
Vol.:(0123456789)

Computational Optimization and Applications (2022) 82:717–751
https://doi.org/10.1007/s10589-022-00379-7

1 3

Design of a heuristic algorithm for the generalized
multi‑objective set covering problem

Lakmali Weerasena1 · Aniekan Ebiefung1 · Anthony Skjellum2

Received: 29 April 2021 / Accepted: 12 May 2022 / Published online: 9 June 2022
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection
may apply 2022

Abstract
Set covering optimization problems (SCPs) are important and of broad interest
because of their extensive applications in the real world. This study addresses the
generalized multi-objective SCP (GMOSCP), which is an augmentation of the well-
known multi-objective SCP problem. A mathematically driven heuristic algorithm,
which uses a branching approach of the feasible region to approximate the Pareto set
of the GMOSCP, is proposed. The algorithm consists of a number of components
including an initial stage, a constructive stage, and an improvement stage. Each of
these stages contributes significantly to the performance of the algorithm. In the ini-
tial stage, we use an achievement scalarization approach to scalarize the objective
vector of the GMOSCP, which uses a reference point and a combination of weighted
l
1
 and l

∞
 norms of the objective function vector. Uniformly distributed weight vec-

tors, defined with respect to this reference point, support the constructive stage to
produce more widely and uniformly distributed Pareto set approximations. The con-
structive stage identifies feasible solutions to the problem based on a lexicographic
set of selection rules. The improvement stage reduces the total cost of selected fea-
sible solutions, which benefits the convergence of the approximations. We propose
multiple cost-efficient rules in the constructive stage and investigate how they affect
approximating the Pareto set. We used a diverse set of GMOSCP instances with dif-
ferent parameter settings for the computational experiments.

 * Lakmali Weerasena
 Lakmali-Weerasena@utc.edu

 Aniekan Ebiefung
 Aniekan-Ebiefung@utc.edu

 Anthony Skjellum
 Tony-Skjellum@utc.edu

1 Department of Mathematics, University of Tennessee at Chattanooga, 615 McCallie Avenue,
Chattanooga, TN 37403-2598, USA

2 SIM Center, University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga,
TN 37403-2598, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-022-00379-7&domain=pdf

718 L. Weerasena et al.

1 3

Keywords Approximation · Algorithm · SCP · Multi-objective · Multi-cover

1 Introduction

Set Covering Problems (SCPs) naturally arise alongside diverse human activities in
conservation biology, environmental science, computer science, and management
science. They have contributed to an increased need for combinatorial mathematical
optimization of generalized covering models. An SCP instance includes a finite set
of items that are grouped into a family of subsets such that each item in the set is to
be included in at least one subset of the family. The goal of the single-objective SCP
(SOSCP) is to determine a subset of sets from the family, including each item in at
least one set such that the total cost associated with the selected sets is minimized.
Numerous studies have now been developed to solve the SOSCP.

Since SCP applications with multiple conflicting objective functions are more
realistic, Jaszkiewicz [21] in 2003 introduced a generalization to the SOSCP by add-
ing multiple conflicting linear objective functions. This extended problem is known
as the multi-objective SCP (MOSCP). The optimality concepts in multi-objective
optimization problems (MOPs) view competing solutions in terms of trade-offs con-
cerning the multiple conflicting objectives rather than in terms of a clearly defined
hierarchy of preferences between solutions, as implied in single-objective optimiza-
tion. Incompatibility between any two solutions in multi-objective optimization is
typical. Therefore, the challenge of verifying optimality within a single-objective
environment due to the solution set’s combinatorial structure increases when lifted
into a multi-objective context. The MOSCP is one such example of note, and even
its single objective counterpart is known to be NP-hard [23] as a combinatorial opti-
mization problem.

In a multi-objective context, the concept of “optimum” has to be revisited.
Instead of providing only one optimal solution, the approaches applied to MOPs
should produce a set of solutions, known as Pareto optimal solutions. The Pareto
optimal solutions form the Pareto set [8]. These solutions are optimal because there
is no other better solution when all objective functions are taken into consideration.
However, computing the exact Pareto set requires substantial computational effort
to solve large-scale MOPs. Hence, approximation algorithms such as local search
algorithms [1, 36], variable neighborhood search algorithms [27, 28], colony opti-
mization algorithms [14, 24] are often used to estimate the Pareto sets of the MOPs.
The approximations are commonly referred to as nondominated sets. A survey of
such methods before the year 2000 can be found in [7, 9, 42]. Approximating the
Pareto set of the MOSCP has received growing interest in the last two decades. In
2003 and 2004, Jaszkiewicz [21, 22] proposed the Pareto memetic algorithm (PMA)
for multi-objective combinatorial optimization (MOCO) problems and used the
MOSCP as a benchmark MOCO problem to analyze the performance of the PMA.
In 2006, Prins et al. [37] proposed a two-phase algorithm to approximate the Pareto
set of the bi-objective SCP. In 2011, Lust et al. [28] proposed a very large-scale
neighborhood search method for solving MOCO problems and used the MOSCP as
a benchmark problem to evaluate their performance. In 2014, Lust and Tuyttens [29]

719

1 3

Design of a heuristic algorithm for the generalized…

applied an improved version of the very large-scale neighborhood search method
to the MOSCP. In 2014, Florios and Mavrotas [12] proposed an exact algorithm to
compute the Pareto sets of multi-objective integer programs and used the MOSCP
to verify the accuracy of the algorithm. In 2017, Weerasena et al. [47] proposed
a heuristic algorithm that partitions the feasible region of the MOSCP by adding
branching constraints to produce subproblems of the MOSCP and approximating the
Pareto set of the MOSCP with the help of the subproblems. In 2018, Weerasena and
Wiecek [46] proposed an algorithm called the �-approximation algorithm to approx-
imate the MOSCP with a mathematically proven error bound.

Although the MOSCP focuses on covering each item at least once, the real-world
applications of the SCP—such as vehicle routing, crew scheduling, and logical anal-
ysis of data [2, 3, 6, 16, 25, 30–32, 34, 38, 39, 45]—requires more than one set to
cover each item (multiple covers). These problems are formulated as SOSCPs with
generalized coverage constraints. In 2020, Weerasena [44] introduced a generalized
MOSCP (GMOSCP) by adding generalized coverage constraints to the MOSCP, and
proposed a heuristic algorithm to solve a reserve site selection problem in conserva-
tion biology with appropriately defined objective functions and coverage constraints.

In this study, we focus on approximating the Pareto set of the GMOSCP. The
generalized coverage constraints and the multiple conflicting objective functions add
an extra level of difficulty to this task. We propose an algorithm that depends on
constructing and solving the GMOSCP subproblems through branching of the feasi-
ble region. The algorithm can be explained using a tree structure, and each node of
the tree refers to a subproblem of the GMOSCP. The branching-algorithm inspired
the development of our algorithm to solve single-objective mixed-integer optimi-
zation problems presented in [11]. This algorithm was applied to approximate the
Pareto set of bi-objective mixed 0–1 integer linear programming problems in [40].
This algorithm is also successfully integrated into the algorithm proposed in [47] to
approximate the Pareto set of the MOSCP. Our study presents a novel mathemati-
cally-driven heuristic algorithm to approximate the Pareto set of the GMOSCP by
exploring the subproblems described by each node of the tree. Our search method
identifies solutions established on two lexicographic rules for obtaining feasible
solutions, and it is called the Lexicographic-Order Local Search (LOLS) algorithm.

In this paper, we argue that the number of sets needed to cover each item must
be also be taken into consideration when the set selection rules are defined for the
GMOSCP, since each item has multiple coverage requirements. This is the dis-
tinguished difference between the MOSCP approximation algorithms and the
GMOSCP approximation algorithms. Our two lexicographic set rules are specially
designed for this generalized case. The algorithm has three components, (1) initial
stage, (2) constructive stage, and (3) improvement stage. The algorithm starts with a
set of feasible solutions provided by the initial stage. The typical approach in obtain-
ing solutions for the MOPS involves using certain replacement scalarizing functions
that may depend on the objective values and also on some additional parameters.

In this study, we use achievement scalarization functions (ASF) proposed in
[49], using a reference point and composite weighted l1 and l

∞
 norms of the objec-

tive functions to scalarize the objective weight of the GMOSCP at the initial stage.
We consider several scalarizations of the objective function vector using uniformly

720 L. Weerasena et al.

1 3

distributed weight vectors based on scalarizing achievement functions [10] concern-
ing one reference point. We then solve the corresponding single-objective optimi-
zation problem, which is a common approach used in many earlier proposed algo-
rithms [5, 13, 18, 20, 47] to obtain an initial feasible solution set. The advantage of
using the reference points scalarization functions approach is that it benefits large-
scale MOPs when approximating the Pareto sets in a parallel algorithmic framework
[10].

In the constructive stage, we apply the local branching constraints to construct
subproblems as in [11]. The branching constraints are defined based on Hamming
distance [17], which is the absolute difference between a preferred solution x̄ and
a candidate solution x. Given the Hamming distance search length L, we add the
branching constraints N(x̄, x) ≤ L and N(x̄, x) > L , where N denotes the search space
to partition the feasible region. The branching constraint N(x̄, x) ≤ L with the regular
GMOSCP constraints define subproblems of the GMOSCP. If the search space of the
subproblem is not examined intensively, the opportunity of finding better solutions
to the GMOSCP can be lost. To overcome such issues, our algorithm will ensure an
extensive examination of each search space of the subproblem. Each search space is
extensively searched for new solutions by performing several searches. The search
region with N(x̄, x) > L along with the regular GMOSCP constraints continued to be
partitioned with respect to newly identified solutions. The partitioning of the feasi-
ble region of the GMOSCP using the branching constraints can be explained using
tree-search strategy [11]. In the improvement stage, we examine each feasible solu-
tion further and improve the value of the objective vector by removing redundant
sets.

In [26], the authors argued that due to the bias introduced by the cost-efficient
rule of the SOSCP, the feasible solutions may converge to a local optimum instead
of a global optimum in some problem instances; altering the cost-efficient rules is a
meaningful strategy to reach the global optima in SOSCP. These authors used the
cost-efficient rule defined in [4], which identifies the best sets based on a ratio deter-
mined by the cost over the number of uncovered items of sets. It is proven that the
Chvátal’s [4] greedy algorithm obtains a feasible solution within logm error terms,
where m is the number of items in the test problem. Since the results yielded by
this algorithm are very close to the optimal solutions, the study in [26] introduced
slight modifications to Chvátal’s [4] cost-efficient rule, which is also a motivation
from [43], and showed that their heuristic best performs on the SOSCP among the
heuristics based on the solution quality. Encouraged by this research on the SOSCP,
we extend some of these rules for the GMOSCP and investigate their effects when
approximating the Pareto set. We discover that having reasonably well multi-
ple priority rules in the LOLS algorithm results in a better approximation for the
GMOSCP. Our experimental analysis shows that all components of the algorithm
are important for the success of the algorithm. For example, our results indicate
that the two lexicographic set selection rules yield a significant improvement in the
approximation quality. Besides, the experimental analysis gives insight into specific
components’ behavior, such as increasing either the number of scalarizations or the
number of searches of the subproblems.

721

1 3

Design of a heuristic algorithm for the generalized…

We have used a diverse set of GMOSCP instances with different parameter set-
tings for the computational experiments. The GMOSCP can be reduced to an
MOSCP by setting the number of sets needed to cover each item to one. Thus, the
LOLS algorithm can be used to approximate the Pareto set of the MOSCP. We also
analyzed the effectiveness of the LOLS algorithm with existing MOSCP algorithms.
Our experimental comparison of the LOLS algorithm with the LB-AI algorithm
shows that LOLS performance is very competitive or often superior on benchmark
test problems.

The rest of this paper is arranged as follows: Sect. 2 describes the preliminaries
on MOPs and the problem formulations. This section also provides the weighted-
sum function and achievement scalarization function scalarization approaches of
MOPs needed for our study. Section 3 provides the multiple cost-efficient rules and
the approximation algorithm based on lexicographic set selection-rules. Section 4
provides the experimental setups, performance metrics, and test instances. Section 5
provides the results of the empirical analysis. We conclude the paper in Sect. 6.

2 Preliminaries and related background

Let Rp be a p Euclidean vector space. For two vectors y1, y2 ∈ R
p , we write y1 ≦ y2

if y1
q
≤ y2

q
 for q = 1,… , p ; y1 ≤ y2 if y1

q
≤ y2

q
 for all q = 1, 2,… , p and y1 ≠ y2 ; and

y1 < y2 if y1
q
< y2

q
 for all q = 1, 2,… , p . The nonnegative orthant of Rp is defined as

R
p

≧
= {y ∈ R

p
∶ y ≥ 0}.

Let f ∶ R
n
→ R

p be an objective vector and let Q = {q ∶ q = 1, 2,… , p} be an
index set. A multi-objective optimization problem (MOP) is defined as below.

where fq ∶ R
n
→ R for q ∈ Q is a scalar-valued function and x is feasible solutions

in the the feasible set X. The outcome space Y is obtained by evaluating the p objec-
tive functions for x ∈ X . That is, Y ∶= f (X) ⊂ R

p.
The commonly used partial order optimality concept in multi-objective optimiza-

tion is Pareto efficiency (or simply efficiency). A solution x∗ ∈ X is called an effi-
cient solution for the MOP if there does not exist x ∈ X such that f (x) ≤ f (x∗) . The
image f (x) ∈ Y of an efficient solution is called a Pareto outcome. We denote the
set of all efficient solutions by XE . The image of XE is denoted by Yp = f (XE) and is
referred to as the Pareto set [8]. A comparison of vectors can be used to check domi-
nation between any two elements in Y ⊂ R

p.

Definition 1 If x1, x2 ∈ X and f (x1) ≤ fx2) , then x1 is said to dominate x2 and
y1 = f (x1) is said to dominate y2 = f (x2) . An element y∗ ∈ Y is called a nondomi-
nated point of Y if there does not exist y ∈ Y dominating y∗.

The ideal objective vector of an MOP can be defined as follows.

(1)min f (x) = (f1,… , fp) subject to x ∈ X,

722 L. Weerasena et al.

1 3

Definition 2 The ideal objective vector f id = (f ∗
1
,… , f ∗

p
) is computed by

Below, we define the GMOSCP.

2.1 Generalized multi‑objective set covering problem

The following notations are common in related SCP studies, and we use them
throughout this text.

1. The set of m items E = {e1, e2,… , em} with the index set I = {i ∶ i = 1, 2,… ,m}

2. A family of n subsets of E, S = {S1, S2,… , Sn} with the index set
J = {j ∶ j = 1, 2,… , n},

The GMOSCP is conceptually defined here as in Weerasena [44]. Let aij = 1 if
ei ∈ Sj holds and aij = 0, otherwise. Let x ∈ {0, 1}n be the decision variable, such
that xj = 1 if Sj is selected to cover an item and xj = 0 otherwise. Symbolically, the
GMOSCP is defined as below.

where cq
j
 denote the cost of set Sj regarding the objective function q for q ∈ Q , fq is a

real-valued linear function such that fq ∶ {0, 1}n → R and

The distinguishable difference between the MOSCP and the GMOSCP is the multi-
cover constraint in which the coverage requirement is greater than one for at least
one item. Using matrix notation, the GMOSCP can be written as

where A ∈ {0, 1}m×n is a matrix such that aij denotes the entry at the ith row and jth
column of a matrix A, C ∈ R

p×n is a matrix such that cq
j
 denotes the element at the

qth row and jth column of the matrix C.

2.2 Exact methods

The approximation algorithm proposed in this study is developed based on the
scalarizations of the objective function vector with respect to the Weighted-Sum
Method and the Achievement Scalarizing Method, which are exact methods for find-
ing efficient solutions of MOPs.

(2)f ∗
q
= min

x∈X
fq(x), q ∈ Q

(3)min f (x) =

[
f1 =

∑

j∈J

c1
j
xj,… , fp =

∑

j∈J

c
p

j
xj

]
subject to x ∈ X

(4)

X =

{
x ∈ {0, 1}n ∶

∑

j∈J

aijxj ≥ bi for i ∈ I, where bi > 1 for at least one i ∈ I

}
.

(5)min Cx subject to Ax ≧ b

723

1 3

Design of a heuristic algorithm for the generalized…

2.2.1 Weighted‑sum scalarization

Let � = (�1,… , �p)
T
∈ R

p

≥
 be a weight vector containing weighting coefficients of

the objective functions and, typically, � is normalized such that
∑

q∈Q

�q = 1 . The sca-

larized GMOSCP with the weighted-sum scalarization with respect to the weight
vector � can be written as follows:

where fws(�) denotes the scalarized weighted-sum objective function.
We obtain the relaxed weighted-sum problem in (6) by replacing the binary vari-

ables xj for j ∈ J with nonnegative variables xj ≥ 0 for j ∈ J as shown in (7)

where frws(�) denotes the relaxed weighted-sum objective function and

2.2.2 Achievement scalarization function

The technique of ASFs [48] performs well with reference points [10] that represent
acceptable values for the objective functions. Let F(f |f 0, �, �) ∶ Y → R be a func-
tion, f = (f1, f2,… , fp)

T be an objective vector and f 0 = (f 0
1
, f 0
2
,… , f 0

p
)
T
∈ Y be a

reference point. The ASF, which is a combination of weighted l1 and l
∞

 norms of the
objective function vector, is defined as

where � = (�1,… , �p) ∈ R
p

≥
 is a vector containing weighting coefficients of the

objective functions and � is an arbitrary small positive number. We define the cor-
responding achievement optimization problem for the GMOSCP as

(6)
min fws(�) =

∑

q∈Q

�qfq

subject to x ∈ X.

(7)
min frws(𝜆) =

∑

q∈Q

𝜆qfq

subject to x ∈ X̄

(8)X̄ =

{
x ∈ R

n
∶

∑

j∈J

aijxj ≥ bi for i ∈ I, where bi > 1 for at least one i ∈ I

}
.

(9)F(f |f 0, �, �) = max
q∈Q

{
�q(fq − f 0

q
)

}
+ �

∑

q∈Q

�q(fq − f 0
q
)

(10)
min F(f |f 0, �, �) = max

q∈Q

{
�q(fq − f 0

q
)

}
+ �

∑

q∈Q

�q(fq − f 0
q
)

x ∈ X

724 L. Weerasena et al.

1 3

Proposition 2.1 If f 0 is a reference point, then the model (10) provides an efficient
solution x∗ for a given weight vector � , and if x∗ is an efficient solution, then there
exists a function F(f |f 0, �, �) [41].

To find the optimal solution of the model in (10), we optimize the following
equivalent problem.

Using different weight vectors � for the same reference point f 0 leads to differ-
ent optimal solutions for the achievement problem defined in (11). It is important
to mention that this model has p number of additional constraints and one addi-
tional free variable compared to the classical weighted-sum method discussed in
Sect. 2.2.1. Next we discuss the design of the algorithm.

3 Design of the approximation algorithm

In this section we present our definitions of lexicographic set selection rules and
multiple cost-efficient rules.

Definition 3 A vector x̄ ∈ {0, 1}n is called a partial solution if x̄ ∉ X.

The proposed algorithm adds sets to convert the partial solution x̄ ∈ {0, 1}n to a
feasible solution x̄ ∈ X . The sets are identified using two priority preferences: (1)
cost-efficient preference and (2) coverage-efficient preference. We use these two
preferences according to the lexicographic order preference.

3.1 Lexicographic set selection rules

Let x̄ be a partial solution and b̄ = (b̄1,… , b̄m)
T be the corresponding coverage.

The additional number of sets needed to obtain a feasible solution from x̄ is given
by bT − b̄T = (b1 − b̄1,… , bm − b̄m)

T . An item ei for i ∈ I is said to be covered if
bi − b̄i ≤ 0 . Let J̄ contain the indices of the sets selected for the partial solution x̄
and Ī contain the indices of the covered items by the partial solution x̄ , respectively.
We use Definitions 4 to 6 to define our lexicographic rules.

Definition 4 (Set Density) Let Sj be a set for j ∈ J ⧵ J̄ . The set density of Sj , denoted
sd
j
 , is defined as the number of uncovered items in the set Sj . That is,

(11)

min �

subject to �q(fq − f 0
q
) + �

∑

q∈Q

�q(fq − f 0
q
) ≤ � ∀ q ∈ Q

x ∈ X and � is a free variable

sd
j
= |{i ∈ I ⧵ Ī ∶ aij = 1}|.

725

1 3

Design of a heuristic algorithm for the generalized…

The set density vector is denoted by sd = (sd
1
, sd

2
,… , sd

n
)
T
∈ Z

n . The set density sd
j
 is

zero if the set Sj is selected for a solution.

When selecting additional sets to cover uncovered items in SCPs, the cost of a set
and the number covered by the set play major roles. Since our main goal is to mini-
mize the total cost of selected sites, cost-efficient approaches should give a higher
priority to the cost coefficients cq

j
 for q ∈ q and j ∈ J of the GMOSCP. Further, the

set density defined in Definition 4 is related to the number of items in the set, but it
is a dynamic factor for our algorithm as it changes from iteration to iteration. We
describe this fact later in more detail. The multiple cost-efficient rules introduced for
the SOSCP in [26] are functions of the cost coefficients and the items contained in
the sets. Motivated by the [26] study, we define four different cost-efficient rules for
the GMOSCP as functions of cost coefficients and set densities.

Definition 5 Let � ∈ R
p

≥
 be a weight vector. Let

∑
q∈Q �qc

q

j
 and sd

j
 be the scalarized

cost and the set density of the set Sj , respectively. The four cost-efficient rules are
denoted as g1(�, cj), g2(�, cj), g3(�, cj) and g4(�, cj) where,

g1(�, cj) =

∑
q∈Q �qc

q

j

sd
j

 , g2(�, cj) =

∑
q∈Q �qc

q

j

(sd
j
)
2

,

g3(�, cj) =

�∑
q∈Q �qc

q

j

sd
j

 , and g4(�, cj) =

∑
q∈Q �qc

q

j
�

sd
j

.

The classical cost-efficient rule introduced by Chvátal et al [4] for the SOSCP
identifies the best sets based on a ratio determined by the cost over the number of
uncovered items of sets. Thus, the ratio is calculated by a fractional term in which
the denominator and numerator consist of linear terms. Motivated by the multiple
cost-efficient rules proposed in [26], we investigate whether there is a better relation-
ship between cost-efficient value and set density other than this linear relationship
for the GMOSCP. We have designed these rules to investigate the best relationship
between the cost-value and the set density. The cost-efficient rule g1 is a linear frac-
tional rule while the cost-efficient rules g2, g3, g4 are non-linear fractional rules. The
rule g1 considers the linear combination of all cost values over the set-density. In
rules, g2, g3, g4 , we have non-linear terms either in the numerator or the denomina-
tor. With the cost-efficient rule g4 , we prioritize the cost-value considering a non-
linear fractional term. Thus, in contrast to cost-efficient rules g1, g2, g3 , g4 enable us
to enables us to provide more priority for the cost-efficient value. We analyze their
effects in Sect. 5.

Since the GMOSCP requires different multiple coverage for each item, we argue
that the residual vector br , defined in Definition 6, plays a vital role in the number of
selected sets in addition to these cost-efficient rules.

Definition 6 (Residual Vector with respect to a set) Let Sj for j ∈ J ⧵ J̄ be an unse-
lected set for a partial solution of the GMOSCP and bj ∈ {0, 1}m be the coverage

726 L. Weerasena et al.

1 3

of the set j. The residual vector h(j) ∈ Zm associated with the set Sj is defined as
h(j) = b̄ − bj , where b̄ is the coverage of a partial solution.

Although the cost-efficient sets are the main priority, the number of additional
sets needed to satisfy the coverage of items provided by Definition 6 indirectly sup-
ports the cost-efficient rules provided in Definition 5. Therefore, we observe a con-
flict between the cost efficiency of a set and the residual value of an item. We select
sets based on lexicographic order preferences which arises, obviously, when such
conflicting objectives exist in a decision problem. This optimization ranks prefer-
ences by ordering the objective functions according to the importance of the deci-
sion maker. For our study, we define the lexicographic orders for the set selection as
in Definitions 7 and 8.

Definition 7 (Lexicographic Order 1 (LO1)) Let j1, j2 ∈ J ⧵ J̄ be two unselected sets
for a partial solution of the GMOSCP and � ∈ R

n
≥
 be a weight vector. We say that

the set j1 is preferred over the set j2 with respect to the cost-efficient rule gk , denoted
by j1 ⪰

LO1
j2 , if gk(�, cj1) ≤ gk(�, cj2).

Let Jbest denote the indices of the cost-efficient sets that can be used to cover the
items ei ∈ I ⧵ Ī for a specified weight vector � ∈ R

p

≥
 according to LO1. Then Jbest(�)

is defined as Jbest(�) = arg min
Sj∶ei∈Sj

{
gk(�, cj)

}
for k ∈ K = {1, 2, 3, 4}.

Definition 8 (Lexicographic Order 2 (LO2)) Let br = b − b̄ ∈ Z
m be a residual vec-

tor and � ∈ R
n
≥
 be a weight vector. Let j1, j2 ∈ J ⧵ J̄ be two unselected sets for a

partial solution of the GMOSCP. Let h(j1) = br − bj1 ∈ Z
m and h(j2) = br − bj2 ∈ Z

m
be the two residual vectors associated with the set j1, j2 ∈ J ⧵ J̄ , respectively. We say
that the the set j1 is preferred over the set j2 , denoted by ji ⪰

LO2
j2 , if

∑
i∈I⧵Ī h(j1) ≤

∑
i∈I⧵Ī h(j2).

We provide the following example to justify the importance of both orders, LO1
and LO2.

Example 01 Let’s consider an instance of a GMOSCP. Let E = {e1, e2, e3, e4} be a set
of four items (m = 4) and S1 = {e1, e2} , S2 = {e1, e2, e4} , S3 = {e3, e4} , S4 = {e1, e3} ,
S5 = {e2} , S6 = {e1, e3} , S7 = {e2, e4} be seven subsets of E (n = 7) with cost vectors
c1 = (3, 1, 8, 10, 1, 5, 3) and c2 = (4, 1, 5, 2, 2, 10, 4) , respectively. Let b = (2, 1, 2, 1)T
be the coverage vector and � = (0.6, 0.4)T be a weight vector. The initial set den-
sity vector is sd = (2, 3, 2, 2, 1, 2, 2)T . Assume that x̄ = (0, 1, 0, 0, 0, 0, 0)T is a partial
solution. The corresponding coverage of x̄ is b̄ = (1, 1, 0, 1)T . The updated set den-
sity and the residual vectors are sd = (1, 0, 1, 2, 0, 2, 0)T and br = (1, 0, 2, 0)T , respec-
tively. We obtain J̄ = {2}, Ī = {2, 4} . Left and right graphs in Fig. 1 illustrates the
given GMOSCP and the updated GMOSCP with respect to x̄ , respectively.

We illustrate the procedure for converting this partial solution x̄ by first applying
only rule LO1 and then applying both rules LO1 and LO2. First note that br

2
≤ 0 and

727

1 3

Design of a heuristic algorithm for the generalized…

br
4
≤ 0 . Thus, we remove the items e2, e4 from further consideration. We find Jbest(�)

for the sets with sd
j
≠ 0 using the cost-efficient function g1(�, cj) defined in Defini-

tion 5.

Based on Definition 7, the two sets S1 and S4 from Eq. (12) are equally likely to be
selected.

Case 1: Apply only LO1

1. Assume that we selected the set S1 . We update the density and the residual vec-
tors. Then the partial solution x̄ = (1, 1, 0, 0, 0, 0, 0)T and the coverage of the set
S1 is b1 = (1, 0, 0, 0)T . The updated residual vector br = (0, 0, 2, 0)T . Since br

1
≤ 0

we remove the item e1 from further consideration, and the updated set density is
sd = (0, 0, 1, 1, 0, 1, 0)T . The only uncovered item at this stage is item e2 , since
br
2
= 2 , which implies that we need to add two more sets to cover this item.

2. Consider J(�) = arg min
Sj∶ei∈Sj

{
0.6∗8+0.4∗5

1
,
0.6∗10+0.4∗2

1
,
0.6∗5+0.4∗10

1

}
= {3, 4} . Based

on Definition 7, the two sets S3 and S4 are equally likely to be selected. Assume
that we select the set S3 . We update the density and the residual vectors. Then
x̄ = (1, 1, 1, 0, 0, 0, 0)T and the coverage of the set S3 is b3 = (0, 0, 1, 0)T . The
updated residual and the density vectors are br = (0, 0, 1, 0)T and

(12)

J(�) = arg min
Sj∶ei∈Sj

{
0.6 ∗ 3 + 0.4 ∗ 4

1
,
0.6 ∗ 8 + 0.4 ∗ 5

1
,
0.6 ∗ 10 + 0.4 ∗ 2

2
,
0.6 ∗ 5 + 0.4 ∗ 10

2

}

={1, 4}.

Fig. 1 Graphical Illustration of Example 01

728 L. Weerasena et al.

1 3

sd = (0, 0, 0, 1, 0, 1, 0)T , respectively. We observe that br
2
= 1 , which implies that

we need to add one more set to cover this item.

3. Consider J(�) = arg min
Sj∶ei∈Sj

{
0.6∗10+0.4∗2

1
,
0.6∗5+0.4∗10

1

}
= {4} . We select S4 and

update the residual vector br = (0, 0, 0, 0)T . Since br
i
≤ 0 for all i ∈ I , we have a

feasible solution x = (1, 1, 1, 1, 0, 0, 0)T for the GMOSCP. The corresponding
objective vector is f (x) = (22, 12)T.

Case 2: Apply LO1 and LO2

1. The sets S1 and S4 from Eq. (12) are equally likely to be selected. Since
|Jbest(𝜆)| > 1 with LO1, we consider LO2. We find

∑
i∈I⧵Ī h(j1) = 2 and ∑

i∈I⧵Ī h(j4) = 1 . Since j4 ⪰

LO2
j1 , we select the set S4 . The updated residual and the

set density vectors are br = (0, 0, 1, 0)T , sd = (0, 0, 1, 0, 0, 1, 0)T , respectively.
Since br

1
≤ 0 , we remove the item e1 from further consideration. The only uncov-

ered item at this stage is item e2 , since br
2
= 1 , which implies that we need to add

one more set to cover this item.

2. Consider J(�) = arg min
Sj∶ei∈Sj

{
0.6∗8+0.4∗5

1
,
0.6∗5+0.4∗10

1

}
= {3} . We select the set S3 ,

and the updated residual vector is br = (0, 0, 0, 0)T . Since br
i
≤ 0 for all i ∈ I , we

have a feasible solution x = (0, 1, 1, 1, 0, 0, 0)T . The corresponding objective vec-
tor is f (x) = (19, 8)T.

This example shows that if we consider only LO1, we use three more steps to obtain
a feasible solution from x̄ ; if we use both LO1 and LO2 , we use two more steps
to obtain a feasible solution from x̄ . In fact, we observe that the objective vector
(19, 8)T is a nondominated vector comparing to the {(19, 8)T , (22, 12)T}. This exam-
ple highlights the need for using both LO1 and LO2 in the algorithm.

Thus |Jbest| > 1 implies that many sets have the same cost-efficient value. Then
to identify the best set among the sets with the same cost-efficient values, we select
the set that has the highest h(j) value for j ∈ Jbest based on LO2. If there is a tie with
LO2, we break it arbitrarily.

3.2 Framework of the algorithm

In this section, we describe each component of the proposed approximation method.
The lexicographic set selection approach with multiple cost-efficient rules is inte-
grated into the algorithm proposed in [11]. The new algorithm is called LOLS and
presented in Algorithm 1. Starting with the initial population, the algorithm returns
an approximation Ŷ for the Pareto set Yp . The algorithm has two significant steps:
Initialization (Yini,Xini) and Obtain Approximation set Ŷ . The Obtain Approximation
step consists of five major procedures: (1) Constructing and solving subproblems
(SubProblem); (2) Identifying Partial Solution (FindPartial); (3) Checking Coverage
of sets (CheckCoverage); (4) Constructing a Feasible solution (ConvertFeasible);
and (5) Improving a Feasible solution (ImproveFeasible).

729

1 3

Design of a heuristic algorithm for the generalized…

The LOLS algorithm terminates if it does not find any new nondominated solu-
tions after searching all the feasible regions of the subproblems. Thus, we iterate the
algorithm after the initial step until we do not find any new nondominated solutions.

3.2.1 Initialization

In the initialization procedure, we construct and solve the achievement scalarization
optimization problems given in (11) for the GMOSCP by using some user-defined
preference weight vectors. Our preliminary work demonstrated that achievement
scalarization optimization problems provided more Pareto points than the weighted-
sum optimization problems for the same number of weight vectors. Further, the
Pareto points are almost evenly distributed within the Pareto set with this method.

We define the number of weight vectors as a parameter. To obtain a reasonable
approximation of the Pareto set, we need to solve a number of scalarized problems
[36]. Proposition 2.1 implies that these solutions are efficient solutions of the
GMOSCP. Here, we take the ideal point f ideal as the reference point. Thus,
f ideal
q

= min
x∗∈X

fq(x
∗
) . We use these efficient solutions as initial solutions Xini . We evalu-

ate the objective function fq for q ∈ Q at these initial solutions to find the corre-
sponding initial values for Yini.

3.2.2 Construct and solve subproblems

The technique for constructing and solving subproblems of the GMOSCP is given
in Procedure 2. This is a divide-and-conquer approach. The procedure divides the
GMOSCP into subproblems similar to the original problem and recursively solves
the subproblems. The procedure then combines the solutions of the subproblems to
solve the GMOSCP. Because divide-and-conquer techniques solves subproblems
recursively, each subproblem must be more straightforward than the original prob-
lem. There must be a systematic approach to construct subproblems. We now give
an explanation of the procedure.

For each solution xh ∈ X̂ , the branching constraints, denoted by N(xh, x) ≤ L
and N(xh, x) ≥ L + 1 , are constructed where N(xh, x) ≤ L denotes the neighbor-
ing solutions of xh within L distance. Here the distance L is the Hamming distance

730 L. Weerasena et al.

1 3

[17], which is a positive integer. When h = 1 , the feasible region of subproblem ph
is defined as X ∩ {N(xh, x) ≤ L} and this subregion is searched for new nondomi-
nated points. We continue to partition region X ∩ {N(xh, x) ≥ L + 1} by adding the
branching constraints defined with respect to new nondominated solutions. For
xh+1 ∈ X̂ the algorithm considers previously unexplored subregion and partitions it
by adding the branching constraint N(xh+1, x) ≤ L to define the subproblem ph+1 .
The algorithm keeps partitioning the feasible region X until no nondominated solu-
tions are found. The last subregion is searched separately since no more new non-
dominated solutions are available to continue the partitioning. Each search space
is extensively searched for new solutions by performing several searches and the
partitioning approach can be explained using a tree structure [11]. To identify the
nondominated points in each subregion, we convert the vector objective function to
a scalarized objective function fws(�) using weighted-sum scalarization described in
Sect. 2.2.1 and also replace the integer variables with nonnegative variables (relaxed
variables). We solve these modified subproblems. Here, for each subproblem, we
solve the relaxed problems defined in model 6 for � ∈ Λ . The number of relaxed
sub-problems defined for each subproblem will be equal to the number of vectors in
Λ. Then we send the optimal solutions of the subproblems to Procedure 3 to iden-
tify the partial solution for the GMOSCP. A set of Λ weight vectors can be used in
this procedure for the scalarization. However, the size of the set Λ is not clear in
advance. Therefore, we consider it also as a numerical parameter as described and
analyzed in Sect. 5.

3.2.3 Identify the partial solutions

We present the approach for identifying a partial solution in Procedure 3. A par-
tial solution is constructed by identifying desirable sets and updating coverage
requirements for items based on the desirable sets using an optimal solution x̄ of
subproblem ph . Here, we assume that x̄j is a desirable candidate if xj ≥ 0.5 . If x̄j is
a desirable candidate for a feasible solution, we make x̄j = 1 and add the index j to
J̄ , where J̄ is the index set of the selected sets to construct a feasible solution. We

731

1 3

Design of a heuristic algorithm for the generalized…

also identify the items covered by the set Sj using Procedure 4 and update the cor-
responding residual values.

3.2.4 Identify coverage

Procedure 4 is used to identify the covered items by a given set and the correspond-
ing residual vector. If the residual value for a given item ei is nonpositive, that means
the coverage requirement of the item has been satisfied. Thus, the procedure adds
the corresponding index to the index set of the covered items Ī and set br

i
= 0. We

also update the set densities in this procedure.

3.2.5 Construct feasible solutions

We present the approach for constructing a feasible solution in Procedure 5. The
partial solution x̄ produced by the subproblem ph is analyzed by this procedure. For
the unselected sets Sj , for j ∈ J ⧵ J̄ , the cost-efficient sets are identified using Defi-
nition 7 according to a cost-efficient rule gk(�, cj) . If |Jbest(𝜆) > 1| , then Definition
8 will be used to break the ties. Note that if more than one candidate set is avail-
able according to Definition 8, we break the ties arbitrarily and one of the four cost-
efficient rules given in Definition 5 will be used. After identifying the best set, the
covered items and the updated residual vector are obtained using the CheckCoverage
procedure. The algorithm will continue the procedure until all items are covered and
it returns a feasible solution based on cost-efficient rule gk(�, cj).

732 L. Weerasena et al.

1 3

3.2.6 Improve feasible solutions

We present the approach for improving a feasible solution in Procedure 6. The feasi-
ble solution x̄ produced by the subproblem ph is improved by this procedure. For
each set j ∈ J such that x̄j = 1 , we check whether we obtain a feasible solution after
removing the set Sj . All such sets are identified. We define a scalar cost for each such
set Sj as

∑
q∈Q c

q

j
 . Then we set x̄j = 0 for the solution x̄ starting from the highest sca-

lar cost of such sets while maintaining the feasibility of the solution. We note that
different preference rules can be used to improve the solutions at this stage.

According to this algorithm, the maximum number of iterations needed to con-
vert an infeasible solution to a feasible solution is

∑
i∈I bi − �x�.

733

1 3

Design of a heuristic algorithm for the generalized…

4 Experimental outline

In this section, we present our test problems and performance metrics used to verify
the algorithm’s performance. We also provide our approach to finding weight vec-
tors for scalarizing the objective vector. We used a personal laptop equipped with an
Intel I-7 processor and 8 GB memory for implementation.We implement the algo-
rithm using MATLAB 2020 version. We use MATLAB intlinprog function in the
initial stage to solve the scalarized optimization problems and lingprog function to
solve the relaxed-scalarized optimization problems. Finally, we utilize MATLAB
random number generator ‘rng(6)’, where 6 specifies the seed with ‘twister’, to gen-
erate random test problems.

4.1 Test problems

In this study, diverse test instances of the GMOSCP are considered as the test prob-
lems. We consider two sources for data: test problems from literature and randomly
generated test problems. We conducted multiple analyses.

Test problems collected from [19] are called scp(l, m, n), where l, m, and n stand
for the test group, the number of items, and the number of sets in the test instances,
respectively. Test problems provided in [19] are designed for the MOSCP with two
objectives. Since our algorithm can be applied to the MOSCP, we use it without
modification for comparison with the state-of-the-art MOSCP algorithms. For
instance, scp(A, 40, 200) means the test instance is from group A and has 40 items
and 200 sets. We expanded this data for the GMOSCP. First, we consider
bi ∈ [bl, bu] , where bl, bu ∈ Z

+
 are upper bound and lower bound values for

bi ∀ i ∈ I , respectively, and we identified the total coverage for each item
(
∑

j∈J aij, ∀ i ∈ I). If
∑

j∈J aij ≤ bi for some i ∈ I , then we set bi = 1 . This modifica-
tion guarantees the feasibility of the expanded test problems. These problems are
denoted by gscp(l, m, n), where l, m, and n stand for the test group, the number of
items, and the number of sets in the test instances, respectively. Second, we gener-
ated random test problems using MATLAB random number generator. We specify
m and n. Then we generated a random number aij, ∀ i ∈ I, j ∈ J . If aij ≥ 0.5 , we set
aij = 1 , otherwise we set aij = 0 . If

∑
j∈J aij = 0 for some i ∈ I , then we set aij = 1

for some j ∈ J . We used bi ∈ [bl, bu] ∀ i ∈ I , and, as before, if ∑
j∈J aij < bi for some i ∈ I , then we set bi = 1 . This procedure generates feasible

GMOSCP test instances. The cost coefficients are generated as cq
j
∈ [cl, cu] , where

cl, cu ∈ Z
+
 are the lower bound and upper bound values, respectively, for cq

j
 for

q ∈ Q, j ∈ J . These test problems are called rscp(m, n). For instance, rscp(30, 500)
means the random test instance with 30 items and 500 sets.

4.2 Performance metrics

We used two metrics that are the most frequently used measures in multi-objective
optimization for analyzing the the performance of the LOLS algorithm.

734 L. Weerasena et al.

1 3

Ta
bl

e
1

 C
-m

et
ric

 v
al

ue
s o

f t
he

 a
pp

ro
xi

m
at

io
ns

 o
bt

ai
ne

d
by

 L
O

LS
 fo

r L
=
7

In
st

an
ce

s
Ŷ
g
1

 v
sŶ

g
2

Ŷ
g
1

 v
s Ŷ

g
3

Ŷ
g
1

 v
s Ŷ

g
4

Ŷ
g
2

 v
s Ŷ

g
3

Ŷ
g
2

 v
s Ŷ

g
4

Ŷ
g
3

 v
s Ŷ

g
4

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

b
i
∈
[
1
,
3
]
,
∀
i
∈
I

gs
cp

(A
,1

0,
10

0)
0.

65
71

0.
66

67
0.

65
71

0.
66

67
0.

61
90

0.
80

56
1.

00
00

1.
00

00
0.

61
90

0.
71

43
0.

61
90

0.
71

43
gs

cp
(B

,1
0,

10
0)

1.
00

00
0.

43
33

1.
00

00
0.

43
33

0.
79

41
1.

00
00

1.
00

00
1.

00
00

0.
38

24
1.

00
00

0.
38

24
1.

00
00

gs
cp

(C
,1

0,
10

0)
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

90
91

1.
00

00
1.

00
00

1.
00

00
0.

90
91

1.
00

00
0.

90
31

1.
00

00
gs

cp
(D

,1
0,

10
0)

1.
00

00
0.

93
33

1.
00

00
0.

93
33

1.
00

00
1.

00
00

1.
00

00
1.

00
00

0.
93

33
1.

00
00

0.
93

33
1.

00
00

gs
cp

(A
,4

0,
20

0)
0.

94
12

0.
53

85
0.

94
12

0.
53

85
0.

61
76

0.
96

15
1.

00
00

1.
00

00
0.

41
18

1.
00

00
0.

41
18

1.
00

00
gs

cp
(B

,4
0,

20
0)

0.
80

00
0.

50
00

0.
80

00
0.

50
00

0.
75

00
0.

81
25

1.
00

00
1.

00
00

0.
50

00
0.

80
00

0.
50

00
0.

80
00

gs
cp

(C
,4

0,
20

0)
1.

00
00

0.
91

67
1.

00
00

0.
91

67
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

91
67

1.
00

00
0.

91
67

1.
00

00
gs

cp
(D

,4
0,

20
0)

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

gs
cp

(A
,4

0,
40

0)
1.

00
00

0.
55

00
1.

00
00

0.
55

00
0.

40
54

0.
85

00
1.

00
00

1.
00

00
0.

29
73

1.
00

00
0.

29
73

1.
00

00
gs

cp
(B

,4
0,

40
0)

0.
94

44
0.

28
21

0.
94

44
0.

28
21

0.
28

36
0.

79
49

1.
00

00
1.

00
00

0.
16

42
1.

00
00

0.
16

42
1.

00
00

gs
cp

(C
,4

0,
40

0)
1.

00
00

0.
50

00
1.

00
00

0.
50

00
0.

90
91

0.
72

73
1.

00
00

1.
00

00
0.

50
00

1.
00

00
0.

50
00

1.
00

00
gs

cp
(D

,4
0,

40
0)

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

gs
cp

(A
,6

0,
60

0)
1.

00
00

0.
39

29
1.

00
00

0.
39

29
0.

23
91

1.
00

00
1.

00
00

1.
00

00
0.

23
91

1.
00

00
0.

23
91

1.
00

00
gs

cp
(B

,6
0,

60
0)

1.
00

00
0.

48
00

1.
00

00
0.

48
00

0.
18

46
0.

88
00

1.
00

00
1.

00
00

0.
16

92
1.

00
00

0.
16

92
1.

00
00

gs
cp

(C
,6

0,
60

0)
1.

00
00

0.
90

91
1.

00
00

0.
90

91
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

90
91

1.
00

00
0.

90
91

1.
00

00
gs

cp
(D

,6
0,

60
0)

1.
00

00
0.

91
67

1.
00

00
0.

91
67

1.
00

00
1.

00
00

1.
00

00
1.

00
00

0.
91

67
1.

00
00

0.
91

67
1.

00
00

gs
cp

(A
,8

0,
80

0)
1.

00
00

0.
57

89
1.

00
00

0.
57

89
0.

32
35

1.
00

00
1.

00
00

1.
00

00
0.

32
35

1.
00

00
0.

32
35

1.
00

00
gs

cp
(B

,8
0,

80
0)

1.
00

00
0.

73
33

1.
00

00
0.

73
33

0.
26

19
1.

00
00

1.
00

00
1.

00
00

0.
26

19
1.

00
00

0.
26

19
1.

00
00

gs
cp

(C
,8

0,
80

0)
1.

00
00

0.
76

92
1.

00
00

0.
76

92
0.

84
62

1.
00

00
1.

00
00

1.
00

00
0.

76
92

1.
00

00
0.

76
92

1.
00

00
gs

cp
(D

,8
0,

80
0)

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

gs
cp

(A
,1

00
,1

00
0)

0.
89

47
0.

54
55

0.
89

47
0.

54
55

0.
52

00
0.

86
36

1.
00

00
1.

00
00

0.
48

00
0.

89
47

0.
48

00
0.

89
47

gs
cp

(B
,1

00
,1

00
0)

0.
94

12
0.

45
83

0.
94

12
0.

45
83

0.
62

50
0.

66
67

1.
00

00
1.

00
00

0.
45

83
1.

00
00

0.
45

83
1.

00
00

rs
cp

(2
0,

50
0)

0.
86

96
0.

75
00

0.
86

96
0.

75
00

0.
95

65
0.

83
33

1.
00

00
1.

00
00

0.
82

61
0.

82
61

0.
82

61
0.

82
61

735

1 3

Design of a heuristic algorithm for the generalized…

Definition 9 C-Metrics [51] Let R, S ⊂ X be two solution sets of GMOSCP. The
metric C(R, S) specifies the fraction of the solutions in the set S that are dominated
by at least one solution in the set R

The value C(R, S) = 1 implies that all solutions in S are dominated by or equal
to solutions in R, while the C(R, S) = 0 indicates that none of the solutions in S is
dominated by solutions in R. It is important to note that when comparing different
approximations’ nondominated sets, both C(R, S) and C(S,R) have to be considered,
since C(R, S) is not necessarily equal to C(S,R).

Definition 10 Hypervolume measure [51] The H measure gives the volume of the
portion of the objective space that is dominated by the Pareto set from below and
bounded by the nadir point from above. For two sets R and S, the set R is better than
the set S with respect to the hypervolume measure if H(R) > H(S).

4.3 Number of scalarization to obtain the initial population

Several strategies can be used to find weight vectors in Λ for the initial stage and
constructive stage of the subproblem. We use the uniformly distributed normalized
vectors proposed in [20, 36]. For a weight vector � ∈ Λ , each individual component
�q takes one of the values given in the set {l∕s, l = 0, 1,… , s} such that

∑

q∈Q

�i = 1.

In our study we set s = 10. When p = 2 , each component [�1, �2] of � ∈ Λ can be
written as [l∕s, 1 − l∕s] , where l = 0, 1,… , 10 . Thus we solve 11 scalarized prob-
lems using ASF in the initial stage. This guarantees that

∑

q∈Q

�i = 1.

5 Experimental results

In this section, we present the numerical experiments that we conducted to test
the LOLS algorithm’s performance in various test instances. In our computational
experiments, we analyzed two main components of the LOLS algorithm. Both
components are important for the approximation quality. The first component is
the neighborhood length denoted by L, and the second component is the effects
of the four different cost-efficient rules. We experimented with several values of L
and obtained better results for L = 5, 6, 7 . We did not observe significant improve-
ments for smaller or larger values of L. Therefore, in the following sections, we have
included numerical results only for L = 5 or L = 7 or both. We also compare the
approximations produced by each cost-efficient rule gk(�, x) for k = 1, 2, 3, 4 . We
denote the approximation sets produced by the four different cost-efficient rules by
Ŷgk for k = 1, 2, 3, 4 . We define Ŷ , the approximation set produced by LOLS, as the
nondominated set of ∪4

k=1
Ŷgk . We provide the values of all the parameters in the cor-

responding tables.

C(R, S) =
|{a�� ∈ S ∶ ∃ a� ∈ R ∶ a� dominates a��}|

|S|

736 L. Weerasena et al.

1 3

5.1 Comparisons of priority rules based on C metric

In this section, each cost-efficient rule’s effect is compared (pair-wise) regarding the
C metric. The results are presented in Table 1 for L = 7 . The set R corresponds to
the rule gk1 and the set S corresponds to the rule gk2 for k1 ≤ k2 . Here, the smaller
the metric, the better the approximation. The best-performing rule appears in bold.
In the case of a tie, neither is bolded. We observe a significant performance differ-
ence among the rules when comparing the test instances using the C metric. It can
be observed that the cost-efficient rule g4 outperforms the others on almost all test
instances, although g1 performs slightly better than g4 on some instances. The rules
g2 and g3 provide the same metric. We observe almost the same performance rate
with L = 5.

5.2 Effect of search length

In this section, the effect of search length on approximations produced by each cost-
efficient rule is compared with respect to the H measures. The results are presented
in Table 2 for L = 5 and L = 7 . We note that improving the search length did not
improve the results significantly for the test problems used in this study. Here, the
higher the metric, the better the approximation. The best-performing rule appears
in bold. Confirming the observations we made on the C metric, it can be observed
that the cost-efficient rule g4 outperforms the others on most test instances, although
rule g1 performs slightly better than rule g4 on a few test instances. This observa-
tion confirms that in contrast to cost-efficient rules g1, g2, g3 , the rule g4 enable us to
enables us to provide more priority for the cost-efficient value. We did not observe a
significant difference when H measure was applied to the combined approximation
Ŷ with L = 5 and L = 7.

Table 3 summarizes the results of the H measure. For example, out of 32
gscp(l, p, m, n) test instances, 26 test instances provide a higher H measure for rule
g4 when L = 5 (approximately 81.82%). Overall 81.48% and 88.89% of the total test
problems, the rule g4 performs well when L = 5 and L = 7 , respectively. This analy-
sis also confirms the observation we made based on the C metric. Overall, the rule g4
outperforms the other rules.

5.3 Computational time of the LOLS

The computational time of the algorithm varies with the size of the test problem
and the vector b. Table 4 shows the mean computational times. We group the test
instances based on the number of sets. As we had expected, the run time increases
as L increases. We observed a significantly high computational time for the test
instances with more than 600 sets when L = 7 compared to when L = 5 . Since we
do not observe a dramatic change of the measures with increasing the value of L,
our study concludes that a small search length like L = 5 is enough, though it is an
experimental factor.

737

1 3

Design of a heuristic algorithm for the generalized…

Ta
bl

e
1

 (c
on

tin
ue

d)

In
st

an
ce

s
Ŷ
g
1

 v
sŶ

g
2

Ŷ
g
1

 v
s Ŷ

g
3

Ŷ
g
1

 v
s Ŷ

g
4

Ŷ
g
2

 v
s Ŷ

g
3

Ŷ
g
2

 v
s Ŷ

g
4

Ŷ
g
3

 v
s Ŷ

g
4

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

rs
cp

(7
5,

60
0)

0.
78

12
0.

73
53

0.
78

12
0.

73
53

0.
91

18
0.

85
29

1.
00

00
1.

00
00

0.
73

53
0.

75
00

0.
73

53
0.

75
00

rs
cp

(2
0,

70
0)

0.
96

30
0.

96
30

0.
96

30
0.

96
30

0.
93

10
0.

96
30

1.
00

00
1.

00
00

0.
89

66
0.

92
59

0.
89

66
0.

92
59

rs
cp

(1
00

,7
50

)
0.

83
87

0.
78

79
0.

83
87

0.
78

79
0.

87
50

0.
84

85
1.

00
00

1.
00

00
0.

81
25

0.
80

65
0.

81
25

0.
80

65
rs

cp
(7

0,
90

0)
0.

85
29

0.
67

50
0.

85
29

0.
67

50
0.

80
00

0.
90

00
1.

00
00

1.
00

00
0.

57
50

0.
82

35
0.

57
50

0.
82

35
rs

cp
(1

00
,1

00
0)

0.
81

82
0.

76
19

0.
81

82
0.

76
19

0.
68

18
0.

90
48

1.
00

00
1.

00
00

0.
63

64
0.

75
76

0.
63

64
0.

75
76

rs
cp

(2
50

,1
00

0)
0.

70
83

0.
66

67
0.

70
83

0.
66

67
0.

86
05

0.
56

67
1.

00
00

1.
00

00
0.

60
47

0.
68

75
0.

60
47

0.
68

75
rs

cp
(1

00
,1

50
0)

0.
85

29
0.

87
10

0.
85

29
0.

87
10

0.
81

25
0.

93
55

1.
00

00
1.

00
00

0.
75

00
0.

88
24

0.
75

00
0.

88
24

rs
cp

(2
00

,1
50

0)
0.

86
54

0.
86

00
0.

86
54

0.
86

00
0.

86
79

0.
94

00
1.

00
00

1.
00

00
0.

79
25

0.
86

54
0.

79
25

0.
86

54
rs

cp
(2

00
,2

00
0)

0.
76

09
0.

68
75

0.
76

09
0.

68
75

0.
84

44
0.

72
92

1.
00

00
1.

00
00

0.
68

89
0.

67
39

0.
68

89
0.

67
39

b
i
=
1
,
∀
i
∈
I

sc
p(

A
,1

0,
10

0)
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

87
10

1.
00

00
1.

00
00

1.
00

00
0.

87
10

1.
00

00
0.

87
10

1.
00

00
sc

p(
B

,1
0,

10
0)

1.
00

00
0.

91
18

1.
00

00
0.

91
18

0.
87

88
0.

91
18

1.
00

00
1.

00
00

0.
87

88
0.

93
75

0.
87

99
0.

93
75

sc
p(

C
,1

0,
10

0)
1.

00
00

0.
88

89
1.

00
00

0.
88

89
0.

88
89

1.
00

00
1.

00
00

1.
00

00
0.

77
78

1.
00

00
0.

77
78

1.
00

00
sc

p(
D

,1
0,

10
0)

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

sc
p(

A
,4

0,
20

0)
1.

00
00

0.
98

90
1.

00
00

0.
98

9
0.

96
67

0.
94

51
1.

00
00

1.
00

00
0.

95
56

0.
94

44
0.

95
56

0.
94

44
sc

p(
B

,4
0,

20
0)

1.
00

00
0.

97
94

1.
00

00
0.

97
94

0.
95

05
0.

97
94

1.
00

00
1.

00
00

0.
94

06
0.

98
96

0.
94

06
0.

98
96

sc
p(

C
,4

0,
20

0)
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
sc

p(
D

,4
0,

20
0)

1.
00

00
0.

91
67

1.
00

00
0.

91
67

1.
00

00
0.

97
22

1.
00

00
1.

00
00

0.
91

43
0.

96
97

0.
91

43
0.

96
97

sc
p(

A
,4

0,
40

0)
0.

98
29

0.
94

92
0.

98
29

0.
94

92
0.

97
74

0.
97

74
1.

00
00

1.
00

00
0.

94
35

0.
97

71
0.

94
35

0.
97

71
sc

p(
B

,4
0,

40
0)

0.
96

55
0.

87
10

0.
96

55
0.

87
10

0.
90

00
0.

95
70

1.
00

00
1.

00
00

0.
82

63
0.

95
98

0.
82

63
0.

95
98

sc
p(

C
,4

0,
40

0)
1.

00
00

0.
92

86
1.

00
00

0.
92

86
0.

86
36

0.
92

86
1.

00
00

1.
00

00
0.

79
55

0.
92

31
0.

79
55

0.
92

31
sc

p(
D

,4
0,

40
0)

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

sc
p(

A
,6

0,
60

0)
0.

97
64

0.
77

18
0.

97
64

0.
77

18
0.

72
67

0.
93

96
1.

00
00

1.
00

00
0.

61
63

0.
95

28
0.

61
63

0.
95

28

738 L. Weerasena et al.

1 3

Ta
bl

e
1

 (c
on

tin
ue

d)

In
st

an
ce

s
Ŷ
g
1

 v
sŶ

g
2

Ŷ
g
1

 v
s Ŷ

g
3

Ŷ
g
1

 v
s Ŷ

g
4

Ŷ
g
2

 v
s Ŷ

g
3

Ŷ
g
2

 v
s Ŷ

g
4

Ŷ
g
3

 v
s Ŷ

g
4

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

C
(
R
,
S
)

C
(
S
,
R
)

sc
p(

B
,6

0,
60

0)
0.

92
86

0.
75

13
0.

92
86

0.
75

13
0.

76
99

0.
90

67
1.

00
00

1.
00

00
0.

64
60

0.
90

11
0.

64
60

0.
90

11
sc

p(
C

,6
0,

60
0)

1.
00

00
0.

93
75

1.
00

00
0.

93
75

0.
76

19
1.

00
00

1.
00

00
1.

00
00

0.
71

43
1.

00
00

0.
71

43
1.

00
00

sc
p(

D
,6

0,
60

0)
0.

97
44

0.
97

22
0.

97
44

0.
97

22
0.

79
55

0.
97

22
1.

00
00

1.
00

00
0.

77
27

0.
97

44
0.

77
27

0.
97

44

B
ol

d
in

di
ca

te
s t

he
 b

es
t m

ea
su

re

739

1 3

Design of a heuristic algorithm for the generalized…

Ta
bl

e
2

 C
om

pa
ris

on
 o

f s
ea

rc
h

le
ng

th
 L

 in
 te

rm
s o

f H
 v

al
ue

s f
or

 v
ar

io
us

 G
M

O
SC

P
in

st
an

ce
s

In
st

an
ce

s
L
=
5

L
=
7

H
(
Ŷ
g
1

)
H
(
Ŷ
g
2

)
H
(
Ŷ
g
3

)
H
(
Ŷ
g
4

)
H
(
Ŷ
)

H
(
Ŷ
g
1

)
H
(
Ŷ
g
2

)
H
(
Ŷ
g
3

)
H
(
Ŷ
g
4

)
H
(
Ŷ
)

H
(
P
)

b
i
∈
[
1
,
3
]
,
∀
i
∈
I

gs
cp

(A
,1

0,
10

0)
0.

75
64

0.
75

12
0.

75
12

0.
75

51
0.

75
92

0.
75

24
0.

75
72

0.
75

72
0.

75
61

0.
76

09
0.

76
82

gs
cp

(B
,1

0,
10

0)
0.

77
33

0.
76

3
0.

76
3

0.
77

61
0.

77
64

0.
77

42
0.

75
15

0.
75

15
0.

77
73

0.
77

73
0.

78
46

gs
cp

(C
,1

0,
10

0)
0.

65
41

0.
64

88
0.

64
88

0.
64

88
0.

65
48

0.
65

41
0.

65
41

0.
65

41
0.

65
45

0.
65

45
0.

66
04

gs
cp

(D
,1

0,
10

0)
0.

56
23

0.
56

21
0.

56
21

0.
56

23
0.

56
23

0.
56

23
0.

56
21

0.
56

21
0.

56
23

0.
56

23
0.

57
58

gs
cp

(A
,4

0,
20

0)
0.

73
68

0.
72

95
0.

72
95

0.
74

03
0.

74
08

0.
73

46
0.

72
44

0.
72

44
0.

73
94

0.
73

94
0.

76
46

gs
cp

(B
,4

0,
20

0)
0.

79
7

0.
78

39
0.

78
39

0.
80

26
0.

80
31

0.
79

5
0.

78
39

0.
78

39
0.

79
94

0.
80

10
0.

82
68

gs
cp

(C
,4

0,
20

0)
0.

75
91

0.
75

49
0.

75
49

0.
75

91
0.

75
91

0.
75

91
0.

75
49

0.
75

49
0.

75
91

0.
75

91
0.

81
44

gs
cp

(D
,4

0,
20

0)
0.

80
58

0.
80

58
0.

80
58

0.
80

58
0.

80
58

0.
80

58
0.

80
58

0.
80

58
0.

80
58

0.
80

58
0.

84
43

gs
cp

(A
,4

0,
40

0)
0.

80
12

0.
78

42
0.

78
42

0.
80

5
0.

80
53

0.
79

99
0.

78
42

0.
78

42
0.

80
41

0.
80

44
0.

83
13

gs
cp

(B
,4

0,
40

0)
0.

83
8

0.
81

97
0.

81
97

0.
84

56
0.

84
60

0.
83

69
0.

82
01

0.
82

01
0.

84
46

0.
84

56
0.

86
40

gs
cp

(C
,4

0,
40

0)
0.

72
57

0.
72

24
0.

72
24

0.
72

73
0.

72
76

0.
72

82
0.

71
84

0.
71

84
0.

72
67

0.
72

82
0.

75
75

gs
cp

(D
,4

0,
40

0)
0.

82
39

0.
82

39
0.

82
39

0.
82

39
0.

82
39

0.
82

39
0.

82
39

0.
82

39
0.

82
39

0.
82

39
0.

84
44

gs
cp

(A
,6

0,
60

0)
0.

84
33

0.
87

35
0.

87
35

0.
85

48
0.

85
48

0.
84

34
0.

83
53

0.
83

53
0.

85
34

0.
85

34
0.

88
00

gs
cp

(B
,6

0,
60

0)
0.

82
04

0.
81

49
0.

81
49

0.
83

26
0.

83
26

0.
82

03
0.

81
4

0.
81

4
0.

83
18

0.
83

18
0.

85
84

gs
cp

(C
,6

0,
60

0)
0.

84
82

0.
84

81
0.

84
81

0.
84

82
0.

84
82

0.
84

82
0.

84
81

0.
84

81
0.

84
82

0.
84

82
0.

88
65

gs
cp

(D
,6

0,
60

0)
0.

84
15

0.
84

14
0.

84
14

0.
84

15
0.

84
15

0.
84

15
0.

84
14

0.
84

14
0.

84
15

0.
84

15
0.

88
76

gs
cp

(A
,8

0,
80

0)
0.

77
99

0.
77

7
0.

77
7

0.
79

02
0.

79
02

0.
77

98
0.

77
7

0.
77

7
0.

78
94

0.
78

94
0.

83
02

gs
cp

(B
,8

0,
80

0)
0.

80
87

0.
80

42
0.

80
42

0.
82

34
0.

82
34

0.
80

88
0.

80
42

0.
80

42
0.

82
34

0.
82

34
0.

85
49

gs
cp

(C
,8

0,
80

0)
0.

91
46

0.
88

59
0.

88
59

0.
91

55
0.

91
55

0.
91

46
0.

88
59

0.
88

59
0.

91
48

0.
91

48
0.

94
08

gs
cp

(D
,8

0,
80

0)
0.

93
61

0.
93

61
0.

93
61

0.
93

61
0.

93
61

0.
93

61
0.

93
61

0.
93

61
0.

93
61

0.
93

61
0.

97
06

gs
cp

(A
,1

00
,1

00
0)

0.
87

74
0.

86
25

0.
87

03
0.

88
06

0.
88

11
0.

87
74

0.
86

25
0.

87
03

0.
88

06
0.

88
11

0.
88

25
gs

cp
(B

,1
00

,1
00

0)
0.

85
49

0.
85

08
0.

85
08

0.
85

69
0.

85
80

0.
85

49
0.

85
08

0.
85

08
0.

85
69

0.
85

80
0.

86
80

rs
cp

(2
0,

50
0)

0.
88

83
0.

88
79

0.
88

79
0.

88
67

0.
88

90
0.

88
70

0.
88

53
0.

88
53

0.
88

49
0.

88
78

0.
88

95

740 L. Weerasena et al.

1 3

Ta
bl

e
2

 (c
on

tin
ue

d)

In
st

an
ce

s
L
=
5

L
=
7

H
(
Ŷ
g
1

)
H
(
Ŷ
g
2

)
H
(
Ŷ
g
3

)
H
(
Ŷ
g
4

)
H
(
Ŷ
)

H
(
Ŷ
g
1

)
H
(
Ŷ
g
2

)
H
(
Ŷ
g
3

)
H
(
Ŷ
g
4

)
H
(
Ŷ
)

H
(
P
)

rs
cp

(7
5,

60
0)

0.
91

98
0.

92
01

0.
92

02
0.

92
16

0.
92

24
0.

92
27

0.
92

22
0.

92
22

0.
92

26
0.

92
35

0.
92

65
rs

cp
(2

0,
70

0)
0.

95
55

0.
95

45
0.

95
45

0.
95

55
0.

95
57

0.
95

24
0.

95
24

0.
95

24
0.

95
26

0.
95

28
0.

95
69

rs
cp

(1
00

,7
50

)
0.

92
19

0.
92

49
0.

92
49

0.
92

28
0.

92
5

0.
92

41
0.

92
33

0.
92

33
0.

92
29

0.
92

48
0.

93
29

rs
cp

(7
0,

90
0)

0.
95

10
0.

95
00

0.
95

00
0.

95
13

0.
95

17
0.

94
92

0.
94

94
0.

94
94

0.
95

12
0.

95
14

0.
95

49
rs

cp
(1

00
,1

00
0)

0.
95

06
0.

94
86

0.
94

86
0.

95
06

0.
95

08
0.

95
02

0.
94

93
0.

94
93

0.
95

11
0.

95
18

0.
95

60
rs

cp
(2

50
,1

00
0)

0.
94

07
0.

93
97

0.
93

97
0.

93
91

0.
94

18
0.

94
01

0.
93

94
0.

93
94

0.
94

02
0.

94
10

0.
94

76
rs

cp
(1

00
,1

50
0)

0.
95

81
0.

95
79

0.
95

79
0.

95
82

0.
95

89
0.

95
75

0.
95

57
0.

95
57

0.
95

74
0.

95
79

0.
96

38
rs

cp
(2

00
,1

50
0)

0.
95

69
0.

95
68

0.
95

68
0.

95
62

0.
95

73
0.

95
67

0.
95

64
0.

95
64

0.
95

68
0.

96
35

0.
96

35
rs

cp
(2

00
,2

00
0)

0.
96

41
0.

96
37

0.
96

37
0.

96
20

0.
96

45
0.

96
55

0.
96

44
0.

96
44

0.
96

44
0.

96
49

0.
96

98
b
i
=
1
,
∀
i
∈
I

sc
p(

A
,1

0,
10

0)
0.

81
56

0.
81

56
0.

81
56

0.
81

56
0.

81
56

0.
81

49
0.

81
49

0.
81

49
0.

81
60

0.
81

60
0.

81
70

sc
p(

B
,1

0,
10

0)
0.

72
18

0.
72

18
0.

72
18

0.
72

20
0.

72
20

0.
72

02
0.

71
90

0.
71

90
0.

72
02

0.
72

16
0.

72
41

sc
p(

C
,1

0,
10

0)
0.

54
77

0.
54

77
0.

54
77

0.
54

88
0.

54
58

0.
54

85
0.

52
98

0.
52

98
0.

54
88

0.
54

88
0.

54
96

sc
p(

D
,1

0,
10

0)
0.

47
09

0.
47

09
0.

47
09

0.
47

09
0.

47
09

0.
47

10
0.

47
10

0.
47

10
0.

47
10

0.
47

10
0.

47
09

sc
p(

A
,4

0,
20

0)
0.

77
69

0.
77

69
0.

77
69

0.
77

67
0.

77
69

0.
77

69
0.

77
69

0.
77

69
0.

77
67

0.
77

69
0.

77
74

sc
p(

B
,4

0,
20

0)
0.

86
31

0.
86

29
0.

86
29

0.
86

31
0.

86
32

0.
86

31
0.

86
29

0.
86

29
0.

86
31

0.
86

31
0.

86
37

sc
p(

C
,4

0,
20

0)
0.

71
87

0.
71

87
0.

71
87

0.
71

87
0.

71
87

0.
71

87
0.

71
87

0.
71

87
0.

71
87

0.
71

87
0.

73
44

sc
p(

D
,4

0,
20

0)
0.

88
31

0.
88

24
0.

88
24

0.
88

31
0.

88
31

0.
88

31
0.

88
24

0.
88

24
0.

88
31

0.
88

31
0.

89
11

sc
p(

A
,4

0,
40

0)
0.

84
35

0.
84

34
0.

84
34

0.
84

37
0.

84
37

0.
84

35
0.

84
34

0.
84

34
0.

84
37

0.
84

37
0.

84
39

sc
p(

B
,4

0,
40

0)
0.

87
88

0.
87

86
0.

87
86

0.
87

90
0.

87
90

0.
87

88
0.

87
86

0.
87

86
0.

87
90

0.
87

90
0.

87
94

sc
p(

C
,4

0,
40

0)
0.

75
76

0.
75

71
0.

75
71

0.
75

81
0.

75
83

0.
75

76
0.

75
71

0.
75

71
0.

75
81

0.
75

83
0.

76
45

sc
p(

D
,4

0,
40

0)
0.

67
53

0.
67

53
0.

67
53

0.
67

53
0.

67
53

0.
67

53
0.

67
53

0.
67

53
0.

67
53

0.
67

53
0.

68
85

sc
p(

A
,6

0,
60

0)
0.

87
85

0.
87

76
0.

85
00

0.
85

08
0.

87
90

0.
87

85
0.

87
76

0.
87

76
0.

87
90

0.
87

90
0.

87
97

741

1 3

Design of a heuristic algorithm for the generalized…

Ta
bl

e
2

 (c
on

tin
ue

d)

In
st

an
ce

s
L
=
5

L
=
7

H
(
Ŷ
g
1

)
H
(
Ŷ
g
2

)
H
(
Ŷ
g
3

)
H
(
Ŷ
g
4

)
H
(
Ŷ
)

H
(
Ŷ
g
1

)
H
(
Ŷ
g
2

)
H
(
Ŷ
g
3

)
H
(
Ŷ
g
4

)
H
(
Ŷ
)

H
(
P
)

sc
p(

B
,6

0,
60

0)
0.

85
05

0.
85

00
0.

85
00

0.
85

12
0.

85
12

0.
85

05
0.

85
00

0.
85

00
0.

85
08

0.
85

12
0.

85
21

sc
p(

C
,6

0,
60

0)
0.

87
42

0.
87

18
0.

87
18

0.
87

42
0.

87
42

0.
87

42
0.

87
18

0.
87

18
0.

87
42

0.
87

42
0.

88
32

sc
p(

D
,6

0,
60

0)
0.

87
26

0.
87

18
0.

86
11

0.
86

21
0.

87
51

0.
87

26
0.

87
18

0.
87

18
0.

87
42

0.
87

51
0.

88
51

sc
p(

A
,8

0,
80

0)
0.

84
98

0.
84

97
0.

84
97

0.
84

98
0.

84
98

0.
84

97
0.

84
97

0.
84

97
0.

84
98

0.
84

98
0.

85
02

sc
p(

B
,8

0,
80

0)
0.

85
35

0.
85

34
0.

85
34

0.
85

35
0.

85
35

0.
85

35
0.

85
35

0.
85

35
0.

85
37

0.
85

38
0.

85
40

sc
p(

C
,8

0,
80

0)
0.

96
53

3
0.

96
35

0.
96

35
0.

96
35

0.
96

53
3

0.
96

35
0.

96
35

0.
96

35
0.

96
35

0.
96

35
0.

97
94

sc
p(

D
,8

0,
80

0)
0.

97
94

0.
97

94
0.

97
94

0.
97

94
0.

97
94

0.
97

94
0.

97
94

0.
97

94
0.

97
94

0.
97

94
0.

98
78

sc
p(

A
,1

00
,1

00
0)

0.
94

09
0.

93
42

0.
93

42
0.

94
21

0.
94

26
0.

94
09

0.
93

42
0.

93
42

0.
94

21
0.

94
26

0.
94

90
sc

p(
B

,1
00

,1
00

0)
0.

92
85

0.
92

84
0.

92
84

0.
93

04
0.

93
10

0.
92

85
0.

92
84

0.
92

84
0.

93
04

0.
93

10
0.

93
47

B
ol

d
in

di
ca

te
s t

he
 b

es
t m

ea
su

re

742 L. Weerasena et al.

1 3

To demonstrate the LOLS algorithm’s computational efficiency, we compared
the observed computational times of the LOLS algorithm with existing publications
in LB-AI [47], 2PPLS [29], TPM [37], and PMA [22], averaged over types of the
MOSCP test instances. The study proposed in [29] provides a table for average com-
putational time comparison for some MOSCP test problems for 2PPLS, TPM, and
PMA algorithms. The study proposed in [47] has extended the same table, includ-
ing LB-AI algorithms computational time. Here, we used the same table format and
included the computational time of the LOLS algorithm. As mentioned in [22], we
also emphasize that the computational time depends on the computer type, pro-
gramming language, and implementation style. Table 5 provides this comparison
for the average computational times. For example in Table 5, row corresponding to
SCP(–,10,100) provides the average time for the test instances of SCP(A,10,100),
SCP(B,10,100), SCP(C,10,100) and SCP(D,10,100), respectively. The last two rows
of this table provide the computer type. Note that the computational times of LOLS,
LB-AI, 2PPLS algorithms are collectively better than the computational times of
TPM and PMA. We also note that TPM has been executed on a Pentium IV with
1.8 GHz CPUs 512 MB of RAM [37], and PMA on a computer with 400 MHz [22].
Those computers are slower than the computers used in our study, LB-AI (I-3 pro-
cessor and 2 GB RAM [47] and 2PPLS (Pentium IV with 3 GHz CPUs [29]). We
observe that the LOLS algorithm performs computationally well when comparing
these computational times.

Table 3 Summary of H
-measures for L = 5 and L = 7

Rule L = 5 L = 7

Better
performing
number &
percentage
(%)

Better per-
forming
number &
percentage
(%)

9
1

11 34.38 10 31.25
b
i
∈ [1, 3], ∀ i ∈ I 9

2
4 12.50 3 9.38

Number of test instances = 32 9
3

4 12.50 3 9.38
9
4

26 81.25 27 84.38
9
1

13 59.09 10 45.45
b
i
= 1, ∀ i ∈ I 9

2
5 22.73 6 27.27

Number of test instances = 22 9
3

5 22.73 6 27.27
9
4

18 81.82 21 95.45
9
1

24 44.44 20 37.04
9
2

9 16.67 9 16.67
Number of test instances = 54 9

3
9 16.67 9 16.67

9
4

44 81.48 48 88.89

743

1 3

Design of a heuristic algorithm for the generalized…

Ta
bl

e
4

 A
ve

ra
ge

 c
om

pu
ta

tio
na

l t
im

e
us

in
g

th
e

fo
ur

 c
la

ss
es

 o
f i

nc
re

as
in

g
pr

ob
le

m
 si

ze
 o

ve
r s

ea
rc

h
le

ng
th

R
an

ge
 o

f n
b
i
=
1
,
∀
i
∈
I

b
i
∈
[
1
,
3
]
,
∀
i
∈
I

L
=
5

L
=
7

L
=
5

L
=
7

g
1

g
2

g
3

g
4

g
1

g
2

g
3

g
4

g
1

g
2

g
3

g
4

g
1

g
2

g
3

g
4

10
0–

20
0

10
.1

1
9.

55
10

.0
1

11
.5

4
12

.5
5

11
.4

5
12

.5
5

14
.5

5
47

.6
6

40
.3

2
43

.5
6

51
.3

4
10

7.
66

11
4.

32
13

3.
38

15
41

.3
4

40
0–

60
0

21
.0

3
20

.5
5

19
.0

5
21

.9
8

24
.5

6
23

.8
7

22
.7

7
24

.1
1

55
.7

7
54

.4
1

55
.2

6
60

.3
4

12
5.

77
12

6.
41

12
5.

26
13

3.
34

80
0–

10
00

24
.7

8
23

.0
8

24
.8

8
25

.0
6

30
.5

5
32

.3
3

31
.9

8
34

.3
2

10
2.

55
12

1.
55

12
2.

54
13

1.
45

22
2.

34
22

2.
66

22
4.

44
23

4.
55

15
00

–2
00

0
−

−
−

−
−

−
−

−
18

0.
23

17
5.

34
16

1.
09

19
2.

55
24

2.
31

27
2.

34
27

4.
42

28
3.

31

744 L. Weerasena et al.

1 3

5.4 Comparison with a state‑of‑the‑art algorithm for the MOSCP

We compare the performance of the LOLS algorithm to LB-AI [47], 2PPLS [29],
TPM [37], and PMA [21] based on H measures for the MOSCP. Here, we present
the H measure over nonscaled Pareto points for this comparison. We consider vari-
ous scp(l, m, n) test problems, and Table 6 provides the corresponding measures. It
can be observed that the LOLS algorithm significantly outperforms LB-AI on many
instances in terms of H measure. One of the main differences between the LOLS
algorithm and the LB-AI algorithm is constructing the initial solution set. The LOLS
algorithm obtains the initial solutions by solving the scalarized GMOSCPs using
achievement functions with one reference point. In contrast, the LB-AI algorithm
obtained the initial solutions by solving scalarized GMOSCPs using the classical
weighted-sum method. From this analysis, we observe that the LOLS algorithm
significantly outperforms LB-AI on many instances of the H measure. This perfor-
mance illustrates the advantage of integrating the achievement scalarization with a
reference point over the classical weighted sum method in the partitioning algorithm
proposed in [11]. We also observe that the LOLS algorithm outperforms TPM and
PMA all the time and performs better on five test problems out of ten test problems
compared to 2PPLS that have been considered in this study based on H measure.

5.5 Comparison with the Pareto set

We analyzed the performance metrics produced by the LOLS algorithm using
the Pareto sets. We computed the exact Pareto outcomes by applying the �-con-
straint method [15]. We note that improved techniques for computing Pareto sets
have been studied in recent literature [12, 33, 35, 50]. The nonscaled H measures
for the benchmark test problems are also provided in [12, 29, 33, 47]. In addition,
we provided the scaled (normalized) H measures for the Pareto sets in the last col-
umn of Table 2 and the nonscaled (non-normalized) H measures in the last column
of Table 6 of the LOLS algorithm regarding the Pareto sets. By definition, the H
measure of YP is always larger than that of Ŷ . Based on the numerical data provided
in Table 6, we observed that the LOLS algorithm performs well, and it indicates

Table 5 Comparison of LOLS, LB-AI, 2PPLS, TPM, PMA algorithms average run times

Name Size (m × n) LOLS LB-AI 2PPLS TPM PMA

scp(–,10,100) 10 × 100 2.10 1.90 0.56 2.05 4.20
scp(–,40,200) 40 × 200 11.21 9.43 7.62 7.69 20.30
scp(–,40,400) 40 × 400 23.45 27.39 8.56 8.56 45.70
scp(–,60,600) 60 × 600 6.32 7.01 3.95 20.35 98.80
scp(–,80,800) 80 × 800 52.34 61.07 12.26 30.22 165.9
scp(–,100,1000) 100 × 1000 30.23 33.33 13.76 50.10 311.70
Computer I-7 processor I-3 processor Pentium IV Pentium IV Computer
RAM 8 GB 2 GB 3 GHz 1.8 GHz 512 MB 400 MHz

745

1 3

Design of a heuristic algorithm for the generalized…

Ta
bl

e
6

 C
om

pa
ris

on
s w

ith
 st

at
e-

of
-th

e-
ar

t a
lg

or
ith

m
 o

n
va

rio
us

 sc
p(

l,
m

, n
) i

ns
ta

nc
es

B
ol

d
in

di
ca

te
s t

he
 b

es
t m

ea
su

re

In
st

an
ce

s
H
(
Ŷ
g
1

)
H
(
Ŷ
g
2

)
H
(
Ŷ
g
3

)
H
(
Ŷ
g
4

)
St

at
e-

of
-th

e-
A

rt

LO
LS

LB
-A

I
2P

PL
S

TP
M

PM
A

H
(
Y
P
)

sc
p(

A
,1

0,
10

0)
1.

65
38

1.
65

38
1.

65
38

1.
65

38
1.

65
38

1.
65

02
–

–
–

1.
65

59
sc

p(
B

,1
0,

10
0)

1.
03

60
1.

03
60

1.
03

60
1.

03
62

1.
03

62
1.

03
70

–
–

–
1.

03
84

sc
p(

C
,1

0,
10

0)
2.

39
50

2.
39

50
2.

39
50

2.
39

79
2.

39
79

0.
17

03
–

–
–

0.
24

00
sc

p(
D

,1
0,

10
0)

0.
27

93
0.

27
93

0.
27

93
0.

27
93

0.
27

93
0.

25
73

–
–

–
0.

27
93

sc
p(

A
,4

0,
20

0)
31

.4
39

3
31

.4
39

2
31

.4
39

2
31

.4
34

0
31

.4
40

0
31

.4
03

0
–

–
–

31
.4

50
0

sc
p(

B
,4

0,
20

0)
51

.3
73

5
51

.3
62

5
51

.3
62

5
51

.3
72

0
51

.3
75

1
51

.3
69

0
–

–
–

51
.3

88
0

sc
p(

C
,4

0,
20

0)
41

.8
59

6
41

.8
59

6
41

.8
59

6
41

.8
59

6
41

.8
59

6
42

.2
53

0
–

–
–

42
.4

30
0

sc
p(

D
,4

0,
20

0)
12

.2
18

4
12

.3
57

6
12

.3
57

6
12

.3
62

6
12

.3
62

6
12

.3
88

0
–

–
–

12
.4

33
0

sc
p(

A
,4

0,
40

0)
14

5.
96

62
14

5.
96

51
14

5.
96

51
14

5.
96

72
14

5.
97

34
14

5.
83

00
–

–
–

14
6.

02
00

sc
p(

B
,4

0,
40

0)
27

2.
95

07
27

2.
89

65
27

2.
89

65
27

2.
97

51
27

2.
98

84
27

2.
76

00
–

–
–

27
3.

09
00

sc
p(

C
,4

0,
40

0)
15

6.
30

73
15

6.
23

05
15

6.
23

05
15

6.
39

31
15

6.
41

75
15

5.
93

00
–

–
–

15
7.

34
00

sc
p(

D
,4

0,
40

0)
9.

92
24

9.
92

24
9.

92
24

9.
92

24
9.

92
24

9.
82

90
–

–
–

9.
99

92
sc

p(
A

,6
0,

60
0)

65
0.

01
21

64
9.

51
29

64
9.

51
29

65
0.

28
76

65
0.

31
91

64
9.

34
00

65
0.

46
00

64
6.

90
00

63
9.

06
65

0.
68

00
sc

p(
B

,6
0,

60
0)

80
6.

43
09

80
6.

04
59

80
6.

04
59

80
6.

04
59

80
6.

65
95

80
5.

19
00

80
6.

83
00

80
1.

08
00

78
4.

67
80

7.
59

00
sc

p(
C

,6
0,

60
0)

77
.5

40
4

77
.4

08
0

77
.4

08
0

77
.5

40
4

77
.5

40
4

77
.4

04
0

76
.9

30
0

72
.8

10
0

66
.1

9
78

.6
80

0
sc

p(
D

,6
0,

60
0)

58
4.

02
82

58
4.

02
82

58
3.

62
22

58
4.

89
16

58
5.

31
25

58
8.

2
58

5.
30

00
58

1.
59

00
54

9.
45

59
0.

46
00

sc
p(

A
,8

0,
80

0)
18

04
.9

64
5

18
04

.9
37

3
18

04
.9

37
3

18
05

.0
66

7
18

05
.1

69
5

18
03

.6
8

18
04

.7
5

17
87

.6
1

17
77

.7
1

18
05

.7
87

0
sc

p(
B

,8
0,

80
0)

22
96

.6
58

5
22

96
.6

98
2

22
96

.6
98

2
22

96
.9

75
6

22
97

.1
52

9
22

94
.0

7
22

95
.7

3
22

77
.4

6
22

67
.9

8
22

97
.6

61
9

sc
p(

C
,8

0,
80

0)
11

2.
95

89
11

2.
95

89
11

2.
95

89
11

2.
95

89
11

2.
95

89
11

4.
00

00
11

3.
91

11
4.

5
11

0.
06

11
4.

44
98

sc
p(

D
,8

0,
80

0)
22

5.
26

92
22

5.
26

92
22

5.
26

92
22

5.
26

92
22

5.
26

92
16

9.
56

16
8.

54
16

9.
4

16
0

22
6.

77
85

sc
p(

A
,1

00
,1

00
0)

30
4.

09
00

30
2.

34
00

30
2.

34
00

30
4.

42
00

30
4.

56
00

30
5.

09
00

30
5.

85
00

28
6.

73
00

30
5.

20
00

30
6.

21
92

sc
p(

B
,1

00
,1

00
0)

33
8.

64
00

33
8.

62
00

33
8.

62
00

33
9.

20
00

33
9.

40
00

33
9.

32
00

34
0.

09
00

32
9.

36
00

33
8.

90
00

34
0.

48
20

746 L. Weerasena et al.

1 3

Ta
bl

e
7

 C
 - m

et
ric

 c
om

pa
ris

on
s w

ith
 th

e
Pa

re
to

 se
t w

he
n
L
=
7

In
st

an
ce

s
C
(
Ŷ
g
1

,
Y
p
)

C
(
Ŷ
g
2

,
Y
p
)

C
(
Ŷ
g
3

,
Y
p
)

C
(
Ŷ
g
4

,
Y
p
)

C
(
Ŷ
,
Y
p
)

In
st

an
ce

s
C
(
Ŷ
g
1

,
Y
p
)

C
(
Ŷ
g
2

,
Y
p
)

C
(
Ŷ
g
3

,
Y
p
)

C
(
Ŷ
g
4

,
Y
p
)

C
(
Ŷ
,
Y
p
)

gs
cp

(A
,1

0,
10

0)
0.

27
40

0.
30

14
0.

30
14

0.
34

25
0.

43
84

sc
p(

A
,1

0,
10

0)
0.

65
00

0.
65

00
0.

65
00

0.
72

50
0.

72
50

gs
cp

(B
,1

0,
10

0)
0.

42
11

0.
22

81
0.

22
81

0.
47

37
0.

47
37

sc
p(

B
,1

0,
10

0)
0.

68
29

0.
63

41
0.

63
41

0.
70

73
0.

78
05

gs
cp

(C
,1

0,
10

0)
0.

66
67

0.
66

67
0.

66
67

0.
71

43
0.

71
43

sc
p(

C
,1

0,
10

0)
0.

66
67

0.
55

56
0.

55
56

0.
77

78
0.

77
78

gs
cp

(D
,1

0,
10

0)
0.

66
67

0.
66

67
0.

66
67

0.
66

67
0.

66
67

sc
p(

D
,1

0,
10

0)
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

gs
cp

(A
,4

0,
20

0)
0.

08
40

0.
08

40
0.

08
40

0.
08

40
0.

08
40

sc
p(

A
,4

0,
20

0)
0.

77
57

0.
76

64
0.

76
64

0.
73

83
0.

78
50

gs
cp

(B
,4

0,
20

0)
0.

06
62

0.
06

62
0.

06
62

0.
06

62
0.

06
62

sc
p(

B
,4

0,
20

0)
0.

79
82

0.
77

98
0.

77
98

0.
82

57
0.

84
40

gs
cp

(C
,4

0,
20

0)
0.

18
87

0.
18

87
0.

18
87

0.
18

87
0.

18
87

sc
p(

C
,4

0,
20

0)
0.

69
57

0.
69

57
0.

69
57

0.
69

57
0.

69
57

gs
cp

(D
,4

0,
20

0)
0.

16
67

0.
16

67
0.

16
67

0.
16

67
0.

16
67

sc
p(

D
,4

0,
20

0)
0.

31
15

0.
29

51
0.

29
51

0.
31

15
0.

31
15

gs
cp

(A
,4

0,
40

0)
0.

03
13

0.
03

13
0.

03
13

0.
03

13
0.

03
13

sc
p(

A
,4

0,
40

0)
0.

77
29

0.
75

36
0.

75
36

0.
76

81
0.

79
71

gs
cp

(B
,4

0,
40

0)
0.

02
62

0.
02

62
0.

02
62

0.
03

14
0.

03
14

sc
p(

B
,4

0,
40

0)
0.

56
63

0.
52

33
0.

52
33

0.
60

22
0.

64
52

gs
cp

(C
,4

0,
40

0)
0.

11
89

0.
09

09
0.

09
09

0.
09

79
0.

11
89

sc
p(

C
,4

0,
40

0)
0.

36
17

0.
35

11
0.

35
11

0.
36

17
0.

39
36

gs
cp

(D
,4

0,
40

0)
0.

61
11

0.
61

11
0.

61
11

0.
61

11
0.

61
11

sc
p(

D
,4

0,
40

0)
0.

53
33

0.
53

33
0.

53
33

0.
53

33
0.

53
33

gs
cp

(A
,6

0,
60

0)
0.

02
74

0.
02

74
0.

02
74

0.
03

24
0.

03
24

sc
p(

A
,6

0,
60

0)
0.

41
80

0.
34

38
0.

34
38

0.
53

52
0.

55
86

gs
cp

(B
,6

0,
60

0)
0.

02
17

0.
02

17
0.

02
17

0.
02

36
0.

02
36

sc
p(

B
,6

0,
60

0)
0.

43
57

0.
35

67
0.

35
67

0.
50

88
0.

56
14

gs
cp

(C
,6

0,
60

0)
0.

25
53

0.
25

53
0.

25
53

0.
25

53
0.

25
53

sc
p(

C
,6

0,
60

0)
0.

50
00

0.
46

43
0.

46
43

0.
60

71
0.

60
71

gs
cp

(D
,6

0,
60

0)
0.

08
93

0.
08

93
0.

08
93

0.
08

93
0.

08
93

sc
p(

D
,6

0,
60

0)
0.

29
17

0.
29

17
0.

29
17

0.
37

50
0.

37
50

gs
cp

(A
,8

0,
80

0)
0.

01
42

0.
01

42
0.

01
42

0.
01

42
0.

01
42

sc
p(

A
,8

0,
80

0)
0.

96
49

0.
36

46
0.

36
46

0.
44

79
0.

51
04

gs
cp

(B
,8

0,
80

0)
0.

01
71

0.
01

71
0.

01
71

0.
01

71
0.

01
71

sc
p(

B
,8

0,
80

0)
0.

36
00

0.
29

00
0.

29
00

0.
46

00
0.

54
00

gs
cp

(C
,8

0,
80

0)
0.

10
26

0.
10

26
0.

10
26

0.
10

26
0.

10
26

sc
p(

C
,8

0,
80

0)
0.

85
71

0.
85

71
0.

85
71

0.
85

71
0.

85
71

gs
cp

(D
,8

0,
80

0)
0.

41
18

0.
41

18
0.

41
18

0.
41

18
0.

41
18

sc
p(

D
,8

0,
80

0)
0.

25
64

0.
25

64
0.

25
64

0.
46

15
0.

46
15

gs
cp

(A
,1

00
,1

00
0)

0.
04

18
0.

04
18

0.
04

18
0.

04
18

0.
04

18
sc

p(
A

,1
00

,1
00

0)
0.

11
32

0.
10

69
0.

10
69

0.
10

69
0.

11
32

gs
cp

(B
,1

00
,1

00
0)

0.
04

73
0.

04
73

0.
04

73
0.

04
73

0.
04

73
sc

p(
B

,1
00

,1
00

0)
0.

11
19

0.
09

79
0.

09
79

0.
12

59
0.

12
95

rs
cp

(2
0,

50
0)

0.
53

85
0.

50
00

0.
50

00
0.

53
85

0.
53

85
rs

cp
(7

5,
60

0)
0.

36
59

0.
31

71
0.

31
71

0.
36

59
0.

36
59

rs
cp

(2
0,

70
0)

0.
50

00
0.

45
45

0.
45

45
0.

50
00

0.
50

00
rs

cp
(1

00
,7

50
)

0.
41

03
0.

38
46

0.
38

46
0.

41
03

0.
41

03

747

1 3

Design of a heuristic algorithm for the generalized…

that the H measures are reasonable. Table 7 provides the comparison based on the
C metric. We showed the results for C(Ŷgi , Yp) , i = 1, 2, 3, 4 , and for Ŷ when L = 7 .
We do not show the results for C(Yp, Ŷgi) since always C(Yp, Ŷgi) = 1 for i = 1, 2, 3, 4 .
Specifically, we note that for the MOSCP cases, we have C(Yp, Ŷgi) > 0.5 for 18
test cases out of 22 test cases. This means the LOLS algorithm finds more than
50% of Pareto points for most test problems. For the GMOSCP test problems we
have C(Yp, Ŷgi) > 0.4 for 10 test cases and for other test cases C(Yp, Ŷgi) < 0.4 . The
GMOSCP is a challenging problem compared to the MOSCP due to the multi-cover
constraints, thus difficult to obtain the majority of the Pareto points. Though, com-
pared with H measures provided in Tables 2 and 6, we observe H(Ŷ) and H(Yp) are
very close, which implies that the points in the two sets Ŷ and Yp are very close to
each other. Thus, we conclude that the LOLS algorithm performs well on the test
problems studied here.

6 Conclusion and future work

This paper proposes a novel algorithm, called the LOLS algorithm, that is based on
the lexicographic ordering set selection approach to approximating the Pareto set of
the GMOSCP. The algorithm is integrated into the branching of the feasible region
algorithm proposed in [11] to solve single-objective mixed-integer optimization
problems. In LOLS, the distribution of the initial population can be better main-
tained by abating and solving the scalarized GMOSCPs using achievement func-
tions with a reference point. We investigated the performance of the LOLS algo-
rithm in detail. We considered various test instances from the literature, and we also
proposed a method for generating random test instances.

We introduced four different cost-efficient rules to convert partial (infeasible)
solutions to feasible solutions. We investigated whether there is a better relation-
ship between cost-efficient value and set density other than the classical linear rela-
tionship for the GMOSCP. The cost-efficient rule g1 is a linear fractional rule while
the cost-efficient rules g2, g3, g4 are non-linear fractional rules. With the cost-effi-
cient rule g4 , we prioritized the cost-value considering a non-linear fractional term.
Thus, in contrast to cost-efficient rules g1, g2, g3 , we dicovered that the rule g4 per-
formed well on the GMOSCP. We discovered that having reasonably well multi-
ple priority rules in the LOLS algorithm results in a better approximation for the
GMOSCP. In addition, we investigated a better-performing cost-efficient rule for the
GMOSCP among the four cost-efficient rules proposed in the study. The GMOSCP
can be reduced to MOSCP if bi ≥ 1 for all i ∈ I . Thus, we compared the perfor-
mance of the LOLS algorithm with the state-of-the-art MOSCP algorithms. This
comparison shows that the LOLS algorithm significantly outperforms the LB-AI
algorithm, the most recent algorithm available in the literature to solve the MOSCP
on many problem instances in terms of the H measure. One of the main differences
between the LOLS algorithm and the LB-AI algorithm is constructing the initial
solution set. The LOLS algorithm obtains the initial solutions by solving the scalar-
ized GMOSCPs using achievement functions while the LB-AI algorithm obtains the
initial solutions by solving scalarized GMOSCPs using the classical weighted-sum

748 L. Weerasena et al.

1 3

Ta
bl

e
7

 (c
on

tin
ue

d)

In
st

an
ce

s
C
(
Ŷ
g
1

,
Y
p
)

C
(
Ŷ
g
2

,
Y
p
)

C
(
Ŷ
g
3

,
Y
p
)

C
(
Ŷ
g
4

,
Y
p
)

C
(
Ŷ
,
Y
p
)

In
st

an
ce

s
C
(
Ŷ
g
1

,
Y
p
)

C
(
Ŷ
g
2

,
Y
p
)

C
(
Ŷ
g
3

,
Y
p
)

C
(
Ŷ
g
4

,
Y
p
)

C
(
Ŷ
,
Y
p
)

rs
cp

(7
0,

90
0)

0.
41

38
0.

34
48

0.
34

48
0.

41
38

0.
41

38
rs

cp
(1

00
,1

00
0)

0.
30

23
0.

25
58

0.
25

58
0.

30
23

0.
30

23
rs

cp
(2

50
,1

00
0)

0.
26

53
0.

24
62

0.
24

62
0.

24
63

0.
26

53
rs

cp
(1

00
,1

50
0)

0.
38

89
0.

41
67

0.
41

67
0.

38
89

0.
41

67
rs

cp
(2

00
,1

50
0)

0.
18

97
0.

18
97

0.
18

97
0.

18
97

0.
18

97
rs

cp
(2

00
,2

00
0)

0.
27

21
0.

27
08

0.
27

08
0.

27
08

0.
27

21

749

1 3

Design of a heuristic algorithm for the generalized…

method. Comparing the LOLS algorithm with LB-AI, 2PPL, TPM, and PMA shows
that the LOLS algorithm is more efficient.

The following are possible areas for further investigation: Investigating other
lexicographic cost-selection rules that benefit the GMOSCP is also worth explor-
ing. Also, an ANOVA-type analysis can be used to compare approximations of the
Pareto set based on each cost-efficient rule.

Acknowledgements We are very grateful to all reviewers for the careful analysis of our text and valuable
feedback.

Data availability We have used two sets of data sets. The first set of data used in this study has been pre-
viously published. This set of data has also been used in our citations 13,35,37,53. The data set can be
accessed using the following link https:// github. com/ vOptS olver/ vOptL ib/ blob/ master/ SCP/ readme. md.
We have described the procedure for generating the second set of data in the manuscript.

References

 1. Alsheddy, A., Tsang, E.E.: Guided pareto local search based frameworks for biobjective optimiza-
tion. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

 2. Bandara, D., Mayorga, M., McLay, M.L.: Optimal dispatching strategies for emergency vehicles to
increase patient survivability. Int. J. Oper. Res. 15(2), 195–214 (2012)

 3. Bettinelli, A., Ceselli, A., Righini, G.: A branch-and-price algorithm for the multi-depot heteroge-
neous-fleet pickup and delivery problem with soft time windows. Math. Program. Comput. 6(2),
171–197 (2014)

 4. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)
 5. Czyzżak, P., Jaszkiewicz, A.: Pareto simulated annealing-a metaheuristic technique for multiple-

objective combinatorial optimization. J. Multi-criteria Decis. Anal. 7(1), 34–47 (1998)
 6. Daskin, M.S., Stern, E.H.: A hierarchical objective set covering model for emergency medical ser-

vice vehicle deployment. Transp. Sci. 15(2), 137–152 (1981)
 7. Ehrgott, M.: Approximation algorithms for combinatorial multicriteria optimization problems. Int.

Trans. Oper. Res. 7(1), 5–31 (2000)
 8. Ehrgott, M.: Multicriteria Optimization. Springer, New York (2006)
 9. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjective combinatorial

optimization. OR-Spektrum 22(4), 425–460 (2000)
 10. Figueira, J.R., Liefooghe, A., Talbi, E.-G., Wierzbicki, A.P.: A parallel multiple reference point

approach for multi-objective optimization. Eur. J. Oper. Res. 205(2), 390–400 (2010)
 11. Fischetti, M., Lodi, A.: Local branching. Math. Program. 98(1–3), 23–47 (2003)
 12. Florios, K., Mavrotas, G.: Generation of the exact pareto set in multi-objective traveling salesman

and set covering problems. Appl. Math. Comput. 237, 1–19 (2014)
 13. Gandibleux, X., Mezdaoui, N., Fréville, A.: A tabu search procedure to solve multiobjective com-

binatorial optimization problems. In: Advances in Multiple Objective and Goal Programming, pp.
291–300. Springer, New York (1997)

 14. García-Martínez, C., Cordón, O., Herrera, F.: A taxonomy and an empirical analysis of multiple
objective ant colony optimization algorithms for the bi-criteria tsp. Eur. J. Oper. Res. 180(1), 116–
148 (2007)

 15. Haimes, Y.: On a bicriterion formulation of the problems of integrated system identification and
system optimization. IEEE Trans. Syst. Man Cybern. 1(3), 296–297 (1971)

 16. Hammer, P.L., Bonates, T.O.: Logical analysis of data: an overview: from combinatorial optimiza-
tion to medical applications. Ann. Oper. Res. 148(1), 203–225 (2006)

 17. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160
(1950)

 18. Hansen, M.P.: Use of substitute scalarizing functions to guide a local search based heuristic: the
case of MOTSP. J. Heuristics 6(3), 419–431 (2000)

 19. https:// github. com/ vOptS olver/ vOptL ib/ tree/ master/ SCP

https://github.com/vOptSolver/vOptLib/blob/master/SCP/readme.md
https://github.com/vOptSolver/vOptLib/tree/master/SCP

750 L. Weerasena et al.

1 3

 20. Jaszkiewicz, A.: Genetic local search for multi-objective combinatorial optimization. Eur. J. Oper.
Res. 137(1), 50–71 (2002)

 21. Jaszkiewicz, A.: Do multiple-objective metaheuristics deliver on their promises? A computational
experiment on the set-covering problem. IEEE Trans. Evol. Comput. 7(2), 133–143 (2003)

 22. Jaszkiewicz, A.: A comparative study of multiple-objective metaheuristics on the bi-objective set
covering problem and the pareto memetic algorithm. Ann. Oper. Res. 131(1–4), 135–158 (2004)

 23. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computa-
tions, pp. 85–103. Springer (1972)

 24. Ke, L., Zhang, Q., Battiti, R.: Moea/d-aco: a multiobjective evolutionary algorithm using decompo-
sition and antcolony. IEEE Trans. Cybern. 43(6), 1845–1859 (2013)

 25. Kohl, N., Karisch, S.E.: Airline crew rostering: problem types, modeling, and optimization. Ann.
Oper. Res. 127(1–4), 223–257 (2004)

 26. Lan, G., DePuy, G.W., Whitehouse, G.E.: An effective and simple heuristic for the set covering
problem. Eur. J. Oper. Res. 176(3), 1387–1403 (2007)

 27. Liang, Y.-C., Lo, M.-H.: Multi-objective redundancy allocation optimization using a variable neigh-
borhood search algorithm. J. Heuristics 16(3), 511–535 (2010)

 28. Lust, T., Teghem, J., Tuyttens, D.: Very large-scale neighborhood search for solving multiobjective
combinatorial optimization problems. In: International Conference on Evolutionary Multi-Criterion
Optimization, pp. 254–268. Springer (2011)

 29. Lust, T., Tuyttens, D.: Variable and large neighborhood search to solve the multiobjective set cover-
ing problem. J. Heuristics 20(2), 165–188 (2014)

 30. Marchiori, E., Steenbeek, A.: An evolutionary algorithm for large scale set covering problems with
application to airline crew scheduling. In: Workshops on Real-World Applications of Evolutionary
Computation, pp. 370–384. Springer (2000)

 31. Marchiori. E., Steenbeek, A.: An evolutionary algorithm for large scale set covering problems with
application to airline crew scheduling. In: 41st Annual Symposium on Real-World Applications of
Evolutionary Computation, Workshops, pp. 370–384. Springer, Berlin (2000)

 32. Marsten, R.E., Shepardson, F.: Exact solution of crew scheduling problems using the set partition-
ing model: recent successful applications. Networks 11(2), 165–177 (1981)

 33. Mavrotas, G., Florios, K.: An improved version of the augmented $\varepsilon $-constraint method
(augmecon2) for finding the exact pareto set in multi-objective integer programming problems.
Appl. Math. Comput. 219(18), 9652–9669 (2013)

 34. McDonnell, M.D., Possingham, H.P., Ball, I.R., Cousins, E.A.: Mathematical methods for spatially
cohesive reserve design. Environ. Model. Assess. 7(2), 107–114 (2002)

 35. Nikas, A., Fountoulakis, A., Forouli, A., Doukas, H.: A robust augmented $\varepsilon $-constraint
method (augmecon-r) for finding exact solutions of multi-objective linear programming problems.
Oper. Res. 1–42 (2020)

 36. Paquete, L., Stützle, T.: Design and analysis of stochastic local search for the multiobjective trave-
ling salesman problem. Comput. Oper. Res. 36(9), 2619–2631 (2009)

 37. Prins, C., Prodhon, C., Calvo, R.W.: Two-phase method and Lagrangian relaxation to solve the bi-
objective set covering problem. Ann. Oper. Res. 147(1), 23–41 (2006)

 38. Revelle, C., Hogan, K.: The maximum reliability location problem and $\alpha $-reliablep-center
problem: derivatives of the probabilistic location set covering problem. Ann. Oper. Res. 18(1), 155–
173 (1989)

 39. Saxena, R.R., Arora, S.R.: Exact solution of crew scheduling problems using the set partitioning
model: recent successful applications. Optimization 11(2), 165–177 (1981)

 40. Soylu, B.: Heuristic approaches for biobjective mixed 0–1 integer linear programming problems.
Eur. J. Oper. Res. 245(3), 690–703 (2015)

 41. Steuer, R.E.: Multiple criteria optimization. Theory Comput. Appl. (1986)
 42. Ulungu, E.L., Teghem, J.: Multi-objective combinatorial optimization problems: a survey. J. Multi-

criteria Decis. Anal. 3(2), 83–104 (1994)
 43. Vasko, F.J.: An efficient heuristic for large set covering problems. Naval Res. Logist. Q. 31(1), 163–

171 (1984)
 44. Weerasena, L.: Algorithm for generalised multi-objective set covering problem with an application

in ecological conservation. Int. J. Math. Model. Numer. Optim. 10(2), 167–186 (2020)
 45. Weerasena, L., Shier, D., Tonkyn, D.: A hierarchical approach to designing compact ecological

reserve systems. Environ. Model. Assess. 19(5), 437–449 (2014)

751

1 3

Design of a heuristic algorithm for the generalized…

 46. Weerasena, L., Wiecek, M.M.: A tolerance function for the multiobjective set covering problem.
Optim. Lett. 1–19 (2018)

 47. Weerasena, L., Wiecek, M.M., Soylu, B.: An algorithm for approximating the pareto set of the mul-
tiobjective set covering problem. Ann. Oper. Res. 248(1–2), 493–514 (2017)

 48. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Multiple Crite-
ria Decision Making Theory and Application, pp. 468–486. Springer (1980)

 49. Wierzbicki, A.P.: On the completeness and constructiveness of parametric characterizations to vec-
tor optimization problems. Oper. Res. Spektrum 8(2), 73–87 (1986)

 50. Zhang, W., Reimann, M.: A simple augmentedâ-constraint method for multi-objective mathematical
integer programming problems. Eur. J. Oper. Res. 234(1), 15–24 (2014)

 51. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical
results. Evol. Comput. 8(2), 173–195 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

	Design of a heuristic algorithm for the generalized multi-objective set covering problem
	Abstract
	1 Introduction
	2 Preliminaries and related background
	2.1 Generalized multi-objective set covering problem
	2.2 Exact methods
	2.2.1 Weighted-sum scalarization
	2.2.2 Achievement scalarization function

	3 Design of the approximation algorithm
	3.1 Lexicographic set selection rules
	3.2 Framework of the algorithm
	3.2.1 Initialization
	3.2.2 Construct and solve subproblems
	3.2.3 Identify the partial solutions
	3.2.4 Identify coverage
	3.2.5 Construct feasible solutions
	3.2.6 Improve feasible solutions

	4 Experimental outline
	4.1 Test problems
	4.2 Performance metrics
	4.3 Number of scalarization to obtain the initial population

	5 Experimental results
	5.1 Comparisons of priority rules based on metric
	5.2 Effect of search length
	5.3 Computational time of the LOLS
	5.4 Comparison with a state-of-the-art algorithm for the MOSCP
	5.5 Comparison with the Pareto set

	6 Conclusion and future work
	Acknowledgements
	References

