ik

− x
k
ik
) +

�

2
‖xik − x

trial

ik
‖2.

(13)‖∇if (x
k1) − ∇if (x

k2)‖ ≤ �‖xk2
idif f

− x
k1
idif f

‖.

(14)‖Bk‖ ≤ cB.

log2

(
� + cB + 2�

�min

)
+ 1

(15)𝜎k < 𝜎max ∶= 2(𝛾 + cB + 2𝛼).

8	 E. G. Birgin, J. M. Martínez

1 3

Then, by (5),

Therefore, by (14) in Assumption A3,

Then, the inequality (10) holds if

i.e. if � ≥ � + cB + 2� . Since, by definition, � initially receives the value zero and
then receives values of the form 2�−1�min , where � is the number of executions
of � ← max{�min, 2�} , then the number of increases of � that are necessary to
obtain (10) is bounded above by

as we wanted to prove. Finally, (15) comes from the fact that the largest unsuccess-
ful value of � must be strictly less than � + cB + 2� and the next (successful) value is
twice that amount by definition. 	� ◻

Assumption A4  The sequence {f (xk)} is bounded below.

The following lemma is a simple consequence of (10) and Assumption A4.

Lemma 4.2  Assume that Assumptions A2, A3, and A4 hold and that for all k ∈ ℕ ,
the computation of jk and x

trial
ik

 at Step 2 is possible. Then,
limk→∞ ‖xk+1

ik
− x

k
ik
‖ = limk→∞ ‖xk+1 − x

k‖ = 0 and, given 𝜀 > 0 , the number of
iterations at which ‖xk+1

ik
− x

k
ik
‖ > 𝜀 is bounded above by

f (xk
1
,… , xtrial

ik
,… , xk

nblocks
) ≤ f (xk) + ∇ik

f (xk)T (xtrial
ik

− x
k
ik
) +

�

2
‖xik − x

trial

ik
‖2

+

�
1

2
(xtrial

ik
− x

k
ik
)TBk(x

trial

ik
− x

k
ik
) +

1

2
�‖xtrial

ik
− x

k
ik
‖2
�

−

�
1

2
(xtrial

ik
− x

k
ik
)TBk(x

trial

ik
− x

k
ik
) +

1

2
�‖xtrial

ik
− x

k
ik
‖2
�

f (xk
1
,… , xtrial

ik
,… , xk

nblocks
) ≤ f (xk) +

�

2
‖xik − x

trial

ik
‖2 − 1

2
(xtrial

ik

− x
k
ik
)TBk(x

trial

ik
− x

k
ik
) −

1

2
�‖xtrial

ik
− x

k
ik
‖2.

f (xk
1
,… , xtrial

ik
,… , xk

nblocks
) ≤ f (xk) +

�

2
‖xik − x

trial

ik
‖2 + 1

2
cB‖xtrialik

− x
k
ik
‖2

−
1

2
�‖xtrial

ik
− x

k
ik
‖2

= f (xk) +
1

2
(� + cB − �)‖xtrial

ik
− x

k
ik
‖2.

1

2
(� + cB − �)‖xtrial

ik
− x

k
ik
‖2 ≤ −�‖xtrial

ik
− x

k
ik
‖2,

log2

(
� + cB + 2�

�min

)
+ 1

9

1 3

Block coordinate descent for smooth nonconvex constrained…

where fbound is an arbitrary lower bound of {f (xk)}.

Proof  By Assumption A4 there exists fbound ∈ ℝ such that f (xk) ≥ fbound for all
k ∈ ℕ . Then, the fact that ‖xk+1

ik
− x

k
ik
‖ tends to zero comes from (10); and this

implies that ‖xk+1 − x
k‖ tends to zero as well because, by definition,

‖xk+1 − x
k‖ = ‖xk+1

ik
− x

k
ik
‖ . Finally, if ‖xk+1

ik
− x

k
ik
‖ > 𝜀 , then, by (10),

f (xk+1) ≤ f (xk) − ��
2 ; and this reduction can no occur more than (16) times, as we

wanted to prove. 	� ◻

Assumption A5 states that every block of components i is chosen for minimiza-
tion at infinitely many iterations and, moreover, at every m consecutive iterations we
necessarily find at least one at which i is chosen.

Assumption A5  There exists m ∈ {1, 2,…} such that, for all � ∈ {1,… , nblocks} ,
ik = � infinitely many times and, if k1 < k2 < k3,… is the set of all the iteration indi-
ces k such that ik = � , one has that k1 ≤ m , and kj+1 − kj ≤ m for all j = 1, 2, 3,….

The following theorems are the main convergence result of this paper. The
idea is the following. According to Algorithm 3.1, at iteration k, we select a block
ik = ichosen and optimize with respect to the variables of this block up to the approxi-
mate fulfillment of restricted KKT conditions. These restricted KKT conditions hold
in one of the open sets that cover Ωichosen

 and involve the constraints that are constitu-
tive in this open set. The variables xichosen do not change during some (less than m)
iterations; therefore, during these iterations, thanks to the Lipschitz assumption (13),
the approximate KKT conditions with respect to the variables ichosen still hold with
respect to the same open set and the same constitutive constraints used at iteration k.
After these (less than m) iterations the block ichosen is selected again, and the pro-
cess is repeated. Since all the blocks are chosen infinitely many times in the way
described by Assumption A5, approximate KKT conditions eventually hold with
respect to all the blocks and we are able to establish the number of iterations that we
need for the fulfillment of KKT conditions up to an arbitrary precision �.

Theorem 4.1  Assume that Assumptions A2, A3, A4, and A5 hold and that for all
k ∈ ℕ , the computation of jk and xtrial

ik
 at Step 2 is possible. For i ∈ {1,… , nblocks}

and k ≥ m , define o(i, k) ∶= jk̂ , where k̂ is the latest iteration (not larger than k) at
which ik̂ = i . Then, for i ∈ {1,… , nblocks} and k ≥ m , we have that �i,o(i,k),� ≥ 0 for
� = 1,… , ng(i, o(i, k)),

and

(16)
f (x0) − fbound

��2

x
k
i
∈ Ai,o(i,k),

min{�i,o(i,k),� ,−gi,o(i,k),�(x
k
i
)} ≤ �,

10	 E. G. Birgin, J. M. Martínez

1 3

Moreover, given 𝜀 > 0 , the number of iterations at which

is bounded above by

where fbound is an arbitrary lower bound of {f (xk)} and

Proof  Let i ∈ {1,… , nblocks} be arbitrary. By Assumption A5, there exists k1 ≤ m
such that ik1 = i . Without loss of generality, in order to simplify the notation, sup-
pose that k1 = 0 . Consider first the case where, in Step 2, Alternative 1 holds.
Then, at iteration k1 = 0 one defines B0 and finds j0 , x1i ∈ Ai,j0

 , and �i,j0,�
≥ 0 for

� = 1,… , ng(i, j0) such that

and

By (18) and (15),

Then, by (11),

Since x1
s
= x

0
s
 for every s = 1,… , nblocks , s ≠ i , by (21) and the definition of c4 in

(17), we have that

lim
k→∞

‖‖‖‖‖‖
∇if (x

k) +

ng(i,o(i,k))∑

�=1

�i,o(i,k),�∇gi,o(i,k),�(x
k
i
)

‖‖‖‖‖‖
= 0.

‖‖‖‖‖‖
∇if (x

k) +

ng(i,o(i,k))∑

�=1

𝜇i,o(i,k),�∇gi,o(i,k),�(x
k
i
)

‖‖‖‖‖‖
> 𝜀

f (x0) − fbound

�(�∕(c4m))
2
,

(17)c4 ∶= cB + �max + � + � .

(18)

������
∇if (x

0) + B0(x
1
i
− x

0
i
) + �0(x

1
i
− x

0
i
) +

ng(i,j0)�

�=1

�i,j0,�
∇gi,j0,�(x

1
i
)

������
≤ �‖x1

i
− x

0
i
‖

(19)min{�i,j0,�
,−gi,j0,�(x

1
i
)} ≤ � for � = 1,… , ng(i, j0).

(20)
������
∇if (x

0) +

ng(i,j0)�

�=1

�i,j0,�
∇gi,j0,�(x

1
i
)

������
≤ (cB + �max + �)‖x1

i
− x

0
i
‖.

(21)

������
∇if (x

0
1
,… , x1

i
,… , x0

nblocks
) +

ng(i,j0)�

�=1

�i,j0,�
∇gi,j0,�(x

1
i
)

������
≤ (cB + �max + � + �)‖x1

i
− x

0
i
‖.

11

1 3

Block coordinate descent for smooth nonconvex constrained…

Recall that (19) and (22) were obtained under Alternative 1. On the other hand,
under Alternative 2, (19) and (22) follow trivially from (9) and (8), respectively.

Since x2 may differ from x1 only in the block i1 , by (13), we have that

Then, by (22),

Since x3 may differ from x2 only in the block i2 , by (13) and (23), we have that

So, using an inductive argument, for all k ∈ ℕ,

Thus, by the definition of c4 in (17), for all k ∈ ℕ,

Let us now get rid of the simplifying assumption i0 = i and assume that the set of
indices k at which ik = i is k1 < k2 < … . Renaming the indices in (19) and (26), we
get that

and for all r = 1, 2,… and all k = kr + 1, kr + 2,… , in particular for all
k = kr + 1, kr + 2,… , kr+1,

But, by the definition of the sequence k1, k2,… , xkr
i

 may change from iteration kr to
iteration kr + 1 but it does not change from kr + 1 to kr + 2 , kr + 2 to kr + 3 , until

(22)
������
∇if (x

1) +

ng(i,j0)�

�=1

�i,j0,�
∇gi,j0,�(x

1
i
)

������
≤ c4‖x1i − x

0
i
‖.

‖∇if (x
2) − ∇if (x

1)‖ ≤ �‖x2
i1
− x

1
i1
‖.

(23)
������
∇if (x

2) +

ng(i,j0)�

�=1

�i,j0,�
∇gi,j0,�(x

1
i
)

������
≤ c4‖x1i − x

0
i
‖ + �‖x2

i1
− x

1
i1
‖.

(24)

������
∇if (x

3) +

ng(i,j0)�

�=1

�i,j0,�
∇gi,j0,�(x

1
i
)

������
≤ c4‖x1i − x

0
i
‖ + �‖x2

i1
− x

1
i1
‖ + �‖x3

i2
− x

2
i2
‖.

(25)
������
∇if (x

k) +

ng(i,j0)�

�=1

�i,j0,�
∇gi,j0,�(x

1
i
)

������
≤ c4‖x1i − x

0
i
‖ + �

k�

�=2

‖x� − x
�−1‖.

(26)
������
∇if (x

k) +

ng(i,j0)�

�=1

�i,j0,�
∇gi,j0,�(x

1
i
)

������
≤ c4

k�

�=1

‖x� − x
�−1‖.

(27)min{�i,jkr ,�
,−gi,jkr ,�

(x
kr+1

i
)} ≤ � for � = 1,… , ng(i, jkr)

(28)
������
∇if (x

k) +

ng(i,jkr)�

�=1

�i,jkr ,�
∇gi,jkr ,�

(x
kr+1

i
)

������
≤ c4

k�

�=kr+1

‖x� − x
�−1‖.

12	 E. G. Birgin, J. M. Martínez

1 3

kr+1 − 1 to kr+1 ; and it may change again from iteration kr+1 to iteration kr+1 + 1 . This
means that, for all r = 1, 2,… , we have that xkr+1

i
= x

kr+2

i
= ⋯ = x

kr+1
i

 . Therefore,
(27) and (28) imply that for all r = 1, 2,… and k = kr + 1, kr + 2,… , kr+1,

and

Moreover, by definition, o(i, kr + 1) = o(i, kr + 2) = ⋯ = o(i, kr+1) = jkr for
r = 1, 2,… . So, from (29) and (30), we get that, for k ≥ m , xk

i
∈ Ai,o(i,k) and �i,j0,�

≥ 0
for � = 1,… , ng(i, j0) are such that

and

By Lemma 4.2, given 𝜀 > 0 , the number of iterations at which
‖x𝜈 − x

𝜈−1‖ > 𝜀∕(c4m ) is boundedabove by (f (x0) − fbound)∕(�(�∕(c4m))
2) . Then,

since the sum in the second member of (30) involves at most m terms, the number
of iterations at which the left-hand side of (30) is bigger than � is bounded above by
(f (x0) − fbound)∕(�(�∕(c4m))

2) . Moreover, since 𝜀 > 0 is arbitrary, taking limits on
both sides of (32), we have that

	� ◻

The final theorem of this section proves worst-case functional complexity of
order O(�−2).

Theorem 4.2  Assume that Assumptions A2, A3, A4, and A5 hold and that for all
k ∈ ℕ , the computation of jk and xtrial

ik
 at Step 2 is possible. Let the indices o(i, k) be

as defined in Theorem 4.1. Then, given 𝜀 > 0 , Algorithm 3.1 performs at most

iterations and at most

(29)min{�i,jkr ,�
,−gi,jkr ,�

(xk
i
)} ≤ � for � = 1,… , ng(i, jkr)

(30)
������
∇if (x

k) +

ng(i,jkr)�

�=1

�i,jkr ,�
∇gi,jkr ,�

(xk
i
)

������
≤ c4

k�

�=kr+1

‖x� − x
�−1‖.

(31)min{�i,o(i,k),� ,−gi,o(i,k),�(x
k
i
)} ≤ � for � = 1,… , ng(i, o(i, k))

(32)
������
∇if (x

k) +

ng(i,o(i,k))�

�=1

�i,o(i,k),�∇gi,o(i,k),�(x
k
i
)

������
≤ c4

k�

�=kr+1

‖x� − x
�−1‖.

(33)lim
k→∞

‖‖‖‖‖‖
∇if (x

k) +

ng(i,o(i,k))∑

�=1

�i,o(i,k),�∇gi,o(i,k),�(x
k
i
)

‖‖‖‖‖‖
= 0.

nblocks

(
f (x0) − fbound

�(�∕(c4m))
2

)

13

1 3

Block coordinate descent for smooth nonconvex constrained…

functional evaluations per iteration, where fbound is an arbitrary lower bound of
{f (xk)} and c4 is given by (17), to compute an iterate xk+1 such that

and

for all i = 1,… , nblocks.

Proof  The proof follows from Theorem 4.1, Lemma 4.1, and the definition of Algo-
rithm 3.1, because the number of functional evaluations per iterations is equal to
the number of increments of � plus one. (This ignores the fact that, disregarding the
first iteration, the value of f (xk) can in fact be obtained from the previous iteration,
in which case the number of functional evaluations and the number of increases of �
per iteration coincide.) 	� ◻

5 � Solving subproblems

In this section we present an algorithm for computing xtrial
ik

 at Step 2 of iteration k of
Algorithm 3.1. The well-definiteness of the proposed approach requires, in addition
to Assumption A1, two additional assumptions. The first one concerns the relation
between each set Ωi , its covering sets Ai,j , and its constitutive constraints gi,j,� . This
assumption states that, if a point is in the closure of Ai,j and satisfies the constitutive
constraints associated with Ai,j then this point necessarily belongs to Ωi.

Assumption A6  For all i ∈ {1,… , nblocks} and all j ∈ {1,… , nops(i)} , if xi ∈ Ai,j and
gi,j,�(xi) ≤ 0 for � = 1,… , ng(i, j) , then xi ∈ Ωi.

To illustrate the necessity of Assumption A6, Fig. 2 exhibits a pathological
example at which the assumption does not hold. In the figure, the set Ω1 (in red) is
the union of the segments Sh = {(t, 2) | t ∈ [2, 4]} and Sv = {(2, t) | t ∈ [−1, 2]} .
Defining nops(1) = 2 and the open sets A1,1 = {(x1, x2) | (x1 − 2)2 + x2

2
< 1} and

A1,2 = {(x1, x2) | x2 > 1∕2} , we have that Ω1 ⊂ ∪
nops(1)

j=1
A1,j . The open ball A1,1 is

displayed in the figure, while the open half-space A1,2 is not. Inside the open ball
A1,1 , the set Ω1 can be described by the deliberately unorthodox choice
(x1 − 1)(x1 − 2) = 0 , while inside the open half-space A1,2 , the set Ω1 can be
described by the equality (x1 − 2)(x2 − 2) = 0 plus the inequalities 2 ≤ x1 ≤ 4 and

log2

(
� + cB + 2�

�min

)
+ 2

x
k+1
i

∈ Ai,o(i,k),

�i,o(i,k),� ≥ 0 and min{�i,o(i,k),� ,−gi,o(i,k),�(x
k+1
i

)} ≤ �, � = 1,… , ng(i, o(i, k)),

‖‖‖‖‖‖
∇if (x

k+1) +

ng(i,o(i,k))∑

�=1

�i,o(i,k),�∇gi,o(i,k),�(x
k+1
i

)

‖‖‖‖‖‖
≤ �

14	 E. G. Birgin, J. M. Martínez

1 3

1∕2 ≤ x2 ≤ 2 . Therefore, (3) is satisfied for i = 1 and j = 1,… , nops(1) by defining
ng(1, 1) = 2 , ng(1, 2) = 6 , g1,1,1(x1, x2) = (x1 − 1)(x1 − 2) ,
g1,1,2(x1, x2) = −g1,1,1(x1, x2) , g1,2,1(x1, x2) = (x1 − 2)(x2 − 2) ,
g1,2,2(x1, x2) = −g1,2,1(x1, x2) , g1,2,3(x1, x2) = 2 − x1 , g1,2,4(x1, x2) = x1 − 4 ,
g1,2,5(x1, x2) = 1∕2 − x2 , and g1,2,6(x1, x2) = x2 − 2 . The set of points that satisfy
the constitutive constraints of Ω1 in A1,1 is shown in light-gray in the figure. The
point (x1, x2)T = (1, 0)T belongs to A1,1 and satisfies the corresponding constitu-
tive constraints g1,1,1(x1, x2) ≤ 0 and g1,1,2(x1, x2) ≤ 0 . However, it does not belong
to Ω1 . Therefore, Assumption A6 does not hold. The equality that describes Ω1
within A1,1 was deliberately chosen to construct an example that does not satisfy
Assumption A6 and to show that Assumption A6 is necessary. To satisfy Assump-
tion A6 in this example, it would suffice to consider as constitutive constraints of
Ω1 within A1,1 the two inequalities equivalent to x1 = 2 instead of the two inequal-
ities equivalent to (x1 − 1)(x1 − 2) = 0.

The second additional assumption states that every global minimizer of a
smooth function onto Ωi belongs to some Ai,j satisfying the KKT conditions with
respect to the constitutive constraints related with Ai,j.

Assumption A7  For all i ∈ {1,… , nblocks} , if xi is a global minimizer of a smooth
function onto Ωi , there exists j ∈ {1,… , nops(i)} such that xi ∈ Ai,j and xi satisfies
the KKT conditions with respect to the constitutive constraints associated with Ai,j.

Fig. 2   A pathological example at which Assumption A6 does not hold

15

1 3

Block coordinate descent for smooth nonconvex constrained…

To illustrate the necessity of Assumption A7, let us show that it does not hold in
the example of Fig. 1. Assume that the global minimizer G of a smooth function �
over the set Ω1 belongs to the boundary of Ω1 and to the ball A1,4 but does not belong
to A1,9 ∪ A1,10 ∪ A1,11 ∪ A1,12 and is not the center C1,4 of A1,4

1. For example, take
an adequate infeasible point Q very close to the desired global minimizer G and
define �(P) = ‖P − Q‖2 . The global minimizer G belongs only to the open set A1,4 ,
the gradient ∇�(G) is nonnull but, according to the definition of the constitutive
constraint � of A1,4 , ∇�(G) = 0 . Therefore, the KKT condition does not hold in this
case. Fortunately, Fig. 1 shows just an arbitrary illustrative example and, as already
described in Sect. 2, there are simple ways to define the open sets Aij and the consti-
tutive constraints in such a way that Assumptions A1, A6, and A7 hold.

In order to pursue Alternative 1, at Step 2 of Algorithm 3.1, jk ∈ {1,… , nops(ik)}
and xtrial

ik
∈ Aik ,jk

 must be found such that (5) holds and such that there exist
�ik ,jk ,�

≥ 0 for � = 1,… , ng(ik, jk) for which (6) and (7) hold. To accomplish this, for
j from 1 to nops(ik) , provided it is affordable, we could compute a global minimizer
z
∗
j
 of

If the objective function value at z∗
j
 is non-positive and z∗

j
∈ Aik ,j

 , then, defining
jk = j , we have that xtrial

ik
= z

∗
j
 satisfies (5). If we additionally assume that global

minimizers of (34) for every j ∈ {1,… , nops(ik)} satisfy KKT conditions, then we
have that there exist �ik ,jk ,�

≥ 0 for � = 1,… , ng(ik, jk) for which (6) and (7) hold.
If none of the global minimizers z∗

j
 is such the objective function value at z∗

j
 is

non-positive and z∗
j
∈ Aik ,j

 , then we can define jk = ja and xtrial
ik

= z
∗

jb
 , where z∗

jb
 is the

global minimizer (among the nops(ik) computed global minimizers z∗
1
,… , z∗

nops(ik)
 )

that achieves the lowest functional value of the objective function in (34) and ja is
such that z∗

jb
∈ Aik ,j

a . The functional value of the objective function of (34) at z∗
jb
 is

non-positive because the objective function vanishes at xk
ik
 that is a feasible point

of (34) for at least one j ∈ {1,… , nops(ik)} ; and z∗
jb
∈ Aik ,j

a for some ja because, by
Assumption A6, z∗

jb
∈ Ωik

 and, by definition, Ωik
⊂ Aik

= ∪
nops(ik)

j=1
Aik ,j

 . Moreover, z∗
jb

must also be a global minimizer of (34) with j = ja . Thus, by Assumption A7, it ful-
fills KKT conditions and, therefore, there exist �ik ,jk ,�

≥ 0 for � = 1,… , ng(ik, jk) for
which (6) and (7) hold.

It is worth noting that the objective function in (34) is a linear function if Bk = 0
and � = 0 ; and it is a convex quadratic function if Bk + �I is positive definite. More-
over, it is always possible to choose the open covering sets Ai,j for all i and j in such
a way their closures are simple sets like balls, boxes, or polyhedrons. Furthermore, it

(34)
Minimize

x∈ℝ
nik ∇ik

f (xk)T (x − x
k
ik
) +

1

2
(x − x

k
ik
)Bk(x − x

k
ik
) +

�

2
‖x − x

k
ik
‖2

[2mm] subject to x ∈ Aik ,j
and gik ,j,�(x) ≤ 0 for � = 1,… , ng(ik, j).

1  We already shown, in Sect. 2, that, although non-regular, if a smooth function � has a minimizer at
C1,4 , its gradient ∇�(C1,4) is necessarily null; so that C1,4 is a KKT point of the minimization of � subject
to � ≤ 0.

16	 E. G. Birgin, J. M. Martínez

1 3

is also possible that more efficient problem-dependent alternatives exist for the com-
putation of xtrial

ik
 ; and it is also possible trying to find xtrial

ik
 satisfying Alternative 2

when � = 0.
The correctness of the strategy proposed in this section depends on the satisfac-

tion of Assumptions A1 to A7. Assumptions A1, A6, and A7 refer to the relationship
between the feasible region of problem (1), the open sets, and the constitutive con-
straints. We have already shown that, for simple nonconvex polygons, these things
can be defined in such a way that the assumptions are satisfied. Assumption A3
asks the models’ Hessians Bk to be uniformly bounded. This can be satisfied by def-
inition, for example by choosing Bk = 0 in all iterations, or any other option that
satisfies the assumption. Likewise, Assumption A5 refers to the way in which the
blocks ik are chosen at each iteration. This assumption can also be satisfied in many
ways, for example with a cyclic choice of ik . The remaining assumptions (Assump-
tions A2 and A4) depend on the objective function of problem (1) and their validity
will be explained in Sect. 6.1, when the problem under consideration is introduced.

6 � Experiments

In this section we describe numerical experiments using the BCD method. Sect. 6.1
describes what we have called the continuous version of the traveling salesman
problem (TSP). In this problem, the BCD method is used to evaluate the merit of the
function that should be minimized. Since this function is computed many times
along the whole process, this problem provides many experimental applications of
BCD. In Sect. 6.2, we describe a simple heuristic and a way to generate a starting
point for solving the continuous TSP. Although simple, these considered methods
are part of the state of the art of methods used to solve the classical TSP. Moreover,
they serve to illustrate the application of the BCD method, which could be used in
the same way in combination with any other strategy. Sect. 6.3 describes a problem-
dependent way to find a xtrial

ik
 in the BCD method that satisfies the requirements of

Alternative 2. Sect. 6.4 describes the computational experiment itself.

6.1 � Continuous traveling salesman problem

The travelling salesman problem (TSP) is one of the most studied combinatorial
optimization problems for which a vast literature exists; see, for example, [3], and
the references therein. In its classical version, p cities with known pairwise “dis-
tances” dij > 0 are given and the problem consists in finding a permutation
i1, i2,… , ip that minimizes dip,i1 +

∑p−1

�=1
di

�
,i
�+1

 . In the present work, we consider a
continuous variant of the classical TSP in which “cities” are not fixed and, therefore,
their pairwise distances vary. More precisely, given a set of polygons Ω1,Ω2,… ,Ωp ,
that may be nonconvex, the problem consists of finding points xi ∈ Ωi for i = 1,… , p
and a permutation i1, i2,… , ip that minimize ‖xip − xi1

‖ +∑p−1

�=1
‖xi

�
− xi

�+1
‖ . Poly-

gons may be seen as representing countries, regions, districts, or neighbourhoods of

17

1 3

Block coordinate descent for smooth nonconvex constrained…

a city; and the interpretation is that “visiting a polygon” is equivalent to “visiting
any point within the polygon”.

The application of the BCD method in this context is very natural. Any method to
solve the classical TSP requires to evaluate the merit of a permutation i1, i2,… , ip by
calculating dip,i1 +

∑p−1

�=1
di

�
,i
�+1

 . In the variant we are considering, given a permuta-
tion i1, i2,… , ip , the BCD method is used to find the xi

�
∈ Ωi

�
 for � = 1,… , p that

minimize ‖xip − xi1
‖ +∑p−1

�=1
‖xi

�
− xi

�+1
‖ . In other words, given a permutation

i1, i2,… , ip , the BCD method is used to find a solution x∗ to the problem

other words, given a permutation where nblocks = p , ni = 2 for i = 1,… , nblocks ,
n = 2p , and x = (xT

1
,… , xT

p
)T ; while the problem as a whole consists in finding a

permutation i∗
1
,… , i∗

p
 such that f (i∗

1
,… , i∗

p
;x∗) is as small as possible. That is, the

BCD integrates the process of evaluating the merit of a given permutation. With this
tool, constructive heuristics and neighborhood-based local searches already devel-
oped for the classical TSP can be adapted to the problem under consideration.

Assumption A4 requires that the sequence {f (xk)} is bounded below. This is
clearly valid for the objective function f defined in (35) since, being a sum of dis-
tances, it is always nonnegative. Let us now show that Assumption A2 also holds.
The closed polygons Ω1,… ,Ωp are such that Ωi1

∩ Ωi2
= � for all i1 ≠ i2 . Then,

there exists 𝜂 > 0 such that, for every trial point computed by the algorithm, the
distance between two blocks of coordinates is greater than � . Consider the auxil-
iary function d ∶ ℝ

2 ×ℝ
2
→ ℝ given by d(x, y) =

√
‖x − y‖2 + (‖x − y‖2 − �2)4 if

‖x − y‖ ≤ � and d(x, y) = ‖x − y‖ otherwise; and consider the function f̃ defined as
the function f in (35) but replacing each appearance of ‖x − y‖ by d(x, y) . Since
d(x, y) coincides with ‖x − y‖ for every pair of blocks of coordinates computed by
the algorithm, this implies that the sequence of iterates computed using f as defined
in (35) coincides with the sequence of iterates computed if we use f̃ instead of f.
Therefore, we may consider that the objective function of problem (35) is f̃  . Clearly,
the new function has continuous second derivatives, therefore its gradient satisfy a
Lipschitz condition as required in Assumption A2. (It should be noted that f̃  , being
the sum of nonnegative terms, also satisfies Assumption A4.)

6.2 � Discrete optimization strategy

In the present work, among the huge range of possibilities and in order to illustrate the
usage of the BCD method, we consider a local search with an insertion-based neigh-
borhood. The initial solution is given by a constructive heuristic also based on inser-
tions, as we now describe; see [1] and the references therein. The construction of the
initial guess starts defining (i1, i2) = (1, 2) and xi1 ∈ Ωi1

 and xi2 ∈ Ωi2
 as the ones that

minimize ‖xi1 − xi2
‖ , computed with the BCD method. Then, to construct (i1, i2, i3) ,

the method considers inserting index 3 before i1 , between i1 and i2 , and after i2 . For

(35)

Minimize x∈ℝn f (i1,… , ip;x) ∶= ‖xip − xi1
‖

+

p−1�

�=1

‖xi
�
− xi

�+1
‖ subject to xi

�
∈ Ωi

�
for � = 1,… , p,

18	 E. G. Birgin, J. M. Martínez

1 3

each of the three possibilities, optimal xi1 ∈ Ωi1
 , xi2 ∈ Ωi2

 , and xi3 ∈ Ωi3
 are com-

puted with the BCD method. Among the three permutations, the one with smallest
‖xi1 − xi2

‖ + ‖xi2 − xi3
‖ + ‖xi3 − xi1

‖ is chosen. The method proceeds in this way
until a permutation with p elements, that constitutes the initial guess, is completed. A
typical iteration of the local search proceeds as follows. Given the current permutation
(i1, i2,… , ip) and its associated points xi

�
∈ Ωi

�
 for � = 1,… , p , each is for s = 1,… , p

is removed and reinserted at all possible places t ≠ s . For each possible insertion, cor-
responding xi1 , xi2 ,… , xp are computed with the BCD method. This type of movement
is also known as relocation and, as mentioned in [1, p.342], it has been used with great
success in the TSP [8]. Once an insertion is found that improves the current solution,
the iteration is completed, i.e. the first neighbour that improves the current solution
defines the new iterate, in contrast to a “best movement” strategy in which all neighbors
are considered and the best of them defines the new iterate. The local search ends when
no neighbour is found that improves the current iterate.

6.3 � Finding optimal points with BCD method for a given permutation

In this section we describe how to solve problem (35) with the BCD method. At itera-
tion k of the BCD method, an index ik ∈ {1,… , nblocks} is chosen at Step 1. Then at
Step 2, there are two alternatives. If � = 0 , then xtrial

ik
 satisfying Alternative 1: (5,6,7) or

Alternative 2: (8,9) must be computed; while, if 𝜎 > 0 , then only Alternative 1 is a pos-
sibility. Sect. 5 describes a way of computing xtrial

ik
 satisfying Alternative 1 for any

value of � . However, for the particular problem under consideration, minimizing f(x) as
a function of xik ∈ Ωik

 reduces to

where a and b ∈ ℝ
2 stand for the “previous” and the “next” point in the permuta-

tion; that, in general, correspond to xik−1 and xik+1 , respectively. Thus, when � = 0 , it
is easy, computationally tractable, and affordable to compute the global minimizer
of (36), which clearly satisfies the requirements of Alternative 2. The global mini-
mizer is either on the segment [a, b] intersected with Ωik

 (that intersection is given
by a finite set of segments) or on the boundary of Ωik

 , which is also given by a finite
set of segments (its edges). Each segment can be parameterized with a single varia-
ble � ∈ [0, 1] . Then, the global minimizer of (36) is given by the best global mini-
mizer among the global minimizers of these simple box-constrained one-dimen-
sional problems. The global minimizer of each box-constrained one-dimensional
problem can be computed with brute force up any desired precision. Moreover, if
multiple solutions exist, in order in increase the chance of satisfying (10), the closest
one to xk

ik
 should be preferred.

6.4 � Traveling in São Paulo City

For the numerical experiments, we implemented the discrete optimization strategy
described in Sect. 6.2 and the BCD method (Algorithm 3.1) described in Sect. 3

(36)Minimize
xik

∈ℝ2‖a − xik
‖ + ‖xik − b‖ subject to xik ∈ Ωik

,

19

1 3

Block coordinate descent for smooth nonconvex constrained…

with the strategy described in Sect. 6.3 for the computation of xtrial
ik

 . In Algo-
rithm 3.1, we chose ik = mod(k + 1, nblocks) . (Preliminary experiments with a ran-
dom choice of ik , with a discrete uniform distribution in {1, 2,… , nblocks} , showed
similar results.) Based on the theoretical results, we stop the method at iteration k, if
xk = xk−1 = ⋯ = xk−nblocks+1 . In the numerical experiments, following [2, 5, 6], we
consider � = 10−8 . In all our experiments the required conditions at Step 2 were sat-
isfied using Alternative 2.

All methods were implemented in Fortran 90. Tests were conducted on a com-
puter with a 3.4 GHz Intel Core i5 processor and 8GB 1600 MHz DDR3 RAM
memory, running macOS Mojave (version 10.14.6). Code was compiled by the
GFortran compiler of GCC (version 8.2.0) with the -O3 optimization directive
enabled.

The city of São Paulo, with more than 15 million square kilometers of extension
and more than 12 million inhabitants, is the most populous city in Brazil, the Ameri-
can continent, the Portuguese-speaking countries and the entire southern hemi-
sphere. It is administratively divided into thirty-two regions, each of which, in turn,
is divided into districts, the latter sometimes subdivided into subdistricts (popularly
called neighborhoods); see https://​pt.​wikip​edia.​org/​wiki/S%​C3%​A3o_​Paulo. The
city has a total of 96 neighborhoods. The considered problem consists in finding a
shortest route to visit all of them.

The construction of the problem started by downloading a political-administra-
tive map of the city from the city hall website; see http://​geosa​mpa.​prefe​itura.​sp.​
gov.​br/. The map describes each neighborhood as a polygon. The polygon with more
vertices has 5,691 vertices and, all together, the polygons have 156,852 vertices. To
turn the problem into something more tractable, we redefine the polygons with num-
ber of vertices nv > 100 (all of them in fact) by considering only the vertices with
indices of the form form 1 + ⌊50∕nv⌋j for j = 0, 1, 2,… . This way, all polygons were
left with a number of vertices between 51 and 57, totaling 4,966 vertices. Moreo-
ver, for artistic reasons related to the graphical representation of the problem, we
shrunk each polygon by 20%. The shrinkage consisted in replacing each vertex vi by
oi + 0.8(vi − oi) , where the offset oi =

1

2
(xmin + xmax, ymin + ymax)

T , and (xmin, ymin)
T

and (xmax, ymax)
T correspond to the lower-left and upper-right corners of the small-

est rectangle that encloses the polygon. With this procedure we ended up with the
p = 96 polygons Ωi for i = 1,… , p that determine the problem (35) under considera-
tion; see Fig. 3.

Table 1 shows the details of the optimization process. The table shows, for each
iteration, the length of the current route. It also shows, for each iteration, how many
neighbors had to be evaluated to find one that improves the current route. Naturally,
each evaluation of a neighbor corresponds to a call to the BCD method. Therefore,
the next two columns show the number of calls to the BCD method per iteration and
the number of cycles these calls used. The last two columns of the table show these
two values accumulated over the iterations. It can be noted from the table that the
BCD method is used to solve more than 200,000 subproblems and that this requires,
altogether, the execution of more than 3 million cycles, i.e. an average of 15 cycles
per problem. The instance under consideration has p = 96 points. The constructive

https://pt.wikipedia.org/wiki/S%C3%A3o_Paulo
http://geosampa.prefeitura.sp.gov.br/
http://geosampa.prefeitura.sp.gov.br/

20	 E. G. Birgin, J. M. Martínez

1 3

heuristic used to generate the initial point evaluates (by calling the BCD method)
O(

1

2
p2) permutations; while the reinsertion neighborhood evaluates, in the worst

case, O(p2) neighbors. The first line of the table shows the cost of the constructive
heuristic, and is consistent with what we have just mentioned. The remaining lines
show that in the first 4 iterations and in a few intermediate iterations the method
quickly finds a neighbor that improves the current solution. On the other hand, the
average number of neighbors evaluated per iteration is 4,164, which corresponds to
approximately 45% of the neighbors. The running time of the algorithm is directly

Fig. 3   Representation of the p = 96 polygons that determine problem (35). The considered polygons
appear in gray, while the original polygons appear in coral on the background merely to improve the
artistic appearance of the drawing

21

1 3

Block coordinate descent for smooth nonconvex constrained…

Table 1   Performance of the
heuristic method applied to
solve the considered instance
of the continuous version of the
TSP problem

iter Route length Usage of BCD
method per iter

Accumulated usage of
BCD method

calls # cycles # calls # cycles

0 229,139.65 4,653 40,018 4,653 40,018
1 227,965.59 2 26 4,655 40,044
2 227,110.10 1 10 4,656 40,054
3 226,970.07 3 56 4,659 40,110
4 226,970.07 2 24 4,661 40,134
5 226,588.08 4,125 60,955 8,786 101,089
6 226,586.52 4,418 66,454 13,204 167,543
7 226,575.05 4,220 64,793 17,424 232,336
8 226,575.05 95 1,655 17,519 233,991
9 226,573.77 4,510 66,294 22,029 300,285
10 226,573.77 189 2,658 22,218 302,943
11 226,391.25 4,708 69,757 26,926 372,700
12 226,063.02 4,789 70,987 31,715 443,687
13 224,708.13 3,653 57,797 35,368 501,484
14 224,391.45 4,889 73,541 40,257 575,025
15 224,391.45 3,747 59,159 44,004 634,184
16 224,236.40 4,801 70,928 48,805 705,112
17 224,128.38 4,983 74,453 53,788 779,565
18 224,128.38 95 1,761 53,883 781,326
19 224,128.38 95 908 53,978 782,234
20 224,100.64 3,851 58,075 57,829 840,309
21 224,100.64 3,838 57,462 61,667 897,771
22 223,681.92 4,887 75,693 66,554 973,464
23 223,261.18 3,947 66,182 70,501 1,039,646
24 223,261.18 95 847 70,596 1,040,493
25 223,242.32 5,076 77,901 75,672 1,118,394
26 223,013.14 5,572 92,531 81,244 1,210,925
27 221,526.66 5,701 91,366 86,945 1,302,291
28 221,469.25 94 900 87,039 1,303,191
29 219,846.99 5,606 89,792 92,645 1,392,983
30 219,505.59 1 4 92,646 1,392,987
31 219,096.08 5,761 92,924 98,407 1,485,911
32 218,652.50 6,164 96,849 104,571 1,582,760
33 217,719.39 6,146 97,136 110,717 1,679,896
34 216,509.74 6,256 98,403 116,973 1,778,299
35 215,372.59 6,350 99,083 123,323 1,877,382
36 214,676.14 5,289 87,276 128,612 1,964,658
37 214,674.57 5,077 82,038 133,689 2,046,696
38 214,674.57 1,345 29,796 135,034 2,076,492
39 214,102.74 3,937 71,897 138,971 2,148,389
40 214,102.74 95 1,033 139,066 2,149,422

22	 E. G. Birgin, J. M. Martínez

1 3

proportional and totally dependent on the cost of computing xtrial
ik

 . The constructive
heuristic used to compute the initial point x0 used 29.58 seconds of CPU time; while
the method as a whole consumed practically one hour of CPU time, exactly 3,589.31
seconds.

Figure 4 shows the evolution of the route length over the iterations of the
method; while Fig. 5 shows some of the generated routes. Figure 6 shows the final
iterate in detail.

Up to this point, we have described and illustrated in detail the way in which
the discrete heuristic method described in Sect. 6.2 made intensive use of the BCD

Table 1   (continued) iter Route length Usage of BCD
method per iter

Accumulated usage of
BCD method

calls # cycles # calls # cycles

41 213,754.48 5,190 92,893 144,256 2,242,315
42 213,533.35 6,049 98,937 150,305 2,341,252
43 213,290.76 6,241 102,045 156,546 2,443,297
44 213,231.26 7,195 115,060 163,741 2,558,357
45 213,071.95 6,338 99,378 170,079 2,657,735
46 213,070.90 6,625 103,442 176,704 2,761,177
47 213,032.17 7,297 111,568 184,001 2,872,745
48 212,773.09 7,681 116,393 191,682 2,989,138
49 212,499.29 7,585 115,190 199,267 3,104,328
50 212,292.01 8,161 125,796 207,428 3,230,124
51 212,292.01 9,120 154,558 216,548 3,384,682

Fig. 4   Route length as a function of the iteration number

23

1 3

Block coordinate descent for smooth nonconvex constrained…

method to solve the problem (35). We close the numerical experiments section by
showing in Fig. 7, with a graphic and a table, the iterands of the BCD method for
a specific fixed permutation. To make this figure, we considered the permutation
given by the constructive heuristic used to generate x0 and we randomly draw points
inside each of the polygons. The graph and table show the iterations for 13 com-
plete cycles. The method actually uses 44 cycles, but the functional value varies
from 229,139.66 at the end of cycle 13 to 229,139.65 at the end of cycle 44, when
it stops because all the variables’ blocks are repeated from cycle 43 to cycle 44.

(a) (b) (c)

(f)(e)(d)

Fig. 5   Sample of the routes that are built throughout the iterative optimization process. The length of
each route appears near to the route. The map of São Paulo city appears in the background for artistic
purposes, but the polygons representing the districts are being omitted for the sake of clarity. (a) Repre-
sents the initial guess given by the constructive heuristic; (f) Represents the final iterate (obtained at iter-
ation 51); and (b)–(e) Represent the iterands of the iterations 10, 20, 30 and 40, respectively. It is worth
noting that the red dots, each always within its respective polygon that is not being displayed, move from
one iteration to another

24	 E. G. Birgin, J. M. Martínez

1 3

The initial points are in yellow or light orange and the color changes to red at cycle
13. The evolution of each point is marked with a dotted line whose color changes
along with the color of the point. Independently of that, the route determined by the
points of each cycle is marked in blue. The route with the lightest blue corresponds
to the route given by the initial points (yellow or light orange) and the color of the
route gets darker and darker until it reaches the route of cycle 13, marked with the
strongest blue. Roughly speaking, the points move a little more in the first 3 cycles,
in which the objective function decreases the most, and then there are only small
accommodations of the points until the method converges. The authors are aware of

Fig. 6   Final iterate with route length equal to 212,292.01

25

1 3

Block coordinate descent for smooth nonconvex constrained…

the difficulty to see the figure clearly; a zoom in the image is recommended to see
the details of the evolution of the iterands. In particular, the middle left part clearly
shows how the route is being modified as the points move.

7 � Conclusions

The framework presented in the present work could be extended in order to consider
Taylor-like high-order models [4] satisfying well-established regularity assumptions,
as it has been done in [2] for the case of box constraints. However, theoretical results
in [2] reveal that using high-order models associated with Coordinate Descent meth-
ods is not worthwhile. The reason is that overall computed work is dominated by

Fig. 7   Sequence of iterands of the BCD method when applied to random initial points within the poly-
gons and with the order given by the constructive heuristic used to generate the initial point

26	 E. G. Birgin, J. M. Martínez

1 3

the necessity of obtaining fast decrease of the distance between consecutive iterates,
whereas high-order models do not help for achieving such purpose.

More interesting, from the practical point of view, is to exploit the particular case
in which the constraints that define each Ωi may be expressed in the form of global
inequalities and equalities. (Of course, this is a particular case of the one addressed
in this paper that corresponds to set nops(i) = 1 for all i = 1,… , nblocks .) In this case
the obvious choice for solving subproblems consists of using some well established
constrained optimization software. From the theoretical point of view there is noth-
ing to be added, since practical optimization methods for constrained optimization
may fail for different reasons, leading the abrupt interruption of the overall opti-
mization process. However, we have no doubts that in many practical problems
the standard constrained optimization approach associated with block coordinate
descent should be useful.

The reason why, in this paper, we considered feasible sets Ωi with the local con-
strained structure defined by open covering sets and constitutive constraints is not
strictly related to block coordinate methods. In fact, in contact with several practi-
cal problems (an example of which is the one presented in Sect. 6) we observed
that the non-global structure of constraints is not unusual and needs specific ways
to be handled properly. We believe that different approaches than the one suggested
in this paper are possible, most of them motivated by the particular structure of the
practical problems at hand. Further research is expected in the following years with
respect to this subject.

In the present work, a variant of the classical TSP problem was introduced. In
this variant, each city can move freely within a given feasible set. In that context,
the proposed BCD method was used to evaluate the merit function: the tour length
for a given ordering of the cities. (Recall that the computation of the tour length
requires the determination of the optimal position of each city within its own fea-
sible region.) To illustrate the practical use of the BCD, a basic strategy for solv-
ing the TSP (local search with neighborhood determined by relocation moves) was
implemented. As future work, state-of-the-art methods for solving the classical TSP
could be adapted to solve the problem introduced in this work.

Funding  This work was supported by FAPESP (Grants 2013/07375-0, 2016/01860-1, and 2018/24293-0)
and CNPq (Grants 302538/2019-4 and 302682/2019-8)

Data availability  The authors confirm that all data generated or analyzed in the development of this work
are adequately included or referenced in the article itself.

References

	 1.	 Aarts, E., Lenstra, J. K., (eds.): Local search in combinatorial optimization, Princeton University
Press, (2003)

	 2.	 Amaral, V.A., Andreani, R., Birgin, E.G., Marcondes, D.S., Martínez, J.M.: On complexity and con-
vergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained mini-
mization. J. Glob. Optim. https://​doi.​org/​10.​1007/​s10898-​022-0.​1168-6 (to appear)

https://doi.org/10.1007/s10898-022-0.1168-6

27

1 3

Block coordinate descent for smooth nonconvex constrained…

	 3.	 Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W. J.: The traveling salesman problem: a compu-
tational study, Princeton University Press, (2006)

	 4.	 Birgin, E.G., Gardenghi, J.L., Martínez, J.M., Santos, S.A., Toint, Ph.L.: Worst-case evaluation
complexity for unconstrained nonlinear optimization using high-order regularized models. Math-
ematical Programming 163, 359–368 (2017)

	 5.	 Birgin, E.G., Martínez, J.M.: On regularization and active-set methods with complexity for con-
strained optimization. SIAM Journal on Optimization 28, 1367–1395 (2018)

	 6.	 Birgin, E.G., Martínez, J.M.: A Newton-like method with mixed factorizations and cubic regulari-
zation for unconstrained minimization. Computational Optimization and Applications 73, 707–753
(2019)

	 7.	 Bonettini, S., Prato, M., Begegoldi, S.: A cyclic block coordinate descent method with generalized
gradient projections. Applied Mathematics and Computation 286, 288–300 (2016)

	 8.	 Gendreau, M., Hertz, A., Laporte, G.: New insertion and post optimization procedures for the trave-
ling salesman problem. Operations Research 40, 1086–1094 (1992)

	 9.	 Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York, NY (2006)
	10.	 Powell, M.J.D.: On search directions for minimization algorithms. Mathematical Programming 4,

193–201 (1973)
	11.	 Wright, S.J.: Coordinate descent methods. Mathematical Programming 151, 3–34 (2015)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Block coordinate descent for smooth nonconvex constrained minimization
	Abstract
	1 Introduction
	2 The problem
	3 Block coordinate descent method
	4 Convergence and complexity
	5 Solving subproblems
	6 Experiments
	6.1 Continuous traveling salesman problem
	6.2 Discrete optimization strategy
	6.3 Finding optimal points with BCD method for a given permutation
	6.4 Traveling in São Paulo City

	7 Conclusions
	References

